• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Karakterisering van Grubbs-tipe prekatalisatore met behulp van kernmagnetiese resonansspektroskopie

    Thumbnail
    View/Open
    Table of contents (353.3Kb)
    Chapter 1 (50.71Kb)
    Chapter 2 (880.1Kb)
    Chapter 3 (313.5Kb)
    Chapter 4 (449.1Kb)
    Chapter 5 (51.73Kb)
    Appendix (15.17Mb)
    Date
    2014
    Author
    De Lange, Christo
    Metadata
    Show full item record
    Abstract
    Since the development of the ruthenium containing precatalysts Grubbs 1 (1) and Grubbs 2 (2), there was an increase in the development of new precatalysts. The NMR characterization could not cope with this. The NMR characterization mainly consists of 1H, 31P, COSY and rarely 13C. Due to the high natural abundance of 1H and 31P (99.98% and 100%), these experiments could be carried out quickly and easily. The only change that had to be made was to the spectral width, to accommodate the carbene signal (Ru=CH) between δ 20.02 and δ 17.32 ppm. The lack of 13C characterization is attributed to the low natural abundance of these nuclei that is only 1.10% and the lack of published parameters. Furthermore, the broad spectral width of 300 ppm increases the difficulty because the number of scans has to be increased to increase the sensitivity of the spectra and obtain useful data. In this study the precatalyst 1 was used to learn the NMR technique as well as to acquire the NMR parameters. 2 and two other commercial Grubbs-type precatalysts 3 and 4 underwent NMR characterization so that acquired values could be compared with the literature. Six other non-commercial Grubbs-type precatalysts 5-10 were synthesized and characterized. Due to the instability of the precatalysts and taking into account the duration of these experiments, the characterization was done over three steps. The first step was to do the following experiments: 1H, COSY, HSQC and HMBC, which took four hours. The next step was the DEPT135 experiment of three hours, and finally the 13C experiment of seven hours. The maximum amount of information could be obtained in this way. The combined NMR parameters for this study was obtained and used to characterize the Grubbs-type precatalysts 5-10 partially. Due to the large amount of overlapping peaks in the aromatic and alkane areas the resolution was not sufficient for full characterization.
    URI
    http://hdl.handle.net/10394/12237
    Collections
    • Natural and Agricultural Sciences [2757]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV