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Abstract: According to the precepts that C-10 amino-artemisinins display optimum biological
activities for the artemisinin drug class, and that attachment of a sugar enhances specificity of drug
delivery, polarity and solubility so as to attenuate toxicity, we assessed the effects of attaching sugars
to N-4 of the dihydroartemisinin (DHA)-piperazine derivative prepared in one step from DHA and
piperazine. N-Glycosylated DHA-piperazine derivatives were obtained according to the Kotchetkov
reaction by heating the DHA-piperazine with the sugar in a polar solvent. Structure of the D-glucose
derivative is secured by X-ray crystallography. The D-galactose, L-rhamnose and D-xylose derivatives
displayed IC50 values of 0.58–0.87 nM against different strains of Plasmodium falciparum (Pf ) and
selectivity indices (SI) >195, on average, with respect to the mouse fibroblast WEHI-164 cell line.
These activities are higher than those of the amino-artemisinin, artemisone (IC50 0.9–1.1 nM). Notably,
the D-glucose, D-maltose and D-ribose derivatives were the most active against the myelogenous
leukemia K562 cell line with IC50 values of 0.78–0.87 µM and SI > 380 with respect to the human
dermal fibroblasts (HDF). In comparison, artemisone has an IC50 of 0.26 µM, and a SI of 88 with
the same cell lines. Overall, the N-glycosylated DHA-piperazine derivatives display antimalarial
activities that are greatly superior to O-glycosides previously obtained from DHA.

Keywords: artemisinins; artemisone; piperazine; N-glycosides; antimalarial activities; anti-tumour
activities

1. Introduction

The derivatives 2–4 of artemisinin 1 (Figure 1) are the most widely used drugs for treatment of
malaria caused mainly by the apicomplexan parasite Plasmodium falciparum (Pf ). For treatment of
non-severe malaria, combinations with longer half-life drugs known as artemisinin combination
therapies (ACTs) are used [1]. Because of the peroxide group, artemisinins are thermally and
chemically fragile, and show variable pharmacokinetic profiles and low bioavailability [2]. In particular,
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DHA 2 is labile due to an unzipping process driven by the unprotected hemiacetal hydroxyl group,
it rearranges irreversibly under physiological conditions into the peroxyhemiacetal 5 that decomposes
via a Kornblum-de la Mare process to the dead-end compound deoxyartemisinin 6 (Figure 1) [3].
The peroxyhemiacetal 5 is observed in plasma from patients treated with artesunate [4]. In this respect,
it is noted that the antimalarial activity of DHA rapidly attenuates (half-life ~3 h) when incubated
in human plasma or serum [5]. The instability also engenders problems during formulation and
storage [6]. Again because of the hydroxyl group, DHA undergoes facile Phase I metabolism [7,8].
Artesunate 4 is rapidly hydrolyzed to DHA in vivo [9]. But because of the incipient protective effect
of the ester group against first-pass metabolism, artesunate is a better source of DHA in plasma than
DHA itself [10]. The facile metabolism of artemether 3 involving oxidative dealkylation of the methyl
group, predominantly by CYP3A4, is reflected in the detection of DHA in subjects administered with
artemether [11]. These artemisinins, especially DHA, display neurotoxicity in vitro and in vivo [12–14].
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Figure 1. Artemisinin 1 and its clinically-used derivatives - the hemiacetal dihydroartemisinin (DHA) 59 
2, the lactol ether artemether 3, and the hemiester artesunate 4. The latter two are rapidly converted 60 
into DHA via metabolism or facile hydrolysis respectively. DHA rearranges irreversibly under 61 
physiological conditions into the peroxyhemiacetal 5 that in turn rearranges to the inert 62 
deoxyartemisinin 6. 63 

However, resistance by malaria parasites to these derivatives, and to DHA in particular, now 64 
enormously complicates the task of global malaria control [15,16]. Thus, the development of new 65 
artemisinins that do not provide DHA and thereby supplant the current artemisinin derivatives is an 66 
urgent task. According to proposals based on the ADMET paradigm, [17] we prepared amino-67 
artemisinin derivatives wherein the nitrogen atom of the amino group replaces the exocyclic oxygen 68 
atom attached to C-10 of the current clinical derivatives (Figure 2) [18–21]. All are significantly more 69 
active than the current clinical artemisinins against Pf. Whilst enhanced activity may be ascribed to 70 
improved pharmacokinetic parameters, this is better rationalized in terms of the conceptual model 71 
for mode of action that involves oxidation of reduced flavin cofactors important for modulating 72 
oxidative stress in the malaria parasite [22]. From a drug development perspective, the most 73 
advanced of the aminoartemisinins is artemisone 7 that is nine-fold more active than artesunate 4 74 
against Pf in vitro and at least three-fold in in vivo [20,23,24]. Artemisone is not metabolized to DHA 75 
2 but provides metabolites bearing unsaturation in the S,S-dioxothiomorpholino ring, and/or 76 
hydroxyl groups at C-5 or C-7 that also have potent antimalarial activity [20,25,26]. Unlike the current 77 
artemisinins, artemisone displays no clinically relevant autoinduction of metabolizing enzymes. 78 
[20,25,27,28] In comparison to DHA, [29] artemisone possesses a longer elimination half-life (~3 h vs 79 
~1 h), lower plasma clearance (~3.5 L/h/kg vs ~5.4 L/h/kg) and a larger volume of distribution (14.5 80 
L/kg vs 7.7 L/kg), [27,28] and displays negligible neurotoxicity in vitro and in vivo [14]. Overall, 81 
artemisone is the only artemisinin derivative developed outside China that has progressed into a 82 
clinical trial against malaria. Artemisone has now been registered with the US FDA as an orphan 83 
drug planned for use in treatment of severe malaria via intravenous administration [30]. 84 

Figure 1. Artemisinin 1 and its clinically-used derivatives—the hemiacetal dihydroartemisinin (DHA)
2, the lactol ether artemether 3, and the hemiester artesunate 4. The latter two are rapidly converted into
DHA via metabolism or facile hydrolysis respectively. DHA rearranges irreversibly under physiological
conditions into the peroxyhemiacetal 5 that in turn rearranges to the inert deoxyartemisinin 6.

However, resistance by malaria parasites to these derivatives, and to DHA in particular,
now enormously complicates the task of global malaria control [15,16]. Thus, the development of new
artemisinins that do not provide DHA and thereby supplant the current artemisinin derivatives
is an urgent task. According to proposals based on the ADMET paradigm, [17] we prepared
amino-artemisinin derivatives wherein the nitrogen atom of the amino group replaces the exocyclic
oxygen atom attached to C-10 of the current clinical derivatives (Figure 2) [18–21]. All are significantly
more active than the current clinical artemisinins against Pf. Whilst enhanced activity may be ascribed
to improved pharmacokinetic parameters, this is better rationalized in terms of the conceptual model
for mode of action that involves oxidation of reduced flavin cofactors important for modulating
oxidative stress in the malaria parasite [22]. From a drug development perspective, the most
advanced of the aminoartemisinins is artemisone 7 that is nine-fold more active than artesunate
4 against Pf in vitro and at least three-fold in in vivo [20,23,24]. Artemisone is not metabolized to
DHA 2 but provides metabolites bearing unsaturation in the S,S-dioxothiomorpholino ring, and/or
hydroxyl groups at C-5 or C-7 that also have potent antimalarial activity [20,25,26]. Unlike the
current artemisinins, artemisone displays no clinically relevant autoinduction of metabolizing
enzymes. [20,25,27,28] In comparison to DHA, [29] artemisone possesses a longer elimination half-life
(~3 h vs. ~1 h), lower plasma clearance (~3.5 L/h/kg vs. ~5.4 L/h/kg) and a larger volume of
distribution (14.5 L/kg vs. 7.7 L/kg), [27,28] and displays negligible neurotoxicity in vitro and
in vivo [14]. Overall, artemisone is the only artemisinin derivative developed outside China that has
progressed into a clinical trial against malaria. Artemisone has now been registered with the US FDA
as an orphan drug planned for use in treatment of severe malaria via intravenous administration [30].
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Figure 2. Amino-artemisinins bearing alkylamino, arylamino and sulfonylamino groups attached to
C-10 of the artemisinin nucleus wherein the oxygen atom at C-10 in the current artemisinins (Figure 1)
is replaced by the nitrogen atom. In terms of cost of goods, compounds 8–10 are the most economically
obtained from DHA. The intent of the current work is to develop new compounds by attaching polar
groups to N-4 in the piperazine derivative 10.

Artemisinins have also been tested for antitumour activities in vitro on cancer cell lines,
in in vivo studies with animal models [31–34], and in pilot clinical trials [34,35]. However, as clinical
treatment will require protracted treatment regimens, the DHA prodrug and the neurotoxicity problems
essentially will, or should, proscribe use of the current clinical artemisinins. Artemisone 7 has
antitumour properties, as well, and in combination with known anticancer agents, it possesses activities
in vitro in the nanomolar to low micromolar range [36,37]. Combinations of artemisone with the
anticancer drugs oxaliplatin, gemcitabine and thalidomide have a markedly potentiating effect on the
action of each drug against human colorectal HCT116, colorectal adenocarcinoma SW480 and breast
cancer MCF7 cells, an effect that is significantly greater than artemisinin itself. [36]. When artemisone
is encapsulated into niosomes and solid lipid nanoparticles, the formulations display highly selective
cytotoxicity towards melanoma A375 cells with negligible toxicity towards normal skin cells [38].
This thus allows for topical delivery of artemisone for treatment of melanoma [39].

Thus, 10-amino-artemisinins are desirable compounds, given their generally enhanced efficacies
against malaria, superior metabolic profiles in the case of artemisone 7, and promising activities
against cancer. Of the various synthetic routes developed, a phase transfer approach involving
DHA and a primary aromatic amine was the most expeditious in leading directly and with
complete stereoselectivity to C-10 α-arylamino derivatives such as compound 8 [18]. For the
others generally requiring more basic alkyl amine nucleophiles, phase transfer methods did not
work, and N-glycosylation technology involving activation of the hydroxyl group in DHA by
conversion into the ß-halide under anhydrous conditions had to be used. Treatment of the ß-halide
in situ with the appropriate 2◦ amine nucleophile worked well in providing stereoselectively the
α-alkylamino derivatives such as the α-thiomorpholino derivative artemiside 6 and its sulfone
counterpart artemisone 7, the sulfamide 9 and related compounds [19–21,40]. Of the various
compounds earmarked for further development, the piperazine derivative 10 is attractive. Piperazine
is a readily accessible, cheap synthon, and the free 2◦ amino group in the product allows for attachment
of additional ligands to modulate drug properties. Thus, we have attached ferrocene containing groups
to imprint redox-active behavior [41] and ligands based on cholesterol so as to enhance uptake through
membranes such as the mycolic acid layer associated with Mycobacterium tuberculosis [42].

Here we use the piperazine derivative 10 as a template for preparing N-glycosylated artemisinin
derivatives. Because of stereochemical issues involving the chiral, enantiomerically pure sugars,
we had to secure configuration of the piperazine group at C-10 in 10. Thereupon, the efficacies of
the N-glycosylated derivatives would be evaluated in vitro against malaria and selected normal or
immortalized cell lines.

For malaria, it is not yet clear if the parasite possesses proteins with lectin-like activity (see below)
capable of binding a sugar [43] and thus, it is uncertain how N-glycosylated artemisinins may express
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antimalarial activities. However, attachment of sugars to the hydroxyl group of DHA involving
activation of DHA as the trimethylsilyl ether (cf. Scheme 1 below), treatment with the partially
protected acetylated sugar under Lewis acid catalysis, and eventual hydrolysis of the acetylated sugar
in the DHA precursor provided the DHA O-glycosides such as the O-glucosyl 11 and O-galactosyl 12
derivatives [44]. These were substantially less active than artemisinin 1 in vitro and essentially inactive
in vivo (Figure 3). The more lipophilic peracetylated derivatives, that would be less capable of protein
binding, however, were more active. The observation in general supports the theses that more polar
artemisinin derivatives tend to be less active, but also less neurotoxic [20,45]. We are unaware of other
studies involving assessment of antimalarial activities of glycosylated artemisinin derivatives.
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Figure 3. O-Glycosylated DHA derivatives and antimalarial activities against Plasmodium falciparum
(Pf ) D6 and W2 strains in vitro; cf. artemisinin 1: IC50 D6 10.4 nM; W2 2.4 nM.

In cancer pathogenesis, it is established that cell surface proteins called lectins, a family
of carbohydrate-binding proteins, contribute to neoplastic transformation, tumor cell survival,
angiogenesis and tumor metastasis [46]. Lectins have binding sites for galactose, N-acetyl glucosamine
and others [47,48]. The feasibility of using carbohydrate ligands to target protein receptors at such
binding sites, termed ‘glycotargeting’, is long established [49]. Because of the carbohydrate tag,
the drug delivery system can be recognized, bound and internalized by endogenous lectin receptors at
a tumour cell surface [50]. The technique has been extended to guide nanoparticles bearing fucose
ligands and encapsulating an anticancer drug to lectin cell surface receptors on cancer cells [51].
Thus, through tagging artemisinins with ligands that overall may enhance specificity of drug delivery,
we assess here the effects of attaching sugars known to bind to lectins to the piperazine unit of the
DHA-piperazine derivative 10.

2. Results and Discussion

2.1. Synthetic Chemistry: Preparation of DHA-Piperazine Derivative 10

The protocol for preparing artemiside 6 from the α-trimethylsilyl ether 13 of DHA and
thiomorpholine [20,40] was applied to 13 by using piperazine, the caveat here being that with this
difunctional nucleophile, formation of the bis-DHA piperazine derivative becomes a possibility. In the
event, treatment of 13 firstly with trimethylsilyl bromide (TMSBr) in dichloromethane to generate the
ß-bromide 14 in situ and then with anhydrous piperazine in the presence of triethylamine as base gave
the polar DHA piperazine 10 (20%), the highly crystalline disubstituted piperazine 16 (10%) and the
glycal 17 (20%). The last is a product common to these amination reactions; its formation is due to
competing E1/E2 pathways involving the ß-bromide 14 as discussed elsewhere. [40] The bis-DHA
piperazine 16 was prepared in higher yields (to 43%) by decreasing the amount of piperazine added to
the solution of the ß-bromide 14. Alternatively, yields of DHA piperazine 10 were increased (to 38%)
by conducting inverse addition of the solution of the ß-bromide generated in situ to an excess of
piperazine with omission of the triethylamine base (Route a, Scheme 1).
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Scheme 1. Preparation of DHA-piperazine derivative 10. Route a i. DHA α-TMS ether 13 (1.40 mmol.),
TMSBr (1.43 mmol., 1.02 equiv.), CH2Cl2, 0 ◦C, N2, 30 min; a ii. Solution from a i added to piperazine
(5.61 mmol, 4.0 equiv.) in CH2Cl2, 0 ◦C—room temperature, 12 h, 10 38%; 16 10%; 17 20%. Route b
i. DHA 2 (3.52 mmol.), (COCl)2 (3.6 mmol., 1.02 equiv.), DMSO (0.35 mmol, 0.1 equiv.), toluene, N2,
room temperature, 30 min; b ii. Solution from b i added to piperazine (14 mmol, 4 equiv.), CH2Cl2,
12 h; 10 74%.

The foregoing method is unsatisfactory, and thus the newer process for optimization of the
preparation of artemiside 6 and artemisone 7 was applied here. This involves use of the oxalyl
chloride-catalytic dimethyl sulfoxide (DMSO) system to convert DHA into the ß-chloride 15 in toluene
followed by treatment with the appropriate amine nucleophile. The products are obtained in good
yields in scalable reactions that could be run in relatively concentrated solutions (to 1.2 M DHA) [40].
The role of the DMSO is crucial: in its absence in toluene, very little of the product is obtained.
The mechanism likely involves activation of DMSO by oxalyl chloride according to the Swern oxidation
to form a chlorosulfonium salt. This reacts with DHA to provide a sulfurane intermediate that collapses
to the ß-chloride 15 with regeneration of DMSO [40]. Oxidation of the hydroxyl group in DHA as
such does not interfere. In the event, inverse addition of the ß-chloride 15 solution in toluene to an
excess of piperazine in dichloromethane now gave the DHA piperazine 10 in 74% yield. Alternatively,
addition of a solution of piperazine (1 equiv.) in dichloromethane to the toluene solution of the
ß-chloride 15 gave the bis-DHA piperazine 16 (35%) as the predominant product.

The stereochemistry of the piperazine group in 10 was demonstrated by 1H NMR spectroscopy.
The signal due to H-10 in the artemisinin nucleus at δ 3.95 ppm displays a coupling of 10.4 Hz,
corresponding to a trans-diaxial relationship between H-10 and H-9 [52]. Therefore, the piperazine is
attached via an α-equatorial bond to C-10 embedded in a chair-like pyran ring. This stereochemistry
corresponds to that of all 10-aminoartemisinin derivatives prepared thus far [18–20]. However, it was
not possible to obtain crystals of 10 suitable for X-ray crystallography, and for this purpose a single
crystal of the dimer 16 was used. The structural determination clearly indicated attachment of the
piperazine by equatorial bonds from N to C-10 in each of the artemisinin units; the piperazine and the
pyran rings of the artemisinins are in the chair conformation (Figure 4 and Supplementary Materials).
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2.2. N-Glycosylation of DHA-Piperazine 10

The Kotchetkov aminoglycosylation reaction [53] involves condensation of amines with aldoses
in aqueous alcohol containing inorganic salts [54]. This strikingly effective reaction works well for 2◦

amines such as indoles with glucose [55] and of relevance to the current case, for substituted piperazines
with glucose or galactose [56–58]. Whilst attempted N-glucosylation of the DHA piperazine 10 with
D-glucose by heating in methanol under reflux resulted in some decomposition, by lowering the
reaction temperature to 60 ◦C, formation of the N-glucosylated product 18, a stable white crystalline
solid, took place in acceptable yield (Scheme 2).
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Scheme 2. Preparation of the N-glucosylated DHA piperazine 18. i. 10, D-glucose (3.0 equiv.), 60 ◦C,
MeOH, 24–48 h; 58%.

In the 1H NMR spectrum recorded in methanol-d4, the doublet signal at δ 4.10 ppm with
J 10,9 = 10.4 Hz due to H-10 indicates that the equatorial α-configuration of the piperazine linked
to the artemisinin nucleus in 10 is retained in 18. Two multiplets at δ 2.65 and 3.01 ppm are due to the
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protons on the piperazine linker. The signals at δ 3.19–3.85 ppm correspond to the C-H protons on the
glucose moiety. Signals due to the three methyl groups and other protons in the artemisinin nucleus
are readily recognized. Details are given in the Experimental Section. The structure was confirmed by
X-ray crystallography, wherein crystallization to provide the single crystal incorporated water (Figure 5
and Supplementary Materials). The piperazine ring as for the disubstituted piperazine 16 above is in
the chair conformation in which the artemisinin and glucosyl units are attached by equatorial bonds.
Although it was initially anticipated that glucose, as a reducing sugar, might affect the artemisinin by
reduction, the peroxide remained intact. In any event, the reactions were run without any attempt to
exclude air in order to maintain an oxidizing environment.
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Figure 5. ORTEP plot from X-ray crystallographic structural determination of the N-glucosylated
DHA piperazine 18 indicating co-crystallization with water, the diaxial arrangement of H-9 and H-10,
the chair piperazine and α-equatorial artemisinin C-10 to N-1 bond, and equatorial glucosyl C-21 to N2

bond. Numbering is as for the artemisinin nucleus in Figure 1.

The α-configuration of the amine linked to the glucose is assured by the lack of a kinetic anomeric
effect exerted on the incoming amine nucleophile in the Kotchetkov reaction. Under general acid
catalysis by the solvent, the anomeric hydroxyl group of the glucose is protonated to provide the
oxonium intermediate (Scheme 3) that reacts with the DHA piperazine 10 via an SN1 reaction to yield
the N-glucosylated DHA piperazine 18. By using this protocol, the other N-glycosylated derivatives
19–26 were prepared from DHA piperazine 10 and the corresponding aldoses; the sugars used and
yields are summarized in Chart 1. Three furanose derivatives 24–26 were also able to be obtained.
The disaccharide maltose was also successfully connected to the DHA-piperazine to provide the
derivative 21 although in poor yield; this may have been due to the poor solubility of the sugar in
methanol. The Kochetkov reaction only worked well for aldoses, in general, no reaction took place for
ketose sugars such as fructose and sucrose.
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Chart 1. N-glycosylated DHA piperazine derivatives prepared by the Kotchetkov reaction
from the DHA-piperazine derivative 10 and the corresponding aldose according to Scheme 2
(R = 10-dihydroartemisinyl); isolated yields are given.

2.3. Antimalarial Activities against Different P. falciparum Strains and Cytotoxicities

The N-glycosylated DHA piperazine derivatives together with DHA 2, artemisone 7 and
chloroquine as comparator drugs were screened in vitro against chloroquine (CQ)-sensitive Pf D10
and CQ-resistant Pf W-2 strains [59] by measuring effect on parasite lactate dehydrogenase (pLDH)
according to modification of the method of Makler [60]. Antimalarial activities expressed as 50%
inhibitory concentrations (IC50) [61] are presented in Table 1. Most of the compounds were notably
active against both CQ-sensitive and -resistant Pf. The galactose 19, rhamnose 23 and xylose 25
derivatives with IC50 values of less than 1 nM were the most active against both strains, with activities
comparable to those of artemisone 7 and some 4–5 fold superior to those of DHA (Table 1, column 2).

The derivatives were submitted to comparative cytotoxicity screens on the mouse fibrosarcoma
cell line WEHI-164 (Table 1) using the MTT assay as previously described [62]. All showed a selectivity
index (SI) with respect to antimalarial activities of >100, indicating that the sugar insertion in the
structure did not increase cytotoxicity. Indeed, the mannose and the rhamnose derivatives 20 and
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23 had selectivity indices twofold greater than those of DHA or artemisone. Interestingly, the most
active compounds against WEHI-164 was the parent DHA piperazine derivative 10 and the xylose
derivative 25. Selected compounds were carried forward for screening against the immortalized
myelogenous leukemia, K562, human microvascular endothelial cells (HMEC-1) and fresh human
fibroblasts HDF (Table 2) using the MTT assay, as above. [62] Notably, the glucose 18, maltose 21 and
the ribose derivative 24 were the most active against the highly proliferating K562 cell line compared
to the endothelial cells or human fibroblasts, although some fourfold less active than artemisone 7 that
elicits impressive activity in this screen. All the compounds were significantly less toxic to human
fibroblasts than DHA 2 or artemisone 7. The natural product, camptothecin, a topoisomerase inhibitor
and anticancer agent, is more active than artemisone 7, but also significantly more cytotoxic against
HDF (SI < 100).

Overall, the glycosylated piperazine derivatives that are are easily prepared display promising
activities against the malaria parasite coupled with very good selectivities. The galactose 19, rhamnose
23 and xylose 25 piperazine derivatives are the most potent among all of the N-glycosylated derivatives.
The enhancement of antimalarial activities over those of DHA contrasts notably with the attenuating
effect exerted by attachment of glycosides directly to the hydroxyl group of DHA itself (cf. Figure 3).
The trend evidently also supports the contention that C-10 substituted amino-artemisinins are optimum
substrates. [22] Thus, further studies evaluating activities of the best compounds in vivo are mandated.
Clearly also, given the evidently enhancing effect that the glycoside moiety exerts on aqueous
solubilities, we have here a compound class, one or more members of which have the potential
to supplant use of artesunate, in particular in the preparation of formulations required for intravenous
administration for severe/cerebral malaria. Currently, a dual pack comprising solid artesunate and
sterile aqueous sodium bicarbonate that is mixed and diluted with aqueous dextrose immediately
prior to injection is used; because artesunate is so easily hydrolyzed to DHA, the emphasis is on
immediate injection. The compounds here, like artemisone, are likely to be stable at neutral pH. Thus,
results from the next phases of the programme involving target profile evaluation and assessment of
pharmacokinetic properties will be reported in due course. Finally, the activities of the N-glycosylated
piperazine derivatives, and especially of artemisone 7 itself against the myelogenous leukemia cell
line K562 are indicative of the viability of the aminoartemisinins at large for further development for
antitumour therapy.

Table 1. In vitro screening of the N-glycosylated DHA piperazine derivatives against P. falciparum
CQ-sensitive D10 and CQ-resistant W2 strains, and cytotoxicity on the mouse fibroblast cell
line WEHI-164.

Compound

D10
(CQ-S)

Mean ± S.D.
IC50, nM a

Ratio IC50
cpd/IC50

DHA

SI
IC50WEHI-164/IC50

cpd b

W-2
(CQ-R)

Mean ± S.D.
IC50, nM a

Ratio IC50
cpd/IC50

DHA

SI
IC50WEHI-164/IC50

cpd b

WEHI-164
Mean ± S.D.

IC50, nM c

10 1.4 ± 0.5 0.41 107 1.1 ± 0.4 0.73 136 150 ± 10
18 1.3 ± 0.1 0.38 215 1.2 ± 0.3 0.8 233 280 ± 80
19 0.87 ± 0.25 0.26 195 0.71 ± 0.2 0.5 239 170 ± 30
20 5.7 ± 2.9 1.7 596 4.4 ± 2.3 2.9 772 3,400 ± 400
21 1.9 ± 1.1 0.56 131 1.5 ± 0.5 1.0 166 250 ± 90
22 2.3 ± 1.0 0.68 222 1.1 ± 0.4 0.73 463 510 ± 100
23 0.74 ± 0.34 0.22 878 0.74 ± 0.3 0.49 878 650 ± 60
24 4.8 ± 2.9 1.4 102 4.1 ± 3.2 2.7 119 490 ± 200
25 0.66 ± 0.2 0.19 242 0.58 ± 0.3 0.39 275 160 ± 40
26 1.3 ± 0.8 0.38 161 0.82 ± 0.25 0.55 256 210 ± 10

DHA 2 3.4 ± 1.6 211 1.5 ± 0.3 480 720 ± 140
Artemisone 7 1.1 ± 0.4 0.32 269 0.9 ± 0.4 0.6 328 296 ± 59
Chloroquine 23.4 ± 10.1 263.6 ± 142.9 >10,000

a Results are expressed as mean IC50 ± SD of at least three different experiments each performed in duplicate or
triplicate; b Selectivity Index SI: IC50 WEHI 164/. IC50 for respective compounds against each strain of P. falciparum;
c Results are expressed as mean IC50 ± SD of at least three 72 h experiments, each performed in duplicate or triplicate.
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Table 2. Cytotoxicities of N-glycosylated DHA piperazine derivatives against the myelogenous
leukemia cell line K562, human dermal endothelial cells HMEC-1, and fresh human dermal
fibroblasts HDF.

Compound
Mean (±S.D.) IC50, µM a

K562b HMEC b HDF b

18 0.81 ± 0.24 4.41 ± 2.29 382.5 ± 31.2
21 0.78 ± 0.15 2.50 ± 0.80 533.6 ± 9.9
23 1.95 ± 0.48 nd 313.6 ± 85.6
24 0.87 ± 0.05 2.39 ± 1.51 389.1 ± 8.6

DHA 2 2.76 ± 0.66 1.16 ± 0.40 88.7 ± 13.3
Artemisone 7 0.26 ± 0.04 nd 88.3 ± 33.8
Camptothecin 0.03 ± 0.01 nd 2.62 ± 0.84

a Results are expressed as mean IC50 ± SD of at least three different experiments each performed in duplicate or
triplicate; b MTT assay conducted for 72 h.

3. Conclusions

The use of sugars to enhance the selectivity of drugs is currently of great importance.
New glycosylated derivatives of artemisinin were conceived on the basis of the incipient concept of
carbohydrate-lectin interactions. Appending sugar groups to the artemisinin nucleus should also
enhance the properties such as aqueous solubility, and especially render the compounds selectively
cytotoxic. Mindful of the problem of attrition of activities observed on converting DHA into
O-glycosylated DHA derivatives, we focused on preparation of N-glycosylated piperazine derivatives
that were screened against different strains of P. falciparum. The compounds, in contrast to the
O-glycosylated DHA derivatives, are very active, which vindicates the overall project. Should these
compounds turn out to be water soluble, then there is the potential to use these in intravenous
formulations for treatment of severe malaria.

4. Materials and Methods

4.1. General

Dihydroartemisinin was obtained either from the Kunming Pharmaceutical Corporation,
Kunming, China; or from Haphacen, Hanoi College of Pharmacy, Vietnam. Other chemicals were
purchased from commercial sources and used without further purification. Methanol (AR grade) was
used as received. Dichloromethane was dried and distilled from calcium hydride. Toluene was
dried over sodium and distilled from sodium benzophenone ketyl prior to use. Ethyl acetate
and hexane for column chromatography were distilled from calcium chloride. Triethylamine was
dried over calcium hydride and stored over sodium hydroxide pellets. TLC was performed with
Merck (Darmstadt, Germany) Kieselgel 60 F254 plates and visualized either with ultra violet
light (254 nm) or by heating after treatment with ammonium molydbate in 10% concentrated
sulfuric acid. Column chromatography was performed with Merck silica gel 60 (0.04–0.063 mm,
Darmstadt, Germany).

Melting points were recorded on a Leica (Wetzlar, Germany) Microscope Heating Stage 350 and
are corrected. 1H and 13C NMR spectral data, unless otherwise stated, were obtained from samples in
CDCl3 or CD3OD. 1H NMR spectrum was recorded on Bruker-400 spectrometer (Bruker AG, Karlsruhe,
Germany) operating at 400 MHz and 13C NMR spectrum was recorded on Bruker-300 spectrometer
(Billerica, MA, USA) operating at 75.4 MHz for 13C. Chemical shifts were reported in ppm relative
to internal standard tetramethylsilane (0.3% v/v) as 0.0 ppm for 1H and CDCl3 as 77.0 ppm for 13C.
Coupling constant was recorded in Hz. Abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m,
multiplet. Infrared spectra were recorded either on a Perkin (Peterborough, UK) Elmer Spectrum One
spectrometer. Single crystal X-ray structure measurements were carried out on a Bruker (Billerica, MA,



Molecules 2018, 23, 1713 11 of 19

USA). Smart-APEX CCD four-circle diffractometer. All computations in the structure determination
and refinement were performed on Silicon Graphics Indy computer using programs of the Siemens
SHELXTL PLUS (version 5) (Munich, Germany) package (see Supplementary Materials).

4.2. Synthesis of Glycoside Derivatives: 10α-(1-Piperazino)-10-deoxo-10-dihydroartemisinin 10 and
(bis-11′,4-piperazino)-10α-deoxo-10-dihydroartemisinin 16

Dimethyl sulfoxide (50 µL, 0.704 mmol) and then oxalyl chloride (0.4 mL, 4.73 mmol) were added
to a suspension of dihydroartemisinin 2 (2.0 g, 7.04 mmol) in toluene (10 mL) under nitrogen which
was then stirred for 30 min, during which time the DHA dissolved to form a clear amber solution.
This was then added via cannula to a solution of piperazine (1.8 g, 21.21 mmol) in dichloromethane
(20 mL). The resulting mixture was stirred for another 12 h at ambient temperature, and then diluted
with more dichloromethane (40 mL). This was then filtered through a pad of Celite, and the filtrate
was washed with water (3 × 30 mL) and brine (30 mL). The organic layer was dried (MgSO4) and
filtered, and the filtrate was evaporated under reduced pressure to leave a residue that was submitted
to chromatography over silica gel. Elution with dichloromethane-methanol-triethylamine (10:1:0.1)
gave the product 10 as a cream white solid (1.8 g, 74%), m.p. 99–100 ◦C, [α]D

22 + 12.58◦ (c 0.54, CHCl3).
1H NMR δ 0.81 (d, J = 7.0 Hz, 3H, H-14), 0.95 (d, J = 6.2 Hz, 3H, H-15), 1.16–1.35 (m, 2 H), 1.39 (s, 3H,
H-13), 1.42–1.58 (m, 3H), 1.59-1.74 (m, 3H), 1.83–1.92 (m, 1 H), 1.96–.2.03 (m, 1H), 2.29–2.42 (m, 1H),
2.54–2.65 (m, 4H, piperazine), 2.79–2.89 (m, 4H, piperazine), 2.93 (s, 1H, NH), 2.96–3.0 (m, 1H), 3.97
(d, J = 10.3 Hz, 1H, H-10), 5.27 (s, 1H, H-12); IR (film) νmax 3327, 2927, 2872, 2346, 1714, 1645, 1450,
1376, 1319, 1260, 1198, 1161, 1056, 982, 928, 880, 852, 804, 733, 664 cm−1. MS (CI, CH4) m/z (%) 221.1
(8), 260.1 (11), 383.2 (12), 412.3 (3), 427.3 (22), 441.3 (100), 442.3 (25), 469.3 (19), 487.3 (8). HRMS (ESI):
m/z calcd. for C19H33N2O4 353.2440 [M + H]+, found 353.2482.

Dimethyl sulfoxide (37.5 µL, 0.1 equiv) was added into a stirred suspension of DHA (1.5 g, 5.275
mmol) in toluene (15 mL) at room temperature under nitrogen. Oxalyl chloride (0.53 mL, 1.15 equiv)
was slowly added into the suspension which during the course of the addition became a pale amber
solution. This was stirred for 1 h, and then treated dropwise with a solution of piperazine (0.45 g,
1 equiv.) in dichloromethane (10 mL); the resulting mixture was stirred overnight. This was then
quenched with saturated aqueous NaHCO3 (40 mL), and extracted with ethyl acetate (4 × 30 mL).
The organic layers were combined, and the combined layer was washed with brine (40 mL) and dried
(MgSO4). After filtration, the filtrate was evaporated under reduced pressure to leave a residue that
was submitted to chromatography over silica gel. Elution with hexane-ethyl acetate 4:1 gave the
product 16 (568 mg, 35%) as a white crystalline solid. Crystallization from ethyl acetate-hexane gave
colourless plates, m.p. 149–150 ◦C, [α]D

22 2.31◦ (c 0.58, CHCl3). 1H NMR δ 0.79 (d, J = 7.0 Hz, 6H,
14-H), 0.94 (d, J = 5.9 Hz, 6H, H-15), 1.21–1.34 (m, 6H), 1.40 (s, 6H, H-13), 1.45–1.57 (m, 4H), 1.58–1.60
(m, 4 H), 1.64–1.76 (m, 4 H), 1.83–1.91 (m, 2 H), 1.94–2.04 (m, 2 H), 2.29–2.41 (m, 2 H), 2.58–2.60 (m, 4H,
piperazine), 2.99–3.02 (m, 4 H, piperazine), 3.99 (d, J = 10 Hz, 2H, H-10,), 5.27 (s, 2H, H-12). IR (film)
νmax 2927, 2871, 1651, 1522, 1454, 1376, 1327, 1304, 1279, 1252, 1226, 1207, 1180, 1163, 1130, 1101, 1056,
1041, 1024, 979, 943, 926, 880, 847, 827, 734 cm–1. MS (CI, CH4) m/z (%) 221.1 (4), 306.2 (8), 346.2 (4),
455.3 (3), 469.3 (14), 513.4 (36), 527.4 (100), 530.5 (11), 557.5 (3), 573.4 (2). HRMS (ESI) m/z: calcd for
C34H55N2O8 619.3958 [M + H] +, found 619.3929; Calcd. for C34H54N2O8 C 65.99, H 8.80, N 4.52; found
C 66.37, H 8.93, N 4.18%.

4.3. Synthesis of Glycoside Derivatives

4.3.1. D-Glucose

10α-(Piperazinyl)-10-deoxyartemisinin 10 (654 mg, 1.85 mmol) was stirred with D-glucose (1.0 g,
5.55 mmol, 3.0 equiv.) in methanol (20 mL) at 60 ◦C for 24 h; an open system was used, that is,
no precautions were taken to exclude air. The solvent was then evaporated under reduced pressure,
and the residue was dissolved in ethyl acetate (40 mL). The solution was washed with saturated
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aqueous NaHCO3 (3 × 25 mL), and then brine (25 mL). The organic layer was separated and dried
(MgSO4), and filtered. The filtrate was evaporated under reduced pressure, and the residue was
submitted to chromatography on silica gel. Elution with ethyl acetate-methanol (20:1) gave the glucose
derivative 18 (549 mg, 58%). The product was recrystallized from dichloromethane/ hexane to afford
18 as fine white needles, m.p. 122.6–123.8 ◦C. 1H NMR (400 MHz, CD3OD): δ 0.81 (d, J = 7.2 Hz, 3H,
H-14), 0.99 (d, J = 6.4 Hz, 3H, H-15), 0.94–1.57 (m, 3H), 1.37 (s, 3H, H-13), 1.40–1.95 (m, 7H), 2.22–2.32
(m, 1H), 2.46–2.64 (m, 8H), 2.63–2.68 (m, 1H), 2.88–3.54 (m, 7H), 3.6–3.63 (m, 2H), 3.99 (d, J = 10.0 Hz,
1H, H-10), 4.43–4.49 (m, 2H), 5.41 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CDCl3): δ 13.4, 20.2, 21.6,
24.6, 25.9, 28.5, 34.2, 36.3, 37.2, 45.8, 46.9, 47.5, 51.7, 62.1, 68.9, 70.4, 77.5, 80.2, 90.5, 91.6, 94.2, 103.8
ppm. IR (film) νmax = 551, 617, 832, 879, 924, 941, 982, 1020, 1039, 1058, 1075, 1099, 1115, 1130, 1208,
1277, 1299, 1328, 1379, 1455, 1648, 2868, 2924, 3417 cm–1; HRMS (ESI) calcd. for C25H43N2O9 515.2969
[M + H]+, found 515.2976.

4.3.2. D-Galactose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (498 mg, 1.41 mmol) and D-galactose
(760 mg, 4.2 mmol) in methanol (15 mL) at 60 ◦C was stirred for 36 h. After workup
according to the foregoing procedure, the crude product was submitted to chromatography with
dichloromethane-methanol (15:1) to afford the galactose derivative 19 (294 mg, 41%) as a white
microcrystalline solid, m.p. 117.6–119.0 ◦C. 1H NMR (400 MHz, CDCl3): δ 0.69 (d, J = 8.0 Hz, 3H,
H-14), 0.87 (d, J = 6.4 Hz, 3H, H-15), 0.94–1.57 (m, 3H), 1.25 (s, 3H, H-13), 1.40–2.20 (m, 8H), 2.38–2.51
(m, 7H), 2.46–2.64 (m, 8H), 2.79–2.83 (m, 4H), 2.88–3.54 (m, 7H), 3.12–3.87 (m, 7H), 3.99 (d, J = 10.0
Hz, 1H, H-10), 4.43–4.49 (m, 2H), 5.29 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CDCl3): δ 11.7, 14.1,
15.3, 20.6, 21.0, 22.3, 25.4, 26.6, 27.6, 28.2, 29.0, 29.2, 30.4, 32.2, 34.9, 35.8, 37.0, 38.1, 41.0, 41.9, 45.7, 46.4,
47.7, 48.7, 52.4, 52.5, 53.1, 57.2, 62.3, 63.2, 67.6, 70.2, 75.5, 76.5, 80.9, 81.0, 91.2, 91.6, 92.3, 95.7, 104.7
ppm. IR (film) νmax = 510, 551, 660, 693, 746, 766, 834, 851, 880, 924, 940, 957, 981, 10101, 1061, 1101,
1134, 1177, 1208, 1279, 1383, 1419, 1455, 1633, 1706, 2870, 2922, 3395 cm−1; HRMS (ESI): calcd. For
C25H43N2O9 515.2969 [M + H]+, found 515.2987.

4.3.3. D-Mannose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (629 mg, 1.78 mmol) and D-mannose
(960 mg, 5.34 mmol) in methanol (20 mL) at 60 ◦C was stirred for 36 h. After workup
according to the procedure in i. above, the crude product was submitted to chromatography
with dichloromethane-methanol (15:1) to afford the mannose derivative 20 (340 mg, 37%) as a fine
white powder, m.p. 106.0–106.9 ◦C. 1H NMR (400 MHz, CDCl3) δ 0.79 (d, J = 7.2 Hz, 3H, H-14),
0.97 (d, J = 7.6 Hz, 3H, H-15), 0.83–1.38 (m, 6H), 1.42 (s, 3H, H-13), 1.44–2.16 (m, 7H), 2.30–3.08
(m, 12H), 3.50 (d, J = 9.2 Hz, 1H, H-10), 3.65–4.01 (m, 7H), 5.28 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz,
CDCl3) δ 13.5, 14.2, 20.4, 21.7, 22.7, 24.8, 26.2, 28.6, 31.0, 31.7, 34.4, 36.4, 37.5, 45.9, 47.1, 51.8, 54.7, 61.3,
62.7, 69.4, 70.99, 71.7, 75.6, 80.1, 80.4, 83.7, 90.6, 91.8, 96.7, 102.0, 104.0 ppm. IR (film) νmax = 572, 642,
658, 734, 756, 803, 826, 879, 927, 982, 1040, 1380, 1448, 1631, 1708, 2929, 3433 cm−1; HRMS (ESI): calcd.
for C25H43N2O9 515.2969 [M + H]+, found 515.2980.

4.3.4. D-Maltose

According to the general procedure, the reaction was started with 10α-(piperazinyl)-10-
deoxyartemisinin 10 (421 mg, 1.19 mmol) and maltose (1.2 g, 3.6 mmol) in methanol (20 mL) at
60 ◦C for 48 h. The solvent was removed directly from the reaction mixture by evaporation under
reduced pressure, and the residue was submitted directly to column chromatography. Elution with
dichloromethane-methanol (4:1) gave the maltose derivative 21 (131 mg, 16%), that slowly precipitated
as a fine white microcrystalline powder from ethyl acetate-methanol (5:1), m.p. 153.4–154.9 ◦C.
1H NMR (400 MHz, CD3OD): δ 0.70 (d, J = 6.4 Hz, 3H, H-14), 0.92 (d, J = 6.0 Hz, 3H, H-15), 0.91–1.67
(m, 7H), 1.45 (s, 3H, H-13), 1.84–2.33 (m, 8H), 2.90–4.35 (m, 14H), 4.01 (d, J = 10.2 Hz, 1H, H-10), 5.64
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(s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CD3OD): δ 13.5, 21.7, 26.4, 27.5, 29.9, 31.1, 32.6, 35.3, 38.4, 40.4,
42.0, 46.8, 52.7, 57.3, 61.1, 63.2, 63.5, 68.5, 75.7, 77.7, 79.2, 80.3, 85.2, 90.8, 91.7, 96.0, 100.9, 102.3, 173.4
ppm. IR (film) νmax = 824, 836, 879, 925, 989, 1015, 1054, 1112, 1131, 1147, 1178, 1210, 1277, 1305, 1328,
1383, 1455, 1640, 2868, 2924, 2949, 3392 cm−1; HRMS (ESI) calcd. for C31H53N2O14 677.3497 [M + H]+,
found 677.3475.

4.3.5. 2-Deoxy-D-glucose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (447 mg, 1.27 mmol) and
2-deoxy-D-glucose (625 mg, 3.81 mmol) in methanol (15 mL) at 60 ◦C was stirred for 24 h.
After workup according to the procedure in i. above, the crude product was submitted to
chromatography with dichloromethane-methanol (20:1) to afford the 2-deoxyglucose derivative
22 (377 mg, 60%) as a fine white powder, m.p. 85.0–86.7 ◦C. 1H NMR (400 MHz, CDCl3): δ 0.80
(d, J = 6.8 Hz, 3H, H-14), 0.95 (d, J = 5.6 Hz, 3H, H-15), 0.85–1.05 (m, 1H), 1.38 (s, 3H, H-13), 1.23–1.56
(m, 7H), 1.68–2.67 (m, 12H), 2.91–4.03 (m, 8H), 5.27 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CDCl3):
δ 13.5, 20.4, 21.7, 24.8, 26.0, 28.7, 29.8, 35.7, 36.4, 37.5, 45.9, 47.0, 48.2, 62.4, 72.6, 72.7, 77.6, 80.4, 90.6, 91.4,
91.7, 104.1 ppm. IR (film) vmax = 825, 879, 984, 1054, 1208, 1378, 1449, 1632, 1708, 2871, 2927, 3414 cm−1;
HRMS (ESI) calcd. for C25H43N2O8 499.3019 [M+H]+, found 499.3012.

4.3.6. L-Rhamnose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (337 mg, 0.96 mmol) and L-rhamnose
(473 mg, 2.88 mmol) in methanol (10 mL) at 60 ◦C was stirred for 24 h. After workup according
to the procedure in i. above, the crude product was submitted to chromatography with
dichloromethane-methanol (15:1) to afford the rhamnose derivative 23 (185 mg, 38.5%) that slowly
precipitated from dichloromethane-hexane as a white powder, m.p. 107.3–108.8 ◦C. 1H NMR (400 MHz,
CDCl3): δ 0.81 (d, J = 6.8 Hz, 3H, H-14), 0.98 (d, J = 6.0 Hz, 3H, H-15), 1.04–1.29 (m, 7H), 1.36 (s, 3H,
H-13), 1.42–2.49 (m, 15H), 2.85–4.80 (m, 11H), 4.01 (d, 1H, J = 10.2 Hz, H-10), 5.41 (s, 1H, H-12) ppm.
13C NMR (75.4 MHz, CDCl3): δ 13.6, 17.8, 20.4, 21.8, 24.9, 26.1, 28.7, 34.4, 36.5, 37.5, 46.0, 46.7, 48.8, 49.3,
51.9, 69.0, 73.1, 74.0, 75.2, 80.4, 90.6, 91.8, 93.0, 104.1 ppm. IR (film) νmax = 826, 879, 925, 982, 1015, 1058,
1208, 1280, 1277, 1454, 1633, 2870, 2927, 3416 cm−1; HRMS (ESI), calcd. for C25H43N2O8499.3019, m/z
[M + H]+ found 499.3002.

4.3.7. D-Ribose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (377 mg, 1.07 mmol) and D-ribose (480 mg,
3.21 mmol) in methanol (10 mL) at 60 ◦C was stirred for 24 h. After workup according to the procedure
in i. above, the crude product was submitted to chromatography with dichloromethane-methanol (20:1)
to afford the ribose derivative 24 (247 mg, 47%) that slowly precipitated from dichloromethane-hexane
as a white powder, m.p. 79.9–80.5 ◦C. 1H NMR (400 MHz, CDCl3): δ 0.78 (d, J = 7.2 Hz, 3H, H-14), 0.95
(d, J = 6.0 Hz, 3H, H-15), 0.83–1.38 (m, 5H), 1.41 (s, 3H, H-13), 1.44–2.02 (m, 7H), 2.21–2.98 (m, 12H),
3.32–4.41 (m, 9H), 5.28 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CDCl3): δ 13.5, 20.4, 21.7, 24.8, 26.1,
28.6, 34.4, 36.4, 37.5, 45.9, 51.8, 54.4, 54.7, 62.1, 69.9, 71.5, 72.7, 73.8, 80.4, 80.4, 90.5, 91.7, 91.8, 100.4,
104.0, 104.1 ppm. IR (film) νmax = 617, 826, 858, 879, 926, 1041, 1130, 1207, 1280, 1378, 1454, 1632, 1720,
2871, 2927, 3424 cm−1; HRMS (ESI): calcd. for C24H41N2O8 485.2863 [M + H]+, found 485.2832.

4.3.8. D-Xylose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (421 mg, 1.19 mmol) and D-xylose (536 mg,
3.57 mmol) in methanol (10 mL) at 60 ◦C was stirred for 24 h. After workup according to the procedure
in i. above, the crude product was submitted to chromatography with dichloromethane-methanol (15:1)
to afford the xylose derivative 25 (258 mg, 44%), that slowly precipitated from dichloromethane-hexane
as a white powder, m.p. 82.1–83.2 ◦C. 1H NMR (400 MHz, CDCl3): δ 0.78 (d, J = 6.8 Hz, 3H, H-14), 0.94
(d, J = 6.4 Hz, 3H, H-15), 0.79–1.07 (m, 2H), 1.41 (s, 3H, H-13), 1.18–1.55 (m, 6H), 1.63–2.05 (m, 4H),
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2.30–2.38 (td, J = 14.4, 3.6 Hz, 1H), 2.54–2.66 (m, 5H), 2.91–3.97 (m, 12H), 3.78 (d, J = 10.4 Hz, 1H, H-10),
5.27 (s, 1H, H-12) ppm. 13C NMR (75.4 MHz, CDCl3): δ 13.5, 20.4, 21.8, 24.8, 26.1, 28.6, 28.7, 34.4, 36.5,
37.5, 45.8, 46.0, 47.3, 47.9, 51.9, 67.7, 69.0, 70.0, 78.2, 80.3, 80.4, 90.8, 91.8, 95.3, 104.1, 104.2 ppm. IR (film)
νmax = 826, 879, 925, 979, 1040, 1129, 1207, 1281, 1378, 1455, 1634, 1722, 2871, 2928, 3420 cm−1; HRMS
(ESI): calcd. for C24H41N2O8 485.2863 [M + H]+, found 485.2817.

4.3.9. D-Arabinose

A solution of 10α-(piperazinyl)-10-deoxyartemisinin 10 (314 mg, 0.80 mmol) and D-arabinose
(400 mg, 2.67 mmol) in methanol (10 mL) at 60 ◦C was stirred for 24 h. After workup
according to the procedure in i. above, the crude product was submitted to chromatography with
dichloromethane-methanol (15:1) to afford the arabinose derivative 26 (114 mg, 27%), that slowly
precipitated from dichloromethane-hexane as a white powder, m.p. 103.8–105.5 ◦C. 1H NMR (400 MHz,
CDCl3): δ 0.79 (d, J = 6.8 Hz, 3H, H-14), 0.94 (d, J = 6.0 Hz, 3H, H-15), 0.79–1.07 (m, 1H), 1.40 (s, 3H,
H-13), 1.13–2.24 (m, 9H), 2.30–3.00 (m, 11H), 3.49–4.16 (m, 8H), 5.28 (s, 1H, H-12) ppm. 13C NMR
(75.4 MHz, CDCl3): δ 13.5, 20.4, 21.7, 24.8, 26.1, 28.6, 31.0, 34.4, 36.4, 37.4, 45.8, 47.3, 48.0, 51.8, 54.4, 54.7,
62.1, 67.2, 68.2, 69.8, 71.5, 73.8, 74.6, 80.4, 90.5, 91.7, 95.4, 100.5, 104.0, 104.4 ppm. IR (film) νmax = 825,
879, 925, 978, 1053, 1085, 1131, 1206, 1378, 1454, 1632, 1715, 2870, 2926, 3424 cm−1; HRMS (ESI): calcd.
for C24H41N2O8 485.2863 [M + H]+, found 485.2817.

4.4. Biological Assays

All the reagents unless indicated otherwise were purchased from Sigma (Sigma Italia, Milan, Italy).

4.4.1. Cultures of Pf and In Vitro Antimalarial Assays

The Pf strains D10 (CQ-sensitive), and W-2 (CQ-resistant) were cultured in vitro as described
by Trager and Jensen with minor modifications [60]. Parasites were maintained at 5% hematocrit
(human type A-positive red blood cells) in RPMI 1640 (EuroClone, Celbio) medium with the addition
of 10% heat inactivate human serum, 20 mM Hepes and 2 mM glutamine (Euroclone). The cultures
were maintained at 37 ◦C in a standard gas mixture consisting of 1–3% O2, 5% CO2, and 92–94%
N2. Compounds were dissolved in either water or DMSO and then diluted with medium to achieve
the required concentrations (final DMSO concentration <1%, which is non-toxic to the parasite).
Asynchronous cultures of Pf with parasitaemia of 1–1.5% and 1% final hematocrit were aliquoted
into 96-well flat-bottom microplates (COSTAR) with serial dilutions of test compounds and incubated
for 72 h at 37 ◦C. Parasite growth was determined spectrophotometrically (OD650) by measuring
the activity of the parasite lactate dehydrogenase (pLDH) according to a modification of the method
of Makler in control and drug-treated cultures [61]. The antimalarial activity is expressed as 50%
inhibitory concentrations (IC50); each IC50 value is the mean and standard deviation of at least three
separate experiments performed in duplicate [62].

4.4.2. Cell Cytotoxicity Assays

A long term microvascular endothelial cell line (HMEC-1) immortalized by SV 40 large T antigen
was kindly provided by Dr. Francisco J. Candal, Center for Disease Control, Atlanta, GA, USA. Cells
were maintained in MCDB 131 medium (Invitrogen, Milan, Italy) supplemented with 10% fetal calf
serum (HyClone, Celbio, Milan, Italy), 10 ng/mL of epidermal growth factor (Chemicon), 1 µg/mL of
hydrocortisone, 2 mM glutamine, 100 units/ml of penicillin, 100 µg/mL of streptomycin and 20 mM
Hepes buffer (EuroClone). K562, the human myelogenous leukemia cell line and WEHI 164 murine
fibrosarcoma line were cultured in RPMI 1640 supplemented with 2 mM glutamine, 100 units/ml of
penicillin, 100 µg/mL of streptomycin and 10% fetal calf serum. Fibroblasts from skin biopsies were
maintained in DMEM (EuroClone, Pero, Italy) supplemented with 10% fetal calf serum (HyClone,
Logan, UT, USA), 2 mM glutamine, 100 U/mL of penicillin and 100 µg/mL of streptomycin.
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For the cytotoxicity assays, HMEC-1 and WEHI 164 cells were seeded in 96 well flat bottom
tissue culture clusters at 104 cells/well; HDF were seeded at 1.5 × 104 cells/well and let to adhere for
24 h before the drug treatment; K562 were seeded in round bottom clusters at 1.5 × 104 cells/well.
Cells were then treated with serial dilutions of test compounds and cell proliferation evaluated
using the MTT assay as previously described [62]. Plates were incubated for 72 h at 37 ◦C in
5% CO2, then 20 µL of a 5 mg/ml solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) in PBS were added for an additional 3 h at 37 ◦C. The plates were then centrifuged,
the supernatants discarded and the dark blue formazan crystals dissolved using 100 µL of lysing
buffer consisting of 20% (w/v) of a solution of SDS (sodium dodecyl sulfate), 40% of N,N-dimethyl
formamide (Merck) in distilled water adjusted with 80% acetic acid to pH 4.7. The plates were then
read on a microplate reader (Molecular Devices Co., Menlo Park, CA, USA) at a test wavelength of
550 nm and a reference wavelength of 650 nm. The results are expressed as IC50 which is the dose of
compound necessary to inhibit cell growth by 50%. All the tests were performed in triplicate at least
three times.

4.4.3. IC50 Calculation

The results of the antimalarial and cytotoxicity assays were expressed as the percent viability
compared to the untreated controls, calculated with the following formula: 100([OD of treated sample
blank]/[OD of untreated sample blank]) (OD, optical density). As a blank, uninfected RBCs were used
for the antimalarial assays or media without cells for the cytotoxicity assays. The percent viability was
plotted as a function of drug concentrations, and the curve fitting was obtained by nonlinear regression
analysis using a four parameter logistic method (software Gen5 1.10 provided with the Synergy4 plate
reader [Biotek]). The IC50 was extrapolated as the dose that induced a 50% inhibition of parasites or
cell viability.

Supplementary Materials: The Supplementary Materials are available online S1: HRMS spectra of N-glycosylated
derivatives 18–26, Tables S1–S6: X-Ray structural tables for compound 16; Tables S7–S13: X-Ray structural tables
for compound 18.
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