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Abstract. This paper contains a further analysis of the Toeplitz-like
operators Tω on Hp with rational symbol ω having poles on the unit
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Here the adjoint operator T ∗

ω is described. In the case where p = 2
and ω has poles only on the unit circle T, a description is given for
when T ∗

ω is symmetric and when T ∗
ω admits a selfadjoint extension. If in

addition ω is proper, it is shown that T ∗
ω coincides with the unbounded

Toeplitz operator defined by Sarason (Integr Equ Oper Theory 61:281–
298, 2008) and studied further by Rosenfeld (Classes of densely defined
multiplication and Toeplitz operators with applications to extensions of
RKHS’s, 2013; J Math Anal Appl 440:911–921, 2016).
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1. Introduction

In this paper we proceed with our study of unbounded Toeplitz-like operators
on Hp with rational symbols that have poles on the unit circle T which was
initiated in [4]. Our previous work on such Toeplitz-like operators focused
on their Fredholm properties (in [4]) and the various parts of their spectra
(in [5]). Here we determine properties of the adjoint operator and conditions

This work is based on the research supported in part by the National Research Foundation
of South Africa (Grant Nos. 90670 and 118513). Part of the research was done during a
visit by the third author to VU Amsterdam supported through the Teaching Develop-
ment Grant National Collaborative Project: Strengthening Academic Staff Development
in Mathematical and Statistical Sciences in South Africa (Grant Nos. APP-TDG-135 and
APP-TDG-136).

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-019-2542-2&domain=pdf


   43 Page 2 of 23 G. J. Groenewald et al. IEOT

under which the operator is symmetric and when it has a selfadjoint exten-
sion.

Before we can define our Toeplitz-like operators, some notation has to
be introduced. We write Rat for the space of rational complex functions,
Rat(T) for the subspace of Rat consisting of rational complex functions with
poles only on the unit circle T, and Rat0(T) for the subspace of strictly proper
functions in Rat(T). Now let ω ∈ Rat, possibly with poles on T. As in [4], we
define the Toeplitz-like operator Tω (Hp → Hp), for 1 < p < ∞, via

Dom(Tω)={g ∈ Hp |ωg=f+ρ with f ∈ Lp, ρ ∈ Rat0(T)} , Tωg = Pf.

(1.1)

Here P is the Riesz projection of Lp onto Hp. The operator Tω is densely
defined and closed. In case ω ∈ Rat(T), explicit formulas for the domain,
kernel, range, and a complement of the range were obtained in [5], as an
extension of a result in [4] for the case where Tω is Fredholm. We recall these
results in Sect. 2, as they will be frequently used throughout the paper.

If ω has no poles on T, in fact for any ω ∈ L∞, the adjoint of the Toeplitz
operator Tω on Hp can be identified with the Toeplitz operator Tω∗ on Hp′

,
with 1 < p′ < ∞ so that 1/p + 1/p′ = 1 and with ω∗ defined as ω∗(z) = ω(z)
on T. The identification of (Hp)′ and Hp′

goes via the usual pairing

〈f, g〉p,p′ =
1
2π

∫
T

g(z)f(z) dz (f ∈ Hp, g ∈ Hp′
).

In the sequel we use the same notation for the similarly defined pairing be-
tween Lp and Lp′

to identify (Lp)′ and Lp′
, and in both cases the indices will

often be omitted.
For the Toeplitz-like operators studied in this paper the situation is

more complicated than for Toeplitz operators with L∞ symbols. However,
we do obtain that T ∗

ω can be identified with the restriction of the Toeplitz-
like operator Tω∗ on Hp′

to a dense subspace of its domain. Like for the
operator Tω, in case ω is in Rat(T) we obtain a more explicit description of
T ∗

ω , which we present after introducing some further notation.
Throughout the paper P denotes the space of complex polynomials and

Pk, for any non-negative integer k, denotes the subspace of P of polynomials
of degree at most k. The degree of a polynomial r ∈ P is denoted as deg(r).
Given r ∈ P with deg(r) = k, say r(z) = r0 + zr1 + · · · + zkrk, we define the
polynomial r� by

r�(z) = zkr(1/z) = r0z
k + r1z

k−1 + · · · + rk.

The following theorem is our first main result.

Theorem 1.1. Let ω = s/q ∈ Rat with s, q ∈ P co-prime and 1 < p < ∞.
Factor s = s−s0s+ and q = q−q0q+ with s−, q− having roots only inside T,
s0, q0 having roots only on T, and s+, q+ having roots only outside T. Set
m = deg(q), n = deg(s), m± = deg(q±), n± = deg(s±) m0 = deg(q0),
n0 = deg(s0) and let 1 < p′ < ∞ with 1/p + 1/p′ = 1. Then

Dom(T ∗
ω) = (q0)�Hp′ ⊂ Dom(Tω∗) and T ∗

ω = Tω∗ |(q0)�Hp′ . (1.2)
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Furthermore, we have

Ran(T ∗
ω) = Tzm−n(s+)�/(q+)�Qn0+n−−m0−m−(s0)�Hp′

,

Ker(T ∗
ω) =

{
(q−)�(q0)�r

(s−)�
| deg(r) < n− − m− − m0

}
.

(1.3)

Here Qk = IHp′ − PPk−1 , with PPk−1 the standard projection in Hp′
onto

Pk−1 ⊂ Hp′
to be interpreted as 0 if k ≤ 0, i.e., Qk = IHp′ if k ≤ 0.

Thus, for n0 + n− ≤ m0 + m− we have Ran(T ∗
ω) = Tzm−n/(q+)�(s+s0)�Hp′

.
Moreover,

dim Ker(T ∗
ω) = max

{
0,#{zeroes of ω inside D} − #{poles of ω in D}},

where the multiplicities of the zeroes and poles are taken into account. Hence,
dim Ker(T ∗

ω) is the maximum of 0 and n− − m− − m0. In particular, T ∗
ω is

injective if and only if the number of poles of ω inside D is greater than or
equal to the number of zeroes of ω inside D, multiplicities taken into account.

Before giving a proof of Theorem 1.1 in Sect. 4, we prove the special-
ization of this result for the case ω ∈ Rat(T) in Sect. 3. For this purpose we
first provide a description of Tω∗ in Sect. 2.

The injectivity result, but not the description of Ker(T ∗
ω), can also be

derived from general theory and results on Tω. Indeed, according to Theorem
II.3.7 in [3], T ∗

ω is injective if and only if Tω has dense range, so that the
claim follows from Proposition 2.4 in [5]. More can be obtained in this way,
since Hp, 1 < p < ∞, is reflexive. By Theorem II.2.14 of [3] it follows that
T ∗∗

ω = Tω, with the usual identifications of the dual spaces. Hence, applying
the above to T ∗

ω we find that T ∗
ω has dense range if and only if Tω is injective;

see also Theorem II.4.10 in [3]. By Banach’s Closed Range Theorem, cf., [14],
T ∗

ω has closed range if and only if Tω has closed range. Again applying results
from [5] now gives the following result.

Corollary 1.2. Let ω ∈ Rat and 1 < p < ∞. Then T ∗
ω has closed range if

and only if ω has no zeroes on T, or equivalently, ω∗ has no zeroes on T.
Moreover, T ∗

ω has dense range if and only if

#
{
poles of ω inside D

multi. taken into account

}
≤ #

{
zeroes of ω inside D

multi. taken into account

}
.

Beyond Sect. 4, and in the remainder of this introduction, we only con-
sider the case p = 2 and ω ∈ Rat(T). By comparing the results on Tω and
T ∗

ω it is obvious Tω cannot be selfadjoint, except when ω has no poles on T.
In Sect. 5 we describe in terms of ω when T ∗

ω is symmetric, in which case
T ∗

ω ⊂ Tω, and whenever T ∗
ω is symmetric we describe when Tω∗ admits a

selfadjoint extension. The following theorem collects some of the main re-
sults of Sect. 5; it follows directly from Theorem 5.1, Corollaries 5.2 and 5.7,
Propositions 5.4 and 5.9.

Theorem 1.3. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime. Consider Tω on
H2. Then

T ∗
ω is symmetric ⇐⇒ ω(T) ⊂ R.
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In particular, if T ∗
ω is symmetric, then deg(s) ≤ deg(q) ≤ 2 deg(s). Further-

more, if T ∗
ω is symmetric, then T ∗

ω admits a selfadjoint extension if and only
if the number of roots of s − iq and s + iq in D, counting multiplicities, co-
incide. This happens in particular if ω(T) �= R, but cannot happen in case
deg(q) is odd.

Several other conditions for T ∗
ω to be symmetric and/or have a selfad-

joint extension are derived in Sect. 5.
In [11] Sarason introduced and studied an unbounded Toeplitz-like oper-

ator with symbol in the Smirnov class. In Sect. 6 we show that if ω ∈ Rat(T)
is proper, then the adjoint operator T ∗

ω is precisely a Toeplitz-like operator
of the type studied by Sarason. Hence in this case our Toeplitz-like operator
Tω = T ∗∗

ω coincides with the adjoint of the Toeplitz-like operator considered
in [11]. Based on ideas in [11], we also show that H(D), the space of functions
analytic on a neighborhood of D, is contained in Dom(Tω) and in fact is a
core of Tω.

In the last section of [11], Sarason introduces a class of closed, densely
defined Toeplitz-like operators on H2 determined by algebraic properties,
which was further investigated by Rosenfeld in [9,10]. In particular, this class
of Toeplitz-like operators contains the unbounded Toeplitz-like operator stud-
ied by Sarason and is closed under taking adjoints, and hence contains our
Toeplitz-like operators with proper symbols in Rat(T). In fact, we will show
in Sect. 6 that Tω is contained in the class of Toeplitz-like operators for any
ω in Rat.

2. The Operator Tω∗ for ω ∈ Rat(T)

In this section we recall some results from [4,5] on the operator Tω for ω ∈
Rat(T) that we will use in the sequel, and apply them to the operator Tω∗ .
Hence, throughout this section let ω = s/q ∈ Rat(T), with s, q ∈ P co-prime.
We set m = deg(q) and n = deg(s). Furthermore, factor s = s−s0s+ with s−,
s0 and s+ polynomials having roots only inside, on, or outside T, respectively.
We then recall from Theorem 2.2 in [5] that

Ker(Tω) = {r/s+ | deg(r) < m − deg(s−s0)};

Dom(Tω) = qHp + Pm−1; Ran(Tω) = sHp + P̃,
(2.1)

where P̃ is the subspace of P given by

P̃ = {r ∈ P | rq = r1s + r2 for r1, r2 ∈ Pm−1} ⊂ Pn−1. (2.2)

Furthermore, Hp = Ran(Tω) + Q̃ forms a direct sum decomposition of Hp,
where

Q̃ = Pk−1 with k = max{deg(s−) − m, 0}, (2.3)
using the convention P−1 := {0}. Furthermore, the action of Tω is as follows:

Tωg = sh + r̃ (g = qh + r ∈ qHp + Pm−1 = Dom(Tω)),

where r̃ ∈ Pn−1 is such that rs = r̃q + r2for some r2 ∈ Pm−1.
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We also recall from Lemma 5.3 in [4] that

Tzκω = TzκTω for any integer κ ≤ 0. (2.4)

Recall that ω∗ is defined as ω∗(z) = ω(z) on T, i.e., ω∗(z) = s(z)/q(z).
For z ∈ T

q(z) = q0 + zq1 + · · · + zmqm = q0 + q1
1
z

+ · · · + qm
1

zm
=

1
zm

q�(z).

Hence q�(z) = zmq(z), and likewise s�(z) = zns(z). Thus we have

ω∗(z) =
zm−ns�(z)

q�(z)
if m ≥ n and ω∗(z) =

s�(z)
zn−mq�(z)

if m < n. (2.5)

In fact, the formula ω∗(z) = zm−ns�(z)/q�(z) holds in both cases, but is not
always a representation as the ratio of two polynomials. Note in particular
that ω∗ ∈ Rat(T) in case ω is proper, while this need not be the case if ω is
not proper. Thus, if ω is proper, the above formulas apply directly, while for
the non-proper case, using (2.4) we can reduce certain questions to questions
concerning the Toeplitz operator Ts�/q� with symbol s�/q� which is in Rat(T).

A polynomial r �= 0 is called self-inversive in case r = γr� for a constant
γ ∈ C, which necessarily is unimodular. In fact, γ is the ratio r0/rn with
r0 = r(0) and rn the leading coefficient of r. By a theorem of Cohn [1], a
polynomial r has all its roots on T if and only if r is self-inversive and its
derivative has all its roots in the closed unit disc D. Hence, any polynomial
with roots only on T is self-inversive. In particular, q = γq� and s0 = ρ(s0)�

for unimodular constants γ and ρ.
More generally, in the transformation r → r�, the nonzero roots of r

(including multiplicity) transfer along the unit circle via the map α → 1/α =
|α|−2α, while the degree decreases by the multiplicity of 0 as a root of r. Con-
sequently, in the factorization s� = (s+)�(s0)�(s−)�, the polynomials (s+)�,
(s0)� and (s−)� contain the roots of s� inside, on and outside T, respectively,
taking multiplicities into account. We write (s+)� rather than s�

+, etc., to
avoid confusion with what one may interpret as (s�)+.

We now apply the above to Tω∗ acting on Hp′
, 1 < p′ < ∞, to fit better

with the remainder of the paper.

Proposition 2.1. Let ω = s/q ∈ Rat(T), with s, q ∈ P co-prime, m = deg(q)
and n = deg(s). Factor s = s−s0s+ with s−, s0 and s+ polynomials having
roots only inside, on, or outside T, respectively. Then for Tω∗ on Hp′

, with
1 < p′ < ∞, we have

Ker(Tω∗) =
{
r0/(s−)� | deg(r0) < deg(s−)

}
, Dom(Tω∗) = q�Hp′

+ Pm−1.

Moreover, we have

Ran(Tω∗) = zm−ns�Hp′
+ P̃∗ if m ≥ n,

Ran(Tω∗) = Tzm−n(s�Hp′
+ P̃∗) if m < n,

(2.6)

where for m ≥ n the subspace P̃∗ is given by

P̃∗ = {r ∈ P | rq� = zm−nr1s
� + r2 for r1, r2 ∈ Pm−1} ⊂ Pm−n+deg(s�)−1,
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while for m < n we have

P̃∗ = {r ∈ P | rq� = r1s
� + r2 for r1, r2 ∈ Pm−1} ⊂ Pdeg(s�)−1.

Furthermore, Ran(Tω∗) is dense in Hp′
.

Proof. We separate the cases m ≥ n and m < n.
For m ≥ n, we have ω∗ = s̃/q̃ ∈ Rat(T) with s̃ = zm−ns� and q̃ = q�.

Hence s̃ factors as s̃ = (zm−n(s+)�)(s0)�(s−)�, where the factors have all
their roots inside, on, or outside T, respectively. Also, deg(q�) = deg(q) and
deg((s+)�) = deg(s+). So the formulas for Dom(Tω∗) and Ran(Tω∗) follow
directly from (2.1), while the formula for Ker(Tω∗) follows because the bound
on the degree of r0 can be computed as

m − deg(zm−n(s+)�(s0)�)=n − deg((s+)�(s0)�) = n − deg(s+s0) = deg(s−).

Finally, a complement of the closure of Ran(Tω∗) is given by Pk−1 with k
the maximum of 0 and deg(zm−n(s+)�) − m = deg((s+)�) − n ≤ 0. Hence
P−1 = {0}. Thus Tω∗ has dense range, as claimed.

In case m < n, we have Tω∗ = Tzm−nTs�/q� and s�/q� is in Rat(T).
Applying the above results for Tω to Ts�/q� directly gives the formulas for
Dom(Tω∗) and Ran(Tω∗).

To see that the formula for Ker(Tω∗) holds, we follow the argumenta-
tion of the proof of Lemma 4.1 in [4]. For g ∈ Dom(Tω∗) = Dom(Ts�/q�)
to be in Ker(Tω∗) is equivalent to Ts�/q�g ∈ Pn−m−1. In other words, by
Lemma 3.2 in [4], to s�g = q�r̃ + r1 with r1 ∈ Pm−1 and r̃ ∈ Pn−m−1,
since then Ts�/q�g = r̃. The latter happens precisely when g = r/(s−)� with
r ∈ Pdeg(s−)−1. Indeed, in that case deg((s+)�(s0)�r) < n which in the equa-
tion (s+)�(s0)�r = s�g = q�r̃ + r1 corresponds to deg(r̃) < m−1, as required.
Finally, we note that a complement of Ran(Ts�/q�) in Hp′

is given by Pk−1

with k = max{0,deg s+
� − m} ≤ n − m. Let f ∈ Hp′

and write zn−mf =
h + r ∈ Ran(Ts�/q�) + Pk−1. Then f = Tzm−nzn−mf = Tzm−n(h + r) =
Tzm−nh ∈ Tzm−nRan(Ts�/q�) ⊂ Ran(Tzm−nTs�/q�) = Ran(Tω∗). Thus also in
this case Ran(Tω∗) is dense in Hp′

. �

We conclude this section with a lemma which will be of use in the sequel.

Lemma 2.2. Let r1, r2 ∈ P. Set ni = deg(ri), i = 1, 2, and n = deg(r1 + r2).
Then

(r1 + r2)� = zn−n1r�
1 + zn−n2r�

2.

In case n < max{n1, n2}, then n1 = n2 and 0 is a root of r�
1 + r�

2 with
multiplicity n − n1, so that the left hand side in the above identity still is a
polynomial without a root at 0.

Proof. By definition, for z ∈ T we have

(r1 + r2)�(z) = zn(r1(1/z) + r2(1/z)) =

= zn−n1zn1r1(1/z) + zn−n2zn2r2(1/z)

= zn−n1r�
1(z) + zn−n2r�

2(z). �



IEOT Rational Symbol Having Poles Page 7 of 23    43 

3. The Adjoint of Tω for ω ∈ Rat(T)

In this section we prove the first main result, Theorem 1.1, for the special
case that ω ∈ Rat(T). In this case, the result specializes to the following
theorem, which we prove in this section.

Theorem 3.1. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime and 1 < p < ∞.
Set m = deg(q), n = deg(s) and let 1 < p′ < ∞ with 1/p + 1/p′ = 1. Then

Dom(T ∗
ω) = q�Hp′ ⊂ Dom(Tω∗) and T ∗

ω = Tω∗ |q�Hp′ . (3.1)

In fact, for g = q�v ∈ q�Hp′
we have T ∗

ωg = Tzm−ns�v. Moreover, factorize
s = s−s0s+ with s−, s0 and s+ polynomials having roots only inside, on, or
outside T, respectively. Then

Ran(T ∗
ω) = Tzm−ns�Hp′

,

Ker(T ∗
ω) =

{
q�r

(s−)�
| deg(r) < deg(s−) − m

}
.

(3.2)

In particular, we have

dim Ker(T ∗
ω) = max {0,# {zeroes of ω∗ outside T} − # {poles of ω∗ on T}} ,

where the multiplicities of the zeroes and poles are taken into account. Thus
T ∗

ω is injective if and only if ω has at least as many poles inside T as zeroes
inside T unequal to 0, multiplicities taken into account.

We first present some auxiliary lemmas. Throughout, let 1 < p, p′ < ∞
such that 1/p + 1/p′ = 1. We will consider Tω as an operator with domain in
Hp and Tω∗ as an operator with domain in Hp′

.

Lemma 3.2. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime, m = deg(q) and
n = deg(s). Then

q�Hp′ ⊂ Dom(T ∗
ω) ∩ Dom(Tω∗) and T ∗

ω |q�Hp′ = Tω∗ |q�Hp′ .

Moreover, for g = q�v ∈ q�Hp′
, with v ∈ Hp′

, we have T ∗
ωg = Tzm−ns�v, and

thus T ∗
ω(q�Hp′

) = Tzm−ns�Hp′
.

Proof. The inclusion q�Hp′ ⊂ Dom(Tω∗) follows from Proposition 2.1. Let g

be in q�Hp′
, say g(z) = q�(z)v(z) for v ∈ Hp′

. We show that for f ∈ Dom(Tω)
we have 〈Twf, g〉p,p′ = 〈f, Tω∗g〉p,p′ . Let f ∈ Dom(Tω) and h = Tωf ∈ Hp,
i.e., sf = qh + r for some r ∈ Pm−1, by [4, Lemma 2.3]. Then

〈Tωf, g〉p,p′ = 〈h, q�v〉p,p′ = 〈h, zmqv〉p,p′ = 〈qh, zmv〉p,p′ = 〈sf − r, zmv〉p,p′

= 〈sf, zmv〉p,p′ (because deg(r) < m, v ∈ Hp′
)

= 〈f, zmsv〉p,p′ =〈f, zm−ns�v〉p,p′

= 〈f, Tzm−ns�v〉p,p′ (because f ∈ Hp).

It remains to show that Tω∗g = Tzm−ns�v. If m ≥ n, then ω∗ = zm−ns�/q� is
in Rat(T) and ω∗g = zm−ns�v ∈ Hp′

, so that, Tω∗g = zm−ns�v = Tzm−ns�v,
by Lemma 2.3 in [4]. If m < n, we have Tω∗g = Tzm−nTs�/q�g = Tzm−n

s�v. �
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Lemma 3.3. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime, m = deg(q) and
n = deg(s). Let g ∈ Dom(T ∗

ω) and k = T ∗
ωg ∈ Hp′

. Then for any r ∈ Pn−1

and r1 ∈ Pm−1 so that

sr1 = qr + r2 for some r2 ∈ Pm−1 (3.3)

we have

〈r1, k〉p,p′ = 〈r, g〉p,p′ .

Moreover, we have

zm−ns�g−q�k ∈ Pm−1 if m ≥ n and s�g−zn−mq�k ∈ Pn−1 if m < n. (3.4)

In particular, Dom(T ∗
ω) ⊂ Dom(Tω∗) and T ∗

ω = Tω∗ |Dom(T ∗
ω).

Proof. Let g ∈ Dom(T ∗
ω) and k = T ∗

ωg. Hence 〈Tωf, g〉p,p′ = 〈f, k〉p,p′ for
each f ∈ Dom(Tω). Since ω ∈ Rat(T), we have Dom(Tω) = qHp +Pm−1. Let
f = qh + r1 ∈ Dom(Tω), with h ∈ Hp and r1 ∈ Pm−1. Then Tωf = sh + r
where r ∈ Pn−1 is uniquely determined by (3.3). Thus

〈sh, g〉 + 〈r, g〉=〈sh + r, g〉=〈Tωf, g〉=〈f, k〉=〈qh + r1, k〉=〈qh, k〉 + 〈r1, k〉.
We obtain that

〈sh, g〉 − 〈qh, k〉 = 〈r1, k〉 − 〈r, g〉.
However, in choosing f ∈ Dom(Tω) we can choose h ∈ Hp and r1 ∈ Pm−1

independently, and in particular set one or the other equal to zero, so that

〈sh, g〉 = 〈qh, k〉 (h ∈ Hp),

〈r1, k〉 = 〈r, g〉 (r ∈ Pn−1, r1 ∈ Pm−1 as in (3.3)).

The second identity proves the first claim of the lemma. From the first identity
we obtain that

0 = 〈h, sg − qk〉p,p′ = 〈h, z−ns�g − z−mq�k〉p,p′ (h ∈ Hp).

Thus P(z−ns�g − z−mq�k) = 0. On the other hand, for l = max{m,n} we
have

zl(z−ns�g − z−mq�k) = zl−ns�g − zl−mq�k ∈ Hp′
.

This can only occur if zl−ns�g − zl−mq�k ∈ Pl−1, which proves the second
claim.

To complete the proof, we show that g ∈ Dom(Tω∗) and Tω∗g = k. For
m ≥ n we have ω∗ ∈ Rat(T) and the first inclusion of (3.4) can be rewritten
as

ω∗g =
(

zm−ns�

q�

)
g = k + r̃/q�, for some r̃ ∈ Pm−1.

Since deg(q�) = deg(q) = m, it now follows that g ∈ Dom(Tω∗) and Tω∗g = k.
In case m < n we have Tω∗ = Tzm−nTs�/q� and s�/q� ∈ Rat(T). Now the
second inclusion of (3.4) gives(

s�

q�

)
g = zn−mk + r̃/q�, for some r̃ ∈ Pn−1.
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Write r̃ = r̃1q
� + r̃2 with r̃2 ∈ Pm−1. Then r̃/q� = r̃1 + r̃2/q� and deg(r̃1) <

m − n. Since r̃2/q� ∈ Rat0(T) it follows that g ∈ Dom(Ts�/q�) = Dom(Tω∗)
and Ts�/q�g = zn−mk+ r̃1. But then Tω∗g = Tzm−nTs�/q�g = Tzm−n(zn−mk+
r̃1) = k. �

A special case of the following result was proven as part of the proof of
Theorem 2.2 in [5].

Lemma 3.4. Let r, r̃ ∈ P be co-prime. Then rHp ∩ r̃Hp = rr̃Hp.

Proof. Let r̃f = rg with f, g ∈ Hp. Then f = r · g/r̃ ∈ Hp, so we should
show f̃ := g/r̃ ∈ Hp, i.e., f̃ analytic on D and

∫
T

|f̃(z)|p dz < ∞.
Since g ∈ Hp, the function f̃ can only fail to be analytic at the roots of

r̃ inside D. However, if this were the case, then f = rf̃ would also fail to be
analytic in D, since r and r̃ are co-prime. Thus f̃ is analytic on D.

Divide T as T1 ∪T2 with T1 ∩T2 = ∅ in such a way that T1 and T2 are
both nonempty finite unions of line segments of T so that the interior of T1

contains the roots of r and the interior of T2 the roots of r̃. Then |r̃(z)| > N1

on T1 and |r(z)| > N2 on T2 for some N1, N2 > 0. Note that f = rf̃ and
g = r̃f̃ . We then obtain∫

T2

|f̃(z)|p dz =
∫
T2

|f(z)/r(z)|p dz ≤ N−p
2

∫
T2

|f(z)|p dz ≤ (2πNp
2 )−1‖f‖p

Hp .

Using g = r̃f̃ , one obtains similarly that
∫
T1

|f̃(z)|p dz ≤ (2πNp
1 )−1‖g‖p

Hp .

Thus
∫
T

|f̃(z)|p dz < ∞. �
Proof of Theorem 3.1. By Lemma 3.2, in order to prove (3.1), the formula
for the action of T ∗

ω on q�Hp′
and for the range of T ∗

ω in (3.2), it remains to
show that Dom(T ∗

ω) ⊂ q�Hp′
.

View P and Pk, k = 1, 2, . . ., as subspaces of Hp or Hp′
, write Pk

for the projection onto Pk−1 and set Qk = I − Pk. Also, the standard k × k

compression of a Toeplitz operator Tφ on Hp (or Hp′
) is denoted by Tφ,k, i.e.,

Tφ,k = PkTφ|Pk−1 . Now, the relation (3.3) between r ∈ Pn−1 and r1 ∈ Pm−1

can be rewritten as

Tsr1 − Tqr ∈ Pm−1,

or, equivalently, as

QmTsPmr1 = QmTsr1 = QmTqr = QmTqPnr. (3.5)

We now consider the cases m ≥ n and m < n separately.
First assume m ≥ n. We can then decompose QmTsPm and QmTqPn as

QmTsPm =
[

0 T ∗
s�,nT ∗

zm−n

0 0

]
: Pm−1 =

[ Pm−n

Tzm−nPn−1

]
→

[ Pn−1

Tn
z Hp

]
,

QmTqPn =
[

T ∗
q�,n

0

]
: Pn−1 →

[ Pn−1

TznHp

]
.

Hence, in this case the identity in (3.5) can be written as

T ∗
s�,n(T ∗

zm−nr1) = T ∗
q�,nr.
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Since all Toeplitz matrices are upper triangular, we in fact have

T ∗
s�,mT ∗

zm−n,mr1 = T ∗
q�,mr.

Note that T ∗
q�,n is invertible, because q has only roots on T so that q(0) �= 0.

We obtain that for given r1 ∈ Pm−1, the polynomial r ∈ Pn−1 that satisfies
(3.3) is uniquely determined by

r = (T ∗
q�,m)−1T ∗

s�,mT ∗
zm−n,mr1 = T ∗

s�,mT ∗m−n
z,m (T ∗

q�,m)−1r1,

where the commutation of Toeplitz matrices can occur since they all have
analytic symbols. Now take r1 ∈ Pm−1 arbitrary, and define r as above, so
that (3.3) holds. Then, by Lemma 3.3, we have

〈r1, Pmk〉Pm−1 = 〈r1, k〉p,p′ = 〈r, g〉p,p′ = 〈r, Pmg〉Pm−1

= 〈T ∗
s�,mT ∗m−n

z,m (T ∗
q�,m)−1r1, Pmg〉Pm−1

= 〈r1, (Tq�,m)−1Tm−n
z,m Ts�,mPmg〉Pm−1 .

Since r1 ∈ Pm−1 is arbitrary, we have Pmk = (Tq�,m)−1Tm−n
z,m Ts�,mPmg, and

thus

PmTq�k = Tq�,mPmk = Tm−n
z,m Ts�,mPmg = PmTm−n

z Ts�g.

This shows that Pmq�k = Pmzm−ns�g. Together with the first inclusion in
(3.4) we obtain that

q�k = zm−ns�g.

Since q� and zm−ns� are co-prime, we can apply Lemma 3.4 to conclude
g ∈ q�Hp′

.
Now assume m < n. By [4, Lemma 2.4], we can write ω = ω0 + ω1

uniquely with ω0 ∈ Rat0(T) and ω1 ∈ Rat without poles on T, i.e, ω1 ∈
L∞(T). In fact ω1 ∈ P, since all poles of ω are on T, and ω0 = s̃/q with
s̃ ∈ Pm−1. It now follows that Dom(T ∗

ω0
) = q�Hp′

, and since Tω1 is bounded,
Dom(T ∗

ω) = Dom(T ∗
ω0

) = q�Hp′
. Furthermore, T ∗

ω = T ∗
ω0

+ T ∗
ω1

|q�Hp′ =
Tω∗

0
|q�Hp′ + Tω∗

1
|q�Hp′ = Tω∗ |q�Hp′ .

In the next part of the proof we prove the formula for Ker(Tω∗), with-
out distinguishing between the proper and non-proper case. Let g = q�v ∈
Dom(T ∗

ω) with v ∈ Hp′
. Then g ∈ Ker(T ∗

ω) if and only if g ∈ Ker(Tω∗),
i.e., g = q�v = r1/(s−)� for r1 ∈ Pdeg(s−)−1, see Proposition 2.1. Thus
v = r1/((s−)�q�) ∈ Rat ∩ Hp′

. Then v ∈ Hp′
implies r1 = q�r, and deg(r) =

deg(r1)−m < deg(s−)−m. Hence g = q�r/(s−)� with deg(r) < deg(s−)−m.
That all such functions are in Ker(T ∗

ω) = Ker(Tω∗) ∩ q�Hp′
follows directly

from the formula for Ker(Tω∗) obtained in Proposition 2.1. The formula for
the dimension of Ker(T ∗

ω) follows directly and the condition for injectivity fol-
lows since deg(s−)� is equal to the number of nonzero roots of s−, counting
multiplicity. �
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4. The Adjoint of Tω : General Case

In the section we prove Theorem 1.1 in full generality. Hence let ω = s/q ∈
Rat with s, q ∈ P co-prime. As in Theorem 1.1, factor s = s−s0s+ and
q = q−q0q+ with s−, q− having roots only inside T, s0, q0 having roots only
on T, and s+, q+ having roots only outside T. Set m = deg(q), n = deg(s),
m± = deg(q±), n± = deg(s±), and m0 = deg(q0), n0 = deg(s0). By Lemma
5.1 in [4], and its proof, we can factor ω as ω = ω−(zκω0)ω+ with κ =
n− −m−, ω− = s−/(zκq−) having only poles and zeroes inside T, ω0 = s0/q0
having only poles and zeroes on T, and ω+ = s+/q+ having only poles and
zeroes outside T, and we have Tω = Tω−Tzκω0Tω+ . Moreover, Tω− and Tω+

are bounded and boundedly invertible.
Note that Tω−Tzκω0 is closed and densely defined and Ran(Tω+) = Hp,

and thus by Corollary 1 in [12]

T ∗
ω = T ∗

ω+

(
Tω−Tzκω0

)∗
.

Furthermore, Tω− is bounded and Tzκω0 is closed and densely defined. By
Theorem 4 in [13] one has(

Tω−Tzκω0

)∗ = T ∗
zκω0

T ∗
ω− .

Combining this and using that T ∗
ω+

= Tω∗
+

and T ∗
ω− = Tω∗

− we see that

T ∗
ω = T ∗

ω+
T ∗

zκω0
T ∗

ω− = Tω∗
+
T ∗

zκω0
Tω∗

− on Dom(T ∗
ω).

Note that

ω∗
− =

(s−)�

(q−)�
, ω∗

0 = zm0−n0
(s0)�

(q0)�
,

(zκω0)∗ = zm0−n0−κ (s0)�

(q0)�
, ω∗

+ = zm+−n+
(s+)�

(q+)�
.

By construction, ω− and 1/ω− are both anti-analytic. Consequently, ω∗
− and

1/ω∗
− are both analytic functions. This implies T±

ω∗
−
(q0)�Hp′ ⊂ (q0)�Hp′

, and

thus Tω∗
−(q0)�Hp′

= (q0)�Hp′
. Since Tω∗

+
is invertible, to see that Dom(T ∗

ω) =
(q0)�Hp′

it suffices to show Dom(T ∗
zκω0

) = (q0)�Hp′
. For the case where

κ ≥ 0, so that zκω0 ∈ Rat(T), this follows directly from Theorem 3.1. For
κ < 0, note that Tzκω0 = TzκTω0 , so that T ∗

zκω0
= T ∗

ω0
T ∗

zκ = T ∗
ω0

Tz−κ ,
again using Theorem 4 of [13]. Then g ∈ Dom(T ∗

zκω0
) holds if and only

if z−κg ∈ Dom(T ∗
ω0

) = (q0)�Hp′
. By Lemma 3.4 this is the same as g ∈

(q0)�Hp′
, since z−κ and q�

0 are co-prime. Thus in both cases we arrive at
Dom(T ∗

ω) = (q0)�Hp′
. Moreover, we also find that T ∗

zκω0
= T(zκω0)∗ |(q0)�Hp′ ,

so that

T ∗
ω = Tω∗

+
T ∗

zκω0
Tω∗

− = Tω∗
+
T(zκω0)∗Tω∗

− |(q0)�Hp′ = Tω∗ |(q0)�Hp′.

Hence (1.2) holds.
Next we derive the formula for Ker(T ∗

ω). For κ ≥ 0 we have g ∈ Ker(T ∗
ω)

if and only if Tω∗
−g ∈ Ker(T ∗

zκω0
) = (q0)�Pκ−m0−1, where the last identity

follows by applying Theorem 3.1 to zκω0. Thus g ∈ Ker(T ∗
ω) if and only if

((s−)�/(q−)�)g = (q0)�r, i.e., g = (q−)�(q0)�r/(s−)�, for some r ∈ Pκ−m0−1,
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as claimed. For κ < 0 we have g ∈ Ker(T ∗
ω) if and only if z−κω∗

−g ∈ Ker(T ∗
ω0

).
However, Ker(T ∗

ω0
) = {0}, by Theorem 3.1, so that Ker(T ∗

ω) = {0}, in line
with the formula in (1.3). The formula for the dimension of Ker(T ∗

ω) follows
directly.

Now we turn to the formula for Ran(T ∗
ω). Note that

Ran(T ∗
ω) = Tω∗

+
Ran(T ∗

zκω0
Tω∗

−) = Tω∗
+
Ran(T ∗

zκω0
). (4.1)

We first show that Ran(T ∗
zκω0

) = Tzm0−n0−κ(s0)�Hp′
. Again, for the case

κ ≥ 0 this follows directly from Theorem 3.1. Assume κ < 0. Then T ∗
zκω0

=
T ∗

ω0
Tz−κ . Hence,

Ran(T ∗
zκω0

) = T ∗
ω0

(z−κHp′ ∩ Dom(Tω0)) = T ∗
ω0

(z−κHp′ ∩ (q0)�Hp′
)

= T ∗
ω0

z−κ(q0)�Hp′
.

The last identity follows by Lemma 3.4. Now the action of T ∗
ω0

, as de-
scribed in Theorem 3.1, shows that Ran(T ∗

zκω0
) = Tzm0−n0 z−κ(s0)�Hp′

=
Tzm0−n0−κ(s0)�Hp′

. Since 1/q+ is analytic, 1/(q+)� is anti-analytic, and there-
fore, independent of the sign of m+ − n+, we have

Tω∗
+

= T1/(q+)�Tzm+−n+ T(s+)� .

Thus

Ran(T ∗
ω) = T1/(q+)�Tzm+−n+ T(s+)�Tzm0−n0−κ(s0)�Hp′

.

Note that T(s+)� and Tzm0−n0−κ need not commute, in case m0 − n0 − κ < 0.
However, we do have T(s+)�Tzm0−n0−κ = Tzm0−n0−κT(s+)�Qκ+n0−m0 . More-
over, since (s+)� is analytic, T(s+)�Qκ+n0−m0 = Qκ+n0−m0T(s+)�Qκ+n0−m0

and we have

Tzm+−n+ Tzm0−n0−κQκ+n0−m0 = Tzm+−n++m0−n0−κQκ+n0−m0

= Tzm−nQκ+n0−m0 .

Therefore, we have

Ran(T ∗
ω) = T1/(q+)�Tzm−nT(s+)�Qκ+n0−m0(s0)

�Hp′

= Tzm−n(s+)�/(q+)�Qκ+n0−m0(s0)
�Hp′

,

again using that 1/(q+)� is anti-analytic and (s+)� is analytic. This gives the
general formula for Ran(T ∗

ω). In case κ+n0−m0 ≤ 0, we have Qκ+n0−m0 = I
and T(s+)�Qκ+n0−m0(s0)

� = (s+s0)�, as claimed.

5. Symmetric Operators and Selfadjoint Extensions

For ω ∈ Rat, the second adjoint T ∗∗
ω is well-defined and T ∗∗

ω = Tω, since Tω

is a closed, densely defined operator on a reflexive Banach space [7, Theorem
III.5.24]. Now consider ω ∈ Rat(T) and p = 2. From Theorem 1.1 it is
obvious that Tω �= T ∗

ω , except in the degenerate case where q is constant, since
Dom(Tω) = qH2+Pdeg(q)−1 contains all polynomials while Dom(T ∗

ω) = q�H2

only contains the polynomials that contain q� as a factor. Consequently, Tω

cannot be selfadjoint. In this section we consider the question when T ∗
ω is
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symmetric, and, if this is the case, when does T ∗
ω have a selfadjoint extension

L. The first topic is addressed in the following theorem.

Theorem 5.1. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime. Set n = deg(s)
and m = deg(q). Then the following are equivalent.

(1) T ∗
ω is symmetric;

(2) ω(T) ⊂ R;
(3) ω(z) = ω̃(−i z+1

z−1 ) with ω̃ a real rational function with poles only on R;
(4) the essential spectrum σess(Tω) of Tω is contained in R;
(5) ω is proper, s = zm−ns̃ with s̃ self-inversive and q0sn = qmsm−n holds,

where s(z) =
∑n

k=0 skzk and q(z) =
∑m

k=0 qkzk.

Moreover, if T ∗
ω is symmetric, then T ∗

ω ⊂ Tω.

Proof. We first prove the equivalence of (1) and (2), and that (1) implies T ∗
ω ⊂

Tω. Assume (2). For z ∈ T, not a root of q, we have ω∗(z) = ω(z) = ω(z).
Hence ω∗ = ω. Since q has only roots on T, we have q = γq� for a unimodular
constant γ. Hence qH2 = q�H2. This shows T ∗

ω = Tω∗ |q�H2 = Tω|qH2 ⊂ Tω.
Since (T ∗

ω)∗ = Tω, it follows that T ∗
ω is symmetric and T ∗

ω ⊂ Tω. Conversely,
assume (1). Then we still have qH2 = q�H2 and T ∗

ω ⊂ (T ∗
ω)∗ = Tω. Hence

T ∗
ω = Tω|qH2 . In particular, we have ω∗q = Tω∗q = T ∗

ωq = Tωq = ωq. This
implies ω = ω∗. Hence ω(z) = ω(z) for z ∈ T, not a root of q. Thus ω(T) ⊂ R.

That (2) and (3) are equivalent follows simply because in (3) ω is the
composition of ω̃ and the inverse Cayley transform, which maps the circle T

bijectively onto R. The fact that ω̃ is real rational, i.e., ω̃ = s̃/q̃ with s̃ and
q̃ real polynomials, is equivalent to ω̃(R) := {ω̃(t) : t ∈ R, q̃(t) �= 0} ⊂ R.
Also, the equivalence of (2) and (4) is a direct consequence of the fact that
σess(Tω) = ω(T), by [5, Theorem 1.1].

Finally, we prove (2) ⇔ (5). Since q = γq�, we have

ω∗ = zm−n s�

q�
= zm−nγ

s�

q
.

Thus, we have ω = ω∗ if and only if zm−nγs� = s. Hence (2) is equiva-
lent to zm−nγs� = s. Now assume (2). Since deg(s�) ≤ deg(s), the iden-
tity zm−nγs� = s can only occur if m ≥ n, i.e., if ω is proper. The iden-
tity also shows that s = zm−ns̃ for s̃ = γs�. On the other hand, s� =
(zm−ns̃)� = s̃�. Thus s̃ = γs� = γs̃�, which shows s̃ is self-inversive, with
constant γ. Note that γ = q0/qm. Also, we have s0 = · · · = sm−n−1 = 0 and
s̃(z) =

∑2n−m
k=0 sm−n+kzk. Since s̃ is self-inversive, s̃ = δs̃� with δ = sm−n/sn.

But also δ = γ, so sm−n/sn = q0/qm. Thus q0sn = qmsm−n. Hence (5)
holds. Conversely, assume (5). Reversing the above argument, it follows that
q0sn = qmsm−n implies s̃ = δs̃� with δ = γ. Thus γs� = γs̃� = s̃. This implies
s = zm−ns̃ = zm−nγs�, and hence (2). �

Corollary 5.2. Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime.Assume T ∗
ω is

symmetric. Then deg(s) ≤ deg(q) ≤ 2 deg(s).
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Proof. By Theorem 5.1 condition (5) holds with m = deg(q) and n = deg(s).
Since s̃ is self-inversive, we have s̃(0) �= 0. Consequently, 0 would be a non-
removable singularity of s = zm−ns̃ in case m < n, which gives a contra-
diction. Hence m ≥ n. Furthermore, comparing the degrees on both sides of
s = zm−ns̃ yields, n = m − n + deg(s̃) ≥ m − n. Hence m ≤ 2n. �

When T ∗
ω is symmetric, it need not be the case that T ∗

ω has a selfadjoint
extension. In Proposition 5.4 below we characterize when T ∗

ω does have a
selfadjoint extension. However, we first give a concrete example that shows
this does not always happen.

Example 5.3. In [6] Helson considered the functions ωk(z) =
(
−i z+1

z−1

)k

for
k ∈ N. For all k we have ωk(T) ⊂ R, see Theorem 5.1 (3) above, hence T ∗

ωk
is

symmetric by Theorem 5.1. In fact, for k even ωk(T) = R+, while for k odd
we have ωk(T) = R. We show that T ∗

ωk
does not have a selfadjoint extension

for k = 1. In Example 5.8 we return to this example for general k.
For k = 1 we have ω(z) = ω1(z) = −i z+1

z−1 . Hence Dom(Tω) = (z −
1)H2 +C and Dom(T ∗

ω) = (z − 1)H2. Suppose T ∗
ω has a selfadjoint extension

L. Then L = L∗ and thus T ∗
ω ⊂ L = L∗ ⊂ T ∗∗

ω = Tω. Since Tω is not
selfadjoint, the inclusions are strict. Hence Dom(T ∗

ω) ⊂ Dom(L) ⊂ Dom(Tω),
with strict inclusions. However, the complement of Dom(T ∗

ω) in Dom(Tω) is
one-dimensional, hence not both inclusions can be strict. Thus Tω does not
admit a selfadjoint extension.

Proposition 5.4. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that
T ∗

ω is symmetric. Then T ∗
ω admits a selfadjoint extension if and only if the

number of roots of s − iq and s + iq in D, counting multiplicities, coincide.

Proof. The operator T ∗
ω is an adjoint, and hence closed, and by assumption

symmetric. Following definition X.2.12 from [2] we define the deficiency sub-
spaces of T ∗

ω as the spaces

L+ = Ker (T ∗∗
ω − i) = (Ran (T ∗

ω + i))⊥,

L− = Ker (T ∗∗
ω + i) = (Ran (T ∗

ω − i))⊥,

and the deficiency indices as the integers n± = dimL±. Since T ∗∗
ω = Tω, we

have

n+ = dim Ker (Tω − i) and n− = dim Ker (Tω + i).

Also, we have Tω ± i = Tω±i. By item (b) of Theorem X.2.20 in [2], Tω has a
selfadjoint extension if and only if n+ = n−. Note that ω ± i = (s± iq)/q. We
now apply Corollary 4.2 from [4] to Tω±i, to obtain that n± is equal to the
maximum of 0 and the difference of m and the number of roots of s ± iq in
D, counting multiplicities. However, since T ∗

ω is symmetric, ω is proper so the
number of roots cannot exceed m. Note also that ω(T) ⊂ R, so s ± iq cannot
have roots on T. It thus follows that T ∗

ω has a selfadjoint extension if and
only if the number of roots in D of s − iq and s + iq, counting multiplicities,
coincide, as claimed. �
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Since T ∗
ω is never selfadjoint for ω ∈ Rat(T) having at least one pole on

T, the formulas for n± in the above proof along with item (a) of Theorem
X.2.20 in [2] directly give the following corollary.

Corollary 5.5. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that T ∗
ω

is symmetric. Then s + iq or s − iq must have a root in D.

Proposition 5.4 can be rephrased in terms of the index of the operators
Tω±i.

Proposition 5.6. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that
T ∗

ω is symmetric. Then Tω+i and Tω−i are both Fredholm and T ∗
ω admits a

selfadjoint extension if and only if the Fredholm indices of Tω+i and Tω−i

coincide.

Proof. This follows directly from Proposition 5.4 and Theorem 1.1 of [4]
applied to ω + i and ω − i, using that ω ± i = (s ± iq)/q. �

Corollary 5.7. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that T ∗
ω

is symmetric. Assume ω(T) �= R. Then T ∗
ω admits a selfadjoint extension.

Proof. The Fredholm index of Tω−λ is constant with respect to λ ∈ C on the
connected components of C separated by the essential spectrum of Tω, which
is equal to ω(T); see [5, Theorem 1.1]. Hence if ω(T) �= R, but ω(T) ⊂ R since
T ∗

ω is symmetric, then i and −i are in the same connected component and
thus Tω+i and Tω−i have the same index. The conclusion now follows from
Proposition 5.6. �

Example 5.8. We return to the functions ωk(z) =
(
−i z+1

z−1

)k

considered in
Example 5.3. Since ωk(T) = R+ for k even, we obtain directly from Corol-
lary 5.7 that T ∗

ωk
admits a selfadjoint extension in case k is even.

For odd values of k we have ωk(T) = R, and thus no conclusion can be
drawn from Corollary 5.7. To deal with the odd case we resort to Proposi-
tion 5.4. Take s(z) = (−i)k(z+1)k and q = (z−1)k and write k as k = 2l+1.
The polynomials s ± iq are given by

s(z) ± iq(z) = i
(
(−1)l+1(z + 1)2l+1 ± (z − 1)2l+1

)

= i

⎛
⎝(−1)l+1

2l+1∑
j=0

(
2l + 1

j

)
zj ±

2l+1∑
j=0

(
2l + 1

j

)
zj(−1)2l+1−j

⎞
⎠

= i

2l+1∑
j=0

(
2l + 1

j

)
zj

(
(−1)l+1 ± (−1)2l+1−j

)

= i

2l+1∑
j=0

(
2l + 1

j

)
zj

(
(−1)l+1 ± (−1)j−1

)
.



   43 Page 16 of 23 G. J. Groenewald et al. IEOT

For odd values of l one obtains:

s(z) − iq(z) = −2i

((
2l + 1

0

)
+ · · · +

(
2l + 1
2l − 2

)
z2l−2 +

(
2l + 1

2l

)
z2l

)
,

s(z) + iq(z) = 2i
((

2l + 1
1

)
z + · · · +

(
2l + 1
2l − 1

)
z2l−1 +

(
2l + 1
2l + 1

)
z2l+1

)

= 2iz

((
2l + 1

2l

)
+ · · · +

(
2l + 1

2

)
z2−2 +

(
2l + 1

0

)
z2l

)

Observe that s + iq is of the form izp+(z2) where p+ is a real polynomial of
degree 2l and that s− ig is of the form ip−(z2) where p− is a real polynomial
of degree 2l. Because p+ and p− are real polynomials and the fact that z2

is the variable rather than z itself, the nonzero roots of zp+(z2) come either
in pairs (z and −z) for real nonzero roots or in quadruples (z, z̄,−z,−z̄) for
nonreal roots, while zero appears as a simple root. Similarly, the roots of
p−(z2) come in pairs (z and −z) or quadruples (z, z̄,−z,−z̄) and there is
no root at zero. Hence s + iq has an odd number of roots inside the unit
disc, and s − iq has an even number of roots inside the unit disc, so that the
indices n+ and n− can never coincide. One further observes that p− = p�

+.
In a similar way, for even values of l the polynomial s + iq will have an even
number of roots inside the unit disc and s − iq will have an odd number of
roots inside the unit disc. Hence, in all cases where k is odd, T ∗

ω does not
have a selfadjoint extension.

We now present a proposition that rephrases the criteria of Proposi-
tion 5.4 in terms of the roots of s + iq (or s − iq) only. The observation that
T ∗

ωk
in Example 5.8 has no selfadjoint extension follows as a special case. In

general, T ∗
ω cannot have a selfadjoint extension whenever deg(q) is odd for

any ω ∈ Rat(T).

Proposition 5.9. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that
T ∗

ω is symmetric. Set l± = m − deg(s ± iq) and define

k±,1=#
{
zeroes of ω ± i inside T

multi. taken into account

}
, k±,2=#

{
zeroes of ω ± i outside T

multi. taken into account

}
.

Then

T ∗
ω has a selfadjoint extension ⇔ l+ + k+,2 = k+,1 ⇔ l− + k−,2 = k−,1.

In particular, if T ∗
ω has a selfadjoint extension, then deg(q) must be even.

The basis for the proof of Proposition 5.9 lies in the following lemma,
which clarifies the relation between s + iq and s − iq under the assumption
that T ∗

ω is symmetric.

Lemma 5.10. Let ω = s/q ∈ Rat(T), with s, q ∈ P coprime, be such that
T ∗

ω is symmetric. Set l± = deg(q) − deg(s ± iq) and let γ be the unimodular
constant such that q = γq�. Then

s ± iq = γzl∓(s ∓ iq)�. (5.1)

Moreover, we have l± = 0 if and only if ω(0) = ±i. In particular, only one
of l+ and l− can be nonzero.
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Proof. Since T ∗
ω is symmetric, by assumption, ω has the properties listed in

Theorem 5.1. In particular, ω is proper, m := deg(q) ≥ deg(s) =: n, and
s = zm−ns̃ with s̃ self-inversive and the unimodular constants that establish
the self-inversiveness of s̃ and q coincide (equivalently, q0sn = qmsm−n).

Note that deg(s±iq) �= m occurs precisely when deg(s) = deg(q) and the
leading coefficients sm and qm of s and q, respectively, satisfy sm ± iqm = 0,
i.e., sm/qm = ∓i. Since m = n, the identity q0sn = qmsm−n shows ω(0) =
s0/q0 = sm/qm. Hence deg(s ± iq) �= m holds if and only if ω(0) = ∓i = ±i,
as claimed.

We first prove (5.1) for the case ω(0) = 0. So assume ω(0) = 0, or
equivalently, s(0) = 0. In this case l+ = l− = 0. Since s = zm−ns̃ and
s̃(0) �= 0 (because s̃ is self-inversive), we have m > n. Also note that m − n
is equal to the multiplicity of 0 as a root of s. We now employ Lemma 2.2,
using that deg(s + iq) = m = deg(iq), to obtain

γ(s ∓ iq)� = zdeg(s+iq)−deg(s)γs� ∓ (−i)γq� = zm−nγs̃� ± iq

= zm−ns̃ ± iq = s ± iq.

Hence (5.1) holds.
Now assume ω(0) �= 0, i.e., s(0) �= 0. In that case s = s̃. Hence s is

self-inversive with the same constant γ that establishes the self-inversiveness
of q. This also yields m = n. Since s and q are self-inversive with the same
constant γ, we have

sm−kqk = qm−ksm−kγ = qm−ksk for k = 0, . . . , m.

Hence for all k we have

sm−k(sk + iqk) = sk(sm−k + iqm−k) and qm−k(sk + iqk)
= qk(sm−k + iqm−k).

In case sm−k = 0 and qm−k = 0, also sk = 0 and qk = 0, since sk = γsm−k

and qk = γqm−k, and thus sk+iqk = 0 = γ(sm−k+iqm−k). If either sm−k �= 0
or qm−k �= 0, divide the first identity by sm−k or the second identity by qm−k

to arrive at sk + iqk = γ(sm−k + iqm−k). Hence

sk + iqk = γ(sm−k − iqm−k) for k = 0, . . . ,m. (5.2)

Thus sk + iqk = 0 if and only if sm−k − iqm−k = 0. It follows that 0 is a
root of s ± iq with multiplicity l∓. Comparing coefficients, it follows that the
identities in (5.1) correspond to the identities in (5.2). Hence (5.1) holds. �

Proof of Proposition 5.9. Since T ∗
ω is assumed to be symmetric, (5.1) holds.

Together with the fact that the � operator reflects roots over T, this implies
that the number of roots of s ± iq inside T are equal to l± plus the number
of roots of s ∓ iq outside T, counting multiplicities. In other words, we have

k+,1 = l− + k−,2 and k−,1 = l+ + k+,2. (5.3)

By Proposition 5.6, T ∗
ω has a selfadjoint extension if and only if s + iq and

s − iq have an equal number of roots inside T, again counting multiplicities,
equivalently, k+,1 = k−,1. Given (5.3), it follows that k+,1 = k−,1 is equivalent
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to k+,1 = l+ + k+,2, and likewise to k−,1 = l− + k−,2. This proves the two
criteria for T ∗

ω to have a selfadjoint extension.
By Lemma 5.10, either l+ = 0 or l− = 0. Say l+ = 0. Since s + iq

cannot have roots on T, we have deg(q) = deg(s + iq) = k+,1 + k+,2. If T ∗
ω

admits a selfadjoint extension, then we have k+,1 = l+ + k+,2 = k+,2. Hence
deg(q) = 2k+,1 is even. For l− = 0 the arguments goes similarly. �

Combining the fact that T ∗
ω cannot have a selfadjoint extension in case

ω = s/q ∈ Rat(T), s, q co-prime, and deg(q) odd with Corollary 5.7 immedi-
ately yields the following result.

Corollary 5.11. Let ω = s/q ∈ Rat(T), with s, q ∈ P co-prime, be such that
T ∗

ω is symmetric and deg(q) is odd. Then ω(T) = R.

The next example shows that also with deg(q) even it can occur that
T ∗

ω does not admit a selfadjoint extension.

Example 5.12. Let ω = s/q with

s(z) = i(1 + az + z2), for some 0 �= a ∈ R, and q(z) = 1 − z2.

Then m = n and

s� = −s, q� = −q.

So T ∗
ω is symmetric by Theorem 5.1 (5). Also, we have

(s + iq)(z) = i(2 + az) and (s − iq)(z) = iz(a + 2z).

Hence the number of roots of s−iq inside D is 1 if |a| ≥ 2 and 2 if 0 �= |a| < 2,
while the number of roots of s+ iq inside D is 1 if |a| > 2 and 0 if 0 �= |a| ≤ 2.
Thus T ∗

ω admits a selfadjoint extension if and only if |a| > 2.

6. Comparison with the Unbounded Toeplitz Operator
Defined by Sarason

The Smirnov class N+ consists of quotients b
a with a and b H∞-functions

such that the denominator a is an outer function. The function ϕ = b
a ∈ N+

is said to be in canonical form if a(0) > 0 and |a|2 + |b|2 = 1 on T. By
Proposition 3.1 of [11], every function ϕ ∈ N+ can be uniquely written in
canonical form.

In [11], Sarason investigated an unbounded Toeplitz operator T Sa
ϕ with

symbol ϕ in N+, which is defined by

Dom(T Sa
ϕ ) = {f ∈ H2 : ϕf ∈ H2}, T Sa

ϕ f = ϕf (f ∈ Dom(TSa
ϕ )).

More generally, T Sa
ϕ can be defined in this way for any holomorphic function

ϕ on D, but for T Sa
ϕ to be densely defined, ϕ must be in N+ [11, Lemma 5.2].

Let ϕ = b
a ∈ N+ be the canonical representation of ϕ. Then it is shown

in Proposition 5.3 of [11] that Dom(T Sa
ϕ ) = aH2. The adjoint of the operator

T Sa
ϕ is motivated by the action of the conjugate transpose of the matrix

representation of T Sa
ϕ , which is lower triangular. The domain of the adjoint
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operator is shown to contain the space H(D) of functions that are analytic
on some neighborhood of the closed unit disc D, and the adjoint is equal to
the closure of the operator on H(D); see [11, Lemmas 6.1 and 6.4].

Let ω = s/q ∈ Rat(T) with s, q ∈ P co-prime. Set n = deg(s) and m =
deg(q). Assume ω is proper, i.e., n ≤ m. Then ω∗(z) = zm−ns�/q� ∈ Rat(T).
Since q� has zeroes only on T it is outer and thus ω∗ ∈ N+. While in general
Tω and T Sa

ω are different, the following proposition shows that Tω coincides
with T Sa

ω∗ , and hence Tω = T ∗∗
ω = T Sa

ω∗ . Without the properness assumption,
ω∗ is not in N+, because ω∗ has a pole at 0, and hence T Sa

ω∗ is not defined.

Proposition 6.1. Let ω̃ = s̃/q̃ ∈ Rat(T) with s̃, q̃ ∈ P co-prime. Then Dom
(T Sa

ω̃ ) = q̃H2 and T Sa
ω̃ = Tω̃|q̃H2 . In particular, if ω ∈ Rat(T) is proper, then

T ∗
ω = T Sa

ω∗ .

Proof. We first show Dom(T Sa
ω̃ ) = q̃H2. Let ω̃ = a/b be the canonical form

of ω̃. As noted above, Dom(T Sa
ω̃ ) = aH2. By the Fejér-Riesz Theorem there

is a polynomial r such that on T we have |r|2 = |s̃|2 + |q̃|2, r has no roots
in D and arg(r(0)) = arg(q̃(0)). The latter is possible since q̃(0) �= 0 and
implies q̃(0)/r(0) > 0. Note that r also has no roots on T, since s̃ and q̃ are
co-prime. It follows that q̃/r and s̃/r are both H∞-functions, q̃/r is outer
and q̃(0)/r(0) > 0. Hence a = q̃/r and b = s̃/r, by the uniqueness of the
canonical form. Also, since all the roots of r are outside T, r−1H2 = H2, so
that aH2 = q̃H2.

Now let f ∈ Dom(T Sa
ω̃ ), say f = q̃h with h ∈ H2. Then T Sa

ω̃ f = ω̃f = s̃h.
On the other hand, the fact that ω̃f = s̃h and s̃h ∈ H2 shows Tω̃f = Ps̃h =
s̃h. Hence T Sa

ω̃ = Tω̃|q̃H2 . �
Next we employ some of the ideas from [11] to derive the following

result. Recall that for a Hilbert space operator T : Dom(T ) → H a linear
submanifold D ⊂ Dom(T ) is called a core in case the graph G(T |D) of T |D
is dense in the graph G(T ) of T ; cf., page 166 in [7].

Theorem 6.2. Let ω ∈ Rat(T). Then H(D) is contained in Dom(Tω). If ω is
proper, then H(D) is a core of Tω.

Proof of H(D) ⊂ Dom(Tω). Write ω = s
q ∈ Rat0(T) with s, q ∈ P coprime.

Let f ∈ H(D). Then there exists a R > 1 such that f is still analytic on
an open neighborhood of the closed disc with radius R. Set f̃(z) = f(Rz),
q̃(z) = q(Rz) and s̃(z) = s(Rz). Then f̃ ∈ H2 and q̃ is a polynomial with no
roots on T and deg(q) = deg(q̃). By Theorem 3.1 in [4], H2 = q̃H2+Pdeg(q)−1.
Thus s̃f̃ = q̃h̃ + r̃ for some h̃ ∈ H2 and r̃ ∈ P with deg(r̃) < deg(q). Now
set r(z) = r̃(z/R) and h(z) = h̃(z/R). Then r ∈ P with deg(r) = deg(r̃) <
deg(q) and h ∈ H2, even h ∈ H(D). Also, we have sf = qh + r. Thus
f ∈ Dom(Tω). �

Before proving the second claim of Theorem 6.2 it is useful to consider
the value of Tω when applied to the evaluation functional or reproducing
kernel element kλ(z) = (1−λz)−1, where λ ∈ D. Note that kλ ∈ H(D), hence
kλ ∈ H2, and kλ has the reproducing kernel property for H2:

span{kλ : λ ∈ D} dense in H2 and 〈h, kλ〉 = h(λ) (h ∈ H2, λ ∈ D).
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See [8] for a recent account of the theory of reproducing kernel Hilbert spaces
and further references.

Lemma 6.3. Let ω = s/q ∈ Rat(T), with s, q ∈ P co-prime, be proper. Then

Tωkλ = ω∗(λ)kλ (λ ∈ D).

Proof. Suppose g = Tωkλ then s(z)(1 − λz)−1 = q(z)g(z) + r(z), where
r ∈ Pm−1. Here m = deg(q). Hence (1−λz)g = (s+(1−λz)r)/q is in Rat(T)
as well as in H2. This can only occur if (1−λz)g is a polynomial, i.e., g = kλr̃
for some r̃ ∈ P. Thus s + (1 − λz)r = qr̃. Since ω is proper, the degree of the
left hand side is at most m. But then r̃ is constant, say with value c̃. This
shows Tωkλ = c̃kλ.

To determine c̃ we evaluate the identity s + (1 − λz)r = qc̃ at 1/λ. This
gives s(1/λ) = q(1/λ)c̃. Note that

s�(λ) = λns(1/λ) and q�(λ) = λmq(1/λ),

where n = deg(s). Hence

s(1/λ) = λ
−n

s�(λ) and q(1/λ) = λ
−m

q�(λ).

This gives

c̃ =
λ

−n
s�(λ)

λ
−m

q�(λ)
=

(
λm−ns�(λ)

q�(λ)

)
= ω∗(λ). �

Proof of Theorem 6.2. It remains to prove that H(D) is a core for Tω in case
ω is proper. So, assume ω is proper. We need to show that the graph of
Tω|H(D) is dense in the graph of Tω. In other words, let f, g ∈ H2 with (f, g)
perpendicular to G(Tω|H(D)), then we need to show (f, g) is perpendicular to
G(Tω). Since kλ ∈ H(D), for λ ∈ D, we have

0 = 〈(f, g), (kλ, Tωkλ)〉 = 〈f, kλ〉 + 〈g, ω∗(λ)kλ〉 = f(λ) + ω∗(λ)g(λ) (λ ∈ D).

Hence ω∗g = −f . In particular, ω∗g ∈ H2. Thus g ∈ Dom(T Sa
ω∗ ) = Dom(T ∗

ω)
and T ∗

ωg = −f , by Proposition 6.1. For any h ∈ Dom(Tω) we have

〈(f, g), (h, Tωh)〉 = 〈(−T ∗
ωg, g), (h, Tωh)〉 = −〈T ∗

ωg, h〉 + 〈g, Tωh〉 = 0. �

In Section 8 of [11], Sarason introduced the class of closed, densely
defined operators T on H2 which satisfy

(1) Tz Dom(T ) ⊂ Dom(T );
(2) T ∗

z TTz = T ;
(3) f ∈ Dom(T ), f(0) = 0 ⇒ T ∗

z f ∈ Dom(T ).

This class of operators was further studied by Rosenfeld in [9,10] in which
he referred to such operators as Sarason–Toeplitz operators. The operators
T Sa

ϕ , for ϕ ∈ N+, are Sarason–Toeplitz operators, and the class of operators
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is closed under taking adjoints, by Proposition 2.1 in [10]. Hence, by Propo-
sition 6.1, Tω is a Sarason–Toeplitz operator whenever ω ∈ Rat(T) is proper.
We show that in fact Tω is a Sarason–Toeplitz operator for any ω ∈ Rat.

Proposition 6.4. Let ω ∈ Rat. Then Tω on H2 is a Sarason–Toeplitz operator.

Proof. First consider ω ∈ Rat(T). That Tω satisfies (1) and (2) was proved
in [4, Lemma 2.3]. We claim that T ∗

z Dom(Tω) ⊂ Dom(Tω). Write ω = s/q
with s, q ∈ P co-prime. Then Dom(Tω) = qH2 + Pdeg(q)−1. Let f = qh +
r ∈ Dom(Tω) with h ∈ H2 and r ∈ P, deg(r) < deg(q). Then T ∗

z f =
qT ∗

z h + h(0)T ∗
z q + T ∗

z r, which is in qH2 + Pdeg(q)−1 = Dom(Tω). Hence Tω is
a Sarason–Toeplitz operator in case ω ∈ Rat(T).

Now take ω ∈ Rat arbitrarily. By Lemma 5.1 in [4], see also Sect. 4
above, ω = ω−zκω0ω+ with κ ∈ Z, and ω−, ω0 and ω+ in Rat with zeroes and
poles only inside, on or outside T, respectively. In particular, ω0 ∈ Rat(T),
ω− and ω−1

− are both anti-analytic, and ω+ and ω−1
+ are both analytic. Also,

Tω = Tω−Tzκω0Tω+ . Note that zκω0 ∈ Rat(T) in case κ ≥ 0 and Tzκω0 =
TzκTω0 in case κ < 0 (by [4, Lemma 5.3]). In both cases it now easily follows
that Tzκω0 is a Sarason–Toeplitz operator. The claim for Tω follows since
T±1

ω+
Tz = TzT

±1
ω+

and T±1
ω− T ∗

z = T ∗
z T±1

ω− . �
In fact, by the same arguments one can show that Tω on Hp, 1 < p < ∞,

satisfies (1)–(3) in case T ∗
z is replaced by Tz−1 .
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