• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fluid-assisted granulite metamorphism: a continental journey

    Thumbnail
    Date
    2012
    Author
    Huizenga, Jan Marten
    Touret, Jacques L.R.
    Metadata
    Show full item record
    Abstract
    Lower crustal granulites, which constitute the base of all continents, belong to two series: high-pressure granulites generated by crustal thickening (subduction) and (ultra)high-temperature granulites associated with crustal extension. Fluid inclusions and metasomatic features indicate that the latter were metamorphosed in the presence of low-water activity fluids (high-density CO2 and brines), which have invaded the lower crust at peak metamorphic conditions (fluid-assisted granulite metamorphism). High-pressure and (ultra)high-temperature granulites commonly occur along elongated paired belts. They were formed, from the early Proterozoic onwards, during a small number of active periods lasting a few hundreds of m.y. These periods were separated from each other by longer periods of stability. Each period ended with the formation of a supercontinent whose amalgamation coincided with low- to medium pressure (ultra)high-temperature granulite metamorphism, immediately before continental break-up. It is proposed that large quantities of mantle-derived CO2 stored in the lower crust at the final stage of supercontinent amalgamation, are released into the hydro- and atmosphere during breakup of the supercontinent. Fluid-assisted granulite metamorphism, therefore, appears to be an important mechanism for transferring deep mantle fluids towards the Earth's surface. Possible consequences were, for example, the sudden end of Proterozoic glaciations, as well as the post-Cambrian explosion of life.
    URI
    http://hdl.handle.net/10394/10032
    http://dx.doi.org/10.1016/j.gr.2011.07.022
    Collections
    • Faculty of Natural and Agricultural Sciences [4818]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV