• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparison of turbulence-reduced drift coefficients of importance for the modulation of galactic cosmic-ray protons in the supersonic solar wind

    Thumbnail
    Date
    2015
    Author
    Engelbrecht, N.E.
    Burger, R.A.
    Metadata
    Show full item record
    Abstract
    The study of the modulation of cosmic rays in the heliosphere relies heavily on a thorough understanding of the transport of these charged particles in the turbulent solar wind. Drift effects due to gradients and the curvature of the background magnetic field have long been known to be reduced in the presence of turbulence, and as such, several forms for the drift coefficient that include the effect of turbulence have been proposed. The present study aims to investigate the qualitative effects of various turbulence-reduced drift coefficients on cosmic ray intensities computed using an ab initio 3D steady-state cosmic-ray modulation code. Results from a two-component turbulence transport models are used as inputs for the basic turbulence quantities. Furthermore, an expression for the perpendicular mean free path is derived here from a modification of the non-linear guiding center theory of Matthaeus et al. (2003) assuming a 2D turbulence power spectrum with a k-1k-1 energy range wavenumber dependence, and is used in conjunction with the various proposed turbulence-reduced drift coefficients. Cosmic-ray intensities computed using different drift coefficients but assuming the same turbulence conditions are found to differ widely. This study emphasises the need to gain a better understanding of the effect of turbulence on drifts in the heliosphere
    URI
    http://hdl.handle.net/10394/18497
    https://doi.org/10.1016/j.asr.2014.09.019
    http://www.sciencedirect.com/science/article/pii/S0273117714005833
    Collections
    • Faculty of Natural and Agricultural Sciences [4781]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV