• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    H2SO4 stability of PBI-blend membranes for SO2 electrolysis

    Thumbnail
    Date
    2012
    Author
    Schoeman, H.
    Krieg, H.M.
    Krüger, A.J.
    Chromik, A.
    Krajinovic, K.
    Metadata
    Show full item record
    Abstract
    For hydrogen to become a serious contender for replacing fossil fuels, the manufacturing thereof has to be further investigated. One such process, the membrane based Hybrid Sulfur (HyS) process, where hydrogen is produced from the electrolysis of SO2, has received considerable interest recently. Since H2SO4 is formed during SO2 electrolysis, H2SO4 stability is a prerequisite for any membrane to be used in this process. In this study, pure as well as blended polybenzimidazole (PBI), partially fluorinated poly(arylene ether) (sFS) and nonfluorinated poly(arylene ethersulfone) (sPSU) membranes were investigated in terms of their acid stability as a function of acid concentration. Membranes were characterized using weight change, TGA, GPC, SEM/EDX and IEC. While a general stability was observed at 30 and 60 wt% H2SO4, the blended sFS-PBI and sPSU-PBI showed the highest stability throughout. According to the VI curve obtained for the SO2 electrolysis, the sPSU-PBI blend membrane performed slightly better than Nafion®117.
    URI
    http://hdl.handle.net/10394/10750
    https://doi.org/10.1016/j.ijhydene.2011.09.113
    https://www.sciencedirect.com/science/article/pii/S0360319911022609
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV