• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A benchmarking model for harmonic distortion in a power system

    Thumbnail
    View/Open
    Table of contents (134.6Kb)
    Chapter 1 (60.81Kb)
    Chapter 2 (1007.Kb)
    Chapter 3 (670.7Kb)
    Chapter 4 (279.5Kb)
    Bibliography & appendix (9.843Mb)
    Date
    2011
    Author
    Rudolph, Johnny
    Metadata
    Show full item record
    Abstract
    The present power system is loaded with sophisticated energy conversion technologies like solid state converters. With the rapid advance in semiconductor technology, power electronics have provided new devices that are highly efficient and reliable. These devices are inherently non-linear, which causes the current to deviate from sinusoidal conditions. This phenomenon is known as harmonic current distortion. Multiple consumers are connected to the utility at the point of common coupling. Harmonic currents are then transmitted into the distribution system by various solid state users and this could lead to voltage distortion. Harmonic distortion is just one of the power quality fields and is not desirable in a power system. Distortion levels could cause multiple problems in the form of additional heating, increased power losses and even failing of sensitive equipment. Utility companies like Eskom have power quality monitors on various points in their distribution system. Data measurements are taken at a single point of delivery during certain time intervals and stored on a database. Multiple harmonic measurements will not be able to describe distortion patterns of the whole distribution system. Analysis must be done on this information to translate it to useful managerial information. The aim of this project is to develop a benchmarking methodology that could aid the supply industry with useful information to effectively manage harmonic distortion in a distribution system. The methodology will implement distortion indexes set forth by the Electrical Power Research Institute [3], which will describe distortion levels in a qualitative and quantitative way. Harmonic measurements of the past two years will be used to test the methodology. The information is obtained from Eskom’s database and will benchmark the North-West Province distribution network [40]. This proposed methodology will aim to aid institutions like NERSA to establish a reliable power quality management system.
    URI
    http://hdl.handle.net/10394/11077
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV