• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparison of singular spectrum analysis forecasting methods to forecast South African tourism arrivals data

    Thumbnail
    Date
    2015
    Author
    De Klerk, J.
    Metadata
    Show full item record
    Abstract
    Singular spectrum analysis (SSA) has been shown to be a powerful non-parametric time series method by which a time series is unfolded into a Hankel structured matrix. Time series structures are then extracted by direct application of singular value decomposition to the Hankel matrix and forecasts can then be produced. SSA is especially powerful in case time series exhibit seasonality combined with trends (linear, exponential or curvilinear). The method has been shown to outperform forecasts produced by SARIMA processes when observed time series contains seasonality and trend patterns. The application of SSA for forecasting tourism time series is very recent and this paper compares the recurrent-, vector- and joint-horizon-forecasting methods using Monte Carlo Simulations and a South African tourism arrivals datase
    URI
    http://hdl.handle.net/10394/18484
    http://reference.sabinet.co.za/webx/access/electronic_journals/bersee/bersee_v39_n2_a2.pdf
    Collections
    • Faculty of Natural and Agricultural Sciences [4817]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV