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Abstract

A complete theory for the complex interaction between solar energetic particles (SEPs) and the turbulent
interplanetary magnetic field remains elusive. In this work we aim to contribute to such a theory by modeling the
propagation of SEP electrons in plasma wave turbulence. We specify a background turbulence spectrum, as
constrained through observations, calculate the transport coefficients from first principles, and simulate the
propagation of these electrons in the inner heliosphere. We have also, for the first time, included dynamical effects
into the perpendicular diffusion coefficient. We show that such a “physics-first” approach can lead to reasonable
results, when compared qualitatively to observations. In addition, we include the effect of wave growth/damping
due to streaming electrons and show that these particles can significantly alter the turbulence levels close to the Sun
for the largest events.
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1. Introduction

During transient solar phenomena, such as solar flares and/
or coronal mass ejections, high energy solar energetic particles
(SEPs) are accelerated (e.g., Reames 2013, 2015), whereafter
these particles propagate in the turbulent heliospheric magnetic
field (HMF) to reach Earth and the inner heliosphere. A
complete description of the interaction (i.e., scattering) between
particles and these turbulent fields remains elusive. One the one
hand, more observations (of both SEP particles, but also of the
turbulent magnetic fields) near the Sun are needed, while, on
the other hand, more detailed modeling of SEP propagation is
needed on a more fundamental level. We advocate a so-called
“physics-first” approach in modeling SEPs: specify the back-
ground turbulence quantities as informed by observations and/
or simulations and calculate the relevant transport quantities
(i.e., diffusion coefficients) by using a realistic turbulence
spectrum as input. Finally, a comparison between modeled and
SEP intensities can be performed. To some extent this is a
continuation of our effort described in Strauss et al. (2017).
This approach is supplemented by empirical modeling where
the transport coefficients are treated as free parameters and
fitted to particle observations (e.g., Dröge et al. 2016).

In this study we perform further refinements of our model
and again apply it to the transport of impulsively accelerated,
near-relativistic (∼100 keV) electrons. We therefore focus on
so-called electron rich events, where the SEP proton comp-
onent can, for the most part, be neglected. We calculate the
transport coefficients for dynamical turbulence and also include
previous neglected effects such as those that arise from a
nonvanishing magnetic and cross helicity. We also attempt to
quantify the background turbulence in more detail, specifically
the wavenumber at which the dissipation of turbulence starts
being significant. In addition to the background (or rather,
omnipresent) solar wind turbulence, we also investigate
whether SEP electrons can modify the background turbulence
via the streaming instability: can an SEP event amplify/damp

solar wind turbulence? Although this has been modeled and
observed before for proton events (e.g., Ng et al. 1999; Desai
et al. 2012), we are unaware of any such simulations for
electrons. Moreover, such a study is additionally motivated by
the recent findings of Agueda & Lario (2016) that the derived
mean-free path (MFP) for some events may depend on the
intensity of the SEP events; an indication that more particles
can lead to enhanced levels of scattering and hence a decrease
in the mean-free path.

2. Solar Wind Fluctuations

Magnetic turbulence is usually described by Reynolds
decomposing the magnetic field, B, into a locally uniform
background field, B0, and a random turbulent component,

( )b x y z, , , such that

= + ( ) ( )B B b x y z, , . 10

Averaging over long time periods, yields á ñ =B B0, while
d = á ñbB2 2 is the variance of the fluctuating component.
Furthermore, we assume the turbulence to be transversal, i.e.,

=·B b 00 (this is equivalent to assuming a strong guide field,
i.e., if =B zB0 0 , then the z component of b is negligible,

·b z B0) and that the energy contained in the turbulence is
much less than that of the background field, d B B2

0
2.

2.1. Nature of the Assumed Turbulence

Following Shalchi (2009), we assume the fluctuating field
consists of a slab (with fluctuations directed along the mean
field, ∣∣k ) and 2D (with fluctuations directed perpendicular to the
mean field, k⊥) component (see also Matthaeus et al. 1995), so
that the fluctuations can be described as

= +( ) ( ) ( ) ( )b b bx y z z x y, , , . 2slab 2D
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For the total variance of the fluctuations, it follows that

d d d= + ( )B B B . 32
slab
2

2D
2

We work in terms of the so-called wave approach, where the
slab fluctuations are considered to consist of a spectrum of
magnetohydrodynamic (MHD) waves with a wave frequency
of ω and a growth/damping rate of γ′ (so-called plasma wave
turbulence; Schlickeiser 2002). In this model, we can simply
specify any component of the turbulence, in wavenumber
space, as

= w g- + ¢( ) ( ) ( )∣∣ ∣∣b k t b k e, . 4x x
i t t

slab, slab,

The strength of the background slab component is then
calculated as

*

ò

d

d
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2
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where ( )∣∣g k is the so-called turbulence power spectrum and á ñ·
indicates an appropriate averaging procedure.

For this work, we consider only nondispersive, parallel
propagating, and circularly polarized Alfvén waves, where
w = ∣∣V kA , and VA is the Alfvén speed. This assumption is valid
for near-relativistic electrons (∼100 keV) under consideration
here: in Figure 1, ~ -k rLres

1 (rL being the maximal Larmor
radius) indicates the maximum approximate wavenumber at

which these electrons will resonate, indicating that this is
indeed in the Alfvén branch of each node.
It takes some care to interpret the growth/damping rate

present in Equation (4). We assume this rate to consist of two
contributions; the first is the growth/damping rate due to the
streaming and nonthermal SEPs, given by γ, where, of course,
γ=0 when there are no streaming particles. The dynamical
character of the “background turbulence” (that is, the
quasistationary turbulence that is present in the undisturbed
solar wind before the SEP event occurs), however, contributes
to fluctuations changing at a dynamical timescale of τ. Hence,
we use

g t g¢ = +- ( ). 61

Following Bieber et al. (1994), we choose the dynamical
timescale of the turbulence to be

t a w a= =- ∣ ∣ ∣ ∣ ( )∣∣V k , 7A
1

where α=1 is chosen throughout for maximal dynamical
effects. The SEPs are therefore introduced into a fully evolved
turbulent medium in an equilibrium state. This leads to time-
dependent changes in the level of the slab component to be
solely due to wave growth/damping by nonthermal SEPs, i.e.,

g
¶

¶
»

( )
( )

( ) ( )
∣∣

∣∣
∣∣

g k t

g k t

t
k t

1

,

,
2 , . 8

slab

slab

Assuming that the gyrotropic slab wave field includes
forward ( j=+1) and backward ( j=−1) propagating waves

Figure 1. Dispersion diagrams (solid blue curves) for LH polarized (left panel) and RH polarized (right panel) parallel propagating waves in the cold plasma limit. The
solid red curves are the approximate cyclotron damping rates (valid for small damping rates). All of these quantities are given in Appendix B. The great shaded areas
indicate regions where thermal particles are believed to gyroresonate very effectively with the different wavemodes.
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with either a right-handed (n=−1) or left-handed polarization
(n=+1), Equation (5) reduces to

ò å åd p=
¥

= =

( ) ( )∣∣ ∣∣B g k dk2 . 9
j n

n jslab
2

0 1 1
,

slab

The ratios of the different wavemodes determine the cross
helicity (ratio of forward to backward propagating waves),

å å
å å

s =
-

+
= =+ = =-

= =+ = =-

( ) ( )∣∣k
g g

g g
, 10c

n n j n n j

n n j n n j

1 , 1
slab

1 , 1
slab

1 , 1
slab

1 , 1
slab

and the magnetic helicity (ratio of left-hand to right-hand
polarized waves)

å å
å å

s =
-

+
= =+ = =-

= =+ = =-

( ) ( )∣∣k
g g

g g
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For the 2D component we again include dynamical effects
by assuming these are caused by perpendicular propagating
Alfvén waves, so that we may write

= - ^( ) ( ) ( )∣∣ ∣∣
( )b k t b k e, , 12x x

i V k t
2D, 2D, A

where, similar to the slab component, the 2D fluctuations are in
a dynamic, but quasi-steady state,
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with the total strength thereof calculated as
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2.2. Onset and Importance of the Dissipation Range

In the inner heliosphere, low-energy cosmic-ray electrons
resonate with the slab turbulence spectra near the so-called
dissipation range (Engelbrecht & Burger 2015). This is where
the cascading waves start being heavily damped by, e.g., a
cyclotron resonance with the thermal plasma particles (e.g.,
Woodham et al. 2018). The assumed form of this part of the
spectrum is therefore a crucial modeling component to
correctly simulate the propagation of these electrons.

Our assumed slab turbulence spectrum is shown in Figure 3.
This form is exactly the same as that used by Strauss et al.
(2017), but with a modified value of kd, the wavenumber
corresponding to the onset of the turbulence dissipation range,
based on the model of Engelbrecht & Strauss (2018), given by

»
W

+

∣ ∣
( )k

V v3
, 15d

p e

A
p e

LH,RH ,

th
,

where we assume that left-handed waves are damped by
gyroresonant interactions with thermal protons and right-
handed waves interact with thermal electrons. The regions
where this interaction is believed to be very effective, are
contained within

w Î W ∣ ∣ ( )∣∣k v3 16p e
p eLH,RH

, th
,

for LH and RH waves separately (see also the simulations by
Schreiner et al. 2017) and indicated in Figure 1 by the gray

bands. The wavenumber where the gray bands intersect the
nondispersive wavemodes, are believed to be where wave
damping becomes significant, and is given by Equation (15).
To use the expressions above, we also need an approx-

imation for the electron and proton temperatures in the solar
wind. These are assumed polytropic,

=
c-⎛

⎝⎜
⎞
⎠⎟ ( )T T

r

r
, 17p e p e, ,

0

0

p e,

where r0=1 au and Tp e,
0 is a normalization value at Earth.

Following Cranmer et al. (2009), we use =T 30p
0 5 K and

=T 10e
0 5 K. The proton temperature is assumed to decrease

adiabatically, χp=4/3, while the electron decrease is assumed
to be more isothermal, χe=1/3 (e.g., Sittler & Scudder 1980;
Phillips et al. 1995). The resulting temperature profiles are
shown in the left panel of Figure 2.
Using these assumed temperature profiles, the resulting

dissipation range onset is shown in the right panel of Figure 2
as a function of radial distance. Note that the dissipation onset
that corresponds to LH polarized waves (and damped by
protons) is always much smaller than the resulting quantity for
RH polarized waves. This difference results in different forms
of the slab turbulence spectrum; see Figure 3 where the LH
polarized inertial range (colored blue in the figures) is much
more narrow than the RH polarized inertial range (the
combined blue and red region). This will result in a nonzero
magnetic helicity (shown in the top panel of Figure 4) with
electrons scattered, in this region, predominantly by RH
polarized waves.

2.3. Magnetic and Cross Helicities

The magnetic helicity is calculated from the turbulence
spectra discussed in the previous paragraph and shown in the
top panel of Figure 4. At high wavenumbers this value
becomes nonzero and indicates, for our assumptions, an excess
of RH polarized slab waves.
We model the background cross helicity by a simple

exponential function,

s = -
⎡
⎣⎢

⎤
⎦⎥ ( )r

r
exp , 18c

0

which is independent of wavenumber and with r0=1 au. This
assumed form is shown in the bottom panel of Figure 4 along
with the observations of Roberts et al. (1987a, 1987b; blue
dots) and Breech et al. (2005; green dots). This form is
motivated by the stimulations of, e.g., Adhikari et al. (2015)
that shows how the highly anisotropic slab wave field at the
Alfvén radius (only forward moving Afvén waves can escape
this surface and be convected by the solar wind into the inner
heliosphere) can become increasingly isotropic near Earth’s
radius due to e.g., wave–wave interactions.
Although seemingly insignificant, the effects of a nonzero

magnetic and cross helicity has important implications for
particle transport as discussed later on. The upcoming missions,
Parker Solar Probe and Solar Orbiter, will be able to measure
these quantities in detail.
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3. Numerical Transport Model

The propagation of energetic electrons is described by the
so-called focussed transport equation (e.g., Skilling 1971),
given by

m
m

m

m m

¶
¶

=- -
¶
¶

-

+
¶
¶

¶
¶

+  mm ^

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

· ( ˆ )

· ( · ) ( )( )D

f

t
vbf

L
vf

D
f

f

1

2

19x

2

and solved by means of the numerical approach outlined by
Strauss & Fichtner (2015) to yield the gyrotropic particle
distribution function f. In Equation (19), b̂ is a unit vector
pointing along the mean heliospheric magnetic field, v is the
particle speed, μ is the cosine of the pitch-angle, ^

( )D x contains
the perpendicular diffusion coefficients and is specified in
spherical coordinates (radial distance, r, and azimuthal angle, f),
Dμμ is the pitch-angle diffusion coefficient, and the focusing
length is calculated as

= - · ˆ ( )L b, 201

for a Parker (1958) heliospheric magnetic field (HMF),
normalized to 5 nT at Earth. The first-order anisotropy is

calculated as

ò

ò
f

m m

m
= -

+

-

+( ) ( )A r t
fd

fd
, , 3 , 211

1

1

1

and the omni-directional distribution function as

òf f m m=
-

+
( ) ( ) ( )F r t f r t d, ,

1

2
, , , . 22

1

1

From F, the isotropic differential intensity is calculated as
=j p F2 , with p being particle momentum.
As an inner boundary condition, the following mono-

energetic isotropic injection function

f
d

f f
s

t
t

= =
-

´ -
-

- -
⎡
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⎦⎥

⎡
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( )
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f r r t E C
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t
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t

, , ,

exp
2

exp 23a

e

0
0 0

0
2

2

is prescribed at the inner boundary, located at r0=0.05 au.
Gaussian injection in f is assumed with f0=π/2 and σ

determining the broadness thereof. The model is solved for
E0=100 keV. We use a value of σ=20° for the simulations
presented here. It is believed that magnetic structures near the
Sun (e.g., Klein et al. 2008) can significantly broaden the
compact source regions from a solar flare below the Alfvénic
radius. We can account for this broadening in our model by

Figure 2. Left panel shows the assumed radial dependence of the proton (solid blue) and electron (dashed red) solar wind plasma temperatures. The right panel shows
the corresponding wavenumber where turbulence dissipation is believed to start being effective.
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specifying σ, although the simulations of Strauss et al. (2017)
have shown that the modeled intensities are relatively
insensitive to the choice of this parameter as long as significant
levels of perpendicular diffusion are present. A Reid–Axford
(Reid 1964) temporal injection profile is specified with
τa=1/10 hr, τe=1 hr, and C is a parameter that is adjusted
to give the correct intensity at Earth. Other important quantities
assumed in the model are a solar wind number density of
5 particles cm−3 at Earth decreasing as r−2 and a constant solar
wind speed of Vsw=400 km s−1.

The pitch-angle and perpendicular diffusion coefficients,
needed as input to Equation (19), are discussed and calculated
in the next section.

4. Transport Coefficients

In this work we try to use, for as far as possible, a “physics-
first” approach to simulate SEP transport. That is, we attempt to
specify, as self-consistently as possible, the background
turbulence spectra, and calculate the SEP transport coefficients
from these assumed forms.

4.1. Pitch-angle Diffusion

The plasma wave pitch-angle diffusion coefficient is given
by, e.g., Schlickeiser (2002) as

ò å åp m
=

-
mm

¥

= =

( ) ( )∣∣D
v

B r
dk g

1
, 24

L n j
n j n j

2 2

0
2 2 0 1 1

, ,
slab

where we have assumed that VA=v. The resonance functions
are given by


t

t m w
=

+ - + W

-

-( ) ( )
( )

∣∣v jk n
, 25n j,

1

1 2 2

with γ=τ−1; the broadening of the resonance function is
therefore assumed to be entirely due to the dynamic character
of the background fluctuations. This is the form of Dμμ that will
be used for the rest of the study.
We can use this expression to see when electrons will

resonate with what type of slab wave (i.e., when is  > 0n j, ).
This is shown in Figure 5, where the shaded regions indicate
possible resonance with either forward (red regions) or
backward (blue regions) propagating waves with either
polarization state. The vertical dashed lines show the classical
resonance gap, which is present either when only LH polarized
waves are assumed or if the waves are assumed static. Note that
when a beam of electrons is present (i.e., μ> 0), these particles
will strongly resonate with forward propagating LH waves and
backward propagating RH polarized waves.
The resulting Dμμ is shown in the left panel of Figure 6 at

three different radial positions. Note that this coefficient is not
symmetric about μ∼0, but enhanced for backward moving
particles. This is a direct result of the nonvanishing magnetic
and cross helicities assumed in the model; there is an excess of
RH polarized, forward propagating waves in the model, as
therefore backward propagating particles experience more
scattering. Refer again to Figure 5. Near Earth, mmD becomes
more symmetrical as the cross helicity decreases to zero.
The parallel mean-free path (MFP, l∣∣) is calculated from mmD

following the usual definition of Hasselmann &Wibberenz (1968),

òl
m

m=
-

mm-

+ ( ) ( )∣∣
v

D
d

3

8

1
. 26

1

1 2 2

The resulting l∣∣ is shown in Figure 7 as a function of radial
distance. Note the strong radial dependence of l∣∣ and the large
values thereof close to the Sun.
If we, however, consider the case of negligible damping

(ND) or dynamical effects, the resonance function reduces to

 pd m w» - + W( ) ( )∣∣v jk n , 27n j,
ND

and the pitch-angle diffusion coefficient becomes

å åp m
m

=
-

mm
= =
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( ) ( )∣∣D
v

B r
g k

1
, 28

L n j

n jND
2 2

0
2 2

1 1
slab

, res

where we have introduced the resonant wavenumber as

m
=

W
-

( )∣∣k
n

V v j
. 29

A

res

This approximate form of the pitch-angle diffusion coefficient,

mmDND, will be used later on to derive the wave damping/
growth rate.

Figure 3. Energy spectrum of the left-handed (dashed blue line) and right-
handed (solid red line) slab waves. The total composite spectrum is shown by
the dotted black line. Note that the onset of the dissipation range occurs for
lower wavenumbers for the left-handed population. The approximate resonant
scale, ~ -k rLres

1, is shown for reference.
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4.2. Perpendicular Diffusion

No consistent theory exists to describe perpendicular
diffusion, on the pitch-angle level, in the presence of dynamical
turbulence. However, we may include the dynamic contribution
of propagating Alfvén waves (or rather, particles drifting in the
random electric fields induced by the propagating Alfvén
waves) by using the approximate result of Strauss et al. (2016)

m
d

» á ñ +^ ^ ( ∣ ∣ ) ( ) ( )D l v V
B

B
, 30A

dyn 2D
2 1 2

0

which is valid for the limit of á ñ^r lL , where á ñl̂ is,
approximately, the perpendicular correlation scale. In the

magnetostatic limit of VA=0, Equation (30) should, however,
converge to the field-line random walk (FLRW) model of
Jokipii (1966), where

m k=^ ∣ ∣ ( )D av , 31FLRW
FL

where Î [ ]a 0, 12 is a parameter determining the probability of
particles being stuck to wandering field-lines, and the field-line
diffusion coefficient κFL is given by, e.g., Qin & Shalchi (2014) as

òk
p

=
¥

^
-

^ ^( ) ( )
B

k g k dk . 32FL
2

0
2 0

2 2D

Making the rather ad hoc identification,

k
d

= á ñ^
( ) ( )l

B

B
, 33FL

? 2D
2 1 2

0

which is remarkably similar to the form used by Matthaeus
et al. (2007), but given, by these authors, in terms of the
ultrascale, we use the following estimate for the dynamical
perpendicular diffusion coefficient,

m a k» +^ ( ∣ ∣ ) ( )D av V . 34A
dyn

FL

The value of a is changed in later sections to illustrate the
role of perpendicular diffusion in wave amplification, while α
was introduced for consistency with Equation (7).
The isotropic perpendicular MFP, is calculated as

òl m=^
-

+

^ ( )
v

D d
3

2
. 35

1

1

Both D⊥ and λ⊥ are shown in Figures 6 and 7. Note that
the inclusion of dynamical effects, although small, leads to a

Figure 4. Top panel shows the resulting magnetic helicity due to our assumptions of the different slab turbulence spectra. The approximate resonant scale, ~ -k rLres
1,

is again shown for reference. The bottom panel shows the assumed radial dependence of the cross helicity.

Figure 5. The figure shows when it is possible for SEP electrons to resonate
with either wave population. Shaded areas indicate regions of possible
resonance, while the dashed region indicates the classical resonance gap that is
present when either only LH polarized waves are considered, or if the waves
are considered stationary.
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nonzero value of D⊥ near μ∼0. This effect may, however,
become increasingly dominant at lower energies where v∼VA.

It should also be noted that if g2D(k⊥) is interpreted as the
probability of finding a fluctuation at a given wavenumber with
a given energy (amplitude), then the characteristic length scale
(which can be identified as the correlation length) can be
evaluated as a root-mean-squared average scale using the
second-order moment of the distribution

ò
ò

á ñ ~ á ñ =^ ^
- ^

-
^ ^

^ ^

( )

( )
( )l k

k g k dk

g k dk
, 362 2

2 2D

2D

which leads to Equation (33) after some re-arrangement.

5. Wave Growth/Damping and Its Numerical
Implementation

The basic idea behind wave growth/damping is illustrated in
Figure 8: a distribution of particles with speed v1 is isotropic
with respect to the bulk flow frame (or fixed frame) denoted by

=∣∣v 0 in the figure, i.e., their pitch angles are equally
populated so that they form a shell distribution (the gray
half-circle in the figure). Forward propagating Alfvén waves
(with a speed of =∣∣v VA) are now introduced into the system
and they interact with the particles through gyro-resonance,
which leads to pitch-angle scattering. The Alfvén waves will
now attempt to isotropize the distribution with respect to the
wave frame (the dashed gray half-circle in the figure). Note that
the energy of particles, as observed in the wave frame, is

conserved during the interaction, ¢ =v v1 1. However, the particle
energy, as measured in the flow frame, decreased to v2<v1 as
the particle moved from a c, with the scattering event at b
(although pitch-angle scattering in this sense will be a
continuous process). Because of the conservation of energy,
the energy that the particle lost was gained by the Alfvén waves
responsible for that scattering event, and hence we may state
that forward propagating particles ( >∣∣v 0) that interact with
forward moving Alfvén waves ( = >∣∣v v 0A ) will loose energy
during gyroresonant interactions, and will in turn grow and/or
amplify forward moving Alfvén waves. A similar sketch and
argument can be found in Afanasiev & Vainio (2013).
Of course, the opposite interaction is also possible: backward

propagating particles that interact with forward moving Alfvén
waves will gain energy during gyroresonant interactions, and
will in turn damp the forward moving Alfvén waves. If the
particle distribution is isotropic (having an equal number of
forward and backward propagating particles), the net effect will
be that the interactions average out, and no net energy change
(for either the particles or the waves) will take place.
A more rigorous treatment of the wave growth/damping

problem is given in Appendix A and leads to the result


g

p
m

m
=

W
-

¶
¶ m

( ) ( )
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j
p

k

V

v

f

4
1 , 37n j

A
,

2
0
4

res

2

res
2

res

in terms of the resonant wavenumber ( ∣∣k res) and pitch-angle
(μres), and the energy contained in the background magnetic

Figure 6. Left panel shows the calculated Dμμ, at different radial positions, as a function of pitch-angle. The right panel shows the equivalent form of D⊥.
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field, . By looking at this result, it is clear that for an isotropic
distribution, ∂f/∂μ≈0, we should have γ≈0 and no net
wave amplification will occur. Moreover, we should note that
the growth rate is generally expected to be low, due to the
presence of the factor VA/v=1. But, as we will show, wave
growth may still reach appreciable levels if enough streaming
particles are present, and if the amount of scattering is sufficient
(this is quantified by the plasma quantities present in
Equation (37)), as the case »mmD 0 will lead to γ≈0 (the
particles cannot interact with the waves; see, e.g.,
Equation (46)). Lastly, we note that the sign of γ is determined
by the wave propagation direction, j in accordance with the
sketch presented in Figure 8.

In the numerical model, at each timestep, the numerical
derivative ∂f/∂μ is calculated, which allows us to calculate the
growth/damping rate as given by Equation (37). The different
wave amplitudes are then adjusted accordingly by calculating

ò g= ¢ ¢
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )∣∣ ∣∣ ∣∣g k t g k t k t dt, , exp 2 , , 38n j n j

t

t

n j,
slab res

,
slab res

0 ,
res

0

or, approximated in its discretized form as

g+ D = D( ) ( ) ( ( ) · )
( )

∣∣ ∣∣ ∣∣g k t t g k t k t t, , exp 2 , ,

39
n j n j n j,
slab res

0 ,
slab res

0 ,
res

0

where the numerical timestep is Δt=t−t0. The time-dependent
turbulent levels are then used to calculate time-dependent transport
coefficients, which are then incorporated in the time-dependent

simulations. A self-consistent description is therefore obtained. For
the present study, transport effects of the newly generated waves,
in both physical and wavenumber space, are neglected. This is
partly motivated by the fact that the SEP electrons propagate
relativistically from the Sun to Earth and that the distribution peaks
within minutes, while it is unlikely that any newly generated waves
will propagate appreciably far within this timeframe. Although
wave attenuation might therefore be important later in an SEP
event, and can considerably change the characteristic of the
generated turbulence, the effects thereof on SEP propagation can
most likely be safely neglected. Wave cascading effects, or more
importantly for electrons, wave dissipation effects, were assumed
negligible following a similar argument; while it is unclear if these
effects will be significant in the assumed timeframes, we also do
not currently have a firm grasp of what the wave dissipation rate
should be. Although outside the scope of the present study such an
effect will be included in future work.
What do we expect for a beam (i.e., an excess of forward

propagating particles, i.e., ∂f/∂μ> 0) of electrons? We expect
to amplify forward moving waves and damp backward moving
waves of both polarities. The wavenumber where this occurs
(i.e., the resonant wavenumber), however, will also depend on
the polarity of the waves. Moreover, because forward moving
particles resonate more with forward moving LH polarized
waves, we expect these waves to be preferably amplified. Refer
again to Figure 5.

6. Results

6.1. Reference Solution

First, we show so-called reference solutions. These are the
resulting model intensities without including any wave growth
in the model. It is extremely important to normalize these
intensities to the correct levels, as the SEP intensity will
directly influence the amount of wave modification. We start by
injecting an arbitrary intensity of SEPs into the model, solve
the model to obtain the intensity at Earth, and normalize this to
observed levels. Note that the normalization is performed only
once in order for the results to remain consistent. The temporal
profile for this reference solution is shown in the left panel of
Figure 9 for various radial positions; all magnetically
connected to the SEP source, i.e., along the same magnetic
field line. The maximum intensity at 1 au is normalized to the
maximum value reported by Dresing et al. (2014) for electrons
of these energies (indicated in the figures by the red circle). The
right panel of the figure shows the corresponding anisotropies.
Interestingly, the anisotropy near the Sun becomes negative
after the initial injection phase. This is due to the large l∣∣ value
close to the Sun that does not effectively isotropizes the
distribution; after the initial injection, SEPs are scattered and
isotropized further outward, whereafter they propagate back
toward the Sun.
The differential intensity of the reference solution shown in

Figure 10, as a contour plot in the ecliptic plane, at t=2 hr
after the SEP events was injected into the model. The position
of the three “virtual spacecraft,” where the intensities are
calculated throughout this work and in Figure 9, are also
shown. Note that the azimuthal extent of this distribution will
depend heavily on the effectiveness of perpendicular diffusion.
The effect thereof is discussed in a later section.

Figure 7. Resulting l∣∣ (solid red line) and λ⊥ (dashed blue line) as a function
of radial distance. Also shown is the radial dependence of the focusing length
(solid green line) and the ratio l l^ ∣∣ (dashed–dotted black line).
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Figure 8. Illustration of how pitch-angle scattering by forward propagating Alfvén waves can lead to wave growth. See the text for details.

Figure 9. Left panel shows the resulting temporal profile of the differential intensity at three different radial positions along the same magnetic field line that connects
to the SEP source. The position of these virtual spacecraft are indicated in Figure 10. The maximum intensity at Earth is normalized to the maximum value reported by
Dresing et al. (2014) as indicated by the red circle. The right panel shows the corresponding anisotropies.
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6.2. Wave Growth/Damping Effects

The left panel of Figure 11 shows the pre-event energy
spectra of the four wave components of the slab turbulence
spectrum at a radial position of r=0.5 au. The right panel
shows the same spectra after the SEP events passed over the
virtual spacecraft. As expected, forward propagating wave-
modes were amplified, while backward propagating waves
were damped. The forward propagating LH polarized mode is
most heavily affected as a beamed electron population will
resonate most effectively with these wavemodes. Interestingly,
for 100 keV electrons under consideration here, the wave
growth and/or damping occurs at the higher end of the inertial
range, or possibly near the onset of the dissipation range, of the
turbulence spectrum. Newer spacecraft definitely have the
possibility to resolve this part of the turbulence spectrum, and
results such as those shown in the right panel of Figure 11
should be observable.

To quantify and illustrate where in space most of the wave
modification takes place, we calculate the so-called “residual

turbulence energy” for each wave as

òD = -( ( ) ( )) ( )∣∣ ∣∣
∣∣
( )

∣∣
( )

B g k t n j g k t n j, , , , , , , 40n j
k

k

,
slab

1
slab

21

2

where ∣∣
( )k 1 and ∣∣

( )k 2 are the ranges of the wavenumber space

under consideration (see Figure 11), ( )∣∣g k t n j, , ,slab is the
energy spectra of the different wavemodes, and t1=0 hr and
t2=10 hr are the start and end of the simulation interval. This
quantity is shown, for each wavemode separately, as a contour
plot in the ecliptic plane of the heliosphere in Figure 12. To
some extent, these maps mimic the results of the differential
intensity contour (see Figure 10). This is expected as higher
fluxes generally lead to more wave modification. The details
are, however, much more complex, with the wave growth
dependent on, e.g., mmD , the anisotropic part of the SEP
distribution, and the resonance functions. As an illustration,
note that the most efficient wave growth for LH polarized,
forward moving waves is close to the Sun (see panel (a)), while

Figure 10. Resulting omni-directional intensity (normalized to 100% at its maximum), shown as a contour plot in the ecliptic plane, at t=2 hr after the modeled SEP
event. The position of the three virtual spacecraft used throughout are indicated, along with the magnetic field line that connects to the maximum of the SEP source.
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the most effective wave growth for RH polarized, forward
moving waves is closer to Earth orbit.

The pitch-angle diffusion coefficient, as calculated before
and after the SEP event, is shown in Figure 13. The change in
mmD is pitch-angle dependent with the biggest changes

occurring at intermediate pitch-angle values, where the level
of scattering increased by more than an order of magnitude.
This is very large, considering that only the forward
propagating waves are amplified. The kink in the calculated
mmD after the event is due to our rather coarse pitch-angle grid

used in the model. See also the zig-zags present in the solutions
presented in Figure 11.

To quantify the enhanced level of scattering, we calculate l∣∣,
at different longitudes, after the simulated SEP events. The
results are shown in Figure 14. Note that the different
azimuthal positions co-inside with the different virtual space-
craft placed in the computational domain (see again Figure 10).
The effect of wave growth on l∣∣ is dramatic; near the Sun l∣∣
decreases by at least two orders of magnitude. This decrease,
however, depends very strongly on magnetic connectivity to
the SEP source with an observer ∼45° away from the source
unlikely to see any larger effects. The effects of wave growth
also diminish away from the Sun, with only moderate effects
apparent at Earth.

6.3. The Effects of Perpendicular Diffusion

Perpendicular diffusion may also influence the calculated
wave growth rates indirectly by controlling the intensity of
SEPs near the Sun: with more effective perpendicular diffusion
in the model, it is expected that the SEP particles will spread
out more effectively, in terms of longitude, with fewer particles
reaching Earth. However, as we normalize the intensities to
Earth values, more particle spreading means that the initial SEP
distribution specified near the Sun must be higher. Naively, this
argument suggests that more efficient perpendicular diffusion
will lead to more efficient wave growth.
To test this argument, we have performed simulations with

various choices of aä[0, 1] leading to different levels of
perpendicular diffusion. The resulting peak intensities are
normalized to the same value at Earth, and Figure 15 shows the
radial dependence thereof. Note that we calculate the peak
intensity along the magnetic field line that connects each point
to the SEP source. Referring to Figure 15, we see that the
behavior is well described by a ∼1/r2 dependence, and that the
peak intensity near the source only changes by a factor of ∼2
between the extreme values of a=0.01 and a=1.
Interestingly, our model results compare well with those of

He et al. (2017) who found a r−1.7 dependence using a much
more involved 3D modeling approach.

Figure 11. Left panel shows the four components of the slab turbulence spectrum (at r = 0.5 au) before the SEP event was introduced into the model. The right panel
shows the resulting spectrum, at t=10 hr, after the SEP event sweeped past the virtual spacecraft.
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7. Discussion

In this paper we have calculated diffusion coefficients for
100 keV electrons in the inner heliosphere based on observed
turbulence spectra. Effects such as nonzero magnetic and cross
helicities, which are usually neglected, have been included and
they were shown to have large effects near the Sun. We have
also included dynamical effects in the standard FLRW
perpendicular diffusion coefficient, which may have large
effects for low-energy particles.

Using these theoretically motivated transport coefficients, we
have included, for the first time, wave generation by streaming
SEP electrons. Our results show that, for the biggest events,
SEP electrons can significantly grow forward propagating

waves (especially left-handed polarized waves near the Sun).
Our results therefore confirm, to some extent, the observations
of Agueda & Lario (2016). These effect diminish toward Earth
and are not expected to be observable outside of 0.5 au and
when the observer is not magnetically well connected to the
flaring region. However, the upcoming Parker Solar Probe and
Solar Orbiter spacecraft should be able to observe these
amplified levels of turbulence in the coming years.
Our model of wave growth is by no means complete; a full

spectrum of particles needs to be injected into interplanetary
space, with wave cascading and dissipation processes treated
more self-consistently. Wave attenuation effects will also have
to be included in the future. Such a model is, however, not
computationally viable at the moment. We are also not able, at

Figure 12. Contour plot showing where each wavemode was most affected by the streaming electrons. See the text for more details.
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present, to confirm whether a so-called streaming limit (e.g.,
Reames & Ng 2010) is present in the electron simulations.
However, we expect that the simulated temporal evolution of
the SEP electron intensity at, e.g., Earth will be greatly affected
by wave growth for the largest SEP events given the large
changes in mmD . Interestingly, we note that the enhanced
turbulence levels (and correspondingly small l∣∣) near the Sun
can strongly enhance the diffusive shock acceleration rate in
this region, possibly boosting the level of energetic electrons
reaching Earth when a shock from a coronal mass ejection is
present.
We have modeled the peak intensity along the MHF line of

optimal magnetic connectivity. Our calculations compare well
with previous 3D modeling results and the observations of
Lario et al. (2013). Moreover, it was shown that the level of
perpendicular diffusion can influence the wave growth rate by
changing the SEP intensity near the Sun (as normalized to
constant levels at Earth). We again emphasize that perpend-
icular diffusion is an important transport process, as also
illustrated by Dröge et al. (2010), He (2015), Laitinen et al.
(2016), and Zhao & Zhang (2018), among others, and should
be included in SEP transport models.
We are confident that our approach of using theoretically

derived coefficients, combined with turbulence quantities,
consistent with the limited available observations, can produce
realistic SEP intensities in the inner heliosphere. The approach
can be refined with more measurement, but is the most
effective way to progress toward a predictive model and
understanding of the fundamental processes that couple particle

Figure 13. Comparing the pitch-angle diffusion coefficient, at r=0.5 au, before
(dashed black line) and after (solid red line) the SEP event was simulated.

Figure 14. Calculated l∣∣, shown as a function of radial distance, at different
longitudes before and after the simulated SEP event.

Figure 15. Calculated peak intensity, along an optimally connected magnetic
field line, as a function of radius, for various assumptions of the parameter
a ä [0,1] that determines the strength of perpendicular diffusion. Note that all
simulations are normalized to the same value at Earth.
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scattering to solar wind fluctuations. Moreover, most of these
turbulence quantities can be more constrained by the upcoming
Parker Solar Probe and Solar Orbiter spacecraft.

This work is based on research supported in part by the
National Research Foundation (NRF) of South Africa (grant
No. 106049). Opinions expressed and conclusions arrived at
are those of the authors and are not necessarily to be attributed
to the NRF. R.D.S. acknowledges partial financial support from
the Fulbright Visiting Scholar Program.

Appendix A
Calculation of the Growth/Damping Rate

Below we show the detailed calculation of the wave growth/
damping rate. The derivation is loosely based on work
presented by, e.g., Ng & Reames (1994) and Vainio (2003),
among others.

The change in wave energy during a scattering event can be
approximated as ΔEw=−jVApΔμ, with the total contribution
from all particles in the distribution giving the total change in
the energy density of the waves
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where the second part of the expression follows from the
standard definition of the Fokker–Planck equations, resulting in
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and hence that the average change in wave energy density is
given by
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Assuming f to be gyrotropic, we find
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In order to make wave generation implementable in our
numerical model, we have to assume a mono-energetic SEP
distribution, i.e., m m d= -( ) ( ) ( )r rf p t p f t p p, , , , ,0 0 , so
that
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If the amplified waves are Alfvénic, both the energy density
of the kinetic and magnetic contributions change (with an
equipartition for nondispersive Alfvén waves), resulting in
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By using Equation (9), the change of energy density can be
evaluated as a change in wave power,
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Combining Equations (46) and (48), we get
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and we now need to estimate the pitch-angle diffusion
coefficient, mmD . In order to get a tractable expression, we use
the negligible damping version, given by Equations (27)–(29),
to obtain
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As this expression should be true for each independent
wavemode, we can use Equation (8) to find the growth/
damping rate for the different wavemodes as
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Manipulating the δ-function gives
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Appendix B
Plasma Dispersion Relations

For the sake of completeness, we list the dispersion relations
for circularly polarized waves in the cold plasma limit, that is,
assuming Te=Tp=0. These relations are given by (see,
among other, Stix 1962)
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where ∣∣k is the parallel wavenumber, ω is the frequency in the
bulk (flow) plasma frame, c is the speed of light, and VA is the
Alfvén speed. Ωp and W∣ ∣e are the proton and electron cyclotron
frequencies, given as
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where Λ=mp/me is the ratio between proton and electron
masses, e is the elementary charge, and B is the mean
background magnetic field, while the different plasma
frequencies are given as
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where ne is the electron number density and ò0 is the
permittivity of free space. Note that we assume quasi-neutrality
with ne≈np. In terms of these frequencies, VA is
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In deriving Equations (55) and (56) it was assumed that
ω=ωp=ωe. The dispersion relations are shown in Figure 1
as the solid blue lines.

In the cold plasma limit, the waves are strongly damped near
either the proton or electron cyclotron frequency. However,
when a warm plasma is considered (such as the solar wind), the
thermal motion of the plasma particles, with a speed of
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for either protons or electrons, need to be considered. In
Equation (15) this was done in a rather ad hoc way by relying
on the results of Schreiner et al. (2017). Indeed, this approach
was also shown by Engelbrecht & Strauss (2018) to compare
well with observed quantities. The difficulty lies in calculating,
in a tractable analytical fashion, the damping rate of MHD
waves by a warm plasma. Unfortunately, this is only possible
under the assumption of a small growth rate, γω=ω and
leads to
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and needs to be evaluated for each polarization mode separately
(for details, see, e.g., Chen et al. 2013). The function D is
related to the distribution of the particles under consideration,
and for our purposes, we additionally assume no temperature
anisotropy, so that
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where, for the latter equation, we have furthermore assumed
that v 0p e

th
, . The calculated damping rates, using 1 au plasma

values, are shown in Figure 1 as the solid red curves.
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