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“All men have stars, but they are not the same things for different people. For

some, who are travellers, the stars are guides. For others they are no more than

little lights in the sky. For others, who are scholars, they are problems...”

Antoine de Saint-Exupéry, The Little Prince.
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Abstract

In this thesis we construct CUSUMs based on the signed and unsigned sequential ranks of

independent observations for the purpose of detecting either a persistent location or a persistent

scale shift. In designing these CUSUMs we consider two scenarios, namely detecting a shift when

the in-control distribution is symmetric around a known median and when either the symmetry

assumption fails or the in-control median is unknown. We then extend our CUSUM designs

to the class of Girschick-Rubin CUSUMs. All of our CUSUMs are distribution free and fully

self starting: no parametric specification of the underlying distribution is necessary in order to

find correct control limits that guarantee a specified nominal in-control average run length given

a reference value. In particular, our sequential rank CUSUMs have zero between-practitioner

variation. Furthermore, these CUSUMs are robust against the effect of spurious outliers. The

out-of-control average run length properties of the CUSUMs are gauged qualitatively by theory-

based calculations and quantitatively by Monte Carlo simulation.

We show that in the case where the underlying distribution is normal with an unknown

variance, our sequential rank CUSUMs based on a Van der Waerden-type score can be used to

good effect, because the out-of-control average run lengths correspond very well to those of the

standard normal distribution CUSUM where the variance is assumed known. For heavier tailed

distributions we show that use of the Wilcoxon sequential rank score is indicated. Where tran-

sient special causes are apt to occur frequently, use of a Cauchy score is indicated. We illustrate

the implementation of our CUSUMs by applying them to data from industrial environments.

Keywords: CUSUM, distribution free, self starting, signed sequential ranks, unsigned

sequential ranks.
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Uittreksel

In hierdie proefskrif konstrueer ons kumulatiewesomprosedures (KUSOM-prosedures) wat

gebaseer is op die betekende en onbetekende sekwensiële range van onafhanklike waarnemings.

Die doel van hierdie KUSOM’s is om ’n volhardende verskuiwing in lokaliteit of spreiding te

identifiseer. Ons beskou twee gevalle, naamlik om ’n verskuiwing te identifiseer wanneer die

binne-beheerverdeling simmetries is rondom ’n bekende mediaan, en wanneer óf die simme-

trieaanname ongeldig is óf die waarde van die binnebeheermediaan onbekend is. Ons brei die

konstruksie van hierdie KUSOM’s uit na die klas van Girshick-Rubin-KUSOM’s. Al hierdie

KUSOM’s is verdelingsvry en ten volle self-inisiërend: geen parametriese spesifisering van die

onderliggende verdeling is noodsaaklik om die korrekte kontrolelimiete te vind wat ’n gespesi-

fiseerde binnebeheer- gemiddelde looplengte waarborg vir ’n gegewe verwysingswaarde nie. In

die besonder het ons KUSOM’s geen tussen-praktisynvariasie nie. Verder is hierdie KUSOM’s

robuus teen die effek wat sporadiese uitskieters op die data mag hê. Die eienskappe van die

buitebeheer- gemiddelde looplengte word kwalitatief deur teoriegebaseerde berekeninge gemeet,

en kwantitatief deur Monte Carlo-simulasie.

Ons toon aan dat ons sekwensiëlerang-KUSOM’s wat gebaseer word op ’n Van der Waerden-

tipe-telling met groot sukses gebruik kan wanneer die onderliggende verdeling normaal is met

’n onbekende variansie omdat die buitebeheer- gemiddelde looplengtes goed ooreenstem met dié

van die standaardnormaalverdeling-KUSOM waar die variansie as bekend aanvaar word. Vir

verdelings met swaar sterte toon ons aan dat die Wilcoxon-sekwensiëlerangtelling gebruik kan

word. Waar transiënte spesiale oorsake geneig is om gereeld voor te kom, beveel ons die gebruik

van ‘n Cauchy-telling aan. Ons illustreer die toepassing van ons KUSOM’s deur dit toe te pas

op data uit industriële omgewings.

Sleutelwoorde : betekende sekwensiële range, KUSOM, onbetekende sekwensiële range,

self-inisiërend, verdelingsvry.
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Frequently used notation

Abbreviations

1. SPC abbreviates statistical process control.

2. CUSUM abbreviates cumulative sum.

3. GR CUSUM abbreviates the CUSUM of Girschick and Rubin (1952).

4. NSS CUSUM abbreviates the normal self-starting CUSUM.

5. GSS CUSUM abbreviates the gamma self-starting CUSUM.

6. HD CUSUM abbreviates the CUSUM of Hawkins and Deng (2010).

7. RA CUSUM abbreviates the CUSUM of Ross and Adams (2012).

8. SSR abbreviates signed sequential rank.

9. SRL abbreviates sequential rank location.

10. KSR abbreviates the Klotz sequential rank score used in the scale CUSUM or GR CUSUM.

11. MSR abbreviates the Mood sequential rank score used in the scale CUSUM or GR CUSUM.

12. ARL abbreviates average run length.

13. ARL0 is the symbol used to indicate the nominal value of the in-control ARL.

14. IC abbreviates in control.

15. OOC abbreviates out of control.

16. LMP abbreviates locally most powerful.

17. IQR abbreviates the inter-quartile range.

18. i.i.d. means independent and identically distributed.
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Mathematical symbols

1. (F ,f) and (G,g) denote the in-control and out-of-control pair of distribution and density

functions, respectively.

2. f ′(x) denotes the derivative of f with respect to x, unless stated otherwise.

3. For a number x, sign(x) = 1 if x > 0, = −1 if x < 0 and 0 if x = 0.

4. The indicator function is 1(A) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if A is true

0 if A is false.

5. ri is the rank of Xi among X1, . . . ,Xi – known as the sequential rank of Xi.

6. r+i is the rank of ∣Xi∣ among ∣X1∣, . . . , ∣Xi∣ – known as the sequential rank of ∣Xi∣.

7. Rn,i is, for i ≤ n, the rank of Xi among X1, . . . ,Xn.

8. R+
n,i is, for i ≤ n, the rank of ∣Xi∣ among ∣X1∣, . . . , ∣Xn∣.

9. Xn∶i is, for i ≤ n, the ith order statistic of the data X1, . . . ,Xn.

10. H0 and H1 denote a null and alternative hypothesis, respectively.

11. I0(f) is Fisher’s information in a density f belonging to a location parameter family.

12. I1(f) is Fisher’s information in a density f belonging to a scale parameter family.

13. a ∶= b means a is defined by the expression b on the right-hand side.

14. a ≈ b means a is approximately equal to b.

15. N(µ,σ2) denotes a normal distribution (or random variable) with mean µ and variance

σ2.

16. Φ, φ and Φ−1 denote the standard normal distribution, density and inverse distribution

functions, respectively.

17. tν denotes a Student t distribution (or random variable) with ν degrees of freedom.

18. U(a, b) denotes the uniform distribution (or random variable) on (a, b).

19. SN(α) denotes a skew-normal distribution (or random variable) with skewness parameter

α.

20. logx denotes the natural logarithm of x.

21. an = o(bn) means that lim
n→∞an/bn = 0.

22. an = O(bn) means that lim sup
n→∞

∣an/bn∣ < ∞.

23. An
DÔ⇒ B means the sequence of random objects An converges in distribution to the

random object B as n→∞.

24. A
D= B means the random objects A and B have the same distribution.

25. A
D≈ B means the random objects A and B have approximately the same distribution.

26. ⌊a⌋ denotes the largest integer smaller than or equal to a.

27. ⌈a⌉ denotes the smallest integer larger than or equal to a.
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1 A review of some relevant

CUSUM literature

1.1 Page-type CUSUMs

Cumulative sum procedures are a class of statistical process control (SPC) instruments

devised for the purpose of monitoring a process to detect structural shifts in its characteristics.

The aim is to identify and signal the onset of a small persistent shift as soon as possible. These

control procedures find application in diverse scientific fields, including engineering (Timmer

et al., 2001), public health and medicine (see for instance Woodall (2006), Ledolter and Kardon

(2012) or Shanmugam et al. (2012)), seismology (Basseville and Nikiforov, 1993) and business

and finance (see Kahya and Theodossiou (1999), Yi et al. (2006), Lam and Yam (1997), Golosnoy

and Schmid (2007), Mukherjee (2009) or Coleman et al. (2001)). For a review, see Stoumbos et al.

(2000). The theory and various applications of CUSUMs are described in the book by Hawkins

and Olwell (1998). By far the majority of the CUSUM literature is concerned with procedures

requiring specific assumptions about the functional form of the underlying distribution functions.

These procedures are typically rather sensitive to deviations from distributional assumptions. In

this thesis we concern ourselves with the design and analysis of signed and unsigned sequential

rank CUSUMs which are free of overly specific distributional assumptions.

Page (1954) developed the first parametric CUSUM to monitor the mean of a normal dis-

tribution with zero mean and known variance. We will refer to this as the standard normal

CUSUM. It is well known that the assumption of normality is often violated in practical appli-

cations. Then, the control limits of the standard normal CUSUM do not apply and the in-control

average run length cannot be guaranteed a priori. Hawkins and Olwell (1998, Section 3.5) illus-

trate how the misspecification of the underlying distribution affects the in-control average run

length of the CUSUM. Furthermore, Hawkins and Olwell (1998, Chapter 7) and Keefe et al.

(2015) illustrate how misestimation of the presumed known values of nuisance parameters, such

as the variance, can have disastrous effects on the in-control average run length of the CUSUM.

This is problematic because we cannot know the out-of-control properties of a CUSUM if the

(true) in-control average run length does not equal the nominal value (Quesenberry, 1995). Fur-

thermore, Hawkins and Olwell (1998, Section 3.7) and Harrison and Lai (1999) show that the

Page CUSUM can be very sensitive to deviations from normality, especially when the underly-

ing distribution is heavy tailed. Subsequent to Page (1954), there followed a large volume of

published work extending the sphere of application to distributions in the exponential family.
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However, developing CUSUMs for location-scale families of distributions which, except for the

normal and gamma distributions, are not in the exponential family, has received scant attention.

In particular, little or no attention has been paid to heavy-tailed distributions in the location-

scale family. In Chapter 6, we provide a practical application which occurs frequently in the

process industries and in which an assumption of normality is tenuous at best. In light of this

application, it is all the more surprising that more attention has not been given in the literature

to CUSUMs based on distributions with tails heavier than those of the normal.

A natural approach towards constructing CUSUMs that are free of overly specific dis-

tributional assumptions is to replace the observed data by rank-based equivalents which are

distribution free. Bakir (2001) presents a survey of various types of distribution-free control

charts. Among these are control charts based on signs, ranks and signed ranks, respectively. By

“distribution free” is meant that the in-control properties and control limits of the CUSUM do

not depend on the functional form of the underlying distribution function or on any parameters.

In this thesis we distinguish between two scenarios:

(I) detecting a location or a scale shift in a distribution in which the in-control median is

specified; and

(II) detecting a location or a scale shift in a distribution in which the in-control median is

unspecified because it is unknown.

Suppose that data accrue from a distribution which is symmetric around a known median, which

can be taken to be zero without loss of generality (scenario I). Assuming that rational groups of

k > 1 observations are available at each time point, Bakir and Reynolds (1979) and Bakir (2006)

developed a CUSUM to detect a shift from a zero to a non-zero median based on the Wilcoxon

signed rank statistic calculated within each rational group. They use the signed rank statistic

sign(Xi)R+
n,i (see the list of mathematical symbols). For singly accruing data, Lombard and

Van Zyl (2018) and Van Zyl (2015) developed CUSUMs for a location or a scale shift. Their

signed sequential rank (SSR) CUSUM is based on the signs si = sign(Xi) and on the sequential

ranks r+i of the observations – see 6 in the list of mathematical symbols. The presence of the

signs also enables detection of the onset of asymmetry. A basic property of the sequential ranks

r+i is that they are statistically mutually independent and also statistically independent of the

sign(Xi) when the underlying distribution is in control, that is, when the underlying distribution

is continuous and symmetric around zero (see Reynolds (1975) or Khmaladze (2011)). Because

the in-control median is specified, these CUSUMs have the ability to detect when a distribution is

already out of control at the onset of monitoring. Because the statistics sign(Xi)r+i are sequential

in nature, they are very well suited to the construction of CUSUMs for time ordered data. Thus,

in essence these are Page CUSUMs with the i.i.d. values X1,X2, . . . with in-control mean zero

replaced by the independent, non-identically distributed sequence s1r
+
1 , s2r

+
2 , . . . which also have

in-control mean zero.

When the symmetry assumption is not justified or when the in-control median is unknown

(scenario II), signed statistics cannot be used to good effect and resort must be had to unsigned
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statistics. When transforming X to µ +X or to σX, σ > 0, the unsigned sequential ranks ri

(see 5 in the list of mathematical symbols) remain unchanged. A direct consequence is that

unsigned sequential rank CUSUMs cannot usefully incorporate numerical information about a

specified in-control location or scale parameter. Bhattacharya and Frierson (1981) and Lombard

(1981) developed truncated sequential tests for a location shift based on the unsigned sequential

ranks ri. However, these are not CUSUM procedures in the commonly accepted sense of the

term. The first construction of a fully-fledged sequential rank CUSUM for a location shift is

due to McDonald (1990). A more recent development is the Hawkins and Deng (2010) CUSUM,

which is based upon the ordinary ranks Rn,i, i ≤ n for n ≥ 15. The basis of their CUSUM is a

sequential application of the changepoint tests of Pettitt (1979). Even more recently, Liu et al.

(2014) introduced a rank-based adaptive CUSUM for location shifts. Their chart consists of

using a one-step ahead estimate of the shift size and then incorporating this information into

the reference value. The focus of the charts mentioned thus far falls predominantly on location

shifts, but neglects other types of structural shifts. In this regard, Ross and Adams (2012)

designed a CUSUM to detect arbitrary shifts in a distribution by adapting the changepoint

model methodology of Hawkins and Deng (2010) and applying it to the Cramér-von-Mises and

Kolmogorov-Smirnov statistics. Other nonparametric approaches were made by Chatterjee and

Qiu (2009), Gandy and Kvaløy (2013) and Saleh et al. (2016), who proposed that control limits be

estimated by bootstrapping from an in-control Phase I sample. Thus, the control limits used in

Phase II depend on the Phase I sample. This implies that control limits must be generated anew

whenever a new data set appears. Thus, a table of control limits that can be used universally is

out of the question, which is somewhat unsatisfactory from a practical perspective. Furthermore,

Chatterjee and Qiu’s (2009) procedure requires a large Phase I sample, while the procedures of

Gandy and Kvaløy (2013) and Saleh et al. (2016) only guarantee upper and lower limits to the

in-control average run length with a specified probability close to one.

1.2 Girschick-Rubin CUSUMs

Another instrument in the SPC toolbox is a CUSUM initially developed by Girschick and

Rubin (1952) using a Bayesian argument on the assumption that the changepoint has a geometric

prior distribution. A continuous time version of this CUSUM was developed by Shiryaev (1963)

in the context of detecting a shift in the drift of a Brownian motion. Roberts (1966) compares

a number of SPC procedures, among others the Page (1954) CUSUM and the Girschick and

Rubin (1952) CUSUM. In the literature, the originators of this CUSUM, namely Girschick and

Rubin (1952), seem to have been forgotten and their CUSUM is now generally referred to as

the “Shiryaev-Roberts” CUSUM. In this thesis, however, we will refer to the “Girschick-Rubin”

CUSUM, abbreviated “GR CUSUM”. Using this nomenclature helps to avoid confusion in the

use of acronyms “SR” (sequential rank) CUSUM and “SR” (Shiryaev-Roberts) CUSUM.
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The vast majority of literature on GR CUSUMs concentrates on detecting a mean shift

in a fully-specified distribution, in particular the normal distribution. Pollak and Siegmund

(1991) derive the GR CUSUM for the situation where the in-control mean is unknown, while

they assume that the underlying variance is known. This situation (that σ2 is known and µ

is unknown) rarely occurs in practice, hence we will not consider this case in this thesis. For

monitoring the normal variance, Lazariv et al. (2013) worked out the GR CUSUM in detail,

while Zhang et al. (2011b) proposed a single chart to detect either a mean or a variance shift in

the normal distribution. Zhang et al. (2011a) proposed a GR CUSUM for a normal variance shift

using grouped observations. Other than for the normal distribution, GR CUSUMs for location

or scale shifts have not been treated in the literature. This provides a motivation for designing

distribution-free procedures. In fact, Pollak (2009, p.4) pointed out the need for distribution-free

GR CUSUMs and mentioned that sequential ranks could provide a solution. Nevertheless, the

literature on GR CUSUMs without distributional assumptions is extremely limited. In Chapter

5 we attempt to give the distribution-free GR CUSUM its rightful place as a “leading tool” for

changepoint detection as Pollak (2009) had hoped.

1.3 Contributions of the thesis

In this thesis, we propose distribution-free CUSUMs based on signed and unsigned sequen-

tial ranks to detect either a location or a scale shift from data arising singly over time. The

in-control properties of our CUSUMs are distribution free. The control limits that we provide

can be used universally and depend only on the particular rank score function that is used –

they are valid no matter what the form of the underlying distribution. The only distributional

assumptions we make, for technical convenience alone, is that the underlying distribution is

continuous with a strictly increasing distribution function. Furthermore, our CUSUMs are self

starting in that no Phase I parameter estimates are required in order to initiate the CUSUMs.

However, in practice the availability of a relatively small Phase I sample can aid in the effective

design of the CUSUM, for instance, it can be used to determine an appropriate reference value.

Since the Phase I data are independent of the sequential ranks of the Phase II data, the Phase

II in-control average run length remains guaranteed. This is an important feature that is not

present in parametric CUSUMs when parameters have to be estimated. We gauge the out-of-

control average run length properties of our CUSUMs qualitatively via theoretical calculations

and quantitatively by Monte Carlo simulation studies. Our CUSUMs are, to the best of our

knowledge, new.
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1.4 Structure of the thesis

In Chapter 2, we discuss some existing parametric and distribution-free CUSUMs in more

detail. In Chapter 3, we develop sequential rank CUSUMs for a location shift. We briefly discuss

the SSR CUSUM of Lombard and Van Zyl (2018) and Van Zyl (2015), which are applicable in

scenario I. We then construct sequential rank CUSUMs for location shifts in scenario II. Chapter

4 develops sequential rank CUSUMs for detecting scale shifts. In these chapters we also make

a clear distinction between scenarios I and II given on page 2. In Chapter 5, our focus is on

Girschick-Rubin CUSUMs for detecting a location or a scale shift in both scenarios I and II. In

Chapter 6, we show the application of our CUSUMs to three sets of data. In Chapter 7, we

summarise our main results and provide some pointers to issues requiring further research. The

Appendices provide technical details of some calculations referred to in the preceding chapters.

We also provide a suite of MATLAB programs that we use throughout the thesis in Monte Carlo

simulations and in the applications. The data sets that we use are also also provided in an Excel

file.
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2 Technical details of some existing

CUSUMs

We briefly discuss some of the existing parametric CUSUMs. Hawkins and Olwell (1998,

Chapter 3) provide full details on the standard normal CUSUM and illustrate that the normal

CUSUM is non-robust against deviations from underlying normality. We also discuss existing

distribution-free CUSUMs, which we will use in the thesis for comparative purposes.

2.1 The Page CUSUM

The original formulation of the CUSUM was by Page (1954), who used the partial sums

Si =
i

∑
j=1

(ξj − ζ) (2.1)

where ξj are independent N(µ,1) random variables and where S0 = 0 and ζ = 0 to construct the

CUSUM

Di =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, i = 0

Si − min
0≤k≤i

Sk, i ≥ 1,
(2.2)

for detecting a shift in the mean of the ξj away from zero. The CUSUM signals that a shift

away from zero has possibly occurred when Di first exceeds the control limit h. The run length

is

N = min{i ≥ 1 ∶Di ≥ h} (2.3)

and the in-control average run length (ARL0) is E[N] calculated under the assumption that

µ = 0. The control limit h is determined in order to make E[N ∣µ = 0] equal to a finite nominal

value ARL0. For the normal distribution one can either obtain h from Monte Carlo simulation

or from the Markov Chain approach (see Hawkins (1992) as an extension of Brook and Evans

(1972)), or by using freely available software such as the R packages “CUSUMdesign” (Hawkins

et al., 2016) or “spc” (Knoth, 2016).

Consider the random variables ξ1, . . . , ξτ , . . . , ξi. The changepoint τ is defined as the last

index before the mean shifts, thus 1 ≤ τ ≤ i − 1. That is ξ1, . . . , ξτ have mean zero while

ξτ+1, ξτ+2, . . . have non-zero mean.
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The performance of the CUSUM is usually judged by the out-of-control average run length

(OOC ARL), which is

E[N − τ ∣N > τ, µ ≠ 0]. (2.4)

The OOC ARL is the expected number of observations after the shift conditional upon there

being no signal before the shift. Explicit expressions for the OOC ARL (2.4) when τ > 0

are not available in the literature. However, the computing power available on modern personal

computers makes the estimation of the OOC ARL by Monte Carlo simulation, a straightforward

matter. In the formulation (2.1), the reference value ζ acts as a tuning parameter for the target

shift size. The OOC ARL of the CUSUM can be tuned to a specific target size so that for shifts

strictly smaller than the target, the OOC ARL is large, while for shifts larger than the target,

the OOC ARL is small. This is useful in ensuring that unproductive tinkering to the process is

kept to the minimum.

The recursion (2.2) can be written in the equivalent form

Di =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, i = 0

max{0,Di−1 + ξi − ζ}, i ≥ 1,
(2.5)

(Hawkins and Olwell, 1998, Section 1.9). This is the form that is typically used in practical

applications and which also makes it clear that the CUSUM is in fact a Markov chain when in

control. Of course, it is also of interest to monitor for a downward shift. Then the CUSUM

recursion is

D−
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, i = 0

min{0,D−
i−1 + ξi + ζ}, i ≥ 1

with the corresponding run length N−. We can simultaneously control for both upward and

downward shifts using the two-sided CUSUM. Then, it is common practice to exhibit both the

upper CUSUM sequence and the downward CUSUM sequence D−
i against i in a single plot

together with their corresponding control limits ±h. The two-sided CUSUM signals at time

N± = min{N,N−}.

It is well known (Van Dobben De Bruyn, 1968) that the relation

1

E[N±]
= 1

E[N]
+ 1

E[N−]
(2.6)

holds. When µ = 0 the two terms on the right-hand side are equal, hence E[N±] = E[N]/2 =
E[N−]/2 in this case. Therefore, to attain a given ARL0 the control limit h is chosen to make

both the upper and downward IC ARLs equal to twice the nominal IC ARL of the two-sided

CUSUM.

The presence of the zero barrier in Di given in (2.5) causes the CUSUM to be restarted and
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to forget its past behaviour. Thus, Di has the renewal property and using this property it can

be shown that E[N] is finite – see (Siegmund, 1985, Section 2.6). Thus, the CUSUM has a false

signal probability P(N < ∞∣µ = 0) = 1 where the term “false signal” means that the CUSUM

signals a shift whilst there has not been a true shift.

2.2 The likelihood ratio CUSUM

Suppose that X1, . . . ,Xτ are independent and have density function f(x) and that

Xτ+1,Xτ+2, . . . are independent with density function f(x − µ), µ ≠ 0. Here, µ is the target

shift of specified size µ. The target shift size is defined to be the smallest shift µ which is

regarded as “operationally” significant. One interpretation of this is that shifts of size smaller

than µ are of little or no consequence, while shifts in excess of µ are important and should be

detected as quickly as possible.

Then the likelihood ratio for distinguishing between the hypotheses H0 ∶ no change occurs

(the in-control situation) and H1 ∶ a change occurs (the out-of-control situation) is

Λτ =
f(Xτ+1 − µ) . . . f(Xi − µ)

f(Xτ+1) . . . f(Xi)
. (2.7)

Define

Di = max
0≤τ≤i−1

i

∑
j=τ+1

log
f(Xj − µ)
f(Xj)

. (2.8)

Then, (2.8) can be written as

Di = max
0≤τ≤i−1

⎛
⎝

i

∑
j=1

log
f(Xj − µ)
f(Xj)

−
τ

∑
j=1

log
f(Xj − µ)
f(Xj)

⎞
⎠

=
i

∑
j=1

log
f(Xj − µ)
f(Xj)

− min
0≤τ≤i−1

τ

∑
j=1

log
f(Xj − µ)
f(Xj)

. (2.9)

Then, (2.9) has the form of (2.2) with ξj − ζ = log
f(Xj−µ)
f(Xj) . In the special case where f is the

standard normal density, we find that ξj − ζ = µ(Xj − µ/2). Replacing h in (2.3) by µh leads to

the Page CUSUM (2.2) with ζ = µ/2.

Non-normal distributions typically do not have such simple forms of ξi and ζ. Nevertheless,

if µ is “close” to zero, then (2.9) can be written approximately in the form (2.5) as we now show.

This will provide a justification for formulating our distribution-free CUSUMs in the form of

(2.5) with ξi replaced by a suitable sequential rank score. Set ξj = log
f(Xj−µ)
f(Xj) − E [log

f(X−µ)
f(X) ]

and ζ = −E [log
f(X−µ)
f(X) ]. The Taylor expansion of f(X −µ), neglecting terms of order µp, p ≥ 3,
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is

f(X − µ) ≈ f(X) − µf ′(X) + µ
2

2
f ′′(X)

from which we get

log
f(X − µ)
f(X)

≈ log
f(X) − µf ′(X) + µ2f ′′(X)/2

f(X)

= log(1 − µf
′(X)
f(X)

+ µ
2f ′′(X)
2f(X)

)

≈ −µf
′(X)
f(X)

+ µ
2f ′′(X)
2f(X)

− µ
2

2
(f

′(X)
f(X)

)
2

,

the last approximation following from the Taylor expansion of log(1 − x) for x “close” to zero.

Assuming f(±∞) = 0, we have

E [f
′(X)
f(X)

] = ∫
∞
−∞ (f

′(v)
f(v) ) f(v)dv = ∫

∞

−∞
f ′(v)dv = 0

and, assuming that f ′(±∞) = 0, we have

E [f
′′(X)
f(X)

] = ∫
∞
−∞ (f

′′(v)
f(v) ) f(v)dv = ∫

∞

−∞
f ′′(v)dv = 0.

Then,

E [log
f(X − µ)
f(X)

] ≈ −µ
2

2
E

⎡⎢⎢⎢⎢⎣
(f

′(X)
f(X)

)
2⎤⎥⎥⎥⎥⎦

= −µ
2

2
I0(f)

where

I0(f) = E

⎡⎢⎢⎢⎢⎣
(f

′(X)
f(X)

)
2⎤⎥⎥⎥⎥⎦

is the Fisher information in the location parameter family {f(x − µ), −∞ < µ < ∞} (Hájek

et al., 1999, Section 2.2.3).

Thus, log
f(Xj−µ)
f(Xj) in (2.9) can be approximated by ξj − ζ where

ξj = log
f(Xj − µ)
f(Xj)

+ µ
2

2
I0(f)

and

ζ = µ
2

2
I0(f).

Then, (2.9) has the same form as (2.2) with E[ξj] = 0 for all 1 ≤ j ≤ τ .

We can obtain a parallel approximation for the CUSUM recursion (2.5) to detect scale

shifts of target size ρ ≠ 1 in a scale parameter family {ρ−1f(X/ρ), 0 < ρ < ∞ ρ ≠ 1}. Then we
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can approximate ξj and ζ by

ξj = log
ρ−1f(Xj/ρ)
f(Xj)

+ ρ
2

2
I1(f)

and

ζ = ρ
2

2
I1(f)

where

I1(f) = E

⎡⎢⎢⎢⎢⎣
(−1 −Xf ′(X)

f(X)
)
2⎤⎥⎥⎥⎥⎦

= ∫
∞

−∞
(−1 − xf

′(x)
f(x)

)
2

f(x)dx,

the Fisher information in the scale parameter family {ρ−1f(x/ρ), 0 < ρ < ∞ ρ ≠ 1} (Hájek

et al., 1999, Section 2.2.3).

2.3 Parametric self-starting CUSUMs

The discussion of standard normal CUSUMs stressed the necessity of precise in-control

parameter specifications. If the data X1,X2, . . . arise from a N(µ,σ2) distribution and µ and σ2

are known, the standard procedure is to apply the standard normal CUSUM to the standard-

ised data (X − µ)/σ. There are, however, countless examples of problems where the in-control

parameters are, at least to some extent, unknown. The application of the standard normal

CUSUM cannot be justified when directly applying estimates of µ and σ from an in-control

Phase I sample. Hawkins and Olwell (1998, Chapter 7) give an example where the estimated

IC ARL is substantially inflated when the Phase I estimates of σ and µ are used as if they were

the true values. For these estimates to be sufficiently close to their true values, an enormous

amount of Phase I data would be required. This is clearly problematic in most practical im-

plementations. One way of dealing with this problem is for the standard normal CUSUM to

continuously incorporate updated estimates of µ and σ. The self-starting CUSUM of Hawkins

(1987) is such a scheme. In this section we will describe the NSS (normal self-starting) CUSUM

for a mean shift and the NSS and GSS (gamma self-starting) CUSUMs for a variance shift.

2.3.1 The NSS mean CUSUM

Suppose that the i.i.d. random variables X1,X2, . . . follow a normal N(µ,σ2) distribution

where both µ and σ are unknown. The NSS CUSUM of Hawkins (1987) is based on the sequence

of statistics

Ti =
Xi −Xi−1
si−1

,
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for i ≥ 3 and where

Xi−1 = 1

i − 1

i−1
∑
j=1

Xj

and

si−1 =

¿
ÁÁÁÀ 1

i − 2

i−1
∑
j=1

(Xj −Xi−1)2.

Observe that the distribution of Ti does not depend on σ or µ. Set

ξi = Φ−1 ⎛
⎝
H

⎛
⎝

√
i − 1

i
Ti, i − 2

⎞
⎠
⎞
⎠
, (2.10)

where H(⋅ , ν) denotes the distribution function of a t distribution with ν degrees of freedom.

Then the ξi sequence are i.i.d. standard normal for i ≥ 3 (Hawkins, 1987). That the Ti are

statistically independent is a consequence of Basu’s lemma – see Lehmann and Casella (1998,

Theorem 6.2.1, p.42). The NSS CUSUM sequence is given by (2.5) for ξi in (2.10). The

recommended reference value and control limits are the same as for the standard normal CUSUM.

Whether the truly “optimal” reference value for the NSS is in fact ζ = µ/2, has to date not been

assessed in the literature.

2.3.2 The NSS standard deviation CUSUM

Suppose that we wish to detect an increase of size ρ in the standard deviation from σ

(unknown) to ρσ in a normal distribution. The NSS CUSUM then consists in substituting ξ2i
for ξi from (2.10) in the CUSUM recursion (2.5). The recommended reference value is

ζ = log ρ2

1 − ρ−2
(2.11)

and the same control limits as for the standard normal variance CUSUM apply – see Hawkins

and Olwell (1998, Section 4.1.3, p.86-87).

2.3.3 The GSS standard deviation CUSUM

Suppose we wish to detect an increase of size ρ in the standard deviation of a Gamma

distribution with the density function

f(x) = 1

Γ(α)βα
xα−1 exp (−x/β)
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where the shape parameter α is known. The GSS CUSUM consists in using

ξi = G−1 (F2α,2α(i−1) (
Xi

Xi−1
) , α,1) (2.12)

in (2.5). In (2.12) F2α,2α(i−1) denotes the distribution function of the F distribution with 2α

and 2α(i−1) degrees of freedom and G−1(⋅ , α,1) denotes the inverse of the Gamma distribution

function with parameters α and 1. For the degrees of freedom to be defined, the GSS CUSUM

requires at least m = 3 observations to initiate. The reference value is

ζ = log ρ

1 − ρ−1
.

The special case α = 1 is the exponential distribution for which Gan (1992) provides control

limits.

Hawkins and Olwell (1998, Chapter 7) use the term “self starting” because they argue

that a large Phase I sample is not needed for the CUSUM monitoring to commence. However,

Keefe et al. (2015) show that caution should be exercised when applying the scheme of Hawkins

(1987). This CUSUM can only initiate at the third observation. Keefe et al. (2015) show that

the in-control ARL of this CUSUM depends on X2 and s2 and is not, in general, equal to

the nominal value. The implication is that if two practitioners are sampling from the same

population and their X2 and s2 differ, then their IC ARLs will, in general, also differ and not

equal the nominal IC ARL. Thus, the continual updating of the estimates of µ and σ does not

have the desired effect. They refer to this as between-practitioner variation. On the contrary, if

the unconditional IC ARL is computed by averaging the conditional IC ARL over all possible

m ≥ 2 initial observations, it equals the nominal value. However, it is a moot point whether the

unconditional IC ARL is a relevant quantity. The same issues are present in the NSS and GSS

standard deviation CUSUMs.

2.4 The Girschick-Rubin CUSUMs

Let X1, . . . ,Xτ be i.i.d. N(0,1) and let Xτ+1, . . . ,Xn be i.i.d. N(µ,1) where µ ≠ 0 is the

target shift size. The GR CUSUM is constructed by summing the likelihood ratio (2.7), rather

than maximising it, over possible changepoints τ = 0,1, . . . , i − 1 (Girschick and Rubin, 1952).

Thus, we define

Di =
i−1
∑
τ=0

Λτ =
i−1
∑
τ=0

i

∏
j=τ+1

φ(Xj − µ)
φ(Xj)

=
i−1
∑
τ=0

exp(µ(Si − Sτ) −
(i − τ)µ2

2
) (2.13)
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where Si = ∑ij=1Xj . Observe that (2.13) can be written in the recursive form

Di =
i−1
∑
τ=0

exp(µ(Si − Sτ) −
(i − τ)µ2

2
)

=
i−2
∑
τ=0

exp(µ(Si − Sτ) −
(i − τ)µ2

2
) + exp(µ(Si − Si−1) −

(i − i + 1)µ2

2
)

=
i−2
∑
τ=0

exp(µ(Si−1 +Xi − Sτ) −
(i − 1 − τ)µ2

2
− µ

2

2
) + exp(µXi −

µ2

2
)

= exp(µXi −
µ2

2
)(

i−2
∑
τ=0

exp(µ(Si−1 − Sτ) −
(i − 1 − τ)µ2

2
) + 1)

= (1 +Di−1) exp(µ(Xi −
µ

2
)) (2.14)

for i ≥ 1 and with D0 = 0 (Pollak, 1987, p.752), which is more suited to practical implementation.

The GR CUSUM signals at time

N = min{i ≥ 1 ∶Di ≥ h} (2.15)

that a shift has possibly occurred, where h > 0 is the control limit that guarantees a nominal

IC ARL. An approximation to the control limit h is given by Pollak (1987), who uses the facts

that Di has the Markov property and that (Di − i) is a martingale. The approximation is

ARL0 ≈ h/ϑ(µ) (2.16)

for a “large” h, where

ϑ(µ) = 2µ−2 exp
⎛
⎝
−2

∞
∑
j=1

1

j
Φ

⎛
⎝
−
√
µ2j

2

⎞
⎠
⎞
⎠
≈ exp(−0.583µ)

for a µ “close” to 0 (Pollak and Siegmund, 1991). The recursion (2.14) shows that the GR

CUSUM is a Markov chain and by argumentation similar to that in Section 2.1, we can infer

that the GR CUSUM will produce a false alarm with probability 1.

To detect a shift in the standard deviation of a N(0,1) distribution, the GR CUSUM can be

constructed as follows. Let X1, . . . ,Xτ be i.i.d. N(0,1) and let Xτ+1,Xτ+2, . . . be i.i.d. N(0, ρ2)
where ρ > 1 is the target shift size. Then, D0 = 0 and, for i ≥ 1,

Di =
i−1
∑
τ=0

Λτ =
i−1
∑
τ=0

i

∏
j=τ+1

ρ−1φ(Xjρ
−1)

φ(Xj)

=
i−1
∑
τ=0

ρ−i−τ exp
⎛
⎝
ρ2 − 1

2ρ2
⎛
⎝

i

∑
j=1

X2
j −

τ

∑
j=1

X2
j

⎞
⎠
⎞
⎠
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which can be written in the recursive form

Di = (1 +Di−1)ρ−1 exp(1

2
(1 − ρ2)X2

i ) . (2.17)

The run length N is also defined by (2.15). A formula such as (2.16) is not available to obtain

appropriate control limits. However, a table of control limits has been generated by Monte Carlo

simulation and is shown in Table 9 of Appendix B.

Self-starting GR CUSUMs analogous to those of Hawkins and Olwell (1998, Chapter 7) can

be constructed. However, the problem of between-practitioner ARL variation is also present in

these CUSUMs.

2.4.1 The two-sided GR CUSUM

It is important to also detect a downward shift in the mean. The downward GR CUSUM

recursion D−
i is given by (2.14) where we replace µ with −µ everywhere. To detect a decrease in

standard deviation of size ρ < 1 the recursion is defined by D−
i , which is (2.17). The downward

GR CUSUM signals at time

N− = min{i ≥ 1 ∶D−
i ≥ h−}

where h− = h for the GR mean CUSUM. The two-sided GR CUSUM signals at time

N± = min{N,N−}.

Analogous to the relation (2.6) one would expect the following to hold

1

E[N±]
= 2

E[N]
(2.18)

in the in-control case if both upper and downward CUSUMs have the same IC ARL. Such a

relation has not yet been proven for the GR CUSUM. However, the following numerical evidence

indicates that the relation might well be true in this case also. In Monte Carlo simulations with

10 000 independent trials we found that, with a target µ = 0.5, the absolute difference between

the left-hand and right-hand sides of (2.18) is approximately 0.0002 when the true shift is 0.

In the GR standard deviation CUSUM, the target shifts are ρ = 1 + λ > 1 (upper CUSUM)

and ρ = 1 − λ < 1 (downward CUSUM). Then, h ≠ h− if the nominal IC ARLs of the upper and

downward CUSUMs are the same. Then (2.18) seems to be true again.

Next, we will discuss the following distribution-free CUSUMs: the McDonald (1990)

CUSUM, the Hawkins and Deng (2010) CUSUM and the Ross and Adams (2012) CUSUM.
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Since no parameter estimates or Phase I data are required for these CUSUMs to function prop-

erly, they are devoid of the problems surrounding unknown parameters in the parametric case.

In Chapters 3 and 4, the performance and properties of these CUSUMs will be compared to the

sequential rank CUSUMs that we construct.

2.5 Distribution-free CUSUMs

2.5.1 The McDonald CUSUM

McDonald (1990) developed a distribution-free CUSUM to detect a shift away from an

unknown current median. His CUSUM is based on the unsigned sequential ranks

ri = 1 +
i

∑
j=1

1 (Xj <Xi) .

If X1,X2, . . . are i.i.d., then ξi = ri/(1 + i) are, for i ≥ 1, independent and non-identically dis-

tributed and converge to a uniform distribution on (0,1) as i → ∞. McDonald (1990) proceeds

to develop a CUSUM for the uniform distribution, the idea being that the properties of this

CUSUM would approximate those of a CUSUM based directly on the sequential ranks. In

Chapter 3, we construct CUSUMs based directly on the sequential ranks and investigate their

in-control and out-of-control properties.

2.5.2 The Hawkins and Deng CUSUM

Recently, Hawkins and Deng (2010) proposed a distribution-free CUSUM to detect a shift

away from a current unknown median. Their CUSUM is based on a sequential version of the

two-sample Wilcoxon statistic. Henceforth we will refer to this as the HD CUSUM. Define, for

i ≥ 15,

ξi = max
1≤τ≤i−1

∣ξτ,i∣ (2.19)

with

ξτ,i =
⎧⎪⎪⎨⎪⎪⎩

τ

∑
j=1

√
12(i + 1)
i − 1

(
Ri,j

1 + i
− 1

2
)
⎫⎪⎪⎬⎪⎪⎭
/
√
τ(i − τ)(i − 1)

where Ri,j is the rank of Xj among X1, . . . ,Xi. The HD CUSUM is defined by the recursion

(2.5) with D0 =D1 = ⋅ ⋅ ⋅ =D14 = 0, ζ = 0 and signals at time

N = min{i ≥ 15 ∶Di ≥ hi}
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where hi is the control limit which depends on i. The presence of the absolute value in (2.19)

shows that this is in fact a two-sided CUSUM.

The question arises how the sequence of control limits hi is to be chosen in order to guarantee

a nominal IC ARL. Hawkins and Deng (2010) define the hi by fixing at α = 1/ARL0 the

conditional probability of a false signal at i, given no previous false signal. That this yields an

IC ARL of size ARL0 is proved as follows. Let C1,C2, . . . be a sequence of statistics and let

h1, h2, . . . be constants chosen such that, for 0 < α < 1 and all i ≥ 1,

P(Ci > hi∣C1 ≤ h1, . . . ,Ci−1 ≤ hi−1) = α. (2.20)

Define the run length

N = min{i ≥ 1 ∶ Ci ≥ hi}.

Then,

P(N = 1) = P(C1 > h1) = α (2.21)

and for i ≥ 2

P(N = i) = P(C1 ≤ h1, . . . ,Ci−1 ≤ hi−1,Ci > hi)

= P(ξi > hi∣C1 ≤ h1, . . . ,Ci−1 ≤ hi−1) P(C1 ≤ h1, . . . ,Ci−1 ≤ hi−1)

= α P(N > i − 1). (2.22)

Thus, for all i ≥ 1 we have the relation

P(N = i) = αP(N > i − 1).

From (2.21) and (2.22) we find

1 = ∑
i≥1

P(N = i) = α∑
i≥1

P(N > i − 1) = αE[N],

whence E[N] = 1/α.

The distribution in (2.20) is highly discrete for small values of i making it impossible to

find hi which makes the left side of (2.20) exactly equal to α. This ceases to be a problem for

i ≥ 15. Table 1 of Hawkins and Deng (2010) gives control limits hi for typical IC ARLs, ranging

from 50 to 2000.

A substantial computational effort is required to obtain the hi. Also the HD CUSUM in

its present form does not incorporate a reference value ζ, which implies that it cannot be tuned

to meet specific OOC ARL objectives.
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2.5.3 The Ross and Adams CUSUM

Distribution-free CUSUMs for shifts more general than shifts in the median or scale were

developed by Ross and Adams (2012). We will refer to these as RA CUSUMs. These CUSUMs

are based on the Kolmogorov-Smirnov (KS) and the Cramér-von-Mises (CvM) statistics. In

general, Ross and Adams (2012) conclude that the CUSUM based on the CvM statistic outper-

forms the one based on the KS statistic and, in addition, that the CvM is simpler to implement.

The CvM statistic is

ψτ,i =
i

∑
j=1

(F̂1,i(Xj) − F̂2,i(Xj))
2

where

F̂1,i(x) = 1

τ

τ

∑
j=1

1(Xj ≤ x)

and

F̂2,i(x) = 1

i − τ

n

∑
j=τ+1

1(Xj ≤ x).

The standardised CvM statistic is, for i ≥ 1,

ξi = max
τ≥1

ψτ,i − µψ
σψ

where

µψ = i + 1

6i

and

σψ =
(i + 1) ((1 − 3

4τ
) i2 + (1 − τ)i − τ)

45i2(i − τ)
.

The CUSUM signals a shift when ξi > hi (i ≥ 20) where the hi are control limits. The hi

are chosen in the same manner as in the HD CUSUM. Software for the implementation of

both the CvM and KS RA CUSUMs is available in the R package called “cpm” (http://cran.r-

project.org/web/packages/cpm/index.html).
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3 Sequential rank CUSUMs for

location

A natural approach towards constructing CUSUMs that are free of overly specific distribu-

tional assumptions is to replace the observed data by rank-based equivalents that are distribution

free. In this chapter, we introduce distribution-free CUSUMs based on signed and unsigned se-

quential ranks to detect a location shift. We again distinguish between two scenarios: detecting

a location shift in a distribution (I) when the in-control median is specified; and (II) when the

in-control median is unspecified. When the distribution is in control, these CUSUMs are dis-

tribution free in that the control limits do not depend on the functional form of the underlying

distribution. The sequential rank CUSUMs do not require the existence of any moments of the

underlying distribution and are robust against the effect of spurious outliers. We briefly discuss

the design of the signed sequential rank (SSR) CUSUM of Van Zyl (2015) and Lombard and

Van Zyl (2018) which centres attention on scenario I. We then proceed to develop the unsigned

sequential rank location (SRL) CUSUM for scenario II. The CUSUMs are defined as in (2.5)

with ξi and ζ appropriately chosen.

3.1 The signed sequential rank CUSUM

3.1.1 In-control properties

Suppose X1,X2, . . . are in control if the Xi are continuously and symmetrically distributed

around zero with density function σf(xσ). Define the sequential rank of ∣Xi∣ among ∣X1∣, . . . , ∣Xi∣,
for i ≥ 1, as

r+i = 1 +
i

∑
j=1

1(∣Xj ∣ < ∣Xi∣)

and let sir
+
i = sign(Xi)r+i denote the signed sequential rank of Xi. As long as the distribution

remains in control, si = ±1 with equal probability 1/2 and the r+i are uniformly distributed on

the numbers {1,2, . . . , i}. The r+i are statistically mutually independent and also independent

of the signs si (Reynolds, 1975). Then, E[sir+i ] = 0. Notice that sir
+
i is scale invariant, that is,

its value remains unchanged if Xi is replaced by aXi, a > 0. This implies that we may assume,

without loss of generality, that σ = 1. This comes down to expressing the data and the target

shift size µ in units of the underlying scale parameter.
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Let ψ(u), u ∈ (−1,1) be an odd and square-integrable function with ∫
1
−1ψ(u)du = 0. Set,

for i ≥ 1,

ξi = ψ (
sir

+
i

1 + i
)/√ηi = siψ (

r+i
1 + i

)/√ηi (3.1)

where

ηi =
1

i

i

∑
j=1

ψ2 ( j

1 + i
) (3.2)

so that ξi has unit variance. The Wilcoxon statistics, using the score ψ(u) = u, are

ξi =
√

6(1 + i)
2i + 1

(
sir

+
i

1 + i
) (3.3)

which are, for i ≥ 1, statistically independent with zero means and unit variances. Another

popular score is ψ(u) = Φ−1(u), leading to the Van der Waerden statistics

ξi = si Φ−1 (1

2
(1 +

r+i
1 + i

))/√ηi (3.4)

where ηi is given in (3.2). The corresponding CUSUMs will be referred to as the Wilcoxon SSR

and Van der Waerden SSR CUSUMs. If the median of the Xi increases away from zero, or even

if the distribution of X is asymmetric, E[ξi] ceases to be zero. Therefore, the CUSUM can be

expected to be useful in detecting either a shift away from a zero median in a symmetric distri-

bution or in detecting the presence of asymmetry. Because the summand in (3.3) is bounded,

the resulting CUSUM (2.5) can be expected to be robust against outliers.

Lombard and Van Zyl (2018) provide control limits for a range of reference values and

nominal IC ARLs for the Wilcoxon and the Van der Waerden CUSUMs. For completeness we

include these here in Tables 3.1 and 3.2.

Table 3.1: Control limits for the Wilcoxon SSR CUSUM.

Nominal IC ARL

ζ 100 200 300 400 500 1000 2000

0.00 8.92 13.07 16.24 18.90 21.30 30.24 43.95

0.10 6.45 8.62 10.05 11.12 12.01 14.79 17.93

0.15 5.65 7.34 8.42 9.21 9.86 11.88 14.06

0.20 5.00 6.37 7.24 7.87 8.37 9.96 11.57

0.25 4.46 5.61 6.33 6.85 7.25 8.52 9.84

0.30 4.01 5.00 5.60 6.03 6.37 7.45 8.53

0.35 3.62 4.48 5.00 5.37 5.66 6.58 7.51

0.40 3.29 4.04 4.49 4.81 5.06 5.87 6.66

0.45 2.99 3.66 4.05 4.34 4.56 5.24 5.96

0.50 2.73 3.31 3.68 3.93 4.13 4.74 5.34
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Table 3.2: Control limits for the Van der Waerden SSR CUSUM.

Nominal IC ARL

ζ 100 200 300 400 500 1000 2000

0.00 8.808 13.055 16.192 19.048 21.283 30.519 43.599

0.05 7.322 10.317 12.333 13.929 15.210 19.835 24.942

0.10 6.362 8.520 9.945 11.019 11.893 14.787 17.832

0.15 5.532 7.171 8.344 9.173 9.825 11.875 13.987

0.20 4.929 6.352 7.198 7.836 8.321 9.945 11.629

0.25 4.456 5.668 6.320 6.862 7.245 8.578 9.950

0.30 3.997 5.015 5.604 6.099 6.427 7.550 8.654

0.35 3.633 4.503 5.066 5.423 5.756 6.720 7.704

0.40 3.340 4.108 4.588 4.930 5.201 6.062 6.918

0.50 2.800 3.452 3.845 4.135 4.350 5.039 5.732

A comparison between the control limits in Tables 3.1 and 3.2 with those of a standard

normal CUSUM at the same reference values ζ ≤ 0.5 reveals a close correspondence at ARL0

values in excess of 500. This is a result of the fact that the partial sums
n

∑
i=1
ξi/

√
n converge in

distribution to a standard normal distribution as n→∞.

3.1.2 Out-of-control behaviour

Here, we provide a summary of the main result, namely that the out-of-control properties

of the SSR CUSUM are very similar to those of a standard normal CUSUM. More extensive

details are given in Lombard and Van Zyl (2018).

Let X1, . . . ,Xτ have the common distribution function F (x) and let Xτ+1,Xτ+2, . . . have

the common distribution function G(x) = F (x − µ) where µ is “small”. Let ξi be as defined in

(3.1) and define the partial sums

Sn =
n

∑
i=1

(ξi − ζ).

Lombard and Van Zyl (2018) show that the joint distributions of Sn, n ≥ 1 can be approximated

by the joint distributions of

S∗n =
n

∑
i=1

(X∗
i − ζ) + µθmax(0, n − τ) =X∗

1 + ⋅ ⋅ ⋅ +X∗
n − nζ + µθmax(0, n − τ)

where X∗
1 ,X

∗
2 , . . . are i.i.d. N(0,1) quantities and where

θ = 1
√
η
∫

∞

−∞
ψ′(2F (x) − 1)f2(x)dx (3.5)

with η = ∫
1
0 ψ

2(u)du. This can be summarised as the following heuristic.
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Heuristic 3.1. Let ζ be “small” and let a persistent shift of “small” size µ1 occur at a “large”

changepoint τ . Then, the SSR CUSUM behaves approximately as would a standard normal

CUSUM with the same µ1, ζ and h when a shift of size µ1θ commences after τ . ∎

3.1.3 Design of the CUSUM

Heuristic 3.1 implies in particular that the OOC ARL will be a monotone function of µ1

if the score ψ is monotone. Furthermore, the OOC ARL of the SSR CUSUM can be estimated

given any µ1, ζ and τ by Monte Carlo simulation that uses only normal random numbers.

Further details are given in Lombard and Van Zyl (2018).

From Heuristic 3.1 it follows that

E[ξτ+i] ≈ µθ ≠ 0, (3.6)

for a large τ and a fixed i. Suppose we target a shift in the median from zero to µ > 0. In a

standard normal CUSUM, the optimal reference value is ζ = µ/2. Analogously, it seems sensible

to use the reference value

ζ = µθ/2

in an SSR CUSUM.

The values of θ in Table 3 of Lombard and Van Zyl (2018), reproduced below as Table 3.3,

over a range of standardised distributions can be used as a guideline to make an informed choice

of ζ. We standardise the normal, t4 and t3 distributions to unit standard deviation and the t2

and t1 distributions to unit inter-quartile range, since the standard deviation is either infinite

or not defined in the latter two cases.

Table 3.3: Values of θ for a range of tν distributions.

Distribution

Score normal t4 t3 t2 t1

Wilcoxon 0.98 1.18 1.38 1.18 1.10

Van der Waerden 1.00 1.12 1.29 1.06 0.93

If some in-control Phase I data V1, . . . , Vm are available, then the appropriate value of θ

can be estimated as follows. We estimate f by

f̂(v) = 1

m

m

∑
j=1

1

b
φ(

v − Vj
b

) , (3.7)

where b denotes the default (Silverman, 1986, p.45) bandwidth

b = 1.06m−1/5 ×min{s, IQR
1.35

}
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and where s and IQR denote the sample standard deviation and the inter-quartile range of

V1, . . . , Vm. Denote by F̂ (v) the empirical distribution function of V1, . . . , Vm. Observe that

θ = 1
√
η

E [ψ′(2F (V ) − 1)f(V )] .

This suggests the consistent estimator

θ̂ = 1

m
√
η

m

∑
j=1

ψ′ (2
j

m + 1
− 1) f̂ (Vm∶j)

of θ, where Vm∶j is the jth order statistic of V1, . . . , Vm. Then, the estimated reference value

becomes ζ̂ = θ̂µ/2 where µ is expressed in units of σ̂, an estimator of the chosen scale parameter

σ. In applying the SSR CUSUM with reference value ζ̂ we use the corresponding h from the

appropriate table which guarantees that the Phase II IC ARL is equal to the nominal value.

This guarantee comes as a consequence of the distribution-free nature of the SSR CUSUM and

the independence of the Phase I and Phase II data. This behaviour stands in stark contrast to

the behaviour of the normal CUSUM when the unknown σ is estimated from the data. In that

case, the control limit h corresponding to σ̂ does not guarantee the correct IC ARL value.

3.2 The sequential rank location CUSUM

3.2.1 In-control properties

A vital assumption of the SSR CUSUM is that the in-control median is specified or known.

If the in-control median is unspecified, or if the symmetry assumption is untenable, a useful

CUSUM can be constructed using the unsigned sequential ranks

ri = 1 +
i

∑
j=1

1(Xj <Xi) (3.8)

of Xi among X1, . . . ,Xi, i ≥ 1. When X1,X2, . . . are i.i.d., the ri are independent with mean

(1+i)/2 and variance (i2−1)/12 regardless of the distribution underlying the Xi – see Barndorff-

Nielsen (1963). The unsigned sequential rank statistics for application in the CUSUM recursion

(2.5) are, for i ≥ 2,

ξi = (ψ ( ri
1 + i

) −ψi)/√ηi, (3.9)

where ψ(u) is a square-integrable function on the interval (0,1) and where

ψi =
1

i

i

∑
j=1

ψ ( j

1 + i
)
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and

ηi =
1

i

i

∑
j=1

ψ2 ( j

1 + i
) −ψ2

i . (3.10)

In the special cases where ψ(u) = u− 1
2 (Wilcoxon) and ψ(u) = Φ−1(u) (Van der Waerden),ψi = 0

for all i ≥ 1. Then, E[ξi] = 0 and the ξi are, for i ≥ 2, statistically independent with unit variance.

Since η1 = 0 the CUSUM starts at i = 2, that is, D0 = D1 = 0. Consider now the special case

ψ(u) = u− 1
2 . Standardising ri/(1+ i), which are asymptotically uniform (0,1) random variables

as i→∞, gives, for i ≥ 2,

ξi =

¿
ÁÁÀ12(i + 1)

(i − 1)
( ri

1 + i
− 1

2
) . (3.11)

We call the CUSUM based on (3.11) the Wilcoxon SRL CUSUM. This CUSUM is reminiscent

of the one proposed by McDonald (1990). Another popular score function is ψ(u) = Φ−1(u),
leading to

ξi = Φ−1 ( ri
1 + i

)/√ηi (3.12)

for i ≥ 2 and where ηi tends to 1 as i → ∞. To avoid confusion between the score (3.12) and

that in (3.4), we will use the term “normal score” for the former rather than “Van der Waerden

score”, which was used for (3.4).

The following calculations lead us to focus in particular on the Wilcoxon score (3.11). For

a distribution with density function f and distribution function F the efficient score for location

changes is defined as (Hájek et al., 1999, Section 2.2.4)

J(u) = −
f ′ (F−1(u))
f (F−1(u))

, 0 ≤ u ≤ 1 (3.13)

which has finite variance I0(f) = Var [J(U)], the Fisher information. We compare the Wilcoxon

and the normal scores with the efficient scores in a range of distributions. The comparison entails

computing the correlation coefficient between the Wilcoxon score and the efficient score, and

that between the normal score and the efficient score in a given distribution. We consider the tν ,

the Gumbel and the skew-normal distributions. The correlation coefficients give an indication

of how well the Wilcoxon or normal SRL CUSUMs would fare against parametric CUSUMs

constructed for data from these distributions when there are no unknown nuisance parameters.

The closer the correlation is to 1, the better is the expected performance of the SRL CUSUM.

The density function of Student’s tν distribution with zero mean is

f(x) =
Γ (ν+1

2
)

√
νπΓ (ν

2
)
(1 + x

2

ν
)
− ν+1

2

. (3.14)

The efficient score (3.13) is

J(u) = (ν + 1)F−1
ν (u)

ν + (F−1
ν (u))2
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where F −1
ν denotes the inverse distribution function of a tν distribution. The tν distribution

exhibits a range of tail heaviness from moderate (ν = ∞) to extremely heavy (ν = 1). Therefore,

the tν distribution provides a useful basis for our comparison. The correlation coefficients be-

tween the efficient scores in five t distributions with the Wilcoxon and normal scores are shown

in Table 3.4. Overall, the Wilcoxon score seems to be preferred.

Turning to skew distributions, we consider the Gumbel and skew-normal distributions

(Azzalini, 2005). The density of the Gumbel distribution is

f(x) = exp (−x − exp (−x)) (3.15)

and the efficient score (3.13) is

J(u) = 1 − exp (−F −1(u)) .

The skew-normal (SN(α)) distribution has density function

f(x) = 2φ(x)Φ(αx) (3.16)

where α is the skewness parameter and the efficient score (3.13) is

J(u) = −(αφ(αF
−1(u))

Φ(αF−1(u))
− F−1(u)) .

Table 3.4 also gives the correlation coefficients of the efficient score with the Wilcoxon and

normal scores in these skew distributions. Again, overall, the Wilcoxon seems to be preferred.

Table 3.4: Correlation of the Wilcoxon and normal scores with the efficient scores (3.13) in various distributions.

Distribution

Score normal t4 t3 t2 t1 Gumbel SN(±1) SN(±2) SN(±4)

Wilcoxon 0.98 0.99 0.97 0.93 0.78 0.87 0.91 0.86 0.75

normal 1.00 0.94 0.91 0.84 0.66 0.90 0.89 0.85 0.75

In contrast to the efficient scores in Student t distributions, both the Wilcoxon and normal

scores are monotone functions of the OOC median. Figure 3.1 shows a plot of the Wilcoxon

score and the efficient score in a t3 distribution. The non-monotone nature of the t3 efficient

score seen in the figure explains why some larger shifts ∣µ2∣ > ∣µ1∣ > 0 would be harder to detect

than smaller shifts ∣µ1∣ if a CUSUM for a t3 distribution were used – see MacEachern et al.

(2007) and Liu et al. (2015). In contrast, the monotonicity of the Wilcoxon score shows that

this issue will not appear when it is used.
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Figure 3.1: The Wilcoxon and t3 efficient scores where the horizontal axis is 0 ≤ u ≤ 1.
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3.2.1.1 Finding the control limit

Given a set of reference values ζ and specified nominal IC ARLs, it is our first priority

to find control limits. The distribution-free character of the sequential ranks enables us to

obtain control limits for the SRL CUSUM by Monte Carlo simulation using U(0,1) random

variables. The partial sums of the ξi converge to a normal distribution when the X sequence is

in control. Therefore, it is not difficult to imagine that the control limits h of the SRL CUSUM

will correspond closely to those of a standard normal CUSUM, especially when ζ is small and h

is large. Denote by h1 the control limits from a standard normal CUSUM, given (ζ,ARL0). The

first step of an iterative algorithm was to estimate the IC ARL (denote the estimate by Â(ζ, h1))
of the SRL CUSUM on the (ζ, h) grid using, for instance, 10 000 independent Monte Carlo-

generated realisations with U(0,1) as the in-control distribution. Cubic spline interpolation

from (ζ, Â(ζ, h1)) to (ζ, h) then yields new estimates, h2, of the correct control limits. A further

10 000 independent Monte Carlo-generated realisations using h2 produce a new estimated IC

ARL (ζ, Â(ζ, h2)). These steps were repeated until all of the absolute differences ∣Â(ζ, h)−ARL0∣
were less than 3. For ζ ≤ 0.25, no more that three iterations were required, while for ζ > 0.25,

six iterations sufficed. We can expect the number of iterations required to increase as ζ becomes

larger.

We find the control limits for the Wilcoxon SRL CUSUM to be approximately the same as

those of the Wilcoxon SSR CUSUM. Therefore, we use the control limits in Table 3.1 also for

the Wilcoxon SRL CUSUM. For the same reason, we use the control limits given in Table 3.2

for the normal SRL CUSUM.
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3.2.2 Out-of-control behaviour

The SRL CUSUM exhibits an out-of-control feature that is different from the SSR CUSUM.

The latter CUSUM increases indefinitely after a shift occurred. In contrast, the SRL CUSUM

will continue to increase for a while after a shift, but will then start to decrease again to what

seems to be an in-control state. The following calculations demonstrate this feature in the special

case of the Wilcoxon score ψ(u) = u − 1
2 .

Define Y1, Y2, . . . to be i.i.d. quantities with distribution function F (y) and set Xτ+i =
Yτ+i + µ which has distribution function G(x) = F (x − µ). Then we have, for i ≥ 1,

rτ+i = 1 +
τ

∑
j=1

1(Yj < Yτ+i + µ) +
i−1
∑
j=1

1(Yτ+j + µ < Yτ+i + µ). (3.17)

Let Fτ denote the empirical distribution function of Y1, . . . , Yτ and let Gi denote the empirical

distribution function of Yτ+1, . . . , Yτ+i. Then,

rτ+i
τ + i + 1

= 1

τ + i + 1
+ τ

τ + i + 1
Fτ(Yτ+i + µ) +

i − 1

τ + i + 1
Gi(Yτ+i + µ).

Conditional upon Yτ+i = y,

E [ rτ+i
τ + i + 1

∣Yτ+i = y] = 1

τ + i + 1
+ τ

τ + i + 1
E [Fτ(y + µ)] +

i − 1

τ + i + 1
E [Fi(y)]

= 1

τ + i + 1
+ τ

τ + i + 1
F (y + µ) + i − 1

τ + i + 1
F (y).

Then,

E [ rτ+i
τ + i + 1

] = E [E [ rτ+i
τ + i + 1

∣Yτ+i]]

= 1

τ + i + 1
+ τ

τ + i + 1
E [F (Yτ+i + µ)] +

i − 1

τ + i + 1
E [Fi(Yτ+i)]

= 1

τ + i + 1
+ τ

τ + i + 1
E [F (Yτ+i + µ)] +

i − 1

τ + i + 1
(1

2
)

which converges to 1/2 as i → ∞, because 0 ≤ E [F (⋅ )] ≤ 1. Thus, for the Wilcoxon SRL

summand (3.11)

lim
i→∞

E [ξτ+i] = 0

for a fixed τ > 0. Intuitively, this result seems reasonable as well: The effect of the pre-shift

median on the post-shift sequential ranks diminishes as observations continue to accrue after

the shift. The sequential ranks then again become independent and uniformly distributed with

the result that E[ξτ+i] tends to zero so that the new median µ now functions as the in-control

value. The implication for statistical practice is that the signal from the SRL CUSUM should

be acted upon quickly.
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To examine the behaviour of the SRL CUSUM when a shift occurs at a “large” changepoint,

we will suppose that τ → ∞ and i → ∞, but that i/τ = O(1). Continuing from (3.17), we find

that for both τ and i large and a “small” µ

E [ rτ+i
τ + i + 1

] ≈ τ

τ + i + 1
E [F (Yτ+i + µ)] +

i − 1

τ + i + 1
E [F (Yτ+i)]

≈ τ

τ + i + 1
E [F (Yτ+i) + µf(Yτ+i)] +

i − 1

τ + i + 1
(1

2
)

≈ 1

2
+E [ τ

τ + i + 1
µf(Yτ+i)] .

Then we find that, in the special case ψ(u) = u − 1
2 ,

E [ξτ+i] ≈
τ

τ + i + 1
µ
√

12 E[f(Yτ+i)] ≈ τ log (τ + i + 2

τ + i + 1
)µ

√
12∫

∞

−∞
f2(y)dy

which is non-zero, implying that the out-of-control median of ξ will differ from the in-control

median, hence the change should be detectable.

Previously, we showed that the SSR CUSUM behaves in an out-of-control situation more

or less like the standard normal CUSUM with a linear drift. We now formulate an analogous

heuristic for the SRL CUSUM. Define θ by

θ = 1
√
η
∫

∞

−∞
ψ′(F (x))f2(x)dx (3.18)

with η = ∫
1
0 ψ

2(u)du −ψ2 and ψ = lim
i→∞

ψi.

Heuristic 3.2. Let ζ be “small” and let a persistent shift of “small” size µ1 occur at a “large”

changepoint τ . Then, the SRL CUSUM behaves approximately as would a standard normal

CUSUM with the same µ1, ζ and h when shifts of size µ1θτ log ( n
n−1) commence after n = τ . ∎

In the same manner in which Heuristic 3.1 was derived, the following calculations lead to

Heuristic 3.2. Based on Theorem 5.1 of Lombard (1983), in the special case s = −1, see Remark

1 on page 103 there, the heuristic is derived in the following manner. Define the partial sums

Sn = ∑ni=1(ξi − ζ). Suppose that µ1 = β/h and ζ = ∆/h, so that µ1 and ζ are “small” when h is

“large”. Then

{
S⌊h2t⌋
h

,0 ≤ t ≤ 1} DÔ⇒ {W (t) −∆t + βτ∗θ log (max( t

τ∗
,1)) ,0 ≤ t ≤ 1} (3.19)

as h → ∞ where W (t) denotes the standard Brownian motion. Transforming (3.19) back to

t = n/h2, τ∗ = τ/h2, ζ = ∆/h and µ1 = β/h, we find that for a “large” enough h

{Sn
h
,1 ≤ n ≤ ⌊h2⌋} D≈ {W ( n

h2
) − nζ

h
+ µ1
h
θτ log (max(n

τ
,1)) ,1 ≤ n ≤ ⌊h2⌋}

= 1

h
{W (n) − ζn + µ1θτ log (max(n

τ
,1)) ,1 ≤ n ≤ ⌊h2⌋} , (3.20)
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because the Brownian motion W (n/h2) has the same distribution as W (n)/h, that is,

{Sn,1 ≤ n ≤ ⌊h2⌋} D≈ {W (n) − ζn + µ1θτ log (max(n
τ
,1)) ,1 ≤ n ≤ ⌊h2⌋} .

Note that W (n) − ζn equals ∑nk=1(X∗
k − ζ), which are the partial sums figuring in the standard

normal CUSUM and where X∗
1 ,X

∗
2 . . . are i.i.d. N(0,1) quantities. Bhattacharya and Frierson

(1981) derive this result for the Wilcoxon score as a special case of (3.19).

3.2.3 Design of the CUSUM

Suppose we target a median shift of size µ. Analogous to the standard normal CUSUM, it

seems sensible to use the reference value ζ = µθ/2. For the Wilcoxon SRL score θ =
√

12 E[f(X)]
as a special case of (3.18). To gain an idea of the reference values that we are likely to encounter,

we calculate these (shown in Table 3.5) for standardised distributions and typical choices of the

target µ. Where the variance is infinite or undefined (the t2 and t1 distributions), we standardise

the distribution to have unit IQR. Thus, while the precise functional form of the underlying

distribution may be unknown, the values in Table 3.5 enable one to make a somewhat rational

choice of reference value after taking into account the likely tail thickness and skewness of the in-

control distribution. Observe that there is not substantial variation in the “optimal” reference

values at the various distributions. Since the out-of-control behaviour is determined by the

single parameter θ, rather than by the form of the distribution, a minor “misspecification” of

the “optimal” reference value should not have a great impact on the OOC ARL of the CUSUM.

In the case of the Wilcoxon SRL CUSUM, the reference value must not exceed
√

12, otherwise

the CUSUM will be and remain identically zero. However, it is unlikely in practice that interest

would centre on target shifts of sizes larger than 2 ×
√

12 = 6.928 standard deviations.

Table 3.5: Values of θ and reference values ζ for the Wilcoxon SRL CUSUM with target shift µ.

Distribution

normal t4 t3 t2 t1 Gumbel SN(±1) SN(±2) SN(±4)

θ 0.98 1.18 1.38 1.18 1.10 1.11 0.98 1.00 1.05

µ

0.25 0.12 0.15 0.17 0.15 0.14 0.14 0.12 0.13 0.13

0.50 0.25 0.30 0.35 0.30 0.28 0.28 0.25 0.25 0.26

1.00 0.49 0.59 0.69 0.59 0.55 0.56 0.49 0.50 0.53

Heuristic 3.2 provides us with a useful method of estimating the OOC behaviour of a

CUSUM prior to implementation. Suppose we fix a reference value ζ and a control limit h to

guarantee a nominal IC ARL value. We wish to estimate the OOC ARL of the CUSUM at

various choices of the changepoint and the true shift. Denote by W(µ1) the OOC ARL of the

SRL CUSUM (based on either the Wilcoxon or normal score) when a median shift of size µ1 > 0

occurs and by N(µ1θ) the OOC ARL of a standard normal CUSUM with the same ζ and h

when there are mean shifts of size µ1θτ log ( τ+i
τ+i−1) , i ≥ 1. Then, Heuristic 3.2 says that, for
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“small” ζ and “large” τ ,

W(µ1) ≈ N(µ1θ). (3.21)

There exist currently no explicit expressions or analytic approximations to either W(µ1) or

N(µ1θ) in the literature. Nevertheless, we can easily estimate the numerical value ofW (µ1) by

Monte Carlo simulation from the true underlying distribution and the approximation N(µ1θ)
by Monte Carlo simulation using only normal random numbers for a given µ1, ζ and τ .

With a view to practical design of the CUSUM, we now assess the degree to which the

approximation (3.21) may be useful. Towards this, we use Monte Carlo simulation in four

distributions – the normal and t3, which are symmetric, and the Gumbel and skew-normal(4),

which are asymmetric, all standardised to unit standard deviation. For τ = 100, we compare

N(µ1θ) with W(µ1) (based on the Wilcoxon score) in one-sided upper CUSUMs with nominal

IC ARL 500 for target shift sizes µ = 0.25 and 0.5. We take ζ ≈ θµ/2 as the reference value (we

are, for the moment, assuming that θ is known). Table 3.6 shows estimated OOC ARLs from

10 000 Monte Carlo trials per design. The control limits for the SRL CUSUM come from linear

interpolation in Table 3.1. In the table below, the triple (µ; ζ; h) denotes the target shift size,

the reference value and the control limit h that guarantees the nominal IC ARL. The true shift

sizes are µ1=0.125, 0.25, 0.375, 0.50, 0.75 and 1.00.

We are particularly interested in the approximation at shifts µ1 ≥ µ where the OOC ARL is

indicated in boldface in Table 3.6. In the normal and t3 distributions, the approximation (3.21)

fares acceptably well at µ = 0.25 and 0.5 and would most certainly be useful for the purpose of

designing the CUSUM. If, however, the distribution is skew, the results indicate that (3.21) is

less useful for design purposes.

Table 3.6: OOC ARL approximations for (3.21) if W is based on the Wilcoxon score.

Distribution θ (µ; ζ; h) Approx.
µ1

0.125 0.25 0.375 0.50 0.75 1.00

normal 0.98

(0.25; 0.12; 11.08)
W(µ1) 259 124 56 33 19 14

N(µ1θ) 276 126 55 32 17 12

(0.50; 0.25; 7.24)
W(µ1) 303 161 76 38 17 12

N(µ1θ) 305 164 74 35 15 10

t3 1.38

(0.25; 0.17; 9.22)
W(µ1) 218 73 31 20 12 10

N(µ1θ) 221 73 30 18 10 8

(0.50; 0.35; 5.66)
W(µ1) 278 118 44 21 11 8

N(µ1θ) 239 101 37 19 9 6

Gumbel 1.11

(0.25; 0.14; 10.26)
W(µ1) 265 114 51 28 16 12

N(µ1θ) 259 103 44 25 14 10

(0.50; 0.28; 6.68)
W(µ1) 310 168 76 35 15 10

N(µ1θ) 284 136 58 27 12 8

SN(4) 1.05

(0.25; 0.13; 10.64)
W(µ1) 267 123 54 31 17 13

N(µ1θ) 266 112 48 28 15 11

(0.50; 0.26; 7.07)
W(µ1) 317 178 85 39 16 11

N(µ1θ) 298 148 63 31 14 9
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In practical applications, θ is unknown of course. However, the methodology in Section

3.1.3 can be applied to obtain a consistent estimator of θ. Corresponding to θ̂, there exists a

known control limit ĥ (given ζ̂ = θ̂µ/2) that will guarantee that the Phase II IC ARL is equal

to the nominal value. This comes as a consequence of the independence of the Phase I and II

data. Table 3.6 was generated under the assumption that the true value of θ is known. If θ is

estimated from a sufficient amount of Phase I data, one can expect some degree of degeneration

in the quality of the approximation.

3.2.4 Comparison with the Hawkins and Deng and the Ross and Adams

CUSUMs

In this section, we compare the two-sided SRL CUSUM with the distribution-free HD and

RA CUSUMs discussed in Sections 2.5.2 and 2.5.3. In particular, we use the Wilcoxon SRL

CUSUM because it serves usefully as an omnibus CUSUM. We use data from a standardised

normal, t3 and skew-normal (α = 4) distribution. Table 3.7 shows estimated OOC ARLs (from

20 000 Monte Carlo trials) of the CUSUMs at a range of true shifts µ1. These shifts were induced

at the changepoints τ = 50 and τ = 250. To initiate the HD CUSUM, denoted by HD in the

table, we use the recommended 14 initial observations (Hawkins and Deng, 2010), while for the

RA CUSUM (denoted by RA in the table) we use the recommended 19 (Ross and Adams, 2012).

Thus, when we say that τ = 50 for the HD CUSUM, we mean that observations X1, . . . ,X14 are

used to initiate the CUSUM, X15, . . . ,X50 are in control and X51,X52, . . . are out of control.

For all the CUSUMs, the two-sided nominal IC ARL was specified at 500. For the SRL CUSUM

we use target shift sizes µ = 0.25, 0.5 and 1.0. Recall that neither the HD CUSUM nor the RA

CUSUM uses a reference value. In Table 3.7 the heading SRLµ denotes the SRL CUSUM given

the target µ, with the reference value ζ = µθ/2 and control limit h indicated in the last two rows

of the table. For the normal distribution θ = 0.98, for the t3 distribution θ = 1.38 and for the

SN(4) distribution θ = 1.05.

From Table 3.7 we observe the following: At small target shift µ ≤ 0.5, the SRL CUSUM

performs better (smaller OOC ARL) than both the HD and the RA CUSUMs given that the

true shift µ1 is small. We also see clearly the ability of the SRL CUSUM to be tuned to a specific

target. Observe in all three distributions that the HD CUSUM gives much the same OOC ARL

as the SRL CUSUM at the target µ = 0.5. When the target shift is large (e.g. µ = 1.00), the

HD and the RA CUSUMs perform better than the SRL CUSUM, which we expect because the

SRL CUSUM is designed specifically to detect small persistent shifts.
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Table 3.7: OOC ARL comparison of the Wilcoxon SRL CUSUM with the HD and RA CUSUMs in the stan-
dardised normal, t3 and skew-normal(α = 4) distributions.

normal data

τ = 50 τ = 250

µ1 SRL0.25 SRL0.5 SRL1.0 HD RA SRL0.25 SRL0.5 SRL1.0 HD RA

0.10 435 462 481 489 474 354 406 437 417 423

0.25 292 358 413 384 388 118 176 271 169 182

0.50 84 127 249 142 153 35 35 62 38 41

0.75 29 31 78 33 36 21 19 20 18 19

1.00 19 16 21 15 16 16 13 13 11 12

ζ 0.12 0.245 0.49

h 13.517 8.664 4.830

t3 data

τ = 50 τ = 250

µ1 SRL0.25 SRL0.5 SRL1.0 HD RA SRL0.25 SRL0.5 SRL1.0 HD RA

0.10 417 460 480 463 455 303 384 434 365 355

0.25 215 312 413 286 282 66 113 249 80 80

0.50 37 65 215 47 44 22 21 38 21 20

0.75 17 16 57 14 14 14 12 13 11 11

1.00 12 10 13 9 9 11 9 8 8 7

ζ 0.17 0.345 0.69

h 11.050 6.643 3.253

skew-normal(α = 4) data

τ = 50 τ = 250

µ1 SRL0.25 SRL0.5 SRL1.0 HD RA SRL0.25 SRL0.5 SRL1.0 HD RA

0.10 445 479 498 490 492 356 433 499 441 457

0.25 297 371 468 393 407 113 190 351 173 190

0.50 81 145 305 142 158 32 34 87 36 38

0.75 28 34 122 34 39 20 17 22 18 18

1.00 18 16 31 15 15 15 12 12 11 11

ζ 0.13 0.263 0.525

h 12.906 8.238 4.507

In the table above we assumed that we know the “optimal” reference value ζ for use in

the CUSUM. However, in practice one rarely knows a priori what the truly “optimal” reference

value should be. To evaluate the OOC ARL performance of the SRL CUSUM (based on the

Wilcoxon score) at “misspecified” ζs, we will conduct the following simulation. Suppose that the

data arise from a t3 distribution, but we choose the reference values appropriate for the normal

distribution; and that data arise from a normal distribution, but we choose the reference value

appropriate for the t3 distribution. We specify an overall ARL0 of 500. We induce median shifts

of various sizes µ1 = 0.1, 0.25, 0.5, 0.75 and 1.00 at the changepoints τ = 50 or τ = 250. The OOC

ARL estimates are shown in Table 3.8 where the two last rows give the “wrong” reference values

and their corresponding control limits. We see that when a smaller reference value is used, the

OOC ARL at small shifts are slightly smaller, while the reverse is true when a slightly larger

reference value is used. When a too large reference value is used, the OOC ARL estimates are

much larger (e.g. ζ = 0.69 instead of ζ = 0.49). This is to be expected, because the SRL CUSUM
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is designed with the aim of detecting small persistent shifts – which a target of µ = 1.0 is no

longer. Clearly, if tight control is required, a smaller rather than a larger ζ is preferred.

Table 3.8: OOC ARL estimates of the SRL CUSUM at “misspecified” reference values ζ.

normal data

τ = 50 τ = 250

µ1 SRL0.25 SRL0.5 SRL1.0 SRL0.25 SRL0.5 SRL1.0

0.10 453 466 489 377 435 465

0.25 316 373 438 139 217 336

0.50 96 178 315 34 41 105

0.75 28 46 153 19 18 28

1.00 17 16 50 14 12 13

ζ 0.17 0.345 0.69

h 11.05 6.643 3.253

t3 data

τ = 50 τ = 250

µ1 SRL0.25 SRL0.5 SRL1.0 SRL0.25 SRL0.5 SRL1.0

0.10 432 461 484 362 406 452

0.25 297 359 432 118 178 279

0.50 89 140 255 35 37 68

0.75 30 37 98 22 19 22

1.00 19 16 28 16 13 13

ζ 0.12 0.245 0.49

h 13.517 8.664 4.83
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4 Sequential rank CUSUMs for

scale

In this chapter, we construct sequential rank CUSUMs to detect a shift in scale. Let the

in-control observations X1, . . . ,Xτ have the density function f(x − µ), while the out-of-control

observations Xτ+1,Xτ+2, . . . have the density function g(x) = f((x−µ)/σ1)/σ1. A scale parame-

ter typically functions as an indicator of dispersion in the underlying distribution. The heading

of this chapter could therefore just as well read “Sequential rank CUSUMs for dispersion”.

When the distribution is in control, these CUSUMs are distribution free. In agreement with the

location CUSUMs, we distinguish between two scenarios: detecting a scale shift when (I) the

in-control median µ is specified; and (II) the in-control median µ is unspecified. We will not

assume any value of the in-control scale parameter σ. If, however, σ is known this information

cannot be usefully incorporated. This is because sequential ranks and ordinary ranks are scale

invariant. Thus, the properties of the rank-based procedures will be the same, whether σ is

known or not and, therefore, we can take σ = 1 without loss of generality.

While the location CUSUMs are scale invariant, their application nevertheless requires the

scale to remain constant. Running a scale CUSUM together with a location CUSUM enables one

to monitor the validity of this fundamental assumption. We develop unsigned sequential rank

scale CUSUMs for scenario II. A discussion of the sequential rank scale CUSUM for scenario I

can be found in Lombard and Van Zyl (2018).

4.1 The sequential rank scale CUSUM (median unknown)

4.1.1 In-control properties

When, at the onset of monitoring, either the in-control median is unknown or the symmetry

assumption is untenable, a useful CUSUM to detect a persistent shift in scale can be based on the

sequential ranks ri in (3.8). We assume that both the in-control median and scale are unknown.

The CUSUM recursion (2.5) can be based on the summands

ξi = (ψ ( ri
1 + i

) −ψi)
2

/ηi − 1, (4.1)
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which are, for i ≥ 2, independent with zero mean and where ψ is the score used in the SRL

CUSUM and ηi is given in (3.10) – see Section 3.2.1. Two possible choices are the squares of

the Wilcoxon summand (3.11),

ξi =
12(i + 1)
i − 1

( ri
1 + i

− 1

2
)
2

− 1, (4.2)

centred to have zero mean and which is reminiscent of the score used in the Mood test in Hájek

et al. (1999, Section 4.2); and the squares of the normal summand (3.12),

ξi = {Φ−1 ( ri
1 + i

)}
2

/ηi − 1, (4.3)

where ηi is given in (3.10). Observe that (4.3) is based on the score used in the two-sample

Klotz test (Hájek et al., 1999, Section 4.2). Thus, we will refer to the resulting CUSUMs as the

“Mood” (MSR) and “Klotz” (KSR) CUSUMs, respectively.

Tables 4.1 and 4.2 show control limits for the MSR and KSR CUSUMs, respectively, at a

range of reference values ζ. These were obtained by Monte Carlo simulation and cubic spline

interpolation in the manner set out in Section 3.2.1.1.

Table 4.1: Control limits for the MSR CUSUM.

IC ARL

ζ 100 200 300 400 500 1000 2000

0.000 7.991 11.676 14.528 16.972 19.050 27.363 39.112

0.100 5.747 7.638 8.875 9.764 10.529 12.976 15.605

0.150 5.044 6.557 7.479 8.197 8.717 10.545 12.382

0.200 4.472 5.715 6.492 7.034 7.501 8.910 10.363

0.250 4.038 5.117 5.735 6.207 6.582 7.717 8.910

0.300 3.675 4.598 5.138 5.553 5.850 6.815 7.835

0.400 3.078 3.830 4.237 4.560 4.789 5.537 6.312

0.500 2.638 3.236 3.592 3.831 4.019 4.633 5.235

Table 4.2: Control limits for the KSR CUSUM.

IC ARL

ζ 100 200 300 400 500 1000 2000

0.000 10.704 16.263 20.650 24.346 27.753 41.161 61.566

0.100 8.562 12.340 14.855 16.903 18.631 24.678 31.721

0.200 7.319 10.285 12.087 13.597 14.762 18.753 23.227

0.250 6.811 9.374 11.158 12.495 13.411 17.085 20.892

0.375 5.954 8.116 9.477 10.537 11.410 14.205 17.239

0.500 5.317 7.168 8.445 9.348 10.070 12.485 14.997

0.625 4.774 6.489 7.582 8.425 9.120 11.282 13.578

0.750 4.406 5.963 7.000 7.719 8.365 10.371 12.472

In order to gain an impression of how the MSR and KSR CUSUMs will perform compared

to CUSUMs based on efficient scores in a range of distributions, we compute the correlation

coefficient of the MSR and KSR scores with the efficient scores. The efficient score for a distri-

bution in a scale parameter family with density function f and distribution function F is (Hájek
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et al., 1999, p.18)

J(u) = −1 + F−1(u)(− f ′(F−1(u))
f(F−1(u))

) , (4.4)

which has finite variance I1(f) = Var[J(U)], the Fisher information. Analogous to the compar-

ison that we made in Section 3.2.1, we calculate the correlation coefficients between the MSR

score and the efficient score and that between the KSR score and the efficient score for the dis-

tributions (3.14), (3.15) and (3.16) and show these values in Table 4.3. The MSR score tends to

have higher correlation coefficients in the heavy-tailed t distributions. Since we seek robustness

against outliers, this provides some justification for focusing our attention on the MSR CUSUM.

Table 4.3: Correlation of the Mood and Klotz scores with the efficient scores (4.4).

Distribution

Score normal t4 t3 t2 t1 Gumbel SN(±1) SN(±2) SN(±4)

Mood 0.87 0.98 0.99 1.00 0.96 0.84 0.77 0.76 0.75

Klotz 1.00 0.95 0.92 0.87 0.74 0.97 0.86 0.81 0.76

4.1.2 Out-of-control behaviour

In Section 3.2.2 we showed that the SRL CUSUM behaves in an out-of-control situation

more or less like a standard normal CUSUM with a logarithmic drift. We now formulate a

similar heuristic for the sequential rank scale CUSUM. Define

θ1 = 2∫
∞

−∞
1

η
ψ(F (x))ψ′(F (x))xf2(x)dx. (4.5)

Heuristic 4.1. Let ζ be “small” and let a persistent scale increase of “small” size σ1 occur

at a “large” changepoint τ . Then, the sequential rank scale CUSUM behaves approximately

as would a standard normal CUSUM for the mean with the same ζ and h when shifts of size

θ1(logσ1)τ log ( n
n−1) commence after n = τ . ∎

Heuristic 4.1 can be formulated from Theorem 5.1 of Lombard (1983) along the same lines

as Heuristic 3.2, except that we replace µ1 and θ there by logσ1 and θ1 here.

The sequential rank scale CUSUM has OOC properties similar to those of the SRL CUSUM.

The aforementioned CUSUM will only increase for a limited time after a shift before the effect

of the pre-shift scale parameter on the post-shift sequential ranks will diminish and the CUSUM

will return to seemingly in control behaviour. To see this, consider the right-hand side of (3.20)

with τ fixed. Then,

E[ξτ+i] ≈ (logσ1)θ1τ log ( τ + i
τ + i − 1

)
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and

τ log ( τ + i
τ + i − 1

) = τ log (1 + 1

τ + i − 1
) ≈ τ

τ + i − 1
,

which is positive and for every fixed τ > 0, tends to zero as i→∞.

4.1.3 Design of the CUSUM

Suppose we target a scale shift of size ρ > 1. We can specify a reference value at the hand

of Heuristic 4.1. The fact that the drift is logarithmic, and not linear, implies that the optimal

reference value is unknown. Nevertheless, we will continue to propose

ζ = θ1 log ρ

2

as an appropriate reference value, where θ1 is defined in (4.5). Table 4.4, an analog of Table

3.5, shows a range of reference values for the MSR and KSR CUSUMs. To detect a downward

shift of size ρ < 1, the reference value is ζ− = −θ1 log ρ
2 . Observe again, as in Table 3.5, that the

“optimal” reference values do not vary extremely over the various distributions and, therefore,

we do not expect a major impact on the OOC ARL when there are minor “misspecifications”

in the reference value.

Table 4.4: Values of θ1 and reference values ζ for the MSR and KSR CUSUMs with target shift ρ.

Distribution

normal t4 t3 t2 t1 Gumbel SN(±1) SN(±2) SN(±4)

Mood score

θ1 1.1027 0.9351 0.8865 0.7999 0.6079 1.0118 1.0377 1.0306 0.9945

ρ

1.25 0.1230 0.1043 0.0989 0.0892 0.0678 0.1129 0.1158 0.1150 0.1110

1.50 0.2236 0.1896 0.1797 0.1622 0.1232 0.2051 0.2104 0.2089 0.2016

2.00 0.3822 0.3241 0.3072 0.2772 0.2107 0.3507 0.3596 0.3572 0.3447

Klotz score

θ1 2.0000 1.4377 1.3048 1.1026 0.7427 1.8470 1.8325 1.7368 1.5935

ρ

1.25 0.2231 0.1640 0.1456 0.0114 0.0829 0.2061 0.2045 0.1938 0.1778

1.50 0.4055 0.2980 0.2645 0.0208 0.1506 0.3744 0.3715 0.3521 0.3231

2.00 0.6931 0.5095 0.4522 0.0356 0.2574 0.6401 0.6351 0.6019 0.5523

To graphically illustrate that minor “misspecifications” in ζ do not have a disastrous effect

on the OOC ARL, we resort to Monte Carlo simulation. For illustrative purposes, we only apply

the MSR CUSUM, but we find the same results to be true when applying the KSR CUSUM.

We specify an ARL0 of 500 and obtain control limits for a range of reference values ζ = 0, 0.15,

0.30 and 0.50 from Table 4.1. We simulate data from a normal, t3 and SN(4) distribution and

induce various scale shifts 1 ≤ σ1 ≤ 3 at the changepoint τ = 250. Figure 4.1 shows plots of

the OOC ARL estimates from 20 000 Monte Carlo trials per design. The top two, middle two

and bottom two figures pertain to the normal, t3 and SN(4) distributions, respectively. The

right panels are magnified versions of the curves in the left panels for 2 ≤ σ1 ≤ 3. In the left
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panels we see that the smaller ζ is, the better the CUSUM is able to detect small increases away

from σ. In the right panels the situation is reversed, but the differences, except at ζ = 0, are

small enough not to be of much practical significance. Thus, if tight control is required, a small

positive reference value, say 0.1 ≤ ζ ≤ 0.25, should be used. Then, if a large shift occurs, the

OOC ARL will be much the same as that from a larger reference value. Overall, it is clear that

smaller reference values, rather than larger ones, are to be preferred. However, reference values

too close to 0 should be avoided.

Figure 4.1: OOC ARL estimates of the MSR CUSUM at four ζs and a changepoint of 250 for normal, t3 and
skew-normal (α = 4) data.
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If some in-control Phase I data V1, . . . , Vm are available, then we can estimate θ1 by the

methodology in Section 3.1.3. Observe that θ1 in (4.5) can be expressed as

θ1 = 2
1

η
E[ψ(F (V ))ψ′(F (V ))V f(V )].

Then a consistent estimator of θ1 is

θ̂1 =
2

mη

m

∑
j=1

1

η
ψ ( j

m + 1
)ψ′ ( j

m + 1
)Vm∶j f̂(Vm∶j)

where f̂ is the Gaussian kernel estimator in (3.7) and where Vm∶j is the jth order statistic of

V1, . . . , Vm, 1 ≤ j ≤m. Then, the estimated reference value is ζ̂ = θ̂1(log ρ)/2. Again, because the

Phase I and II data are independent and the CUSUM is distribution free, there exists a known

control limit h, given ζ̂, that will guarantee a Phase II IC ARL equal to the nominal value.

Just as in the case of the SRL CUSUM, Heuristic 4.1 provides us with a useful method of

estimating the OOC behaviour of a CUSUM prior to implementation. Suppose we fix a reference

value ζ and a control limit h to guarantee an ARL0. Denote by M(σ1) the OOC ARL of the

CUSUM (either MSR or KSR) when a scale shift of size σ1 occurs and by N(θ1 logσ1) the OOC

ARL of a standard normal CUSUM with the same ζ and h when there are mean shifts of size

(logσ1)θ1τ log ( τ+i
τ+i−1), i ≥ 1. Then, Heuristic 4.1 says that, for “small” ζ and “large” τ ,

M(σ1) ≈ N(θ1 logσ1). (4.6)

Since there exist currently no explicit expressions or analytic approximations to either

N(θ1 logσ1) orM(σ1), we again use Monte Carlo simulation to estimate these quantities using

only normal random numbers.

To show that the approximation (4.6) may be useful in designing the CUSUM, we generate

Table 4.5, an analog of Table 3.6. Observe that the approximation fares well when the distribu-

tion is symmetric or moderately skew, but is less useful when the distribution is heavily skewed.

To obtain the OOC ARLs in the table, we use Monte Carlo simulation (10 000 trials per design).

We apply the upper MSR CUSUM to data from four standardised distributions – the normal

and t3, which are symmetric, and the Gumbel and skew-normal(4), which are asymmetric, all

standardised to unit standard deviation. We induce a scale shift σ1 = 1.10, 1.25, 1.375, 1.50,

1.75 or 2.00 at the changepoint τ = 250. The control limits (to guarantee an ARL0 of 500) come

from linear interpolation in Table 4.1. The triple (ρ; ζ; h) denotes the target shift size, the

reference value and the control limit. As in Table 3.6, and in some of the other tables to follow,

the entries in boldface denote the OOC ARL approximations at shifts σ1 ≥ σ.
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Table 4.5: OOC ARL approximations for (4.6) if M is based on the Mood score.

Distribution θ1 (ρ; ζ; h) Approx.
σ1

1.1 1.25 1.375 1.50 1.75 2.00

normal 1.10

(1.25; 0.12; 9.77)
M(σ1) 201 62 36 26 18 14

N(θ1 logσ1) 162 61 37 26 17 13

(1.50; 0.22; 7.11)
M(σ1) 231 71 37 26 17 13

N(θ1 logσ1) 186 71 40 27 16 12

t3 0.89

(1.25; 0.10; 10.57)
M(σ1) 235 86 50 35 23 18

N(θ1 logσ1) 181 80 49 35 23 18

(1.50; 0.18; 7.97)
M(σ1) 263 105 56 37 22 17

N(θ1 logσ1) 195 91 54 37 22 16

Gumbel 1.01

(1.25; 0.11; 10.17)
M(σ1) 216 72 42 30 20 16

N(θ1 logσ1) 173 72 43 31 20 15

(1.50; 0.20; 7.50)
M(σ1) 251 84 45 31 19 14

N(θ1 logσ1) 191 83 47 32 19 14

SN(4) 0.99

(1.25; 0.11; 10.17)
M(σ1) 175 52 31 23 16 13

N(θ1 logσ1) 173 72 43 31 20 15

(1.50; 0.20; 7.50)
M(σ1) 194 56 31 22 15 12

N(θ1 logσ1) 191 83 47 32 19 14

The above table was generated on the assumption that θ1 is known, which is rarely the

case in practice. When using an estimate θ̂1, we can use N(θ̂1 logσ1) as an approximation to

M(σ1). Then it should be kept in mind that there may be some degeneration in the quality of

the approximation. The construction of an estimate θ̂1 was discussed above.

4.1.4 Comparing the KSR CUSUM with the NSS CUSUM

Suppose that data arise from a N(µ,σ2) distribution where both µ and σ are unknown.

Since both procedures are scale and location invariant, we may assume that µ = 0 and σ = 1

without loss of generality. However, the construction of the CUSUMs treat µ and σ as if

they were unknown. The NSS standard deviation CUSUM can be used to detect a scale shift

(see Section 2.3.2). However, it should be kept in mind that the NSS CUSUM suffers from

between-practitioner variation in that the IC ARL conditional upon the estimates based on the

initial observations, is not guaranteed to equal the nominal IC ARL. Currently there exists no

parametric CUSUM which does not suffer from this problem. Notwithstanding this, we show

here a comparison between the unconditional ARLs of the NSS CUSUM and the ARL of the

KSR CUSUM (which has zero between-practitioner variation). From Table 4.3 we saw that the

correlation between the Klotz score and the efficient score in a normal distribution is 1.00. This

suggests that, when the data are in fact normal, we can expect the KSR CUSUM to perform

well.

We generate data from a N(0,1) distribution and introduce various scale shifts σ1 at three
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changepoints τ = 50, 100 and 250. The target shift sizes are ρ = 1.25 and 1.5. The nominal

IC ARL is set at 500. The NSS CUSUM is initiated after 3 observations, these being used

to obtain initial estimates of µ and σ2. The reference values and control limits for the KSR

CUSUM come from Tables 4.4 and 4.2. For the NSS CUSUM, the reference value is given in

(2.11) and the control limits come from anygeth.exe of Hawkins and Olwell (1998, p.229-230).

Table 4.6 shows OOC ARLs of the two upper CUSUMs at the range of shifts indicated in the

first column. Throughout small scale shifts σ1, the KSR performs equally well or better than

the NSS CUSUM and for large τ (τ > 100) it performs as well as the NSS CUSUM over the full

range of σ1 values. It is only at the small changepoint τ = 50 where the KSR CUSUM is clearly

not competitive with the NSS CUSUM. This is explained by the fact that the conditional IC

ARL of the NSS CUSUM at τ = 50 is consistently less than the nominal 500.

Table 4.6: OOC ARL comparison of the KSR and NSS CUSUMs for normal data.

τ = 50 τ = 100 τ = 250

KSR NSS KSR NSS KSR NSS

ρ 1.25 1.50 1.25 1.50 1.25 1.50 1.25 1.50 1.25 1.50 1.25 1.50

σ1

1.10 321 350 315 348 250 274 259 289 168 191 201 229

1.25 166 214 140 174 88 116 76 103 50 59 52 67

1.50 50 77 32 42 26 32 21 23 20 20 18 19

1.75 23 31 15 15 16 16 12 12 13 12 11 11

2.00 16 17 10 9 12 12 9 9 10 9 8 8

ζ 0.22 0.41 1.24 1.46

h 14.20 10.96 15.44 12.17

4.2 The sequential rank CUSUM for survival data

Survival data is often modeled by an exponential-type distribution, such as the Weibull

distribution. The densities of these distributions typically have modes at or close to zero and

decrease monotonically toward the right tail and are parameterised to have a scale parameter

only.

The following sequential rank scale CUSUM can be applied in such situations. If we trans-

form {X1, . . . ,Xτ , σXτ+1, . . .} to

{logX1, . . . , logXτ , logσXτ+1, . . .} = {logX1, . . . , logXτ , logσ + logXτ+1, . . .},

the scale shift in X translates to a location shift in logX. Because the log function is one-to-one

and monotone increasing, the logX sequence has the same sequential ranks as the X sequence.

Thus, the SRL CUSUM can be applied (see Section 3.2) with

ξi =
√

12(i + 1)
i − 1

( ri
i + 1

− 1

2
) . (4.7)
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In the special case where the Xi values come from an exponential-type, such as the Weibull

distribution, the Savage score is optimal when testing for a scale shift (Hájek et al., 1999, p.106).

The summand of the Savage score is

ξi =
i

∑
j=i−ri+1

1

j
≈ log ( i

i − ri + 1
)

≈ − log (1 − ri
1 + i

)

≈ ri
1 + i

,

which, when standardised, is the same as (4.7).

The GSS CUSUM (see Section 2.3.3) is the only such parametric CUSUM available that

can be applied to such data. However, the GSS CUSUM also suffers from in-control between-

practitioner variation.

The HD CUSUM can also be applied directly. We will now compare for an exponential

distribution the OOC ARLs of the SRL and the HD CUSUM. We specify an ARL0 of 500 and

the target shift sizes as log ρ = log 1.5 and log 2.0 in the SRL CUSUM. We induce various shifts

σ1 after the changepoints τ = 50 or τ = 200 and we show the OOC ARL estimates (from 20 000

Monte Carlo trials) in Table 4.7. The control limits and reference values for the SRL CUSUM

are shown in the last two rows of the table. Clearly, the SRL CUSUM performs better than the

HD, especially when the true shift σ1 is small.

Table 4.7: OOC ARL estimates of the HD and SRL CUSUMs for standardised exponential data.

τ = 50 τ = 200

σ1 SRLlog 1.5 SRLlog 2.0 HD SRLlog 1.5 SRLlog 2.0 HD

1.10 391 412 475 294 329 425

1.25 251 297 398 139 176 238

1.50 118 158 235 48 62 72

1.75 54 76 115 28 30 36

2.00 30 45 55 21 20 24

ζ 0.22 0.38

h 7.899 5.309
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5 Girschick-Rubin (GR) CUSUMs

based on sequential ranks

In this chapter, we construct distribution-free GR CUSUMs for a location and a scale shift

along the same lines as the CUSUMs we constructed in Chapters 3 and 4. We again distinguish

between the scenarios set out in Chapter 1, namely detecting a shift when (I) the in-control

median is specified and (II) when it is unspecified. The GR CUSUMs are defined as in Section

2.4. To avoid confusing the GR CUSUMs in this chapter with the CUSUMs that we introduced

in Chapters 3 and 4, we will refer to those in Chapters 3 and 4 as Page-type CUSUMs.

5.1 The signed sequential rank (SSR) GR CUSUM

5.1.1 In-control properties

Suppose X1,X2, . . . ,Xτ are symmetrically distributed around zero and that Xτ+1,Xτ+2, . . .
each have the same distribution as X1 + µ. Our aim is to detect this median shift as soon as

possible after the changepoint τ . We make no assumption regarding the numerical value of the

in-control scale parameter σ of X, except that it remains constant.

An appropriate choice of ξi is the SSR summand (3.1) for application in the GR CUSUM

(2.14), replacing the Xi with ξi. The proposed SSR GR CUSUM recursion is D0 = 0 and

Di = (1 +Di−1) exp (2ζ {ξi − ζ}) (5.1)

where ζ is a reference value.

The control limits for the Wilcoxon and Van der Waerden SSR GR CUSUMs, based on the

scores (3.3) and (3.4), respectively, are given in Tables 5.1 and 5.2, respectively. These control

limits were generated by Monte Carlo simulation and cubic spline interpolation in the manner

set out in Section 3.2.1.1. However, here we choose the standard normal GR CUSUM control

limits (from (2.16)) as starting values in the algorithm. These control limits are approximately

the same as those of the standard normal GR CUSUM for ζ ≤ 0.25 and a large enough nominal

IC ARL.
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Table 5.1: Control limits for the Wilcoxon SSR GR CUSUM.

IC ARL

ζ 100 200 300 400 500 1000 2000

0.05 94.340 188.680 283.020 377.860 471.700 940.655 1893.367

0.10 89.000 178.510 270.891 356.020 446.020 896.559 1778.575

0.15 83.970 170.351 251.920 339.934 425.357 838.649 1675.962

0.20 79.230 158.460 237.690 316.920 395.956 792.953 1596.642

0.25 74.760 149.520 224.550 299.050 373.600 724.589 1431.821

0.375 62.950 125.890 184.044 238.265 298.568 573.107 1085.053

0.50 51.702 97.749 141.514 189.194 227.826 417.194 800.985

Table 5.2: Control limits for the Van der Waerden SSR GR CUSUM.

IC ARL

ζ 100 200 300 400 500 1000 2000

0.05 94.416 190.806 282.670 378.195 474.576 935.923 1876.796

0.10 89.488 175.766 267.354 354.032 445.081 884.219 1774.917

0.15 83.140 167.845 253.443 335.063 421.524 844.982 1670.371

0.20 79.667 160.263 240.673 317.766 395.560 788.146 1594.134

0.25 75.427 150.978 224.917 302.088 373.034 744.495 1490.629

0.375 63.991 128.590 189.882 254.517 318.599 639.878 1283.644

0.50 56.283 108.704 161.695 218.773 273.193 546.388 1489.709

5.1.2 Out-of-control behaviour

We will show in this section that the SSR GR CUSUM exhibits similar out-of-control

behaviour as the SSR Page-type CUSUM (see Section 3.1), namely that the SSR GR CUSUM

behaves out of control approximately as would a standard normal GR CUSUM.

Define Sn = ∑ni=1 ξi. The SSR GR CUSUM written in the form (2.13) is

Di =
i−1
∑
j=0

exp(µ(Si − Sj) −
(i − j)µ2

2
) .

Using the Heuristic 3.1, we infer the following heuristic.

Heuristic 5.1. Let ζ be “small” and let a persistent shift of “small” size µ1 occur at a “large”

changepoint τ . Then, the SSR GR CUSUM behaves approximately as would a normal GR

CUSUM with the same µ1, ζ and h when a shift of size µ1θ commences after τ . ∎
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5.1.3 Design of the GR CUSUM

Suppose we target a median shift of size µ. Then, for a fixed i and a “large” τ we have

shown in (3.6) that E[ξτ+j] ≈ µθ where θ is defined in (3.5).

Heuristic 5.1 says that, for a “small” ζ and µ1 and a “large” τ the SSR GR CUSUM should

be approximated well by a normal GR CUSUM, that is, (3.21) should hold whereW(µ1) denotes

the OOC ARL of an SSR GR CUSUM at a true shift µ1 and where N(µ1θ) denotes the OOC

ARL of the corresponding standard normal GR CUSUM. In order to assess the usefulness of

this approximation, Table 5 (shown in Appendix B) was generated using the Wilcoxon SSR GR

CUSUM. The results in the table indicate that the approximation is indeed very well suited for

designing the CUSUM, even at small shifts µ1 (in contrast to the approximation for the Page-

type SSR CUSUM, which is useful only for µ1 ≥ µ). Recall that to obtain an estimate θ̂ of θ, the

methodology in Section 3.1.3 can be followed. Then we can use N(µ1θ̂) as an approximation to

W(µ1).

5.1.4 Comparison with the SSR CUSUM

In this section we compare the SSR GR and Page-type (see Section 3.1) CUSUMs. We

choose the Wilcoxon score because of its high overall correlation with the efficient scores in a

range of tν distributions which, therefore, serves usefully as an omnibus score. Here we have two

CUSUMs that are precisely comparable in that neither one has between-practitioner variation

and both are based on the same assumptions. Table 5.3 shows estimated OOC ARLs (from 20

000 independent Monte Carlo trials per case) of both CUSUMs for data from a standardised

normal (θ = 0.98) and t3 (θ = 1.38) distribution shifted by an amount µ1 after the changepoints

τ = 50 or τ = 250. The target shifts are µ = 0.25,0.5 and 1.0 and we use ζ = µθ/2 as the reference

value (see Table 3.5). In the table we abbreviate the Page-type CUSUM by “SSR” and the GR

CUSUM by “GR”. The pair of target and reference value (µ; ζ) and the corresponding control

limit that guarantees an upper ARL0 of 500 are shown in the bottom rows of each table.

Clearly, the GR CUSUM performs much better than the Page-type CUSUM when the true

shift µ1 is small, while there is little or no difference between the OOC ARLs at large shifts µ1.

Therefore, we can conclude that the GR has much to recommend it over the Page-type CUSUM.

This corresponds to the conclusion that Moustakides et al. (2009) arrived at when they compared

the standard normal GR with the standard normal Page (1954) CUSUM, namely that the only

significant difference in performance is at small shifts µ1.
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Table 5.3: OOC ARL comparison of the SSR GR CUSUM with the SSR Page-type CUSUM.

normal data

τ = 50 τ = 250

µ1 SSR GR SSR GR SSR GR SSR GR SSR GR SSR GR

0.10 161 149 195 176 242 230 163 142 190 175 242 228

0.25 59 59 70 63 100 89 58 55 69 63 96 87

0.50 26 28 25 25 32 30 26 25 25 24 31 29

0.75 17 19 15 16 16 15 17 17 15 15 15 15

1.00 13 15 11 12 11 10 13 13 11 11 10 7

(µ; ζ) (0.25; 0.1225) (0.50; 0.245) (1.00; 0.49)

h 10.92 433.60 7.35 374.13 4.20 232.90

t3 data

τ = 50 τ = 250

µ1 SSR GR SSR GR SSR GR SSR GR SSR GR SSR GR

0.10 127 114 164 150 234 213 124 113 162 147 227 209

0.25 40 38 49 44 85 72 40 37 48 43 79 68

0.50 17 18 17 16 23 20 17 18 16 16 21 19

0.75 12 13 10 11 11 10 12 12 10 10 10 10

1.00 10 10 8 8 7 7 10 10 8 8 7 7

(µ; ζ) (0.25; 0.1725) (0.50; 0.345) (1.00; 0.69)

h 9.16 409.94 5.73 316.99 2.84 129.91

5.1.5 An efficient self-starting GR CUSUM for a normal distribution

Suppose that data X1,X2, . . . ,Xτ are N(0,1) quantities and Xτ+1,Xτ+2, . . . are N(µ1,1)
quantities. Then the standard normal GR CUSUM can be applied. The VdW SSR GR CUSUM

would be the “optimal” sequential rank CUSUM in this situation. However, the SSR GR

CUSUM cannot use the information that the standard deviation is one, since it it scale invariant.

Nevertheless, we can expect the VdW SSR CUSUM to perform well in this situation. The

following Monte Carlo simulation results tend to bear out this conclusion. We estimate OOC

ARLs (10 000 Monte Carlo trials) for both upper CUSUMs with an ARL0 of 500 and target

shifts µ = 0.25 and 0.5 at a range of mean shifts µ1 and at two changepoints τ = 50 and 250.

The estimated OOC ARLs at the shifts shown in the first column are shown in Table 5.4 where

the subscripts on the NGRµ and VdWµ denote the target shifts. Observe that in all instances

it is true that the OOC ARLs of the two CUSUM are virtually equal. Overall, we conclude that

the VdW SSR GR CUSUM is in no way inferior in its out-of-control performance to the normal

GR CUSUM.

Next, suppose that the standard deviation σ of the normal distribution is unknown. Then

the standard normal GR CUSUM cannot be applied, while the VdW SSR GR can still be

applied since no assumption of the value of σ was necessary to implement it. The VdW SSR

GR CUSUM is therefore the only existing GR CUSUM which can be applied successfully if it
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is known that the underlying distribution is normal. Furthermore, the in-control properties of

the VdW CUSUM remain valid even if there is deviation from the normality assumption.

Table 5.4: OOC ARL comparison of the VdW SSR GR CUSUM with the normal GR CUSUM.

τ = 50 τ = 250

µ NGR0.25 VdW0.25 NGR0.5 VdW0.5 NGR0.25 VdW0.25 NGR0.5 VdW0.5

0.10 146 147 173 173 140 141 176 176

0.25 58 59 61 62 53 53 60 60

0.50 27 27 23 24 25 25 23 24

0.75 17 18 14 15 16 17 14 14

1.00 13 14 10 11 12 12 10 11

ζ 0.125 0.25

h 432.187 433.303 373.571 373.034

5.2 The sequential rank location GR CUSUM

5.2.1 In-control properties

When the symmetry assumption is untenable or when the in-control median is unknown, a

useful GR CUSUM can be constructed using the unsigned sequential ranks, based on the same

assumptions as the SRL CUSUM in Section 3.2. The SRL summand ξi given in (3.9) can be

applied to the recursion (5.1). Special cases of ξi are the Wilcoxon SRL summand given in (3.11)

and the normal SRL summand given in (3.12). The resulting CUSUM is abbreviated to the SRL

GR CUSUM. Because the SRL ξi summand has the same in-control asymptotic distribution as

the SSR ξi summand, the control limits in Tables 5.1 and 5.2 apply to the Wilcoxon and the

normal SRL GR CUSUMs, respectively.

5.2.2 Out-of-control behaviour

The Heuristic 3.2 now leads directly to the following.

Heuristic 5.2. Let ζ be “small” and let a persistent shift of “small” size µ1 occur at a “large”

changepoint τ . Then, the SRL GR CUSUM behaves approximately as would a standard normal

GR CUSUM for the mean with the same µ1, ζ and h when shifts of size µ1θτ log ( n
n−1) commence

after n = τ . ∎

We can compare quantitatively the OOC behaviour of the SRL GR CUSUM with that of

the Page-type SRL CUSUM (see Section 3.2) for different distributions in a similar way in which

we conducted the comparison in Section 5.1.4. Some simulation results are shown in Table 7
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of Appendix B to support the conclusion that there is a practical difference between the OOC

ARLs of the two CUSUMs at small shifts µ1. The indication is that the GR CUSUM shows

better performance than the Page-type CUSUM.

5.2.3 Design of the GR CUSUM

Suppose we target a location shift of size µ. Then, E[ξτ+i] ≈ µθ is non-zero for a “large”

τ and a fixed i, but becomes zero if we fix τ and let i → ∞ (see Section 3.2.2). The definition

of θ is given in (3.18). Thus, just like the Page-type CUSUM, the SRL GR CUSUM will only

increase for a while after a shift and will then revert back to a seemingly in-control state as it

takes on the new median as the current value.

Heuristic 5.2 says that, for a “small” ζ and a “large” τ , the approximation (3.21) should

hold whereW(µ1) denotes the OOC ARL of a SRL GR CUSUM given a median shift size µ1 > 0

and where N(µ1θ) denotes the OOC ARL of the GR CUSUM for a standard normal mean with

the same ζ and h when shifts of size µ1θτ log ( τ+i
τ+i−1), i ≥ 1 occur after the changepoint τ . To

illustrate that this approximation indeed fares very well and would most certainly be useful for

designing the CUSUM, we construct Table 6 (an analogue of Table 5) given in Appendix B.

Again, in contrast to the Page-type CUSUM, the approximation seems to be useful also at small

values of µ1. Recall that an estimate θ̂ of θ can be obtained by the methodology explained in

Section 3.1.3. Then we can use N(µ1θ̂) as an approximation to W(µ1).

5.3 Sequential rank scale GR CUSUMs

In this section, we construct sequential rank GR CUSUMs to detect a scale shift. Let

X1, . . . ,Xτ have the density function f(x − µ), while Xτ+1,Xτ+2, . . . have the density function

f((x − µ)/σ1)/σ1 and where τ denotes the changepoint. We construct sequential rank GR

CUSUMs for scenario II where µ is unknown. A consequence of the scale invariance of sequential

ranks is that these GR CUSUMs cannot usefully incorporate any numerical information about

the value of the in-control scale parameter σ. The sequential rank scale GR CUSUM recursion is

given by (2.17) where we replace Xi with a sequential rank score function ξi. For the case where

µ is known or when the distribution is concentrated on the positive axis, analogous constructions

of the GR CUSUMs can be made. An application will be shown in Chapter 6.
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5.3.1 The sequential rank scale GR CUSUM (median unknown)

GR CUSUMs for scale shifts can be constructed using the recursion (2.17) with Xi there

replaced by sequential rank score functions ξi, such as (3.11) and (3.12). Tables 5.5 and 5.6

show control limits for the MSR and KSR GR CUSUMs, respectively.

Table 5.5: Control limits for the MSR GR CUSUM.

ρ

Nominal IC ARL

100 200 300 400 500 1000 2000

1.05 91.033 171.102 244.800 310.088 371.186 621.416 994.452

1.10 76.289 130.105 174.909 210.426 244.639 368.753 531.892

1.15 62.846 99.319 127.033 149.470 170.816 245.657 339.060

1.20 51.664 78.448 96.936 113.354 126.212 174.287 236.300

1.25 42.587 62.683 77.602 89.115 98.501 132.909 176.040

1.30 36.028 51.765 62.958 71.568 79.086 105.021 137.350

1.40 27.203 37.425 44.481 49.725 54.645 70.918 90.221

1.50 21.126 28.265 33.162 36.793 39.981 50.900 64.048

1.75 12.828 16.465 18.847 20.767 22.215 27.217 32.834

Table 5.6: Control limits for the KSR GR CUSUM.

ζ

Nominal IC ARL

100 200 300 400 500 1000 2000

1.05 92.723 184.174 271.080 360.106 449.637 898.639 1799.358

1.10 83.381 162.491 239.800 325.938 398.048 797.846 1581.211

1.15 75.092 146.142 217.388 286.714 356.182 714.673 1413.447

1.20 67.780 130.696 196.838 258.300 320.574 642.608 1287.126

1.25 61.064 118.163 173.981 229.121 286.125 574.951 1158.767

1.30 55.836 108.483 160.442 210.916 262.007 537.729 1055.231

1.40 47.028 89.005 132.914 176.885 217.634 441.020 906.368

1.50 40.030 76.701 112.904 150.689 187.838 378.919 769.071

1.75 28.907 53.603 79.874 105.633 130.735 258.573 538.108

We can compare the out-of-control behaviour of the MSR GR CUSUM with that of the

Page-type CUSUM for different distributions similar to the comparison that we drew in Section

5.2.2. Some simulation results are shown in Table 8 of Appendix B. The conclusion is once again

that the GR CUSUM performs better than the Page-type CUSUM in that the OOC ARLs at

small shifts σ1 are substantially smaller than those of the Page-type CUSUM.
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6 Applications

We implement our sequential rank CUSUMs in three applications, namely monitoring shifts

in the ash content of coal, monitoring the mutual consistency between replicates of laboratory

measurements on coal ash; and monitoring the time intervals between successive coal mining

disasters.

6.1 Monitoring ash content

Coal ash is a waste product which forms when coal is burned by industrial plants to produce

electricity. The percentage ash present is an indication of the quality of the coal, because more

ash means more waste product, and vice versa. We have available measurements X1,X2, . . . ,X75

of the percentage ash per unit mass present in batches of coal. These observations were generated

by an X-ray fluorescent (XRF) gauge that measures the amount of coal present in a batch of

coal on a conveyor belt, which transports the coal from the mine to a blending site. These

measurements are used by the blending site to create a blend of coal with an approximately

constant ash content. It is a known fact that the XRF gauge cannot provide accurate readings

when the mass of the of coal on the conveyor is too small. Then, the gauge is apt to generate

either excessively large or small measurements. These events are known in SPC literature as

transient special causes. Ideally, the SPC protocol should be robust against such causes in order

to prevent frequent false signals.

In this application, the protocol is to monitor for shifts in the median ash level away from

the current value. The effect of the transient causes mentioned above, is for the data to exhibit

spurious outliers. Thus, use of a robust CUSUM is indicated.

The designs of the Page-type CUSUMs that we apply are as follows. We run the two-sided

Wilcoxon SRL each with an individual ARL0 of 2000 (an overall ARL0 of 1000). The target

median shift away from the current value is specified as µ = 1.00 standard deviation and we

choose θ = 1.00, ζ = 0.5 and h = 5.34, which should be appropriate for a distribution with tails

that are moderately heavier than those of the normal distribution. If the CUSUM signals at

N = n, we restart the CUSUM at observation n + 1. Table 6.1 shows the run lengths N , the

changepoint estimates τ̂ and the direction of the putative shift for these data. The changepoint

estimate is the usual one, namely the last observation at which the CUSUM sequence was at

zero prior to signalling (Page, 1954). The CUSUM plots are shown in the left panel of Figure 6.1
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with the estimated changepoints indicated by the vertical dashed lines. Figure 6.2 shows the full

data set together with a fitted robust Loess regression curve. It seems clear that a substantial

shift in the median has occurred somewhere after observation 40 and that special causes were in

effect prior to that. The changepoint at 30 detected by the Wilcoxon SRL CUSUM is no doubt

due to the presence of these special causes. Observe from the Wilcoxon CUSUM sequence in

Figure 6.1 that the sequence reverts back to the control limit after the signal. This shows clearly

what we meant in previous chapters by “the CUSUM returns to what seems to be an in-control

state after some time”.

Table 6.1: Run lengths and changepoint estimates of the Wilcoxon SRL CUSUM and the direction of the
putative shift.

N τ̂ Direction

Wilcoxon SRL CUSUM
40 30 upward

51 43 downward

The right panel in Figure 6.1 shows an SRL CUSUM based on the efficient score in a

Cauchy distribution (see Appendix A), namely

ξi =
√

2 sin(2π ( ri
1 + i

− 1

2
)) .

With the same reference value ζ = 0.5, a control limit guaranteeing a two-sided ARL0 of 1000 is

h = 5.25 (see Table 2 of Appendix A). This CUSUM signals only once at N = 53 and indicates

a changepoint τ̂ = 41. If a smaller reference value ζ = 0.25 is used, there is again only one

changepoint indicated at τ̂ = 41. Thus, from an operational point of view, this CUSUM should

be preferred when it is known, a priori, that the process is prone to the frequent occurrence of

special transient causes.

Figure 6.1: In the left panel is the two-sided SRL Wilcoxon CUSUM and in the right panel the Cauchy
CUSUM for the XRF ash data. The axes are the time index (horizontal) and the CUSUM sequence (vertical).
The dashed horizontal barriers are the control limits and the dashed vertical lines are the changepoint estimates
of the respective CUSUMs.
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Figure 6.2: A time series plot of the XRF ash data {X1, . . . ,X75} where the solid line is a Loess regression
with smoothing span 0.8. The vertical dashed lines are the changepoint estimates from Table 6.1. The encircled
observations are those caused by transient special causes.

0 10 20 30 40 50 60 70 80
28.5

29

29.5

30

30.5

31

31.5

We proceed to run the GR CUSUMs on the data to see how the results compare. We

fix the individual ARL0s at 2000 and the same target shift sizes as above. Then to detect

a median shift we apply the two-sided Wilcoxon and Cauchy SRL GR CUSUMs, both using

ζ = 0.50, with respective control limits h = 800.985 and h = 730.520 from Table 5.1 and Table

3 of Appendix A. The Wilcoxon GR CUSUM signals a decrease at observation 49, while the

Cauchy GR CUSUM signals a decrease at time 55. Both CUSUMs only signal once. The

respective CUSUM sequences are shown in Figure 6.3. Since both CUSUMs are always positive,

the standard changepoint estimate, namely the last time that the hitting CUSUM was at zero,

is not applicable. Instead, as an ad hoc measure we propose to estimate the changepoint as

the last index at which the hitting CUSUM is less than the non-hitting CUSUM. While this

seems like a reasonable estimate, its statistical properties still need to be investigated. This,

however, is outside the scope of this thesis. Using the proposed estimate, the Wilcoxon and

Cauchy CUSUMs indicate τ̂ = 44 and τ̂ = 42.

The only substantial difference between the two analyses, is that the Wilcoxon GR CUSUM

seems to be more robust against the effects of the transient special causes than the Wilcoxon

Page-type CUSUM. This is certainly a feature that warrants further investigation.
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Figure 6.3: In the left and right panels are the two-sided Wilcoxon and Cauchy GR CUSUMs, respectively, for
the XRF data. The solid lines are the upward sequences, while the dash-dotted lines are the downward sequences.
The horizontal dashed barriers are the control limits and the vertical dashed lines are the changepoint estimates.
We only show the sequences after time 30 to prevent distorting the figures.
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6.2 Monitoring inter-laboratory consistency

In this application we have available independent pairs of assay values (V1,i, V2,i), i ≥ 1

which are the estimated percentages of the ash content of a batch of coal randomly split into two

identical subsamples. Ideally, the V1 and V2 should be true replicates which would imply that the

laboratories produce mutually consistent results. In particular, E[Xi] = 0 where Xi = V1,i − V2,i.
The focus here is on the variability of the X values since an increase in variability would imply

that one or both of the laboratories are not following the prescribed laboratory analysis protocols.

Since well-calibrated laboratory equipment is typically involved, we would not expect either

V1 or V2 to have distributions which are substantially non-normal. Thus, we choose θ1 = 1. To

detect an increase in the scale of a target size ρ = 1.5 away from the current level, we choose

ζ = 0.20 from Table 4.4 with the corresponding control limit h = 10.363 which gives the upper

MSR Page-type CUSUM a nominal ARL0 of 2000. The left panel in Figure 6.4 shows the MSR

CUSUM. This CUSUM signals at time N = 217 with a changepoint estimate τ̂ = 129. The right

panel in Figure 6.4 shows the upper MSR GR CUSUM, which uses the recursion

Di = (1 +Di−1)ρ−11 exp(1

2
(1 − ρ21) ξ2i )

where

ξ2i = 12( ri
1 + i

− 1

2
)
2

and where ρ21 = θ1 log ρ + 1 = 1.405. The control limit that guarantees an ARL0 of 2000 is

h = 260.05. This GR CUSUM signals an increase at time N = 196, which is 21 observations

earlier than the Page-type CUSUM.
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The changepoint estimate for the SRL GR CUSUM proposed in Section 6.1 is not applicable

to the scale GR CUSUM. Nevertheless, looking at the CUSUM plot it would seem that the last

substantial increase towards the control limit starts at around observation number 125, which

is very close to the changepoint estimate from the MSR CUSUM. Obtaining a changepoint

estimate for the scale GR CUSUM is a matter for further research.

Figure 6.4: The upper MSR Page-type (left) and GR (right) CUSUMs for the laboratory ash data against the
time index. The horizontal dashed barriers are the control limits, while the vertical dashed line in the left panel
is the changepoint estimate.
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In retrospect, we plot a time series of the data X1, . . . ,X250 in the left panel of Figure 6.5

where we indicate the changepoint estimate τ̂ = 129 by a dashed line. We also plot a Loess

regression on the data. From this plot it seems plausible that a scale shift occurred after the

changepoint estimate. Also, we construct a normal Q-Q plot of the presumably in-control data

X1, . . . ,X129 shown in the right panel of Figure 6.5. This indicates that the right tail of the

distribution may be slightly lighter than that of a normal distribution. Evidently, our assumption

that the data would not deviate too much from normality was sound.

Figure 6.5: A time series plot of the ash data {X1, . . . ,X250} is shown in the left panel where the solid line is
a Loess regression with smoothing span 0.8. The dashed line indicates the changepoint estimate from the MSR
CUSUM. In the right panel is a normal Q-Q plot of {X1, . . . ,X129}.
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In some standards documents a requirement is that the standardised ratio Z =X/Y , where

Y = (V1 +V2)/2, must serve as the measure of agreement between V1 and V2 to be monitored. If

V1 and V2 indeed follow normal distributions, it is shown in Appendix C that the density function

of Z exhibits, to a good approximation, tail behaviour similar to that of a t3 distribution. In

light of these applications, it is all the more surprising that control procedures for distributions

with heavier tails have not been given proper attention.

6.3 Monitoring intervals between coal mining disasters

The data analysed here consist of independent measurements V1, . . . , V190 of the time in-

tervals (measured in days) between successive mining explosions in which 10 or more men were

killed (Jarrett, 1979). The left panel in Figure 6.6 shows a scatter plot of the full data sequence

log(Vi + 1) together with a Loess regression curve. From it we see that there seems to be an in-

crease in the median from around time 100. In Figure 6.6 we also show an exponential Q-Q plot

of the data V1, . . . , V100 and see that the distribution of V seems to have a somewhat heavier tail

than the exponential distribution. This could be a result of underestimation of the changepoint

which would imply that some of the data in the Q-Q plot arose from the out-of-control distri-

bution. In any case, a possible non-exponential distribution does not invalidate the CUSUM

which is distribution free. Typically, it is of interest to monitor disaster data as a measure of

the extent of control of safety procedures at coal mines. More dispersed time intervals between

disasters indicate a lower frequency of accidents, while less dispersed time intervals indicate the

contrary. It is now of interest to see what conclusions are reached if a CUSUM had been applied

to these data from the outset.

Figure 6.6: A time series plot (left) of the mining disasters data log(Vi + 1), i = 1, . . . ,190 where the solid line
is a Loess regression with smoothing span 0.8. In the right panel is a standard exponential distribution Q-Q plot
of the data {V1, . . . , V100}.
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We apply the CUSUMs in Section 4.2 to the Y = logV data in which case a shift in the

rate of explosions would present itself as a shift in the median of the Y values. We assume
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that the tails of the distribution of the V are not substantially different from those of the

exponential distribution. Therefore, we do not anticipate that the tails of the distribution of Y

will be much heavier than those of a Gumbel distribution. Thus, we choose θ = 1.10. Suppose

that a scale shift in the V of 50% of the (unknown) current value is regarded as beneficial

(increase) or detrimental (decrease). Then the reference values are ζ ≈ 1.1 log(1.5)/2 = 0.22

and ζ− ≈ −1.1 log(0.5)/2 = 0.38. To guarantee an overall ARL0 of 500, the control limits of

the Wilcoxon SRL CUSUM are h = 7.899 and h− = 6.141. The CUSUM signals an increase at

observation N = 128 with τ̂ = 104, which seems to be valid when looking at the time series plot.

We show these CUSUMs in Figure 6.7.

Figure 6.7: The two-sided Wilcoxon SRL CUSUM sequences for the coal mining disaster intervals, given an
overall ARL0 of 500. The vertical dashed line is the changepoint estimate, while the horizontal dashed barriers
are the control limits.
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Because the data do not arise with a high frequency and because there is little cost when a

false alarm is signalled, we may feel that a smaller ARL0 would be more suitable. We will choose

instead an overall ARL0 of 100 and reapply the CUSUM. The control limits corresponding to ζ

and ζ− given above are h = 6.070 and h− = 4.212. Then the CUSUM signals an increase at time

N = 127 with τ̂ = 104, leaving the results virtually unchanged.
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7 Epilogue

We conclude this thesis with a summary of our main conclusions and we offer a few re-

marks concerning future research into the field of sequential rank CUSUMs. When referring to

“CUSUMs” in the remainder of this section, we do not merely refer to the Page (1954) CUSUMs,

but also to those of Girschick and Rubin (1952), unless stated otherwise.

This study had as its objective the construction of Page (1954) and Girschick and Rubin

(1952) CUSUMs based on signed and unsigned sequential ranks to detect small shifts in location

or scale. We expanded on work done by Van Zyl (2015) and Lombard and Van Zyl (2018) on

signed sequential rank Page-type CUSUMs to a class of unsigned sequential rank CUSUMs.

The former CUSUMs are tailor made for situations where the in-control median is known and

specified, while the latter CUSUMs can be used whenever the in-control distribution is not

necessarily symmetric or when the in-control median is unknown. In designing sequential rank

scale CUSUMs, one should keep in mind that these CUSUMs cannot usefully incorporate any

numerical information regarding the in-control scale parameter. This comes as a consequence

of the scale invariant nature of sequential (and non-sequential) ranks. We also constructed

sequential rank GR CUSUMs. We believe that this thesis makes a significant contribution to

the literature on GR CUSUMs by providing an omnibus GR CUSUM design which may be used

in distributions other than the normal. In particular, we showed that these GR CUSUMs have

much to recommend them over the Page-type CUSUMs.

All of these sequential rank CUSUMs have the distinguishing features that they are distribu-

tion free, are fully self starting and have zero between-practitioner average run length variation.

That is, no parametric specification of the underlying distribution is required a priori to find a

known control limit that guarantees an in-control average run length equal to a specified nominal

value. In particular, it was possible to create once-and-for-all tables of control limits for the vari-

ous CUSUMs, which is quite satisfactory from a practical stance. The only specification required

in the designs of these CUSUMs is a reference value. The only restriction is that the reference

value cannot be excessively (and impractically) large, e.g. larger than
√

12 in the case of the

unsigned sequential rank location CUSUM, to prevent the CUSUM from being and remaining

identically equal to zero. One can also choose a reference value arbitrarily, rather than from

a Phase I data sample; the in-control average run length will still be guaranteed. Indications

were that minor misspecifications in the “optimal” reference value do not result in disastrously

incorrect out-of-control average run lengths and, thus, an arbitrarily chosen reference value is

warranted. Therefore, no Phase I sample is required for our CUSUMs to initiate. However,

we provided some simulation results indicating that the use of a smaller rather than a larger
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reference value is preferred. However, the presence of a relatively small Phase I sample can aid

the effective design of the CUSUM in tailoring its out-of-control behaviour to the specifications

of the data, in which case the in-control average run length is still guaranteed to be equal to

the nominal value. This comes as a result of the independence of the sequential ranks of the

Phase I and the Phase II data. Finally, a table summarising the design, assumptions, strengths

and limitations of all of our sequential rank CUSUMs are given in Table 7.1 at the end of this

Epilogue.

We formulated heuristics for the out-of-control behaviour of these CUSUMs, the result

being that the out-of-control average run length can be approximated by that of a standard

normal CUSUM with an appropriately chosen drift. This result makes it possible to design a

CUSUM prior to its implementation. The only CUSUM for which we did not formulate such

a heuristic, is the sequential rank scale GR CUSUM. Furthermore, we showed that when the

underlying distribution is normal with an unknown variance, our sequential rank CUSUMs using

a Van der Waerden-type statistic can be applied, without it being in any way in its performance

inferior to the standard normal CUSUM which assumes a known variance. In addition, using

the sequential rank CUSUM in this setting completely removes the issue of between-practitioner

variation which besets parametric CUSUMs. Furthermore, we indicated use of a Wilcoxon

statistic in an omnibus version of the CUSUMs because of its high overall correlation with the

efficient scores in various types of distributions. In one of our practical applications, we also

used a CUSUM based on a Cauchy score, which we showed by means of an application to be

useful when special transient causes are apt to occur frequently.

In addition, we illustrated that the CUSUMs using monotone scores, for example the

Wilcoxon or Van der Waerden score, are not subject to the problem that larger shifts may

be harder to detect than smaller shifts, as is the case in some parametric CUSUMs designed

for heavy-tailed distributions. This is because the sequential rank score functions are monotone

functions of the out-of-control shift parameter. Thus, our CUSUMs provide an ideal solution

when it is known that the underlying distribution has rather heavy tails.

We compared quantitatively our CUSUMs with their competitors, such as the CUSUMs of

Hawkins and Deng (2010) or Ross and Adams (2012) and found that generally the sequential

rank CUSUMs performed similarly or better. In addition, the sequential rank CUSUMs involve

use of a reference value, making the CUSUMs flexible for tuning to a specified target shift, which

the CUSUMs of Hawkins and Deng (2010) or Ross and Adams (2012), in their present form, are

unable to do. We were able to relate the out-of-control behaviour of the sequential rank CUSUMs

to a specified target shift by using an appropriately chosen reference value. Furthermore, we

compared the sequential rank GR CUSUMs to the sequential rank Page-type CUSUMs: not

only did we find that, in general, the out-of-control average run lengths of the GR CUSUMs are

smaller at small true shifts than those of the Page-type CUSUMs, but we also found that, for

a given score function, they seem to be more robust against the effect that spurious outliers or
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special transient causes may have on the data. This is most certainly a feature that warrants

some further research.

In the literature it is typically assumed that the CUSUMs have a unit Type I error, that is

that they will signal when in control regardless of whether a shift actually occurred. This “fact”

seems to be assumed purely on intuitive grounds. Providing rigorous proofs to substantiate this

intuition is a topic for further research.

With regard to changepoint estimators, we offer the following remarks. We have applied the

usual changepoint estimator given by Page (1954). There exists currently no generally accepted

changepoint estimator for the GR CUSUM even for the case of a standard normal distribution.

In our data analysis we saw that a plausible changepoint estimator for the location two-sided GR

CUSUM is the last observation where the hitting CUSUM was below the non-hitting CUSUM.

The statistical properties of this proposed estimator need further investigation. However, this

ad hoc estimator would not be suited to either the one-sided location GR CUSUM or the scale

GR CUSUM. Finding changepoint estimators for the class of sequential rank GR CUSUMs is

an open problem.

An examiner has remarked on the possibility that “the same factors that cause a location

shift would often lead to an increase in volatility as well.” One way of addressing this would

be to run location and scale CUSUMs in tandem in all applications. However, some care would

have to be exercised in stating the overall IC ARL of such a scheme since the two CUSUMs do

not operate independently – it is unlikely that the overall IC ARL would be equal to one half

of the nominal IC ARL of the two components. Furthermore, if a shift in location occurs, it is

fairly certain that the scale CUSUM will also signal as a result of the shift. An after-the-fact

analysis would then reveal the true nature of the shift.
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Table 7.1: A summary of the features, assumptions, strengths and limitations of our various sequential rank
CUSUMs.
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Appendices

A Cauchy CUSUMs

Let X1, . . . ,Xn be i.i.d random variables from the Cauchy distribution with density and

distribution function

f(x) = 1

π(1 + x2)
,

F (x) = 1

π
tan−1(x) + 1

2
.

We are interested in testing the hypothesis H0 ∶ µ = 0 against the alternative H1 ∶ µ > 0. Then

the density of the Xi under the alternative is f(x − µ). The LMP test for an upward change in

location – see for instance Rao (2002, p.455) – is based on the score statistic

n

∑
i=1

∂

∂µ
log f(Xi − µ) =

n

∑
i=1

∂
∂µf(Xi − µ)
f(Xi − µ)

evaluated in the point µ = 0 and where f(x−µ) is the density of X. Let U be a uniform random

variable on (0,1). Then we have

∂
∂µf(X − µ)
f(X − µ)

∣
µ=0

= 2X

1 +X2

D= 2F−1(U)
1 + (F −1(U))2

=
2 tan (π (U − 1

2
))

1 + tan2 (π (U − 1
2
))

=
2 sin (π (U − 1

2
)) / cos (π (U − 1

2
))

1 + sin2 (π (U − 1
2
)) / cos2 (π (U − 1

2
))

=
2 sin (π (U − 1

2
)) cos (π (U − 1

2
))

cos2 (π (U − 1
2
)) + sin2 (π (U − 1

2
))

= 2 sin(π (U − 1

2
)) cos(π (U − 1

2
))

= sin(2π (U − 1

2
)) (1)

Since the quantities ri/(1+i) converge in distribution to a U(0,1) random variable, the sequential

rank analogue of (1) is

sin(2π ( ri
1 + i

− 1

2
)) ,
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which results in the use of the statistics

ξi =
√

2 sin(2π ( ri
1 + i

− 1

2
)) ,

which are for i ≥ 2 independent with zero mean and unit variance.

Tables 2 and 3 give control limits for the resulting Cauchy CUSUMs.

Table 2: Control limits for the Cauchy SRL CUSUM.

Nominal IC ARL

ζ 100 200 300 400 500 1000 2000

0.00 9.217 13.352 16.459 19.249 21.393 30.683 43.932

0.05 7.780 10.585 12.615 14.139 15.424 20.024 25.148

0.10 6.722 8.789 10.208 11.232 12.164 14.970 17.994

0.15 5.891 7.510 8.547 9.382 9.990 12.015 14.103

0.20 5.205 6.495 7.338 7.990 8.457 10.011 11.651

0.25 4.632 5.749 6.425 6.960 7.291 8.576 9.865

0.30 4.166 5.118 5.653 6.098 6.412 7.470 8.541

0.40 3.400 4.095 4.530 4.848 5.075 5.839 6.615

0.50 2.801 3.339 3.664 3.899 4.084 4.674 5.259

Table 3: Control limits for the Cauchy SRL GR CUSUM.

Nominal IC ARL

ζ 100 200 300 400 500 1000 2000

0.05 95.765 192.439 285.674 381.390 476.601 964.311 1913.501

0.10 93.132 183.361 275.425 367.908 452.787 898.857 1809.996

0.15 88.594 176.599 261.351 350.731 432.588 856.823 1691.013

0.20 84.564 165.496 249.283 319.383 409.970 798.850 1558.596

0.25 80.590 156.995 231.363 305.003 376.361 727.209 1435.899

0.30 75.430 149.052 214.924 279.291 350.728 674.588 1300.577

0.40 66.266 124.975 178.107 235.537 286.417 538.215 1032.902

0.50 55.733 100.700 141.267 181.302 219.092 399.776 731.185

The values of θ defined in (3.18) on page 28 corresponding to the Cauchy score were

calculated for a range of distributions. These are shown in the θ row of Table 4. The correlation

coefficients between the efficient score (3.13) in a location parameter family and the Cauchy

score were also calculated for these distributions and are shown in the “Correlations” row of

Table 4.

Table 4: Values of θ for the Cauchy SRL CUSUM and the correlation coefficients with the
efficient scores (3.13).

Distribution

normal t4 t3 t2 t1 Gumbel SN(±1) SN(±2) SN(±4)

θ 0.65 1.00 1.24 1.19 1.41 0.52 0.67 0.79 1.19

Correlations 0.66 0.84 0.88 0.94 1.00 0.47 0.60 0.63 0.62
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B Supplementary tables for the GR CUSUMs

With reference to Section 5.1, we give Table 5 below; and with reference to Section 5.2, we

give Tables 6 and 7 below.

Table 5: SSR GR CUSUM OOC ARL approximations if W is based on the Wilcoxon score.

Distribution θ (µ; ζ; h) Approx.
µ1

0.125 0.25 0.375 0.50 0.75 1.00

normal 0.98

(0.25; 0.12; 436.716)
W(µ1) 116 56 36 26 18 14

N(µ1θ) 114 55 35 26 17 13

(0.50; 0.245; 371.901)
W(µ1) 144 63 35 24 15 11

N(µ1θ) 142 62 35 24 15 11

t4 1.18

(0.25; 0.148; 422.202)
W(µ1) 100 45 28 21 14 11

N(µ1θ) 100 44 27 20 13 10

(0.50; 0.295; 342.683)
W(µ1) 126 50 28 19 12 9

N(µ1θ) 126 51 28 19 11 8

t3 1.38

(0.25; 0.173; 416.949)
W(µ1) 87 38 24 18 12 10

N(µ1θ) 88 37 23 17 11 8

(0.50; 0.345; 321.306)
W(µ1) 115 43 24 16 10 8

N(µ1θ) 110 42 23 15 9 7

Table 6: SRL GR CUSUM OOC ARL approximations for (3.21) if W is based on the Wilcoxon score.

Distribution θ (µ; ζ; h) Approx.
µ1

0.125 0.25 0.375 0.50 0.75 1.00

normal 0.98

(0.25; 0.12; 436.716)
W(µ1) 171 69 40 28 18 14

N(µ1θ) 164 70 40 28 18 13

(0.50; 0.245; 371.901)
W(µ1) 215 88 43 27 16 12

N(µ1θ) 219 85 43 26 15 11

t3 1.38

(0.25; 0.173; 416.949)
W(µ1) 130 45 26 19 13 10

N(µ1θ) 164 50 26 17 11 8

(0.50; 0.345; 321.306)
W(µ) 180 58 27 17 11 8

N(µ1θ) 258 81 33 18 10 7

Gumbel 1.11

(0.25; 0.139; 429.563)
W(µ1) 161 61 34 24 16 12

N(µ1θ) 163 62 33 23 15 11

(0.50; 0.278; 355.301)
W(µ1) 218 87 40 24 14 10

N(µ1θ) 216 79 37 22 13 9

SN(4) 1.05

(0.25; 0.131; 433.278)
W(µ1) 165 66 37 26 17 13

N(µ1θ) 167 65 37 25 16 12

(0.50; 0.263; 361.778)
W(µ1) 229 90 41 26 15 11

N(µ1θ) 216 84 39 24 14 10
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Table 7: OOC ARL comparison of the SRL Page-type CUSUM with the SRL GR CUSUM.

normal data

τ = 50 τ = 250

µ1 SRL GR SRL GR SRL GR SRL GR SRL GR SRL GR

0.10 348 323 383 364 411 403 236 202 287 264 332 317

0.25 185 162 235 209 295 281 78 70 102 87 158 145

0.50 52 48 69 58 129 104 27 27 29 27 40 36

0.75 22 24 22 20 44 33 17 18 16 16 17 16

1.00 15 17 13 13 14 13 13 14 11 11 11 10

(µ; ζ) (0.25; 0.1225) (0.50; 0.245) (1.00; 0.490)

h 10.92 433.60 7.35 374.13 4.20 232.90

t3 data

τ = 50 τ = 250

µ1 SRL GR SRL GR SRL GR SRL GR SRL GR SRL GR

0.10 324 254 365 320 422 377 199 131 251 180 310 263

0.25 131 110 190 167 279 265 49 45 68 60 132 116

0.50 25 25 37 32 100 81 18 18 17 17 25 23

0.75 14 14 13 12 26 20 12 12 10 11 11 10

1.00 11 11 9 9 9 9 9 10 8 8 7 7

(µ; ζ) (0.25; 0.173) (0.50; 0.345) (1.00; 0.690)

h 9.16 416.95 5.73 321.31 2.84 131.70

skew-normal(4) data

τ = 50 τ = 250

µ1 SRL GR SRL GR SRL GR SRL GR SRL GR SRL GR

0.10 352 323 399 379 429 413 240 205 300 264 358 343

0.25 190 167 253 219 334 307 77 66 113 92 189 160

0.50 50 46 76 61 167 132 26 26 28 26 51 41

0.75 20 22 22 20 58 44 16 17 15 15 18 16

1.00 14 16 12 13 18 15 12 13 11 11 10 10

(µ; ζ) (0.25; 0.132) (0.50; 0.263) (1.00; 0.525)

h 10.58 435.86 7.03 367.07 4.93 214.26
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Table 8 below shows a comparison between the MSR Page-type and GR CUSUMs from

Section 5.3.

Table 8: OOC ARL comparison of the MSR Page-type CUSUM with the MSR GR CUSUM.

normal data

τ = 50 τ = 250

ρ 1.25 1.50 2.00 1.25 1.50 2.00

σ1 MSR GR MSR GR MSR GR MSR GR MSR GR MSR GR

1.10 336 306 362 290 363 320 209 138 239 165 253 197

1.25 161 158 195 139 217 156 64 54 76 57 94 62

1.50 46 68 61 47 82 47 26 28 26 26 28 26

1.75 24 42 25 27 31 24 18 20 17 18 17 17

2.00 14 33 17 21 18 17 14 17 13 14 12 12

ζ 0.123 0.223 0.381

ρ2
1 1.245 1.446 1.762

h 9.766 215.382 7.109 125.305 4.950 71.253

t3 data

τ = 50 τ = 250

ρ 1.25 1.50 2.00 1.25 1.50 2.00

σ1 MSR GR MSR GR MSR GR MSR GR MSR GR MSR GR

1.10 347 342 365 329 381 341 238 159 266 192 298 228

1.25 208 222 236 190 271 202 87 69 105 75 133 86

1.50 78 114 95 82 128 80 35 35 36 34 42 35

1.75 38 72 42 44 63 39 23 24 22 23 23 23

2.00 25 54 25 31 32 25 18 20 17 17 16 16

ζ 0.099 0.180 0.308

ρ2
1 1.199 1.361 1.617

h 10.594 253.792 7.929 154.608 5.725 89.591

skew-normal(α = 4) data

τ = 50 τ = 250

ρ 1.25 1.50 2.00 1.25 1.50 2.00

σ1 MSR GR MSR GR MSR GR MSR GR MSR GR MSR GR

1.10 292 292 322 271 346 291 172 121 198 142 222 167

1.25 119 146 149 114 185 125 50 47 56 48 68 51

1.50 34 62 40 40 55 36 23 25 22 23 22 22

1.75 20 41 20 24 22 20 16 18 15 17 14 15

2.00 15 32 14 18 14 15 13 15 12 15 11 12

ζ 0.109 0.199 0.340

ρ2
1 1.221 1.401 1.686

h 10.122 233.836 7.500 138.320 5.375 79.700
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The control limits, obtained by Monte Carlo simulation, for the normal GR CUSUM from

Section 2.4 to detect a standard deviation shift are given in Table 9.

Table 9: Control limits for the normal GR CUSUM.

ρ

Nominal IC ARL

100 200 300 400 500 1000 2000

1.05 91.20 181.29 275.90 366.82 458.58 926.05 1839.47

1.10 84.41 168.43 252.46 339.44 425.66 854.41 1716.75

1.15 77.14 157.56 236.64 316.37 399.55 780.13 1581.68

1.20 72.75 143.14 217.14 285.02 364.84 724.40 1471.88

1.25 68.24 136.75 203.49 273.53 341.81 676.91 1370.00

1.30 62.63 126.53 191.04 248.45 321.32 637.66 1284.16

1.40 54.90 112.57 169.43 223.86 280.92 549.38 1111.16

1.50 49.49 99.18 150.23 199.84 249.89 500.65 1006.45

0.75 38.87 76.88 115.74 143.04 192.13 389.46 767.06

0.98 96.84 193.00 290.62 390.85 485.10 974.85 1966.23

0.90 94.84 190.82 285.79 382.49 476.40 951.20 1905.31

0.85 92.11 187.02 282.55 374.83 472.09 945.59 1882.31

0.80 91.68 182.62 271.33 363.39 464.28 907.58 1809.25

0.75 87.99 178.54 267.64 355.08 447.56 901.00 1798.33

0.70 86.33 174.45 260.13 348.25 433.01 878.79 1755.48

0.60 80.46 165.26 252.28 321.96 410.83 826.60 1676.67

0.50 75.27 154.98 229.64 307.44 376.46 757.77 1517.37

0.25 59.49 117.18 180.40 241.28 293.47 601.14 1184.60

C Computations for the density of the ratio of two independent

normal random variables

Lemma C.1. Let V1 and V2 be two independent N(µ,σ2) random variables and set

X = V1 − V2 and Y = (V1 + V2)/2.

If µ/σ is large, then the tails of the probability density function of Z = X/Y are proportional to

the tails of the density of a t distribution with 3 degrees of freedom.

Proof. Observe that V1−V2 follows a N(0,2σ2) distribution and that V1+V2 follows a N(2µ,2σ2)
distribution. We want to find the density function of

Z = 2
V1 − V2
V1 + V2

DÔ 2
N(0,1)

N (
√

2µ/σ,1)
∶= 2

X1

X2
.

Set b =
√

2µ/σ. From the independence of V1 and V2 follows the independence of X1 and X2

and then

P(X1

X2
∈ du∣X2 = a) = P(X1 ∈ d(ay)) =

∣a∣√
2π
e−

1
2
a2y2

dy
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and

P(X2 ∈ da) =
1√
2π
e−

1
2
(a−b)2

da.

Then

P(X1

X2
∈ dy) = ∫

∞

−∞
∣a∣√
2π
e−

1
2
a2y2 1√

2π
e−

1
2
(a−b)2

da

= 1

2π
∫

∞

−∞
∣a∣ exp [a

2y2

2
− (a − b)2

2
]da

= 1

2π
∫

∞

−∞
∣a∣ exp [−a

2y2

2
− a

2

2
− b

2

2
+ ab]da

= 1

2π
e−

b2

2 ∫
∞

−∞
∣a∣ exp [−a

2y2 − 2ab + a2

2
]da

= 1

2π
e−

b2

2 ∫
∞

−∞
∣a∣ exp [−a

2(1 + y2) − 2ab + b2/(1 + y2)
2

+ b
2/(1 + y2)

2
]da

= 1

2π
exp [−b

2

2
+ b

2/(1 + y2)
2

]∫
∞

−∞
∣a∣ exp

⎡⎢⎢⎢⎢⎢⎣
−
(a

√
1 + y2 − b/

√
1 + y2)

2

2

⎤⎥⎥⎥⎥⎥⎦
da

= 1

2π
exp [−b

2

2
+ b

2/(1 + y2)
2

]∫
∞

−∞
∣a∣ exp

⎡⎢⎢⎢⎢⎣
−
(a − b/(1 + y2))2 (1 + y2)

2

⎤⎥⎥⎥⎥⎦
da

= 1
√

2π
√

1 + y2
exp [−b

2

2
+ b

2/(1 + y2)
2

] × ∫
∞

−∞
∣a∣

√
1 + y2

√
2π

exp [(a − b
2/(1 + y2))2(1 + y2)

2
]da

= 1
√

2π
√

1 + y2
exp [−b

2

2
+ (b2/(1 + y2))

2
]E [∣N ( b

(1 + y2)
;

1

(1 + y2)
)∣]

= 1√
2π(1 + y2)

exp [−b
2

2
+ b

2/(1 + y2)
2

]E [∣N ( b

(1 + y2)1/2
; 1)∣] .

Set v = b/
√

1 + y2. We proceed to evaluate E [∣N (v; 1)∣] in the following calculations.

E [∣N (v; 1)∣] = 1√
2π
∫

∞

0
a(e

−(a+v)2
2 + e

−(a−v)2
2 )da

= 1√
2π

(∫
∞

0
ae−

(a+v)2
2 da + ∫

∞

0
ae

−(a−v)2
2 da)

= 1√
2π

(∫
∞

0
(a + v)e−

(a+v)2
2 da − ∫

∞

0
ve−

(a+v)2
2 da + ∫

∞

0
(a − v)e

−(a−v)2
2 da − ∫

∞

0
ve

−(a−v)2
2 da)

= 1√
2π

(2 exp(−v2/2) − v
√

2πP(N(−v; 1) > 0) + v
√

2πP(N(v; 1) > 0))

=
√

2

π
exp(−v2/2) + v (P(N(v; 1) > 0) −P(N(−v; 1) > 0))

=
√

2

π
exp(−v2/2) + v (1 − 2 P(N(v; 1) < 0))

=
√

2

π
exp(−v2/2) + v (1 − 2Φ(−v)) .
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By substituting v back to b/
√

1 + y2, we obtain

E

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR
N

⎛
⎝

b√
1 + y2

; 1
⎞
⎠

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
=
√

2

π
exp(− b2

1 + y2
/2) + b√

1 + y2
⎛
⎝

1 − 2Φ
⎛
⎝
− b√

1 + y2
⎞
⎠
⎞
⎠
.

Then, combining these calculations we find that

fX1/X2
(y) = 1√

2π(1 + y2)
exp(− b2y2

2(1 + y2)
) ×

⎧⎪⎪⎨⎪⎪⎩

√
2

π
exp(− b2

2(1 + y2)
) + b√

1 + y2
⎛
⎝

1 − 2Φ
⎛
⎝
− b√

1 + y2
⎞
⎠
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

= 1

π(1 + y2)
exp(−b

2

2
) + b√

2π(1 + y2)3/2
exp(− b2y2

2(1 + y2)
)
⎛
⎝

1 − 2Φ
⎛
⎝
− b√

1 + y2
⎞
⎠
⎞
⎠
.

It is probable that the last expression is already available somewhere in the literature. However,

we have been unable to find an appropriate reference.

Note that the first term on the right-hand side of this last equation is proportional to

the density of a Cauchy distribution, which implies that the ratio X1/X2 has no moments. In

practice, of course, (V1 + V2)/2 cannot be exactly normally distributed because ash values must

always be positive. In fact, in practical situations the ratio b = µ/σ is typically very large so

that the first term is negligible for practical purposes. Thus, the density function fX1/X2
is

approximately equal to

fX1/X2
(y) ≈ C b√

2π(1 + y2)3/2
exp(− b2y2

2(1 + y2)
)
⎛
⎝

1 − 2Φ
⎛
⎝
− b√

1 + y2
⎞
⎠
⎞
⎠
, (2)

where C is a constant. A Taylor expansion for large ∣y∣ now gives y2/(1 + y2) ≈ 1 and

1 − 2Φ
⎛
⎝
− b√

1 + y2
⎞
⎠
≈ 1 − 2

⎛
⎝

Φ(0) − b√
1 + y2

φ(0)
⎞
⎠
=
√

2

π

b√
1 + y2

.

Then the right-hand side of (2) is, thus, approximately equal to

C
b√

2π(1 + y2)3/2
exp(−b

2

2
)
√

2

π

b√
1 + y2

= C
b2

π(1 + y2)(3+1)/2
exp(−b

2

2
)

which is proportional to the density in the tail of a t3 distribution. ∎
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