Show simple item record

dc.contributor.authorBaumgartner, Jeannine
dc.contributor.authorSmuts, Cornelius M.
dc.contributor.authorZimmermann, Michael
dc.date.accessioned2015-11-23T09:02:31Z
dc.date.available2015-11-23T09:02:31Z
dc.date.issued2014
dc.identifier.citationBaumgartner, J. et al. 2014. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision. Lipids in health and disease, 13(97):1-13. [http://www.biomedcentral.com/content/pdf/1476-511X-13-97.pdf]en_US
dc.identifier.issn1476-511X
dc.identifier.issn1476-511X (Online)
dc.identifier.urihttp://hdl.handle.net/10394/15181
dc.identifier.urihttp://dx.doi.org/10.1186/1476-511X-13-97
dc.identifier.urihttp://www.lipidworld.com/content/13/1/97
dc.description.abstractBackground: We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. Methods: In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56–91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. Results: In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. Conclusion: These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on the conversion of ALA to EPA and DHA.en_US
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.subjectalpha-linolenic aciden_US
dc.subjectcognitionen_US
dc.subjectironen_US
dc.subjectmonoaminesen_US
dc.subjectn-3 fatty aciden_US
dc.titleProviding male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provisionen_US
dc.typeArticleen_US
dc.contributor.researchID20924445 - Smuts, Cornelius Mattheus


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record