• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856

    Thumbnail
    View/Open
    Discovery of.pdf (522.5Kb)
    Date
    2015
    Author
    Abramowski, A.
    Böttcher, M.
    Davids, I.D.
    Ivascenko, A.
    Krüger, P.P.
    Pekeur, N.W.
    Seyffert, A.S.
    Spanier, F.
    Sushch, I.
    Van der Walt, D.J.
    Venter, C.
    H.E.S.S. Collaboration
    Metadata
    Show full item record
    Abstract
    Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018–589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6–5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ2/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018–589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018–589 A is best fit with a power-law function with photon index Γ = 2.20 ± 0.14stat ± 0.2sys. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 ± 0.4) × 10-13 TeV-1 cm-2 s-1 at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of Nσ> 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ ≲ 1 at 300 GeV)
    URI
    http://hdl.handle.net/10394/18448
    https://doi.org/10.1051/0004-6361/201525699
    http://www.aanda.org/articles/aa/full_html/2015/05/aa25699-15/aa25699-15.html
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV