• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009

    Thumbnail
    Date
    2014
    Author
    Potgieter, M.S.
    Vos, E.E.
    Boezio, M.
    De Simone, N.
    Di Felice, V.
    Metadata
    Show full item record
    Abstract
    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of galactic protons were recorded at Earth in late 2009 in contrast to expectations. Proton spectra observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the Resurs-DK1 satellite are presented together with the solutions of a comprehensive numerical model for the solar modulation of cosmic rays. The model is used to determine what mechanisms were mainly responsible for the modulation of protons during this period, and why the observed spectrum for 2009 was the highest ever recorded. From mid-2006 until December 2009 we find that the spectra became significantly softer because increasingly more low energy protons had reached Earth. To simulate this effect, the rigidity dependence of the diffusion coefficients had to decrease significantly below ∼3 GeV. The modulation minimum period of 2009 can thus be described as relatively more ‘diffusion dominated’ than previous solar minima. However, we illustrate that drifts still had played a significant role but that the observable modulation effects were not as well correlated with the waviness of the heliospheric current sheet as before. Protons still experienced global gradient and curvature drifts as the heliospheric magnetic field had decreased significantly until the end of 2009, in contrast to the moderate decreases observed during previous minimum periods. We conclude that all modulation processes contributed to the observed increases in the proton spectra for this period, exhibiting an intriguing interplay of these major mechanisms
    URI
    http://hdl.handle.net/10394/16587
    http://dx.doi.org/10.1007/s11207-013-0324-6
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV