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Abstract: Fault detection and isolation (FDI) within the petrochemical industries (PCIs) is largely
dominated by statistical techniques. Although a signal-based technique centered on exergy
flows within a process plant was proposed, it has only been applied to single process units.
The exergy-based scheme has not yet been applied to process plants that feature at least a single
recycle stream. The Tennessee Eastman process (TEP) is commonly used as an FDI benchmark process,
but due to obfuscation, the TEP cannot be directly implemented in a commercial process simulator.
Thus, application of FDI techniques to proprietary processes will require significant investment into
the implementation of the FDI scheme. This is a key impediment to the wide-spread comparison of
various FDI techniques to non-benchmark processes. In this paper, a gas-to-liquids (GTL) process
model is developed in Aspen HYSYS®, and the model’s performance is validated. The exergy-based
FDI technique is applied to the GTL process while the process is subjected to carefully selected faults.
The selected faults aim to affect several process units, and specifically, the resultant recycle stream
of the GTL process is considered. The results indicate that even though the exergy-based technique
makes use of fixed thresholds, complete detection and isolation can be achieved for a list of common
process faults. This is significant since it shows, for the first time, that the exergy-based FDI scheme
can successfully be deployed in processes with recycle streams.

Keywords: fault; detection; isolation; exergy; petrochemical

1. Introduction

The world’s total energy consumption continues to rise with the total primary energy demand
(TPED) expected to reach 17,500 million tonnes of oil equivalent by 2050 according to the World
Energy Index of the IEA. Based on predictions by the IEA [1], petrochemical industries (PCIs),
specifically plastics manufacturing, will see the largest increase in demand by 2050. However,
currently transportation fuels account for the bulk fraction of oil demand globally with Asian countries,
which are seen as the largest consumers [2]. For this reason, the safe and efficient operation of
petrochemical process plants (PCPPs) is critical. These plants represent some of the most complex
structures encountered in engineering. Additionally, these plants also represent a significant safety
risk and environmental hazard. In order to mitigate these risks, the fields of abnormal situation
management (ASM), condition monitoring (CM) and fault detection and isolation (FDI) are deployed.

Commonly, FDI is classified as either being model-based or data-driven [3–5], with the primary
distinction being the availability of an analytic model. Although not impossible, the derivation
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of analytic models for PCI plants is considered to be challenging. An example of the complexity
associated with the derivation of analytic models is provided in [6] for the Tennessee Eastman Process
(TEP). However, in a review series, Gao et al. [7,8] introduced the so-called signal-based diagnosis
which makes use of measurement signals rather than analytic models of the plant. Signal-based
diagnosis is still considered to be model-based since the normal signal is known a priori.Data-driven
methods, on the other hand, require large amounts of data processing but without any a priori
knowledge. Excluding qualitative knowledge-based FDI systems (expert systems) [8], the remaining
data-driven approaches can be classified as being either primarily statistical or based on machine
learning approaches. Within the PCIs, data-driven methods are particularly dominant. Qin et al. [9]
applied several statistical process monitoring (SPM) schemes to an industrial polymer film process.
Other studies applied principal component analysis (PCA) techniques to continuous stirred tank
reactors (CSTRs) [8,10] and plug-flow reactors [11], and the use of mathematical models to generate
data is also not uncommon [8,12]. A key advantage of model-based FDI is that the model can be used
to mathematically prove the extent of the technique. As such, a model-based FDI would be ideal for
high-risk applications such as petrochemical processes.

Given the dominance of data-driven FDI within the PCI and the advantages afforded by
model-based FDI techniques, the development of a model-based FDI technique for the PCIs is
warranted. Several authors have suggested a signal-based FDI that measures the energy flows within
a process plant. Du Rand [13] applied an entropy-enthalpy approach to the Brayton cycle of a nuclear
power plant, and Marais et al. [14] showed that condition monitoring of a CSTR from an energy
perspective could be accomplished. In later work, Marais [15] showed that exergy could successfully
be used to perform FDI for an auto thermal reformer (ATR).

In this work, the development of the gas-to-liquids (GTL) process provides a suitable way to enable
the exploration of the the exergy-based FDI scheme’s effectiveness in terms of more complex processes.
Since it is clear that no single FDI scheme will perform perfectly in all conditions [16], the development
of hybrid approaches is required. Essentially, hybrid FDIs combine existing techniques to optimally
exploit the various advantages offered by the constituent techniques. A typical example of a hybrid
FDI is the combination of statistical and machine learning techniques [17]. Combinations of signal-
and observer-based techniques have also proven to be successful when applied to a classical two-tank
system [18]. As noted in [16], a simple combination of techniques will not necessarily provide
superior results. Based on conjecture, a combination of model-based and data-driven FDI schemes
should provide significant improvements in terms of both FDI performance and reliability. In [19] the
application of the exergy-based FDI scheme (considered to be a hybrid scheme) to a process containing
recycle streams was identified as an area of future work. Indeed, the ATR plant used by [19] did not
include any recycle streams. Thus, the applicability of the exergy-based technique to PC plants that
include recycle streams remains lacking. Additionally, given the limited examples of model-based FDI
in the PCIs, the limitations of existing implementations and the applicability of new methods need to
be explored.

The novelty of this work is the determination of the applicability of an exergy-based FDI scheme
to a GTL process. To this end, the authors propose the development of a GTL process in Aspen HYSYS®

(a dynamic chemical process simulator). The developed model (available online [20]) is only operated
in the steady state to allow initial exploration of the exergy-based FDI scheme’s performance. However,
the model lends itself to dynamic simulation. The implementation of the exergy-based FDI scheme
within the process simulator allows the technique to be easily applied to existing proprietary processes
with minimal effort. The availability of a process model or benchmark in a commercial process
simulator specifically with the aim of supporting FDI scheme development allows the comparison
of various FDI approaches in a transparent manner. Additionally, and more importantly, since many
proprietary processes have already been modeled in process simulations, the benchmarking of existing
FDI approaches to these processes is viable.



Entropy 2019, 21, 565 3 of 19

The development and validation of the model is presented in Section 2.2. The proposed
exergy-based FDI scheme is detailed in Section 2.3, and the results are presented in Section 3.
A discussion of the results and concluding remarks are provided in Section 4.

2. Methodology

In this section, justification for the development of a suitably complex process model is provided
by means of a brief literature review. The identified process model lends itself to the implementation
of a hybrid FDI scheme that is fundamentally based on the concept of exergy characterization.
The development of the GTL plant model is presented, followed by the details of the proposed
exergy-based FDI scheme. The GTL model is developed from the literature, and its performance is
validated. It should be noted that the focus of the model is on the technical accuracy of the process
itself and not on a techno-economic optimal operating point per se.

2.1. Process Selection Rationale

Unfortunately, the varied use of differing case studies and academic models complicates the direct
comparison of various FDI techniques within the PCIs, especially when the nature of the processes
is fundamentally different. One way of addressing the issue is to use a known benchmark process.
The TEP was initially developed as benchmark control problem [21] but later became the defacto FDI
benchmark process [22]. Jiang et al. [23] showed that typical PCA algorithms might fail to select the
contributing components when applied to the TE process and proposed the sparse PCA selection
(SPCS). In [24], the TE process was again used to illustrate the advantages of a moving window
PCA and fuzzy logic hybrid approach. In a review by [25], several other applications of FDI to the
TEP were also presented. Recently, machine learning (ML/AI) approaches have also been applied
to the TEP [26], including deep learning approaches [27]. Hybrid techniques, such as those of [17],
have also been successfully applied to the TEP. This seems to suggest that the TEP is ideally suited as a
FDI benchmark.

However, considering the TEP specifically, many authors have made use of the data sets published
by Russel et al. [28] with the original FORTRAN formulation adapted for use in Matlab Simulink [29].
Bathelt et al. identified several deviations in later Simulink results and updated the underlying process
code [30]. Only recently has a Modellica model been developed by [31] that can be controlled from
Matlab Simulink. Although the work by [31] is more usable, the presence of a TEP in commercial
process simulators remains lacking. In [32], the applicability of Aspen One as a commercial process
simulator was claimed. However, the formulations of the obscured components (A through F) in the
original TEP formulation were never justified, and since no details of the Aspen One flowsheets were
provided, duplication of the results in Aspen HYSYS® is impossible. Due to the additional complexities
introduced by the obfuscation of process parameters in the original TEP description, implementation in
commercial process simulators (such as Aspen HYSYS®) is a complex task. However, the advantages
of an accessible benchmark process with representative complexity could provide significant benefits
to the FDI community.

The gas-to-liquids process is used either partly (generating components) or in totality (natural gas
to transportation fuels) in many industrial processes [33]. Most of the models in scientific literature
focus on the techno-economic aspects of the GTL process [34] and, as such, are not ideally suited to
FDI endeavors. In order to address the complexity of comparing various FDI approaches within a
PC context, the development of a benchmark process model is proposed. The GTL process, of which
the ATR is the first process unit [19], is seen as being sufficiently representative from a complexity
perspective but has also been sufficiently documented to allow for implementation in a commercial
process simulator such as Aspen HYSYS®. In this paper, the process model developed aims only to
be sufficiently complex (thus containing at least one recycle stream) to evaluate the performance of a
exergy-based FDI scheme.
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2.2. GTL Model Development and Validation

A GTL process takes gaseous feedstock (such as natural gas) and transforms it into liquids. A GTL
process generally comprises three major sections, as shown in Figure 1.

 

1 SYNTHESIS 

GAS 

PRODUCTION

2 FISCHER-

TROPSCH 

SYNTHESIS

3
UPGRADING 

SECTION

Feed Syngas Syncrude Products

Figure 1. A process diagram of a gas-to-liquids (GTL) process.

In the first section, synthesis gas production, natural gas is reformed in order to obtain synthesis
gas (syngas). Syngas consists of hydrogen (H2) and carbon monoxide (CO), usually in a particular
ratio depending on the desired products. Next the syngas is introduced to a Fischer–Tropsch reactor
which converts the syngas to a range of hydrocarbons (also referred to as syncrude). The last section
upgrades the obtained syncrude to hydrocarbon products of specific chain lengths. Comprehensive
details can be found in the works of [35–37].

Considering the complexity of the upgrading section, this study only focuses on the syngas
production and Fischer–Tropsch synthesis sections that are shown in boxes in Figure 1. It should also be
noted that the developed GTL model will be utilized as a representative system for FDI applications only.
Therefore the model is based on open literature, and no attempts were made to improve the process in
any way.

Given the prevalence of the GTL process, a variety of technologies can be utilized for syngas
production section. When reviewing existing literature, such as [37], most researchers implement auto
thermal reformers (ATRs). ATRs have several advantages [38] amongst which are their economy of
scale, smaller footprint, and faster start-up and load transitions. Other authors have also suggested that
ATR shows the most promise in terms of GTL processing [39]. Given the suitability of the ATR for use in
a GTL process that is fed by natural gas (mainly methane), and the advantages it offers at a large-scale
for single process streams, this study implements an ATR. De Klerk [40] emphasized the importance
of the temperature and composition (ratio of H2/CO) of the syngas produced. For the specific GTL
configuration considered (shown in Figure 2), it is expected that the temperature should vary within
the range of 1020–1065 °C with H2/CO ≈ 2.0. In order to produce syngas of adequate temperature
and composition, the ATR is fed specific ratios of natural gas, steam, and oxygen. It has been shown
that oxygen greatly affects the syngas temperature, and in some studies, such as [41], a carbon dioxide
(CO2) stream was included to aid in the control of the syngas composition. The produced syngas is
then cleaned and fed (at temperatures between 200–240 °C) into the Fischer–Tropsch reactor (FTR).
The considered hydrocarbons included C2 to C20. C30 was used to represent hydrocarbons C21–30 which
exhibit similar properties. The generation of these hydrocarbons followed an Anderson–Schulz–Flory
(ASF) distribution, relating closely to the distributions seen in [37,42]. Usually, unreacted components
are recycled to be put through the process again, whilst the liquid products are transferred to the
upgrading section.

In order to reduce the complexity of the GTL process, the following assumptions and adjustments
were made:

1. No pre-reformer was included, since for this study, there was no recycling to the ATR.
2. The ATR’s natural gas feed stream was modeled as pure methane (CH4).
3. A carbon dioxide (CO2) stream was added to manipulate the syngas composition.

The subsequent sections detail the development and validation of the GTL model.
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Figure 2. The Aspen HYSYS® process flow diagram of the developed GTL process.

2.2.1. Autothermal Reformer

In order to model the ATR, an equilibrium reactor in Aspen HYSYS® was used. The three most
important reaction equations, as indicated by [36], are the oxidation of methane (1), the steam reforming
of methane (2), and the water gas shift reaction (3):

CH4 + 1.5 O2 ⇀↽ CO + 2 H2O (1)

CH4 + H2O ⇀↽ CO + 3 H2 (2)

CO + H2O ⇀↽ CO2 + H2 · (3)

As previously mentioned, the feed streams were fed into the ATR in certain molar flow rate
ratios. By fixing the methane stream at 8195 kgmole/h, a molar flow rate frequently seen in literature,
such as in [37], the steam, oxygen, and carbon dioxide molar flow rates were calculated by using the
ratios summarized in Table 1. The simulated syngas was found to be acceptable with a temperature of
1029 °C and a composition of 2.105. A cooler was incorporated to cool the produced syngas to 38 °C.
The waste heat generated by the cooler is not used within the process and is essentially returned to the
environment. From a plant design perspective, this is inefficient. However, in doing so, the process
is kept as simple as possible, and this also does not affect the application of the FDI scheme to the
GTL process in any way. Similar arguments hold for the energy streams of compressors and coolers
used elsewhere in the process. Using a separator, the excess produced water can be removed, feeding
cleaned syngas to the Fischer–Tropsch reactor.

Table 1. Summary of the auto thermal reformer (ATR) feed stream ratios and molar flow rates.

Ratio
Molar Flow Rates[

kgmole/h
]

H2O/C = 0.6625 H2O = 5429.2
O2/C = 0.5412 O2 = 4435.5

CO2/C = 0.1171 CO2 = 959.8

2.2.2. Fischer–Tropsch Reactor

The cleaned syngas needs to be fed to the FTR at a temperature in the range of 200–240 °C.
Therefore a heater was included to heat the cleaned syngas (stream 8) from ambient temperature to
210 °C. A plug flow reactor (PFR) was used as the FTR, as [37] suggests that it is representative of
a multi-tubular fixed bed (MTFB) reactor. A reactor with a volume of 1000 m3 was implemented.
Equations (4) and (5) were modeled as kinetic reactions within Aspen HYSYS®. Equation (4) describes
the Fischer–Tropsch reaction with the stoichiometric coefficients detailed in [37,43]. These researchers



Entropy 2019, 21, 565 6 of 19

made use of a constant chain growth factor α of 0.9. The inevitable production of methane is included
and is described using (5):

CO + 2.1 H2→
20

∑
n=1

vn,1 CnH2n+2 + v30,1C30H62 + H2O (4)

CO + 3 H2 ⇀↽ CH4 + H2O · (5)

Next the rate expressions of the equations need to be specified. With so many different kinetic
mechanisms presented in literature, the most popular approach seems to be that developed by [44],
given by (6) and (7)

rCH4
=

k1PH2
PCO

0.05

1 + K1PCO
(6)

rCO =
k2PH2

0.06PCO
0.65

1 + K1PCO
. (7)

It is important to note that [35–37] converted the rate expressions of [44] to more universal units.
Table 2 summarizes the values and the units that were used within Aspen HYSYS®.

Table 2. The kinetic values used for the reactions in HYSYS.

Parameter Arrhenius Expression
UnitA E

k1 8.8× 10−6 37326
kgmoleCH4

Pa1.05m3 · s
K1 1.1× 10−12 −68401.5 Pa−1

k2 1.6× 10−5 37326
kgmoleCO

Pa1.25m3 · s

In order to validate whether the model produces the anticipated products, the product distribution
was evaluated. This was done by observing the weight fractions of the components in stream 12,
not including the recycling stream as of yet. The weight fractions (wn) were firstly divided by their
corresponding carbon numbers (n) and then the logarithm of each was calculated. These log-values
were then plotted against their carbon numbers. For the ASF distribution, a straight line with slope
log(α) was expected. Consequently for a chain growth probability of α = 0.9, the slope was expected to
be −0.04576. When plotting the obtained products, as depicted in Figure 3, it was found that the slope
was −0.4630. As stated by [37], C30 is representative of the lumped components C21–30 and should not
be included in the distribution plot. The obtained slope deviated by 1.2% from the theoretical slope;
therefore, the simulated products were found to be adequate.

With the FTR section simulated and validated, it was possible to develop the remainder of the
GTL process. In order to yield the two streams that a multi-tubular fixed bed reactor would produce,
a separator was added after the PFR, hence providing a vapor product stream and a liquid product
stream. In order to remove some of the unwanted water, the vapor stream (stream 13) was cooled to
38 °C. This cooled stream and the liquid product stream were then fed into a three-phase separator. In
such a system, the light and heavy liquid products are usually forwarded to the upgrading section.
The vapor products (stream 16) are split into a recycle stream and purge stream (0.8:0.2). The recycled
stream is compressed and fed back to the FTR, based on the work of [37]. The connection of the recycle
block concluded the simulation effort. Table 3 summarizes the stream information extracted from
Aspen HYSYS®.
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Figure 3. The Anderson–Schulz–Flory (ASF) distribution of the Fischer–Tropsch reactor (FTR) products
C2 C20.

Table 3. Stream information of the GTL process.

Section Stream No. Description Temperature (°C) Molar Flow (kgmole/h) Pressure (kPa)

ATR

1 Methane 675 8195.0 3000
2 Steam 675 5429.2 3000
3 Oxygen 200 4435.5 3000
4 Carbon dioxide 675 959.8 3000
5 Syngas 1029 30,262.6 3000

FTR

7 Cooled syngas 38 30,262.6 3000
8 Cleaned syngas 38 24,452.7 3000
9 Waste water 1 38 5810.0 3000

10 Mixed stream 1 54 34,310.3 3000
11 Reactor feed 210 34,310.3 2000
12 Reactor products 213 22,290.4 1940
13 Gaseous products 213 22,238.3 1940
14 Liquid products 213 52.1 1940
15 Cooled reactor products 38 22238.3 1940
16 Vapour products 44 16,063.3 1940
17 Light liquid products 44 189.8 1940
18 Heavy liquid products 44 6037.3 1940

Recycle

19 Purge 44 3212.7 1940
20 Recycle gas 44 12,850.6 1940
21 Compressed gas 88 12,850.6 3000
22 Recycle to FTR 88 9857.7 3000

2.3. Implementation of Exergy-Based Fault Detection

Exergy is defined as being a quantitative measure of an energy quantity’s usefulness to perform
work [45]. Eventually, energy reaches thermodynamic equilibrium with its environment and it
can no longer deliver valuable work. The main advantage of using exergy is that it provides
a means of quantifying the quality of an energy stream and also the efficiency of any process
elements. All processing elements (including transportation elements such as pipes) have an associated
efficiency. Should this efficiency change, it would be indicative of some process anomaly. Especially
in chemical processes, the total energy contained in a process stream can remain constant while the
usefulness declines. Although the total system energy would remain constant, the energy that has
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been transformed into less useful forms (waste heat for instance) is much easier to account for in
exergy terms.

In essence, a system’s exergetic behaviour provides a much more intuitive representation,
since exergy can be destroyed. The total exergy of a system, which has no magnetic, nuclear, electric,
or surface tension characteristics, is usually expressed as (in specific exergy notation)

btot = bkin + bpot + bph + bch, (8)

where bkin refers to the kinetic exergy, bpot to the potential exergy, bph to the physical exergy, and bch to
the chemical exergy of the system. Seeing as the physical GTL plant is static, the kinetic and potential
exergy can be disregarded, simplifying (8) to

btot = bph + bch. (9)

Exergy is always evaluated relative to a reference environment (RE). This means that the RE’s
intensive properties will determine the exergy. For physical exergy, these include temperature and
pressure only and are usually T0 = 25 °C and P0 = 101.325 kPa. The chemical exergy, however, is based
on an environment which comprises certain reference elements and intensive properties. Different
approaches for the selection and calculation of the standard chemical exergy of these reference elements
exist, with the most prominent RE being the one proposed by [46].

Fundamentally, however, the use of exergy as the monitored parameter leverages the structural
information contained in the process itself [47]. It has also been shown that exergetic efficiencies
could also be used to diagnose the component level under performance in a biomass gassifier [48],
and similar work was done by [49,50] pertaining to turbines. This seems to suggest that exergy is
well suited to detect component level inefficiencies (degradation or faults) when the system level
performance degrades. Indeed, Ref. [51] showed that exergy can be used to determine the efficiency of
fired heaters, of which the ATR is a typical example. For many PCI processes, the cyclic nature of the
process presents a particularly challenging scenario as feedstocks and products are cycled, recycled,
and discarded.

The automatic calculation of exergy within the Aspen HYSYS® environment has been
accomplished. However, as [41] argues, the recalculation and extension of [52]’s RE is inefficient, as the
properties and elements are already well-defined. As such, the RE is used as is. In order to calculate the
exergy of the streams in the Aspen HYSYS® GTL model, user variables were developed and employed.
The following subsections explain how this was achieved.

2.3.1. Physical Exergy

The physical exergy is the work available by taking a substance from its present state of T and P
to the RE state of T0 and P0. The formula for calculating this for 1 mole of constituent is

bph = (h− h0)− T0(s− s0). (10)

Implementing this calculation in Aspen HYSYS® is a trivial matter, as shown in Algorithm 1.
The algorithm (implemented as an user variable) starts by obtaining the stream’s current enthalpy

(h) and entropy (s). Next, the stream’s temperature and pressure are set to that of the RE (25 °C and
101.325 kPa). It is then forced to recalculate the stream’s enthalpy (h0) and entropy (s0). The physical
exergy per mole is then computed by implementing (10) as is. In order to obtain the stream’s total
physical exergy (Bph), the per mole exergy is multiplied by the stream’s molar flow. To verify that the
physical exergy was calculated correctly, it was compared to hand calculations as well as the integrated
physical exergy in Aspen HYSYS®. It should be noted that the physical exergy is not dependent on the
composition of the stream’s phases. As such the total stream’s physical exergy can be calculated.
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Algorithm 1 Calculation of physical exergy (Bph)

Require: Reference environment temperature Tre f and pressure Pre f in the simulation
1: Stream← StreamSimulated
2: if Stream.VapourFractions.IsKnown

and Stream.MolarFractions.IsKnown

and Stream.MolarFlow.IsKnown then
3: H ← Stream.Enthalpy
4: S← Stream.Entropy
5: Stream.Temperature← Tre f
6: Stream.Pressure← Pre f
7: Stream.TPFlash()
8: H0 ← Stream.Enthalpy
9: S0 ← Stream.Entropy

10: Bph ← (H − H0)− (Tre f + 273.15)(S− S0)
11: F ← Stream.MolarFlow.GetValue("kgmole/h")
12: Bph ← BphF
13: end if

2.3.2. Chemical Exergy

Chemical exergy is the energy available to do work when a substance is brought from the RE state
(T0 and P0) to a state of total thermodynamic equilibrium (dead state). There is more than one method
that can be used to calculate the chemical exergy of a stream, as demonstrated by [41,53]. The approach
followed, first proposed by [54] and implemented by [41], seems the most elegant and is accomplished
by using

bch = ∑ x(i)b
0
ch(i), (11)

where x(i) is the mole fraction and b0
ch(i) is the standard molar chemical exergy of substance i. The b0

ch(i)
values are defined by from the RE in [52]. In order to utilize (11), the standard molar chemical exergy of
all the relevant substances is firstly made available to the simulation basis by creating a user property that
tabulates the corresponding values. Not all substances’ standard chemical exergies are readily available
though. Fortunately, any unknown constituents’ b0

ch can be calculated by making use of an appropriate
reaction equation. The chosen reaction equation should contain only one of the unknown substances
and all other known substances. For this study, some of the hydrocarbons’ standard chemical exergies
were not available. Therefore, these had to be calculated by making use of the combustion equation:

CαHβ +

(
α +

β

4

)
O2 → αCO2 +

β

2
H2O(`), (12)

with α and β coefficients corresponding to the considered hydrocarbon numbers. By modifying (12)
considerably, as detailed in [45], the standard chemical exergy can be calculated by using

b0
ch(i) =

[
ḡ0
(i) +

(
α +

β

4

)
ḡ0
(O2)
− αḡ0

(CO2)
− β

2
ḡ0
(H2O(`))

]

+ αb0
ch(CO2)

+
β

2
b0

ch(H2O(`)) −
(

α +
β

4

)
b0

ch(O2)
.

(13)

Equation (13) makes use of Gibbs’ function of formation and known standard chemical exergy
values. The values used are summarized in Table 4. Finding tabulated Gibbs’ function of formation
values for the hydrocarbons (ḡ0

(i)) proved difficult. By converting the values published in [55],



Entropy 2019, 21, 565 10 of 19

the standard chemical exergy was calculated. Some of the calculated standard chemical exergy values
were compared to known hydrocarbon values in order to verify whether they could be considered
adequate. Table 5 shows the comparison of the values of CH4-C5H12. Based on the marginal differences
seen, the calculated hydrocarbon exergies were deemed acceptable.

Table 4. Values used to calculate the standard chemical exergies of the unknown hydrocarbons.

ḡ0
(O2) ḡ0

(CO2) ḡ0
(H2O(`)) b0

ch(CO2) b0
ch(H2O(`)) b0

ch(O2)

0 −394,360 −237,180 19,480 900 3970

Table 5. Comparing tabulated and calculated standard chemical exergies of known hydrocarbons.

Substance Tabulated Calculated Difference [%]

CH4 831,200 831,275 0.009
C2H6 1,495,000 1,495,144 0.010
C3H8 2,152,800 2,150,505 0.107
C4H10 2,804,200 2,804,251 0.002
C5H12 3,461,300 3,457,721 0.103

In order to calculate an Aspen HYSYS® stream’s total chemical exergy, a new user variable was
developed. Within Aspen HYSYS®, a user variable is a section of program codes developed by the
user. Typically, a user variable can be connected to the entire simulation model, a specific component of,
in this case, a specific material flow stream. For a GTL process, there will understandably be some
multi-phase streams. Some substances, such as H2O, have different standard chemical exergy values
when in different phases. To take this into account, the total chemical exergy was taken as the sum of
the vapor, the liquid, and the aqueous phase exergy. Mathematically this is conveyed as

bch =∑ x(i)vb0
ch(i)v + ∑ x(i)`b

0
ch(i)`

+ ∑ x(i)ab0
ch(i)a.

(14)

The phase exergy was assumed to be zero whenever the phase was not present in the stream.
Algorithmically, the process for calculating chemical exergy is outlined in Algorithm 2.

To verify whether the chemical exergy was calculated correctly, hand calculations were again used
as a comparison. By implementing the user variable for all streams within the Aspen HYSYS® model,
the normal operating condition of the process was expressed in terms of physical and chemical exergies.

2.3.3. Fault Conditions

To evaluate whether the exergy descriptions of the process could be used to detect faults,
eleven fault conditions were identified. These faults were chosen in such a way as to appear in
all of the critical process units and paths and also to excite expected loop phenomena. Faults were
selected based on process knowledge and the sensitivities thereof.

When specifying the faults within the ATR section (F1q), the following effects were of
particular interest:

• The same type of fault of the same magnitude and location but in opposite directions. These faults
are notated as F11 and F12 respectively and are representative of deviations in the feed molar flow
rate.

• Two different types of faults of the same magnitude and location. This refers to F12 and F13. Here,
fault F13 is the result of the feed stream’s pressure being too low.

• The same type of fault of the same magnitude but slightly different locations, F13 and F14. Fault
F14 would represent fouling of the reactor bed.
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Algorithm 2 Calculation of chemical exergy (Bch)

Require: Components’ chemical exergies (per phase) defined in the simulation
1: Stream← StreamSimulated
2: if (Stream.Pressure.IsKnown

and Stream.MolarFlow.IsKnown

and Stream.MolarFractions.IsKnown

and Stream.VapourFractions.IsKnown then
3: Components← Stream.Components
4: Bch = 0
5: for each Component do
6: if Component’s molar flow > 0 then
7: mv ← Component’s vapor molar flow
8: ml ← Component’s light liquid molar flow
9: ma ← Component’s heavy liquid molar flow

10: mT ← Component’s total molar flow
11: ratiov = mv/mT
12: ratiol = ml/mT
13: ratioa = ma/mT
14: mFT ← Component’s total mole fraction
15: mFv = ratiov ∗mFT
16: mFv = ratiol ∗mFT
17: mFv = ratioa ∗mFT
18: Bchv = mFv ∗ Bchv ∗mv
19: Bchl

= mFl ∗ Bchl
∗ml

20: Bcha = mFa ∗ Bcha ∗ma
21: Bchcomponent = Bchv + Bchl

+ Bcha

22: end if
23: Bch = Bch + Bchcomponent

24: end for
25: end if

Similarly for the FTR section (F2q), the subsequent faults were evaluated:

• As stated by [40], the Fischer–Tropsch process is sensitive to deviations in temperature. Fault F21

is the result of insufficient heating of Heater 1, delivering reactor feed at a lower temperature.
F24 is representative of a problem regarding the water cooling of the reactor, causing the reaction
temperature to increase.

• F22 and F23 are based on the notion that there could be damaged pipes, resulting in leakages and
pressure drops.

Finally, the recycle section (F3q) was subjected to the following faults:

• The recycle compressor’s efficiency could degrade over time, resulting in lower compression F31

being achieved
• A blockage in the gas splitter F32 results in less gas being recycled and a subsequent increase in

purge gas volume.
• F33 simulates the effect of a pipe leak in the recycle stream itself, the cause of which is largely of

secondary concern.

The main purpose of investigating faults within the recycle stream (F3q) is to evaluate whether the
fault location can be pinpointed or whether it will inevitably propagate throughout the entire process.
The particular location of a fault is indicated with a red triangle on the HYSYS® model in Figure 4.
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F11-F13

F14

F21-F22

F23-F24

F32

F31

F33

ATR

FTR

Recycle

Figure 4. Aspen HYSYS® GTL process flow diagram indicating the locations of simulated faults.

In Table 6, the fault conditions and their specifics are summarized. The normal operating point
and each of the fault conditions were simulated individually. This is in line with typical FDI literature
that does not directly address the simultaneous occurrence of faults (so-called multiple faults).

Insofar as the effects of the faults are concerned, the following is of importance. Once a fault has
been introduced, the simulated plant is allowed to reach steady -state before any analysis is conducted.
Naturally, this would affect the produced products, or at the very least, the distribution of output
products. Since the upgrading section was not considered in this study, the effects of the fault(s) on the
output products were not specifically considered.

In a physical plant stochastic process, variations would naturally occur, in addition to any possible
fault conditions. The methodology followed here assumes that the normal operating condition can be
described by a constant steady state. Conceptually, then, this allows the FDI-scheme to be evaluated in
terms of the absolute best-case scenario from an operational perspective.

Table 6. The location, description, and details of the simulated faults.

Fault ID Location Description Details

F1q ATR section

F11 Methane stream Molar flow +10% +819.5 kgmole/h
F12 Methane stream Molar flow −10% −819.5 kgmole/h
F13 Methane stream Pressure −10% −300 kPa
F14 ATR Pressure −10% −300 kPa

F2q FTR section

F21 Reactor feed stream Temperature −10% −21 °C
F22 Reactor feed stream Leakage −10% Splitter 0.9:0.1
F23 FTR Pressure −10% −200 kPa
F24 FTR Temperature −10% −1.13E+08 kJ/h

F3q Recycle section

F31 Compressor Pressure −10% −300 kPa
F32 Splitter 1 Lower split ratio 0.700:0.300
F33 Recycle to FTR Leakage −10% Splitter 0.9:0.1

Fpq—where p represents the section and q the fault number.

2.4. Fault Detection and Isolation Methodology

The FDI methodology essentially compares the exergy relationships within the process plant
between normal operating conditions (NOC), faulty operating conditions, and the current operating
conditions in a qualitative fashion. In order to facilitate a detailed discussion of the methodology,
refer to Figure 5.
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Figure 5. Graphical representation of the exergy-based FDI scheme.

Initially the process was operated at NOC and the exergy characterization was performed
(as detailed in Section 2.3). The data obtained from the exergy characterization phase were processed
by means of a threshold function to derive a Qualitative Redundant Relation (QRR). A QRR is a
vector that indicates the qualitative variation (positive, negative, or zero) of the parameters under
consideration. In this case, the QRR would indicate variation in the exergy (both physical and chemical)
between the current operating point and the NOC. The threshold function used to calculate the QRR
had the form shown in Figure 6 and can be described by

y =


−1 if z <

(
1− κ

2
)

1 if z >
(
1 + κ

2
)

0 otherwise,

(15)

where z represents the normalized exergy value under consideration and y is the magnitude of the
resultant fault element. By applying the threshold function to the normalized data, a qualitative matrix
was obtained with the form

Fpq =


y(Bph(stream1)) y(Bch(stream1))

...
...

y(Bph(stream22)) y(Bch(stream22))

 (16)

z−z

y

−y

1

−1

0(1− κ
2 )

(1 + κ
2 )

1

Figure 6. Graphical representation of a threshold function.
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To assign an appropriate value for κ
2 , the variations within the HYSYS® simulation executions

were examined. Each time the model was simulated under identical conditions, small solver variations
were seen. To ensure that simulation variations were not confused with faults, the simulation variances
were quantified. The exergy values of the streams were recorded for four separate simulation runs
and normalized accordingly. By employing the error analysis, as summarized in Table 7, a value of
κ
2 = 0.00635 was selected. Essentially, the κ value determines a band in which any variation in the
normalized exergy values are ignored. The latter effectively mitigates false positives in the FDI scheme
that could be attributed to simulation variances.

Table 7. Calculating the threshold value κ
2 .

Parameters Bph + Bch

Confidence level CL 95
Number of samples m 10
Degrees of freedom m− 1 9
Average B̄_h 1.0010
Standard deviation s 0.0021
t-value tm−1 3.69
Error tm−1

s√
m 0.0024

For each of the identified fault conditions, F11 through F33, QRRs were developed according the
the process followed for the NOC QRR. If the QRRs of the various faults were unknown, deviation
from the current QRR to the NOC QRR would be indicative of a fault being present. However, should
QRRs be available for each of the identified faults (QRR11 through QRR33), fault isolation could be
accomplished by matching the current QRR with one of the identified faults.

Applying the threshold function with κ
s = 0.00635 to the normalized simulation data resulted in

tables of qualitative fault vectors.

3. Results and Discussion

In order to generate the set of results, the process plant was operated at a constant operating point
(excluding the introduction of faults) with the various stream values depicted in Table 3. The simulated
process environment was maintained at 25 ° C and 1 atm.

The complete set of qualitative fault vectors obtained from the exergy-based FDI scheme is
presented in Table 8. A fault was deemed detectable if the resultant qualitative fault vector was non-zero.
By inspection, all of the identified faults were detectable. Thus, the exergy-based FDI scheme provides
100% detectability for PC processes of representative complexity.

In order for the faults to be isolable, no two faults should have identical fault vectors. By comparing
the vectors of each fault to all others, the isolability performance of the fault detection scheme can be
evaluated. By subtracting two fault vectors from each other, the distance between the vectors can be
determined. For the 20×2 fault vectors in this case study, the distance between fault vectors x and y
was defined as follows:

dxy =
2

∑
j=1

20

∑
k=1
|Fx(k, j)− Fy(k, j)|. (17)

Fx(k, j) and Fy(k, j) represent the entries in the respective fault vectors. By determining the
distance between each fault vector and all the other vectors, an indication of the degree of isolability
was obtained. Table 9 gives the isolability performance in the form of distances between the different
fault vectors.
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Table 8. Qualitative fault vectors for each of the identified faults

Stream no

F1q F2q F3q

F11 F12 F13 F14 F21 F22 F23 F24 F31 F32 F33

Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch

1 1 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 −1 1 1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 −1 −1 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 −1 −1 −1 −1
11 1 1 −1 −1 0 0 0 0 −1 0 −1 −1 0 0 0 0 0 0 −1 -1 −1 −1
12 1 1 −1 −1 1 0 1 0 −1 0 −1 −1 −1 0 1 0 0 0 −1 −1 −1 −1
13 1 1 −1 −1 1 0 1 0 −1 −1 −1 −1 −1 0 1 1 0 0 −1 −1 −1 −1
14 1 −1 1 1 1 −1 1 −1 −1 1 1 1 −1 −1 −1 −1 0 0 −1 −1 −1 −1
15 1 1 −1 -1 0 0 0 0 0 −1 −1 −1 −1 0 0 1 0 0 −1 −1 −1 −1
16 1 1 −1 −1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 −1 −1 −1 −1
17 −1 −1 1 −1 1 0 1 0 −1 −1 1 −1 −1 0 −1 1 0 0 −1 −1 −1 −1
18 −1 1 1 −1 1 0 1 0 −1 0 1 −1 −1 0 −1 0 0 0 −1 −1 −1 −1
19 1 1 −1 −1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 1 1 −1 −1
20 1 1 −1 −1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 −1 −1 −1 −1
21 1 1 −1 −1 0 0 0 0 0 0 −1 −1 1 0 −1 0 −1 0 −1 −1 −1 −1
22 1 1 −1 −1 0 0 0 0 0 0 −1 −1 1 0 −1 0 −1 0 −1 −1 −1 −1
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Zeros on the main diagonal only reveal 100% isolability performance. A zero implies zero
distance and thus, a direct match between the respective fault vectors. In this case, with no zeros
in the off-diagonal positions, no matches were identified between any of the fault vectors, implying
100% isolability.

Table 9. Isolability performance based on the separation distance metric.

F11 F12 F13 F14 F21 F22 F23 F24 F31 F32 F33

F11 0 64 32 31 38 54 36 31 37 48 52
F12 64 0 34 35 30 10 34 41 31 20 16
F13 32 34 0 1 18 30 18 13 11 32 32
F14 31 35 1 0 17 29 17 12 10 31 31
F21 38 30 18 17 0 20 12 15 13 18 18
F22 54 10 30 29 20 0 24 31 23 10 6
F23 36 34 18 17 12 24 0 15 15 20 18
F24 31 41 13 12 15 31 15 0 10 25 25
F31 37 31 11 10 13 23 15 10 0 23 23
F32 48 20 32 31 18 10 20 25 23 0 4
F33 52 16 32 31 18 6 18 25 23 4 0

When inspecting each column of the isolability matrix in Table 9, it is clear that the minimum
distance of zero corresponds with the actual fault, as desired. Apart from the desired single zero per
column, of significance is the next lowest distance, as reflected by the shortest distance to another fault.
Upon inspecting each column, the shortest distance observed is 1 and that is between fault vectors
F13 and F14. This reveals the weakest point in the isolability performance of the FDI scheme. This is
conceptually supported, since any pressure drop in an input stream to the ATR will be reflected in the
output pressure of the ATR. Similarly, if the pressure drop occurs inside the ATR (due to bed fouling for
instance), the effect post-ATR will be very similar. If the exergy values of the constituent input streams
were known, improved discrimination would be possible, for instance, allowing determination of
which input stream’s pressure is too low.

The next smallest distance per column is 4 between fault vectors F32 and F33 and then 6 for the
distance between fault vectors F33 and F22. Considering F32 and F33, the effect of the faults is very
similar. For F33, the amount of gas being recycled was reduced by 10% by means of a reduced split
ratio, while for F32, a leak of 10% was induced by means of an additional splitter. The two faults are not
identical due to the location of the “leak”. Essentially the induced leak has a higher exergy destruction
value than that caused by a splitter malfunction. Similar arguments hold for F33 and F22. The macro
effect is the same, but the recycle stream leak is less costly from an exergy destruction perspective.

The largest distance between two fault vectors is 64 and that is between F11 and F12. Since the
amount of methane present in the system directly affects the ratio of the syngas produced, and thus
by extension, the quantity and quality of the product, good discrimination is to be expected. Excess
methane is (to a degree) more acceptable than a shortage due to the effect of the recycle stream.
However, any deviation would be detrimental to the overall efficiency of the process, and the proposed
technique correctly identifies this.

Environmental effects (such as a change in temperature) were not considered explicitly in
these results. However, since all exergy values are calculated based on a selected reference
environment (SRE), environmental changes will affect all exergy values equally. Thus, even though
changing environmental conditions will affect the numeric values obtained, the results will not be
affected negatively.

Based on the results presented, the exergy-based FDI scheme has been shown to provide both a
100% detection rate and complete isolability performance for the identified faults. The GTL process
considered in this work is considerably more complex than the ATR used by [19] and could be
considered representative of a typical industrial process.
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The performance of the proposed FDI scheme is surprising, given that it is fundamentally based
on the threshold values of energy signals. However, it should be kept in mind that the sensitivity of
the technique has not been verified against small incipient faults. The effects of sensor noise on the
performance of the technique were also excluded in order to maintain the focus on the applicability
of the technique for specific process configurations. However, the current set of faults can, to a large
degree, be considered significant process faults without leading to catastrophic process failure.

4. Conclusions

The results suggest that the exergy-based FDI scheme performs well when applied to PC processes
of representative complexity. The implementation presented here is an agnostic process which would
allow rapid application to other processes modeled in Aspen HYSYS®. Further work should comprise
a detailed analysis of the exergy-based technique’s performance in noisy environments, a sensitivity
analysis with regard to the magnitude of detectable faults, and the assessment of the performance
of the technique in a dynamic simulation environment. Given the sensitivity of the technique to the
environmental conditions (assumed to be static in this work), the effect of a dynamically changing
environment needs to be investigated. Additionally, a comparison between the exergy-based scheme
and other common FDI techniques should also be considered.
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