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Abstract

Collateral management is becoming an ever more complex area requiring
sophisticated systems and technology. Collateral optimisation aims to op-
timise funding costs and balance sheet utilisation when allocating assets to
meet a range of liabilities. The problem can be modelled as a mathematical
optimisation problem, with the objective to minimise the cost of the posted
collateral whilst meeting all collateral calls, and satisfying a diverse range
of constraints. In practice, constraints such as lot sizes, concentration limits
and eligibility criteria could result in a problem that becomes difficult to
solve in a reasonable amount of time. This paper presents an integer lin-
ear programming formulation of the problem and investigates some of the
computational aspects of collateral optimisation problems. Different types
of problem instances are evaluated to establish their effect on the runtime
performance of the solver. Various types of constraints are examined in or-
der to explore the type of constraints that may make the problem difficult to
solve. The results showed that with a basic set of constraints, the problem
can be solved within a reasonable amount of time, even for relatively large
problem sizes. However, certain types of constraints, such as those related
to the diversification of assets, significantly affect the time taken to solve
the model.

Key words: Collateral management, Collateral optimisation, Linear pro-
gramming, Integer programming



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Source Code Listing . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction 6
1.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mathematical optimisation 8
2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Graphical solution . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Simplex method . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Transportation problem . . . . . . . . . . . . . . . . . 17
2.1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Integer programming . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Binary variables . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Logical constraints . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Branch and bound . . . . . . . . . . . . . . . . . . . . 30

2.3 Optimisation software . . . . . . . . . . . . . . . . . . . . . . 34

3 Collateral management 35
3.1 Credit and credit risk management . . . . . . . . . . . . . . . 35
3.2 Collateral and collateral management . . . . . . . . . . . . . 36

3.2.1 Benefits and risks . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Regulatory drivers . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Role of technology . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Documentation . . . . . . . . . . . . . . . . . . . . . . 40

4 Collateral optimisation 45
4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Basic formulation . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Integer formulation . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Eligibility . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Substitution . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Lot Size . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.4 Fragmentation . . . . . . . . . . . . . . . . . . . . . . 53
4.3.5 Diversification . . . . . . . . . . . . . . . . . . . . . . 53
4.3.6 Complete formulation . . . . . . . . . . . . . . . . . . 54

5 Computational results 55
5.1 Model implementation . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Data file generation . . . . . . . . . . . . . . . . . . . . . . . 55

1



5.3 Transportation algorithm results . . . . . . . . . . . . . . . . 56
5.4 Integer program results . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Problem size variations . . . . . . . . . . . . . . . . . 58
5.4.2 Eligibility matrix density . . . . . . . . . . . . . . . . 59
5.4.3 Initial allocations . . . . . . . . . . . . . . . . . . . . . 60
5.4.4 Diversification . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 63

Bibliography 65

Appendix A: Exhibits 69

Appendix B: Source Code 73

2



List of Figures

2.1 Feasible region . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Balanced transportation flow network . . . . . . . . . . . . . 18
2.3 Branch and bound . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Branch and bound tree . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Asset allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Flow Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Allocation costs . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Modified distribution method solving duration . . . . . . . . 57
5.2 Average solving time for assets and requirements . . . . . . . 59
5.3 Eligibility matrix density average solving time . . . . . . . . . 60
5.4 Initial allocation average solving time . . . . . . . . . . . . . 61

A.1 ISDA Credit Support Annex . . . . . . . . . . . . . . . . . . 69
A.2 ISDA CSA eligible collateral . . . . . . . . . . . . . . . . . . . 70
A.3 Securities borrowing and lending . . . . . . . . . . . . . . . . 71
A.4 Repurchase agreement . . . . . . . . . . . . . . . . . . . . . . 71
A.5 OTC derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



List of Tables

2.1 Manufacturing example . . . . . . . . . . . . . . . . . . . . . 9
2.2 Initial simplex tableau . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Second simplex tableau . . . . . . . . . . . . . . . . . . . . . 15
2.4 Third simplex tableau . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Transportation tableau . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Northwest corner method - initial iterations . . . . . . . . . . 20
2.7 Northwest corner method - intermediate iterations . . . . . . 21
2.8 Northwest corner method - final iterations . . . . . . . . . . . 21
2.9 Least cost method - initial iterations . . . . . . . . . . . . . . 22
2.10 Least cost method - final iterations . . . . . . . . . . . . . . . 22
2.11 Vogel approximation method - initial iteration . . . . . . . . 23
2.12 Vogel approximation method - intermediate iterations . . . . 24
2.13 Vogel approximation method - final iterations . . . . . . . . . 24
2.14 Independent allocation paths . . . . . . . . . . . . . . . . . . 25
2.15 Stepping stone method - closed paths . . . . . . . . . . . . . 26
2.16 Stepping stone method - optimal solution . . . . . . . . . . . 26
2.17 Modified distribution method - initial steps . . . . . . . . . . 27
2.18 Modified distribution method - reduced costs . . . . . . . . . 27

3.1 Trade exposures . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Collateral agreements . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Collateral calculation . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Assets and requirements . . . . . . . . . . . . . . . . . . . . . 47
4.2 Allocation costs . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Collateral inventory . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Margin call requirements . . . . . . . . . . . . . . . . . . . . . 50
4.5 Cost matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Cash and securities . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Eligibility matrix . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Modified distribution method solving duration in seconds . . 57
5.2 Average solving duration in seconds . . . . . . . . . . . . . . 58
5.3 Initial allocation average solving duration in seconds . . . . . 60
5.4 Asset diversification percentage . . . . . . . . . . . . . . . . . 62

4



Source Code Listing

B.1 Python simplex algorithm . . . . . . . . . . . . . . . . . . . . 73
B.2 Python transportation algorithms . . . . . . . . . . . . . . . . 74
B.3 OPL transportation example . . . . . . . . . . . . . . . . . . 78
B.4 OPL collateral optimisation basic example . . . . . . . . . . . 79
B.5 OPL collateral optimisation basic example data . . . . . . . . 80

5



Chapter 1

Introduction

Since the 2008 global financial crisis, financial institutions have implemented
more stringent counterparty risk management processes. Regulation has in-
creased the amount of collateral that has to be posted, the number of parties
posting collateral and the frequency of posting. These factors are leading
to an increasing demand for collateral and a scarcity of high quality liquid
assets, making the optimal efficient use of collateral all the more impor-
tant. The collateral management departments within these organisations
are investing in complex information systems that attempt to make use of
advanced algorithms to ensure that collateral is allocated optimally.

This dissertation focuses on the area of collateral optimisation, which can
be modelled as a mathematical optimisation problem with the objective of
minimising the cost of posted collateral, whilst meeting all collateral calls
and satisfying a diverse range of requirements. Considerations such as lot
sizes, concentration limits and eligibility criteria need to be incorporated
into the model via appropriately formulated constraints.

The goal of this research is to formulate a mathematical model, implement
and test the model, and perform an empirical evaluation of some of the
computational aspects of collateral optimisation problems.

Different types of problem instances will be evaluated to establish their effect
on the runtime performance of the solver. The various types of constraints
will be examined in order to explore what type of constraints make the
problem difficult to solve.

Many industry “white papers” have been published online, describing op-
timisation as part of the collateral management process. However, there
appears to be limited existing academic literature dealing specifically with
collateral optimisation problems. This research aims to show how the col-
lateral optimisation problem is related to other known types of problems,
and that existing techniques can be used to solve the problem.

Collateral management is a challenge because it is a relatively new imper-
ative still evolving in line with legislation and industry standards. By pre-
senting a formulation of the model, the intention is to provide insight into
the types of data that are required as inputs into the model, and stimulate
discussion around possible approaches to issues such as the identification of
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instruments comprising the collateral inventory and the best way to repre-
sent funding costs.

1.1 Layout

Chapter 2 reviews the fundamental optimisation concepts that will be used
in subsequent chapters to solve collateral optimisation problems. A general
introduction to linear and integer programming is given. In its simplest
form, a collateral allocation problem can be represented as a well known
type of problem called the transportation problem. Methods for solving
these types of problems are also reviewed.

Chapter 3 introduces the area of collateral and collateral management.
Credit risk management and the use of collateral as a credit risk mitiga-
tion tool is discussed. The impact of regulation and the importance of
technology in collateral management is highlighted.

Chapter 4 shows how the fundamental collateral allocation problem can be
extended with a more realistic set of constraints. An integer programming
formulation of the collateral optimisation problem is presented.

Chapter 5 discusses the data generation, model implementation and testing.
The results of executing the model on various test data files are presented
and the outcomes analysed.

Chapter 6 summarises the research presented in this dissertation and con-
cludes with possible future work.

Appendix A contains an extract from the collateral documentation showing
the selection of eligible collateral. The different types of financial transac-
tions in which collateral plays an important role is also summarised.

Appendix B contains source code extracts of the algorithms that were im-
plemented as part of this study.
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Chapter 2

Mathematical optimisation

This chapter reviews the fundamental optimisation concepts that will be
applied to solve collateral optimisation problems in subsequent chapters.
The chapter gives a general introduction to mathematical optimisation and
linear programming concepts. The simplex method will be reviewed using a
graphical approach that, although not practical for large problems, assists
in the understanding of optimal solutions to linear programming problems.
Algebraic methods for the simplex method will also be discussed.

In its simplest form, a collateral allocation problem can be cast as a well
known type of linear programming problem known as the transportation
problem. The transportation problem and methods for constructing an ini-
tial basic feasible solution will be presented, as well as methods for progress-
ing towards an optimal solution.

More complete formulations of the collateral optimisation problem have con-
straints that cannot be catered for by a basic transportation formulation.
The section on integer programming demonstrates how some of these limi-
tations can be overcome and an example of the branch and bound algorithm
is provided.

Optimisation software and tools are discussed in the final section.

2.1 Linear programming

Mathematical models use mathematical relationships such as equations, in-
equalities and logical dependencies to describe the real-world relationships
and constraints within a system. Mathematical programming is “program-
ming” in that it relates to the “planning” or scheduling of activities in an
optimal way. The main feature of mathematical programming models is
that they involve optimisation. The quantity that is to be maximised or
minimised is known as the objective function. Mathematical programming
describes the minimisation or maximisation of an objective function of many
variables, subject to constraints on those variables [1].

One of the most common and fundamental optimisation problems is the
linear programming problem in which the objective function is linear and the
constraints are linear equations and inequalities. The process of constructing
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and solving this type of problem is known as linear programming [2]. Many
real-world problems from a wide variety of disciplines can be formulated
as linear programming problems and fast efficient methods exist for solving
such problems even with thousands of variables and constraints [1].

Fourier was one of the first mathematicians to identify the relationship be-
tween linear equalities and optimisation. In 1827 he proposed a method for
solving a system of linear inequalities [3]. Linear programming as a dis-
cipline started with the work of George B. Dantzig in 1947, motivated by
the need to solve planning problems for the military [4]. The mathematical
foundations were laid by von Neumann [3].

To illustrate how linear programming problems are formulated and solved,
let us consider a simple example of a manufacturer that produces two types
of products p1 and p2. Producing product p1 requires 10 units of resource
r1 and 40 units of resource r2 and generates 6 units of profit. Producing
product p2 requires 20 units of resource r1 and 30 units of resource r2 and
generates 9 units of profit. Assuming there are 200 units of r1 and 450 units
of r2 available, the manufacturer wants to determine how many units of p1
and p2 to produce to maximise profit. The resources r1 and r2 could be any
resource such units of material or labour in hours.

The information in Table 2.1 can be formulated as a linear programming
problem that determines how to optimally allocate the limited resources in
order to maximise the profit.

Products
Resources p1 p2 Available Units

r1 10 20 200
r2 40 30 450

Profit 6 9

Table 2.1: Manufacturing example

Let x1 and x2 denote the units of p1 and p2 respectively. The resulting linear
programming problem which maximises the profit is the following

maximise
Z = 6x1 + 9x2 (objective function)

subject to
10x1 + 20x2 ≤ 200 (r1 resource constraint)

40x1 + 30x2 ≤ 450 (r2 resource constraint)

The aim is to identify values for the decision variables x1 and x2 that satisfy
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all the constraints and results in the greatest value for the objective function
Z. A solution that satisfies all the constraints is known as a feasible solution.
For example, the pair of values (x1, x2) = (5, 5) is feasible, while (10, 10) is
infeasible as it violates both the constraints. The objective function value
for the solution (5, 5) is equal to 75 while the value for (2, 2) is 30. Because
we are trying to maximise the objective function, (5, 5) is the better of the
two feasible solutions. For a problem with n variables and m constraints,
generating all possible feasible solutions is equivalent to finding all feasible
combinations of m columns from n possibilities, given by

(
n
m

)
= n!

m!(n−m)!

[5]. As the number of variables and constraints grows larger, it becomes
impractical to generate all possible feasible solutions and compare them to
determine the best objective value. A more systematic method is required.

2.1.1 Graphical solution

The manufacturing example introduced in the previous section can be rep-
resented graphically by converting the inequalities to equalities and plotting
the constraint lines. Each constraint makes a “cut” in the two-dimensional
plane as in Figure 2.1. The feasible region is established by checking the va-
lidity of the constraint and determining if the feasible region lies above or be-
low the line. The point (0, 0) is valid, satisfying the constraint 10x1+20x2 ≤
200, whereas the point (10, 10) is invalid, violating the constraint and indi-
cating that the feasible direction is below the line. The decision variables
x1 and x2 are assumed to be non-negative otherwise it would be possible
to allocate more resources than are available and thus the feasible region is
also restricted to the positive quadrant of the Cartesian plane.
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Figure 2.1: Feasible region

To determine which point in the feasible region is optimal, we consider the
objective function and plot the line Z. Visually this line can be moved
in parallel, i.e. increasing the value of Z, until it touches one of the corner
points of the feasible set. This extreme point represents the optimal solution
to the problem and lies at the intersection of the two constraint lines. By
simultaneously solving the two equations we get the point (6, 7) with Z = 99
and thus the maximum profit is obtained by producing 6 units of p1 and 7
units of p2.

In general, the optimal solution is always found at one of the extreme points
of the feasible set, although there may be multiple optimal solutions. For
problems with two and three decision variables, the problem can be repre-
sented and solved graphically using a multi-dimensional coordinate system.
However, for larger linear programs with a greater number of variables and
constraints it is not possible to solve graphically and a more general proce-
dure for determining the extreme points is required.

2.1.2 Simplex method

Dantzig’s invention of the simplex method solidified the effectiveness of lin-
ear programming in solving complex practical decision-making problems.
Specific algorithms exist to solve special kinds of linear programming prob-
lems such as those described in Section 2.1.3, however the simplex algorithm
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remains a primary computational tool in linear and mixed-integer program-
ming to this day [6, 7].

Extreme points can be identified by simultaneously solving pairs of con-
straint equations to establish their intersections, and if the solution satisfies
all the constraints then it can be selected as an extreme point solution.
This approach of identifying all the extreme points of the feasible set and
selecting the optimal solution forms the basis of the simplex algorithm. The
algebraic procedure usually begins at the extreme point denoting no work
or allocation of resources, and then repeatedly moves to the neighbouring
extreme point that results in the biggest improvement in the solution, until
no further improvements can be made.

The general linear programming problem can be written as follows

maximise Z = c1x1 + c2x2 + . . .+ cnxn (2.1)

subject to a11x1 + a12x2 + . . .+ a1nxn ≤ b1
a21x1 + a22x2 + . . .+ a2nxn ≤ b2

...
...

. . .
...

... (2.2)

am1x1 + am2x2 + . . .+ amnxn ≤ bm
xj ≥0, for j = 1, 2, . . . , n (2.3)

and in vector notation as

max cx (2.4)

s.t Ax ≤ b (2.5)

x ≥ 0 (2.6)

where A ∈ Rm×n is a matrix, b ∈ Rm a column vector, c ∈ Rn a row vector
and x ∈ Rn the column vector of decision variables.

Definition 2.1.1. A basic solution is a solution to (2.2) obtained by setting
(n −m) variables to zero and solving for the remaining m variables. The
zero variables are called non-basic variables and the non-zero variables are
called basic variables.

Definition 2.1.2. A feasible solution is a vector x that satisfies the con-
straints (2.2) and (2.3).
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Definition 2.1.3. A basic feasible solution is a basic solution where all basic
variables are non-negative.

For the simplex algorithm it is often convenient to write the linear program
in the standard form by converting the linear inequalities to linear equali-
ties. Minimisation problems can be converted to maximisation problems by
multiplying the objective function by a negative constant. Simple transfor-
mations allow any linear program to be rewritten in the standard form

max cx

s.t Ax = b

x ≥ 0

The following example is used to demonstrate the application of the simplex
method to the manufacturing example described previously. Inequalities are
written as equalities by introducing slack variables s1 and s2.

max Z = 6x1 + 9x2 + 0s1 + 0s2

s.t 10x1 + 20x2 + s1 + 0s2 = 200

40x1 + 30x2 + 0s1 + s2 = 450

x1, x2, s1, s2 ≥ 0

The simplex method is an iterative algorithm that moves from one extreme
point to an adjacent extreme point. Since extreme points of the feasible
set correspond to basic feasible solutions [2], each iteration starts with a
basic feasible solution that is not yet optimal. Then Gaussian elimination is
used to generate a new basic feasible solution, which is tested for optimal-
ity to establish the need for further iterations. The simplex iterations are
best described in a tabular form know as a simplex tableau containing the
coefficients of the objective and constraint equations.

The first step of the simplex method is to find an initial basic feasible solu-
tion. Since there are two constraints with four unknowns it is not possible
to solve the equations algebraically. Each basic feasible solution will have
nonbasic variables that are given a value of zero in order to solve for the
basic variables. Note, that depending on the problem data, a solution with
slack variables equal to zero, may not constitute a basic feasible solution. In
this case, alternative approaches should be used to generate basic feasible
solutions.

The set of basic variables in the basic solution is known as the basis. Choos-
ing x1 and x2 as nonbasic results in s1 = 200 and s2 = 450, and as the values
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are non-negative the solution (0, 0, 200, 450) is feasible and serves as the ini-
tial basic feasible solution. The initial simplex tableau corresponding to this
basic feasible solution is provided in Table 2.2. The Ci column contains the
coefficients of the basic variables representing the contribution per unit in
the cost function. The slack variables can be thought of as surplus or un-
used resources that don’t add any value to the objective function thus their
coefficients are zero in the objective function. Thus the value of Z for the
initial basic feasible solution is zero. The column Cj contains the coefficients
of the variables in the objective function. The bottom two rows are used to

determine if the solution can be improved or not, where Zj =

m∑
i=1

(Ci)(aij).

Ci Basis x1 x2
(E)

s1 s2 Solution Ratio

0 s1 (L) 10 20* 1 0 200 200/20 = 10

0 s2 40 30 0 1 450 450/30 = 15

Cj 6 9 0 0
Zj 0 0 0 0

Cj −Zj 6 9 0 0

Table 2.2: Initial simplex tableau

Once the initial tableau is formed, a variable to enter the basis is selected
by evaluating the last row and identifying the largest positive contribution.
This is known as the pivot column and x2 becomes the entering variable
(E). If all the values in the last row are non-positive, then there can be no
further improvement and the current solution is optimal.

To establish which variable will leave the basis, the ratio of the right-hand-
side value in the row and the coefficient in the pivot column is calculated.
Only positive values are considered as non-positive values would impose
no bound on the entering variable. Since min{200/20, 450/30} = 10, s1 is
selected as the leaving variable (L) in the pivot row.

To construct the new tableau, the pivot element (*) in the intersection of
the pivot row and column is used in row operations on the matrix. The
entries in the pivot row are divided by the pivot element in order to get 1
in the position of the pivot element.

The formula for calculating the value of the remaining rows is

New value = Old value − Corresponding Key Col Value× Corresponding Key Row Value

Key Element
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For example:

40− (30× 10/20) = 25

30− (30× 20/20) = 0

0− (30× 1/20) = −3/2

1− (30× 0/20) = 1

450− (30× 200/20) = 150

Ci Basis x1
(E)

x2 s1 s2 Solution Ratio

9 x2 1/2 1 1/20 0 10 20

0 s2 (L) 25* 0 −3/2 1 150 6

Cj 6 9 0 0
Zj 9/2 9 9/20 0

Cj −Zj 3/2 −9/20 0 0

Table 2.3: Second simplex tableau

From Table 2.3, x1 is defined as the entering variable and s2 becomes the
leaving variable. By performing another pivot operation, the third simplex
tableau is obtained in Table 2.4. As all the values of Cj−Zj are non-positive
the optimal solution has been reached with x1 = 6, x2 = 7 and Z = 99.

Ci Basis x1 x2 s1 s2 Solution Ratio

9 x2 0 1 8/100 −1/50 7
6 x1 1 0 −3/50 1/25 6

Cj 6 9 0 0
Zj 6 9 −36/100 −3/50

Cj −Zj 0 0 −36/100 −3/50

Table 2.4: Third simplex tableau

Revised simplex algorithm

Instead of maintaining a tableau, an alternative matrix-oriented approach
offers greater computational efficiency by performing a series of linear alge-
bra computations [8, 9, 10]. If we consider the system of equations Ax = b
in n unknowns with m the rank of the matrix A and (m < n), there exist
m linearly independent column vectors. Selecting these vectors to form an
m × m basis matrix B and leaving the remaining n − m columns as non-
basis N , A can be rearranged as A ≡ [B,N ]. Similarly we can partition
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the variable vector as

[
xB
xN

]
and the equality constraints can be rewritten as

[B,N ]

[
xB
xN

]
= BxB +NxN = b

xB = B−1b−B−1NxN (2.7)

With xN = 0 and xB = B−1b we have a basic solution and if xB ≥ 0 we
have a basic feasible solution. xB are the basic variables and xN are the
nonbasic variables [2].

Similarly, for the objective function Z = cx we have c = [cB, cN ], thus

Z − [cB, cN ]

[
xB
xN

]
= 0 (2.8)

Z − cBxB − cNxN = 0 (2.9)

Substituting xB from (2.7)

Z − cB(B−1b−B−1NxN )− cNxN = 0 (2.10)

Z − (cN − cBB−1N)xN = cBB
−1b (2.11)

The reduced costs vector cN − cBB−1N in (2.11) is used to establish which
non-basic variable will enter the basis and if for a basic feasible solution
cN − cBB−1N ≤ 0 then the solution is optimal [2]. For the purpose of
demonstrating the application of the matrix-oriented approach, one iter-
ation is performed on the manufacturing example. The first iteration begins

by selecting an initial basis xB =

[
x3
x4

]
and thus xN =

[
x1
x2

]
=

[
0
0

]
,

B =

[
1 0
0 1

]
, N =

[
10 20
40 30

]
, and xB =

[
200
450

]
.

The variable to enter the basis is the one for which the reduced costs vector
is a maximum

cN − cBB−1N = [6 9]− [0 0]

[
1 0
0 1

] [
10 20
40 30

]
thus x2 will enter the basis

The variable to leave the basis is the one for which B−1b
B−1NxN

is a minimum,
where only positive values of NxN are considered

xB
B−1NxN

=

200
450


20
30

 =

[
10
15

]
thus x3 will leave the basis.

Source Code B.1 gives an example of the simplex algorithm implemented
in Python using the NumPy scientific computing package for matrix opera-
tions.
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2.1.3 Transportation problem

One of the oldest known types of linear programming problems is that of
the transportation problem which involves the transporting of goods or ma-
terials from a set of origins to a set of destinations with the objective of
minimising the transportation costs. A model of the problem takes into
account constraints such as the amounts available at the origins and the
amounts required at the destinations. Transportation models can be ap-
plied to a diverse range of applications and can be extended to deal with the
allocation or assignment of any kind of resource, provided that the quantities
can be measured and a movement cost per unit established.

As early as 1781 the French mathematician Gaspard Monge formulated a
problem for the relocation of materials in the most efficient way, specifically
dealing with the transportation of soil during the construction of forts and
roads with minimal transportation costs [11, 12]. Schrijver [13, 14] reviews
an article by A.N. Tolstŏı from 1930, in which graphical and algorithmic
methods are proposed to solve a cargo transportation problem along the
railway network of the Soviet Union.

In 1939 the Soviet mathematician Leonid Kantorovich described the impor-
tance of certain linear programming problems for organising and planning
production, and gave a simplex-like method for solving the transportation
problem [3]. The history of the Monge–Kantorovich transportation problem
is documented in [12].

The standard form of the problem was formulated by Hitchcock in 1941 [15],
who also gave a computational procedure for solving the problem. Indepen-
dently, Koopmans and his colleagues arrived at the same problem as part of
their work during World War II and thus the problem is often referred to as
the Hitchcock–Koopmans transportation problem [16, 17, 18].

The application of the simplex method to the transportation problem was
given by Dantzig in 1951 [19] and this method has been widely used to solve
systems involving hundreds of constraints with thousands of unknowns [18].

Let us consider an example where a supplier is required to transport a num-
ber of units of a product from m warehouses to n factories. Each origin has
a given level of supply and each destination has a known level of demand.
The capacities at each origin and the requirements at each destination as
well as the transportation costs between each source and destination can be
represented graphically as a network with m source nodes and n sink nodes
where each pair of nodes is connected by a directed arc as in Figure 2.2.
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Source 1a1

Source 2a2

Source 3a3

Source mam

Sink 1 b1

Sink 2 b2

Sink 3 b3
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c21

c22
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c
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c31
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c3ncm
1

cm
2

cm3

cmn

Figure 2.2: Balanced transportation flow network

A linear programming formulation is given by

min
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij ≤ ai for i = 1, 2, . . . ,m

m∑
i=1

xij ≥ bj for j = 1, 2, . . . , n

xij ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

where
m is the number of sources,
n is the number of destinations,
ai is the supply capacity of the ith source,
bj is the demand requirement of jth destination,
cij is the cost per unit of transporting goods between the ith source and jth

destination,
xij is the number of units of a product to be transported between the ith

source and jth destination.

The simplex algorithm can be applied to solve the problem in the above
form by introducing slack and surplus variables to convert the inequality
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constraints to equalities as was done previously. However, by noting that
for a given problem to have a feasible solution, the total supply cannot be
less than the total demand and if the total supply equals the total demand,
then any feasible solution satisfies the inequality constraints as equalities.
Hence whenever the total supply equals the total demand the introduction
of slack and surplus variables is no longer required. More formally, when∑m

i=1 ai =
∑n

j=1 bj, the transportation problem is said to be balanced and
the standard form of the problem is given by

min
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = ai for i = 1, 2, . . . ,m

m∑
i=1

xij = bj for j = 1, 2, . . . , n

xij ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

The original problem is defined by m + n equality constraints and m ×
n variables. Balanced transportation problems, however, have the special
characteristic that they have m + n − 1 independent constraint equations
due to the fact that the sum of the supply and demand equations are equal.
Having the problem in the standard form allows for the application of a
simplified version of the simplex method.

It is always possible to balance an unbalanced transportation problem.
Where there is excess supply, the problem can be balanced by artificially
introducing a dummy sink with zero cost to absorb the difference. If there
is a cost for storing surplus production, then the unit costs can be set equal
to the inventory holding cost. Similarly, where the total supply is less than
the total demand, a dummy source can be added with zero cost. If there is
a penalty cost for the unsatisfied demand, the unit cost is set equal to the
shortage penalty cost, thus accounting for the fact that units are artificially
transported from the dummy source.

For a transportation problem with m sources and n sinks, the transporta-
tion tableau contains m rows representing the sources and their correspond-
ing supply and n columns representing the sinks and their corresponding
demand. Each cell (i, j) contains the decision variable xij indicating the
number of units of the product that should be transported, as well as the
transportation cost per unit cij in the upper right hand corner of the cell as
in Table 2.5.
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Sinks
1 2 . . . n

1 x11
c11 x12

c12 . . . x1n
c1n a1

2 x21
c21 x22

c22 . . . x2n
c2n a2

S
o
u

rc
e
s

...
...

... xij
cij ...

...

S
u
p
p
ly

m xm1
cm1 xm2

cm2 . . . xmn
cmn am

b1 b2 . . . bn
Demand

Table 2.5: Transportation tableau

Initial basic feasible solution

As with the simplex method, the first step of the transportation algorithm is
to find an initial basic feasible solution. Consider an example of a balanced
transportation problem with three sources and three destinations, and costs
as depicted in Table 2.6. Three different methods for establishing an initial
basic feasible solution are described below.

Northwest corner method As its name implies, this method begins in
the northwest corner of the tableau and assigns as many units as possible to
meet the demand given the available supply. The first iteration (Table 2.6),
begins at cell (1, 1) by allocating all available supply from row 1 to column
1, resulting in a remaining demand of 10. As the first row’s supply has been
exhausted, the row is ignored in future iterations. The available supply and
remaining demand are updated in the relevant row and column respectively.

3 7 15
5

0 8 6
20

10 2 5
25

15 25 10

5
3 7 15

�5

0 8 6
20

10 2 5
25

��15 10 25 10

Table 2.6: Northwest corner method - initial iterations

In the next iterations (Table 2.7), cell (2, 1) becomes the entering cell and
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10 units are taken from the second row. The demand in column 1 is satisfied
and the supply in the second row is reduced to 10. Then cell (2, 2) is chosen
as the next cell, assigning the remaining 10 supply from row 2, leaving a
demand of 15 in column 2.

5
3 7 15

��5

10
0 8 6

��20 10

10 2 5
25

��15 ��10 25 10

5
3 7 15

��5

10
0

10
8 6

��20 ��10

10 2 5
25

��15 ��10 ��25 15 10

Table 2.7: Northwest corner method - intermediate iterations

In the final iterations (Table 2.8), 15 is assigned to cell (3, 2) leaving 10 to be
assigned to cell (3, 3) in the last iteration. The fact that the final remaining
supply and demand are equal is as a result of the balanced nature of the
problem.

5
3 7 15

��5

10
0

10
8 6

��20 ��10

10
15

2 5
��25 10

��15 ��10 ��25 ��15 10

5
3 7 15

��5

10
0

10
8 6

��20 ��10

10
15

2
10

5
��25 ��10

��15 ��10 ��25 ��15 ��10

Table 2.8: Northwest corner method - final iterations

Five allocations have been made, resulting in x11 = 5, x21 = 10, x22 =
10, x32 = 15, x33 = 10, and it is evident that the basic variable count is
equal to m+n−1. The remaining allocations are equal to zero and are thus
non-basic. The objective function value is (5 × 3) + (10 × 0) + (10 × 8) +
(15× 2) + (10× 5) = 175.

The northwest corner method is a simple systematic procedure, that per-
forms a minimal number of calculations. It does not, however, produce a
very good initial feasible solution. The method described in the next section
takes the transportation costs into account when selecting subsequent cells.
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Least cost method This method selects the entering cell with smallest
cij value. The algorithm begins in cell (2, 1), as it is the cell with the least
cost of all cells in the tableau (Table 2.9). The demand in column one will
be fully satisfied and the supply in row 2 reduced to 5. Cell (3, 2) will be
the next entering cell, assigning the full amount from the available supply
and excluding row 3 from future iterations.

3 7 15
5

15
0 8 6

��20 5

10 2 5
25

��15 25 10

3 7 15
5

15
0 8 6

��20 5

10
25

2 5
��25

��15 ��25 10

Table 2.9: Least cost method - initial iterations

Cell (2, 3) is the next cell in which 5 units are allocated, exhausting row 2’s
supply (Table 2.10). Finally cell (1, 3) is allocated the remaining 5 units,
thus completing all allocations.

3 7 15
5

15
0 8

5
6

��20 ��5

10
25

2 5
��25

��15 ��25 ��10 5

3 7
5

15
��5

15
0 8

5
6

��20 ��5

10
25

2 5
��25

��15 ��25 ��10 ��5

Table 2.10: Least cost method - final iterations

The final allocations are x21 = 15, x32 = 25, x23 = 5, x13 = 5 resulting in an
objective function value of 155, which is better than the previous method.
However, there are only 4 allocations as opposed to the 5 arrived at by
the previous method. In a standard transportation problem, the test for
optimality of any feasible solution requires that there arem+n−1 allocations
and that these allocations are at independent cell locations, meaning that it
should not be possible to increase or decrease an allocation without violating
the row and column restrictions. If a solution has less than m + n − 1
independent allocations, the solution is said to be degenerate. Degeneracy
can occur at the initial solution or during the testing of the optimal solution.
In order to resolve degeneracy, an infinitesimally small positive amount ε is
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allocated to one or more unoccupied cells with the lowest transportation
costs until the m+ n− 1 condition is satisfied [20].

Vogel approximation method Vogel’s method calculates a set of penalty
costs for each row and column and then selects the entering cell based on
these penalties [21]. The penalty is calculated as the difference between the
second lowest cost and the lowest cost in each row and column. The cell
with the greatest penalty cost and smallest cost value cij is selected as the
entering cell, with ties broken arbitrarily. The first row’s penalty is 7−3 = 4
and the first column’s penalty is 3− 0 = 3, and similarly for the other rows
and columns as indicated in Table 2.11. The greatest penalty is 6 in the sec-
ond row, with cell (2, 1) having the least cost of zero. This cell is selected as
the entering cell and 15 units are allocated to satisfy the demand, removing
this column from consideration in future iterations and leaving a supply of
5 in row 2.

Penalty
3 7 15

5 4

15
0 8 6

��20 5 6

10 2 5
25 3

��15 0 25 10

Penalty 3 5 1

Table 2.11: Vogel approximation method - initial iteration

The next iteration (Table 2.12), calculates new penalties excluding the first
column, hence the first row penalty is now 15 − 7 = 8 and the second row
penalty is 8− 6 = 2. The cell (1, 2) with penalty 8 and cost 7 is selected as
the next entering cell, allocating all 5 of the supply, reducing the demand to
20 and excluding the first row from future calculations. Recalculating the
penalties results in cell (3, 2) becoming the entering cell with penalty 6 and
cost 2, with an allocation of 20.
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3
5

7 15
�5 8

15
0 8 6

��20 5 2

10 2 5
25 3

��15 0 ��25 20 10

�� 5 1

3
5

7 15
�5 ��

15
0 8 6

��20 5 2

10
20

2 5
��25 5 3

��15 0 ��25 ��20 10

�� 6 1

Table 2.12: Vogel approximation method - intermediate iterations

In the final two iterations, only two cells remain and no more penalties
can be computed (Table 2.13). The cell (3, 3) with least cost 5 is selected
first, allocating the remaining supply of 5 from row 3 and then cell (2, 3)
is allocated the remaining 5 from row 2, hence satisfying the demand in
column 3.

3
5

7 15
��5

15
0 8 6

��20 5

10
20

2
5

5
��25 ��5

��15 0 ��25 ��20 ��10 5

3
5

7 15
��5

15
0 8

5
6

��20 ��5

10
20

2
5

5
��25 ��5

��15 0 ��25 ��20 ��10 ��5

Table 2.13: Vogel approximation method - final iterations

The final allocations are x21 = 15, x12 = 5, x32 = 20, x33 = 5 and x23 = 5,
resulting in an objective function value of (15×0) + (5×7) + (20×2) + (5×
5) + (5× 6) = 130, which is better than the previous two methods.

Test for optimality

Given an initial basic feasible solution, the next step is to determine an
optimal solution. This section describes two methods that use an iterative
process to progress towards optimality.
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Stepping stone method Charnes and Cooper’s stepping stone method
is used to determine whether an initial basic feasible solution is optimal or
not, and if not, to iterate towards an optimal solution [22]. The method
involves evaluating the unallocated cells in the transportation tableau to
establish if a change in allocation would result in a more optimal solution.
The method’s name is derived from the analogy of crossing a pond using
stepping stones, where the allocated cells are the stones and the unoccupied
cells are water.

Before the optimality test can be applied, it is first necessary to check that
the initial feasible solution is not degenerate and satisfies the two condi-
tions described in Section 2.1.3. Graphically, in terms of the transportation
tableau, an allocated cell is considered independent if it is not possible to
travel from the cell back to itself via a series of horizontal and vertical steps
from one occupied cell to another without directly reversing the route (see
Table 2.14).

(a) non-independent

× ×
×

× ×

(b) independent

×
× ×
×

Table 2.14: Independent allocation paths

The stepping stone algorithm begins by evaluating all nonbasic cells (water
cells) to determine if an allocation in that cell would reduce the overall
allocation costs. An increase in one of the nonbasic cells will necessitate
a decrease in one of the basic cells (stone cells) in order to maintain the
feasibility of the solution and not violate the demand or supply constraints.

Given the basic feasible solution produced by the Vogel approximation method
in Section 2.1.3, a closed path is formed from the selected water cell, via
stone cells, back to the original cell as indicated in Table 2.15 for cell (2,2).
The closed path is formed with horizontal and vertical lines and may skip
stone or water cells, but right angles are only made at stone cells. It should
be noted that every nonbasic cell has exactly one such stepping stone path.
Alternating positive and negative signs indicate the addition and subtrac-
tion of units in order to maintain the feasibility. The reduced cost change
of cell (2,2) is calculated as 8 − 2 + 5 − 6 = 5, which has a positive sign,
indicating an increase in cost if this change were to be made. Similarly (1,3)
and (3,1) have positive reduced cost values of (15 − 7 + 2 − 5 = 5) and
(10 − 5 + 6 − 0 = 11) respectively and it is not desirable to bring either of
them into the basis. Cell (1,1) however has a more complicated closed path
but results in a reduced cost of 3− 0 + 6− 5 + 2− 7 = −1, indicating that
the solution is not optimal and that x11 should enter the basis. If more than
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one cell has a negative reduced cost, then the one with the smallest negative
cost is selected. If two cells have the same smallest negative number, the cell
where the maximum allocation can be made is chosen. Finally, the smallest
allocated amount is subtracted from each cell with a negative sign and added
to the cells with a positive sign, resulting in a new tableau (Table 2.16) with
an objective function value of (5×3)+(10×0)+(25×2)+(10×6) = 125. This
process is repeated until all the reduced costs are positive and no further
improvements can be made resulting in an optimal solution.

3
5

7 15

15
0

x22+
8

5− 6

10
20 − 2

5+
5

x11+
3

5 − 7 15

15 − 0 8
5+

6

10
20+

2
5− 5

Table 2.15: Stepping stone method - closed paths

5
3 7 15

10
0 8

10
6

10
25

2 5

Table 2.16: Stepping stone method - optimal solution

Modified distribution method In the stepping stone method, a closed
path is constructed for each unoccupied cell. In the modified distribution
method, the nonbasic cells are evaluated simultaneously and only the path
of the most negative cell is calculated [23]. Thus the modified distribution
method requires computationally less effort that grows linearly with respect
to the problem size as opposed to the exponential growth of the stepping
stone method. See [24] for a review of the computational aspects of the
various methods of solving transportation problems.

As with the previous method, before proceeding with the optimality test,
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the first step is to assert that the two conditions in Section 2.1.3 are satisfied.

The next step is to assign the variables ui to each of the rows and vj to
each of the columns, and to calculate the values of the variables for each of
the allocated cells such that ui + vj = cij as in Table 2.17. As there are
m+ n variables and m+ n− 1 allocations, u1 is set to zero, to solve for the
remaining variables. These values are then used to calculate the reduced
costs.

v1 v2 v3

u1
3

5
7 15

u2 15
0 8

5
6

u3
10

20
2

5
5

Stone cell ui + vj = cij ui, vj

(1, 2) u1 + v2 = 7 u1 = 0, v2 = 7

(2, 1) u2 + v1 = 0 u2 = −4, v1 = 4

(2, 3) u2 + v3 = 6 u2 = −4, v3 = 10

(3, 2) u3 + v2 = 2 u3 = −5, v2 = 7

(3, 3) u3 + v3 = 5 u3 = −5, v3 = 10

Table 2.17: Modified distribution method - initial steps

The reduced costs c̄ij = cij−(ui+vj) are equivalent to those produced by the
stepping stone method in the previous section. The cell with the smallest
reduced cost is selected to enter the basis and the closed path for that cell
generated. The smallest allocated amount on the path is subtracted from
cells with a negative sign and added to cells with a positive sign resulting in
a new tableau, and the process is repeated. The resulting tableau in Table
2.18 is in fact the optimal solution.

v1 = 4 v2 = 7 v3 = 10

u1 = 0 +5
3

5−5
7 15

u2 = −4 15−5
0 8

5+5
6

u3 = −5
10

20+5
2

5−5
5

Water cell cij − (ui + vj) c̄

(1, 1) 3 − (0 + 4) −1

(1, 3) 15 − (0 + 10) 5

(2, 2) 8 − (−4 + 7) 5

(3, 1) 10 − (−5 + 4) 11

Table 2.18: Modified distribution method - reduced costs

An implementation of these algorithms in Python is given in Source Code
B.2. A linear programming implementation of the problem in OPL was used
to validate the results, and demonstrates the succinct and mathematically
natural way the problem can be expressed in such a language (Source Code
B.3).
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2.1.4 Limitations

Although a wide variety of practical problems can be expressed using linear
programming, there are cases where the linearity assumption does not hold.
This section describes some of the limitations of linear programming where
alternative approaches are required to accurately model the problem domain.

Nonlinearity In cases where the objective function or constraints are non-
linear, the resulting nonlinear programming problems are often more difficult
to solve than similarly sized linear programming problems. Such cases arise
where economies of scale come into play, for example where profit margins
increase due to decreasing unit costs as a result of increases in production.
The distinction between convex and non-convex problems plays an impor-
tant role in determining which methods are used for solving such problems.
With convex problems an optimum is guaranteed to be a global optimum,
however for non-convex problems the possibility of finding a local optimum
arises when using certain algorithms. For a discussion of convex optimisation
methods as well as quadratic programming techniques for solving problems
with quadratic objective functions see [25, 2, 26].

Uncertainty In cases where the coefficients of decision variables or con-
straints are not known with certainty, these probabilistic variables can be
modelled using a technique called stochastic programming. This is not an al-
ternative class of problem, but rather a technique for using random variables
with known probability distributions to model the uncertain data before the
stochastic program is converted into the deterministic equivalent linear or
integer program. In finance such problems are common, for example mod-
elling risk and return on investments.

Integrality Often the assumption that variables can be allowed to take
fractional values also breaks down. For example, there are cases where it
only makes sense to allocate integral quantities of resources, or produce to
integral quantities of goods such as vehicles. Integer programming can be
used to enforce integer variables, but also adds modelling capabilities such
as the ability to model logical conditions using binary variables. Integer
programming is discussed in more detail in the following section.

2.2 Integer programming

Many linear programming problems, require the decision variables to have
non-fractional values, that represent units that cannot be divided. Integer
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linear programming problems are ones in which some, or all of the decision
variables are restricted to be integers. The problem is called a pure integer
program when all the variables are restricted to be integers, and a mixed
integer program when some of the variables are constrained to be integers
while others are allowed to be non-integers [27].

2.2.1 Binary variables

Variables that can only take the values of 0 or 1 are a special type of integer
variables known as binary variables. Binary variables can be used to capture
yes/no type decisions such as whether a particular fixed cost project should
be undertaken or whether a factory should be constructed at a particular
location. Such a binary decision variable can be modelled as

yj =

{
1 if decision j is yes

0 otherwise

Since the values of yj is 1 only where the condition is true, this variable can
also then be used to restrict the size or cardinality of a certain set as follows

n∑
j=1

yj ≤ maxSize

2.2.2 Logical constraints

Binary variables are also useful for modelling logical constraints that cannot
be expressed with linear constraints alone.

Either-or constraints Given two constraints (2.12) and (2.13), in order
to ensure that at least one of the constraints is satisfied, the additional
constraints (2.14), (2.15) and (2.16) are added.

f1(x1, x2, . . . , xn) ≤ 0 (2.12)

f2(x1, x2, . . . , xn) ≤ 0 (2.13)
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f1(x1, x2, . . . , xn) ≤M1y1 (2.14)

f2(x1, x2, . . . , xn) ≤M2y2 (2.15)

y1 + y2 ≤ 1 (2.16)

y1, y2 ∈ {0, 1}

Where M1 and M2 are constants chosen large enough so that when some
yj = 1 the constraints are satisfied for all values of x1, x2, . . . , xn. The
constraint (2.16) ensures that at least one yj variable is equal to 0, and thus
at least one of the original constraints is satisfied. This constraint can be
replaced with y1 + y2 = 1, since the constraint implies either y1 or y2 equals
0. Choosing the largest M , a simplified formulation is given by

f1(x1, x2, . . . , xn) ≤My

f2(x1, x2, . . . , xn) ≤M(1− y)

y ∈ {0, 1}

If-then constraints In order to ensure that
f(x1, x2, . . . , xn) > 0 =⇒ g(x1, x2, . . . , xn) ≥ 0
the following constraints are included in the formulation

−g1(x1, x2, . . . , xn) ≤My (2.17)

f(x1, x2, . . . , xn) ≤M(1− y) (2.18)

y ∈ {0, 1}

Where M is large enough so that −g < M and f ≤ M are satisfied for all
values of x1, x2, . . . , xn.

If f > 0 is satisfied, then (2.18) can only be satisfied if y = 0 and thus (2.17)
implies −g ≤ 0 and g ≥ 0.

If f > 0 is not satisfied, then (2.18) allows y = 0 or y = 1 and g < 0 or
g ≥ 0 can only be satisfied if y = 0 and thus (2.17) implies −g ≤ 0 or g ≥ 0.

2.2.3 Branch and bound

A number of techniques have been developed for solving integer programs
[28, 29]. The cutting-plane method was proposed by Ralph Gomory in 1958
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[2]. This method removes undesirable fractional solutions by tightening the
formulation. Constraints are added to the linear relaxation in order to cut off
non-integer solutions. This is done during the solution process and does not
create additional sub-problems as is the case with branching. The branch-
and-bound algorithm was developed by A. Land and G. Doig in 1960 [2].
This method divides (branches) the problem into a number of sub-problems
that can be solved using linear programming. These sub-problems are then
evaluated and compared in a process called bounding.

Initially, in practice, the branch-and-bound algorithm was almost always
considered to outperform the cutting-plane algorithm. However, in the mid-
1990s Gérard Cornuéjols and colleagues showed that combining these tech-
niques into a branch-and-cut procedure was very effective [2]. Cutting plane
techniques are generally accepted to be one of the most important contri-
butions in the computational advancement of integer programming.

The branch-and-bound procedure begins by removing all the integrality con-
straints from the mixed integer program (MIP). This results in a linear pro-
gram called the linear relaxation of the original MIP which can be solved
using the methods described in Section 2.1.2. The next step is to pick a
variable in the relaxation with a fractional value that should be restricted
to integer. For example, if the value in the relaxation is 3.7, this value can
be excluded by adding the constraints x ≤ 3 and x ≥ 4. In this way, the
original problem (P0) can be split into two sub-problems, P1 with x ≤ 3 and
P2 with x ≥ 4, which are solved and the better of the two solutions is se-
lected. This process is then repeated on each of the sub-problems, resulting
in a tree structure with P0 as the root node, and the sub-problems as leaf
nodes as in Figure 2.3.

P0

P1

x ≤ 3

P3 P4

P2

x ≥ 4

Figure 2.3: Branch and bound

As the search procedure progresses, the best feasible solution found so far, is
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termed the incumbent solution and z∗ denotes the value of z for the current
incumbent. A node is said to be pruned and thus not explored any further,
for three different reasons

• Pruned by bounds, when the node’s objective value is worse than the
incumbent.

• Pruned by infeasibility, when the linear program at that node is infea-
sible.

• Pruned by integrality, when the linear program at that node has an
optimal solution that is integral.

Assuming a maximisation problem, the objective value for the incumbent is a
lower bound on the optimal solution of the original MIP. Note however that,
the maximum of the optimal objective values of all of the current leaf nodes
also gives a valid upper bound. The difference between the current upper
and lower bounds is known as the gap and when the gap is zero, optimality
has been reached. When the gap is smaller than a certain threshold, the
solution can be considered “good enough” for all practical purposes and
can be very useful in reducing further unnecessary computations as seen in
Section 5.

To illustrate the branch-and-bound algorithm consider the following integer
program

max 3x1+4x2

s.t. x1 − x2 ≤ 2

3x1 + 9x2 ≤ 23

x1, x2 ≥ 0

x1, x2 integer

The root node of the search tree in Figure 2.4 contains the linear program-
ming relaxation with x1 = 3.4167, x2 = 1.4167 and the objective value
15.9166. Branching on x2 ≤ 1 and x2 ≥ 2 results in the child nodes P1

and P2 respectively. Node P1 has an integer solution so it is pruned and
becomes the incumbent. Node P2 is branched on the variable x1 with node
P4 pruned due to infeasibility. Branching node P3 on variable x2 results in
an infeasible solution for node P6. Node P5 has an integer solution and is
pruned, however this solution is not better than the incumbent. As there
are no further nodes to explore, the optimal solution is at node P1 with
x1 = 3, x2 = 1 and objective value z = 13.
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x1 = 3.4167

x2 = 1.4167

z = 15.9166

P0

x1 = 3

x2 = 1

z∗ = 13

P1

x2 ≤ 1

x1 = 1.6667

x2 = 2

z = 13

P2

x1 = 1

x2 = 2.2222

z = 11.88

P3

x1 = 1

x2 = 2

z = 11

P5

x2 ≤ 2

Infeasible

P6

x2 ≥ 3

x1 ≤ 1

Infeasible

P4

x1 ≥ 2

x2 ≥ 2

Figure 2.4: Branch and bound tree

The branch-and-bound algorithm can be extended to mixed integer prob-
lems, by only branching on variables that are required to be integer. For
binary variables, a problem is split into two sub-problems by fixing a vari-
able (say x1) to x1 = 0 for the one sub-problem and x1 = 1 for the other
sub-problem.

One of the main limitations of the branch-and-bound algorithm, is related to
decisions such as the order in which nodes are examined, and the branching
strategy. For example, at node P0, x1 could have also been selected as the
branching variable instead of x2. These decisions can significantly impact
the performance of the algorithm in the worst case scenario, that might well
occur in practice. Branching strategies and node selection criteria as well as
the use of heuristics to find good starting feasible solutions are described in
[2] and [29].

Finally, it is worth noting that presolving or preprocessing techniques are an
important component of all modern MIP solvers. The aim of presolving is to
simplify the given problem instance, before solving with more sophisticated
and often time-consuming procedures such as the branch-and-bound and
cutting-plane algorithms [30]. Presolve routines remove redundant informa-
tion, and integer presolve methods such as bound tightening and coefficient
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tightening, strengthen the model formulation, accelerating the subsequent
solution process [31]. For example, given a binary variable x and the con-
straint x ≤ 1/2. Then x can be fixed at zero since it can never take the
value of 1.

2.3 Optimisation software

A variety of commercial and open source software packages are available
that implement the models presented in this chapter. These products make
use of algebraic modelling languages that have a syntax very similar to the
mathematical notation for sets, indices and algebraic expressions. A user of
the software is able to formulate the problem using the appropriate syntax,
and the software takes care of invoking and configuring the underlying solver
and related algorithms.

These software packages are the result of decades of research and develop-
ment, and therefore offer the most computationally advanced implementa-
tions of an extensive range of algorithms. However, custom implementations
in programming languages like Java and Python, such as the examples in
Appendix B, can be used to solve certain fundamental forms of problems.

In modelling languages like IBM’s OPL [32], SAS’s OPTMODEL [33] and
AMPL [1], relationships defined within the model can be independent of
the data used with the model and thus the same model can be used with
different data sets. In general, these tools make mathematical programming
more efficient and reliable when developing, debugging and documenting
models.

See Dantzig’s notes on the derivation of certain terms and the contribu-
tion of William Orchard-Hays in the early development of these software
tools [4]. Bixby [6] describes the progress in algorithm development, as
modern computer software and hardware has evolved. Sophisticated open
source solvers for linear and integer programming are available as part of the
Computational Infrastructure for Operations Research (COIN-OR) project
[34, 35].
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Chapter 3

Collateral management

This chapter introduces the role of credit in financial markets and discusses
the importance of credit risk management. The nature of counterparty
credit risk and the use of collateral as a form of credit risk mitigation is
discussed. The importance of collateral management as well as the benefits
and risks of collateralisation are highlighted. The regulatory environment
and the role of technology in collateral management is also explored.

As documentation plays such an intricate role in the collateral management
process, key terminology useful in interpreting the relevant legal agreements
is outlined. Chapter 4 will translate certain attributes of the collateral
agreement into the constraints that uniquely characterise the collateral op-
timisation problem.

As the required amount of the call requirement is one of the main inputs
into the collateral optimisation problem, an example of the required amount
calculation is described.

3.1 Credit and credit risk management

Financial institutions such as banks, insurers and pension funds play an
important role in the correct functioning of financial markets.
In the last few decades there has been tremendous growth in the development
of sophisticated products offered by these financial institutions. Due to the
complexity of these products, the risks are not always fully understood and
can have a devastating impact on the financial system. In the wake of the
2008 financial crisis, driven by significant regulatory changes, there has been
an increased awareness of the importance of credit risk management [36].

One particular type of risk, namely counterparty credit risk, arises due to a
counterparty’s inability to fulfil their contractual obligations. It is especially
important because of its systemic nature and its complexity as it intersects
both market risk1 and credit risk2. Counterparty credit risk generally arises

1Market risk is the risk that arises from changes in the market price of financial instru-
ments.

2Credit risk is the risk that money owed is not repaid and arises from a borrower’s
unwillingness or inability to make required payments.
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from trading in the over the counter (OTC) derivatives markets, securities
borrowing and lending (SBL) and repurchase (Repo) markets [37]. A high
level explanation of the different types of transactions is given in Appendix
A. There are various ways to mitigate counterparty credit risk, such as
netting, margining and hedging. These concepts are discussed in more detail
in Section 3.2.4. The following section focuses on collateralisation and the
margin call process.

3.2 Collateral and collateral management

In general, collateral refers to assets that are used to secure a lending trans-
action that are forfeited in the event of default. Collateral serves as a form
of guarantee that if the borrower is unable to pay the lender, the lender has
the right to sell the collateral to recover the outstanding amounts owed by
the borrower.

In the financial markets, trading between two counterparties creates coun-
terparty credit exposure, which is a measure of the magnitude of loss or
replacement cost in the event the counterparty defaults. Collateral is moved
between trading counterparties as security against non-payment or default
by a counterparty. Collateralisation serves as a form of bilateral insurance
that is used to mitigate counterparty credit risk.

As an example, consider an interest rate swap transaction between two coun-
terparties A and B, in which party A makes a mark-to-market (MTM)3

profit and party B makes a corresponding loss. Then party B is required to
post collateral to party A in order to offset the credit exposure that arises.
The type of collateral posted can be cash or securities, the specific char-
acteristics of which are agreed contractually before the swap transaction is
entered into. As the collateral agreements are often bilateral, an institution
with a positive MTM will call for collateral and be required to post collat-
eral in the case of a negative MTM. Similarly, if the exposure decreases, an
equivalent amount of collateral must be returned accordingly.

Collateral management is the function within the financial institution that
is responsible for reducing counterparty risk and making efficient use of col-
lateral. Collateral management began in the 1980s with Bankers Trust and
Salomon Brothers using collateral to offset credit exposures [37]. Initially
there were no standard legal agreements, but during the 1990s collaterali-
sation of derivatives became more prevalent, resulting in significant docu-
mentation being produced by ISDA4. In 1994, the Credit Support Annex

3Mark-to-market or marking to market is an accounting method that records the value
of an asset or liability according to the current market price or “fair value”.

4International Swaps and Derivatives Association.
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(CSA) was finalised, specifically documenting credit support (collateral) for
derivative transactions (Appendix A.1). The collateral management team
is responsible for day to day collateral operations such as collateral calcula-
tions, making and receiving margin calls, dispute resolution, delivering and
receiving collateral, interpreting collateral agreements and liaising with in-
ternal departments and external counterparties. Collateral and collateral
management, collateral optimisation and the convergence of collateral and
liquidity are reviewed in [38]. Trends and developments in the collateral
management space are considered in [39].

3.2.1 Benefits and risks

The main motivation for collateral management is to reduce counterparty
risk and minimise losses in the event of default. The reduction of credit
exposure allows the institution to do more business, and trading between
counterparties with different credit worthiness is facilitated. The Basel II
accord provides capital relief for collateralised exposures, thus capital re-
quirements are reduced, freeing up capital for alternate investments. Pricing
is also made more competitive by reducing the credit spread that is charged
to a counterparty.

Although basic counterparty credit risk is reduced, it is important to note
that collateralisation changes counterparty risk into other forms of financial
risk. Collateralisation is operationally intensive and operational risks and
costs in terms of human and technology resources is increased. Legal risks
with regard to the ability to enforce contracts or differences in insolvency
legislation across jurisdictions also needs to be taken into consideration. Col-
lateral optimisation, re-use and rehypothecation and the transformation of
collateral in the Dutch financial sector is studied in [40]. The paper high-
lights increases in operational and liquidity risks due to complex collateral
allocation processes and systems, particularly optimisation models and al-
gorithms.

3.2.2 Regulatory drivers

At the G205 Pittsburgh summit in 2009 it was noted that OTC deriva-
tives had contributed significantly to the 2008 financial crisis due to certain
market characteristics that exacerbate systemic risk. As part of their com-
mitment to stabilise and safeguard the financial system, member countries

5The Group of Twenty (G20) is an international forum for the governments and central
bank governors from the world’s twenty leading industrialised and emerging economies.
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agreed to gradually implement reforms of the global OTC derivatives mar-
kets. The main goals are to reduce systemic counterparty risk, protect regu-
lated entities, improve fairness, efficiency and competitiveness and increase
the overall transparency of the market.

Regulations were put in place to encourage trading of all OTC derivatives
on an exchange or other electronic trading platforms. Standardised OTC
derivatives contracts are to be cleared through a central counterparty (CCP)
and reported to a trade repository. Bilateral derivatives contracts have
generally involved exchanging variation margin over the life of the deal.
Centrally cleared trades, however, will require a daily variation margin in
cash as well as require both counterparties to pay an initial margin in cash or
sovereign bonds with a high credit quality. Non-centrally cleared contracts
are subject to higher capital requirements and bilateral derivatives that are
too complex to be centrally cleared, such as inflation swaps, will need to be
collateralised. The first of these regulations have been incorporated in the
U.S. under the Dodd–Frank Wall Street Reform and Consumer Protection
Act, and in Europe under the European Market Infrastructure Regulation
(EMIR).

As a member of the G20, South Africa committed to making regulatory and
legislative reforms to the OTC derivatives market in alignment with interna-
tional standards. In July 2016, National Treasury published the third draft
of regulations supporting the objectives of the Financial Markets Act, and
noted in an explanatory memorandum that it expected the implementation
of the reforms to continue beyond 2018 [41].

The Basel Committee on Banking Supervision (BCBS) and the Interna-
tional Organization of Securities Commissions (IOSCO) created the Work-
ing Group on Margining Requirements (WGMR), and in September 2013
the final policy framework for the margining of non-centrally cleared OTC
derivatives was published. The framework was developed in consultation
with the Committee on Payment and Settlement Systems (CPSS) and the
Committee on the Global Financial System (CGFS) and imposes restrictions
on eligible forms of collateral, segregation of initial margin and documenta-
tion requirements that govern the collateral relationships.

Basel III6 is an extension to the existing Basel II framework, aimed at
strengthening the regulation, supervision and risk management of the bank-
ing sector. In addition to strengthening the capital requirements and intro-
ducing a minimum leverage ratio, two new liquidity ratios were introduced.
The Liquidity Coverage Ratio requires banks to have sufficient high-quality

6The Basel Accords are three sets of recommendations (Basel I, II and III) on bank-
ing regulations issued by the Basel Committee on Bank Supervision (BCBS). The Basel
Committee is named after the city of Basel in Switzerland where the BCBS maintains its
secretariat at the Bank for International Settlements (BIS).
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liquid assets on their balance sheets to withstand a 30-day long stress sce-
nario, and the Net Stable Funding Ratio incentivises banks to access longer
terms stable funding sources.

In South Africa the Pensions Fund Act regulates the extent to which re-
tirement funds may invest in particular assets. Regulation 28 of the act
prescribes conditions for securities lending transactions and in particular
that adequate collateral is held at all times. Rules concerning the margin-
ing and valuation of collateral and pledge or cession and outright transfer
of collateral assets are stipulated. The Solvency Assessment Management
project (a joint venture between the Financial Services Board and the South
African insurance industry) will adopt many of the principles of the Euro-
pean Solvency II directive, which aims to coordinate insurance regulation
and the amount of capital insurance companies should hold in order to re-
duce the risk of insolvency. With more complex collateral requirements,
insurance companies will need to adopt more advanced collateral manage-
ment solutions.

The challenges faced by financial institutions due to a changing regulatory
environment and the impact on collateral and risk management are explored
in [42]. Counterparty credit risk, the impact of regulation, collateral funding
aspects and the effect of systemic risk when trading with central counter-
parties is reviewed in [43]. A study [44] of the collateral value chain shows
how banks could reduce their Basel III capital requirements and optimise
balance sheet usage.

3.2.3 Role of technology

Collateral management is a large and complex area requiring sophisticated
systems and integration across many of an organisation’s operational ar-
eas. An enterprise wide collateral management system includes inventory
management and collateral tracking, reference data and reporting, advanced
analytics, automation and straight-through processing.

Technology is at the core of collateral optimisation. Advanced algorithms,
rule and scenario engines and data visualisation provide decision support
to end users. Even though these systems can perform complex calculations
and automate many manual processes, collateral allocation may still involve
subjective decisions. As each organisation might want to apply slightly
different business rules in how they manage their collateral, an ideal system
should provide a user with the ability to add or change constraints without
requiring them to be specialists in the underlying modelling language.

Electronic messaging standards such as SWIFT7, used for money and secu-

7SWIFT (Society for Worldwide Interbank Financial Telecommunication) messages are
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rities transfers, play a crucial role in automation and straight-through pro-
cessing. The Financial Information eXchange (FIX) protocol is a messaging
standard for the real-time electronic exchange of information related to se-
curities transactions. FpML (Financial products Markup Language) is the
messaging standard for OTC derivatives and is based on XML8. Similarly,
XBRL (eXtensible Business Reporting Language) is an XML based stan-
dard to define and exchange business information such as financial reports.
Collateral management in particular benefits from reducing operational risk
through automation. As opposed to sending information via email, phone or
fax, the margin call notices and requests for substitutions can be automated
allowing, for scalability and enhanced security. SWIFT’s bilateral collateral
management messages are based on ISO 200229 standards.

Cloud computing10 services provide an alternative for firms that may not
have a collateral management platform in place. Regulation is changing
rapidly and cloud solutions allow an organisation to manage technology
costs and scale technology infrastructure in a more agile way. Complex new
functionality can be deployed quickly and updated more easily in order to
keep up with new and continually changing regulatory requirements. Collat-
eral management requires interoperability between organisations, and cloud
based solutions seem particularly suited to provide such functionality. The
benefits of Software as a Service (SaaS) solutions for collateral management
are mentioned in [45].

In the future, blockchain11 technology is likely to play a greater role in the
collateral management space. The movement of assets can be transparently
recorded, and the smart contract capabilities of the technology, can be used
for the calculation of collateral amounts and automatic triggering of margin
calls.

3.2.4 Documentation

Prior to the commencement of trading activity between two counterparties,
an ISDA Master Agreement is signed by the two parties. The document

used by financial institutions to send and receive information about financial transactions.
8XML (Extensible Markup Language) is used to encode data in a format that is both

human and machine readable.
9ISO 20022 is an ISO (International Organization for Standardization) standard for

electronic data interchange between financial institutions.
10Cloud computing is the access to shared computing resources such as storage,

databases, networks, applications and services that can be rapidly provisioned, config-
ured and managed over the Internet.

11A blockchain is a list of records (blocks) which are linked and cryptographically se-
cured. A blockchain can act as a public distributed digital ledger that can record trans-
actions between two parties.
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outlines the standard terms that apply to all OTC derivatives transactions
between the parties and is typically accompanied by a CSA. Repo trans-
actions are most often documented using the Global Master Repurchase
Agreement (GMRA), whereas the Global Master Securities Lending Agree-
ment (GMSLA) relates to collateral for the securities lending and borrowing
market.

Key terminology useful in interpreting the CSA documentation is listed
below. For a more detailed explanation of the parameters in the collateral
agreement and the mechanics of collateralisation see [46] and [47].

Netting is the process of aggregating all trades with a counterparty to es-
tablish a net MTM portfolio value and exposure estimate.

A margin call is a request usually from the party with a net positive MTM to
the party with a net negative MTM to post additional collateral in order to
offset the credit risk due to changes in the market value of the transactions.

The counterparty posting the collateral is the collateral giver and the party
receiving the collateral is the collateral taker. The call amount is the amount
of collateral being requested by the taker and is rounded up or down to a
certain lot size.

The independent amount is an amount that is paid upfront usually in the
form of cash. It can also be an agreed amount that is transferred later and
serves as a form of overcollateralisation intended to offset credit risk due to
a time delay between a collateral call and the delivery of collateral, or in
cases where a counterparty’s credit rating deteriorates.

The threshold is the level of exposure below which collateral will not be
called for, and essentially represents the amount of uncollateralised exposure
a party is willing to accept.

The minimum transfer amount is the smallest amount that can be trans-
ferred as collateral and assists in avoiding the frequent transfer of small
amounts of collateral, which might be more costly than the benefits pro-
vided by collateralisation.

The valuation percentage or haircut is a discount applied to the MTM value
of the collateral that reduces its value in order to protect the holder of
the collateral from a deterioration in the value of the held collateral. For
example, if a security attracts a haircut of 5%, only 95% of the value of this
security will be credited for collateral purposes. Appendix A contains sample
pages from a CSA illustrating eligible collateral and associated haircuts.

The types of collateral that a party is willing to accept are termed eligible
collateral (A.2). ISDA has developed Collateral Asset Definitions in order
to provide standardised short-hand terms of the various types of collateral.
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A party may be unwilling or unable to accept certain types of collateral,
for example, it may not have the accounts to hold cash or securities in a
certain currency. Counterparties may also not accept certain collateral due
to credit reasons stemming from concentration limits or percentage limits
on the amount of a particular issue.

A counterparty has the ability to substitute one form of collateral for another
under the terms of the agreement. For example, a counterparty may require
certain securities posted as collateral to be returned, so that they can be
used to meet other commitments. They can then issue a substitution request
and post an amount of alternative collateral as long as the collateral meets
the eligibility requirements under the agreement.

Non-cash collateral may also be sold or delivered as collateral to other coun-
terparties. This secondary trading of collateral is known as rehypotheca-
tion. The terms rehypothecation and reuse of securities are often used
interchangeably, but there is an important technical and legal difference.
Outside the United States, the term reuse applies if collateral is posted on
the basis of title transfer when legal ownership goes from the collateral giver
to the collateral taker. The collateral becomes the unencumbered property
of the taker and can be used as he/she deems fit. Repo and securities lend-
ing transactions are based on the transfer of the legal title of the collateral
[40, 48].

The term rehypothecation is used when collateral is pledged, i.e. the col-
lateral remains legally owned by the collateral giver. Rehypothecation is
common in derivatives transactions, which are usually governed by an ISDA
Master Agreement and associated CSA, which specifies whether rehypoth-
ecation of collateral is allowed under the terms of the contract. If a coun-
terparty makes a substitution request and the original securities have been
rehypothecated, then the party may need to purchase equivalent fungible12

securities in order to return the requested collateral [40, 48, 49].

Required amount calculation

Trades are periodically marked to market and net exposure values are cal-
culated. Based on the terms of the collateral agreements, a collateral calcu-
lation determines if a party has the right to call for collateral or if a party
is obliged to post collateral.

12The fungibility of securities implies that different securities (not the same security
with exactly the same serial numbers), but equivalent in terms of specification can be
returned to the lender.
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The collateral amount is calculated as follows [47]

max(MTM − TCP, 0)−max(−MTM − TP, 0)− C (3.1)

where MTM is the current mark-to-market value of the positions, TP is
the threshold of the party and TCP is the threshold of the counterparty.
C is the value of collateral already held by the party under the agreement.
The calculation is made by both parties and if they agree on the MTM and
collateral parameters, they should agree on the required amount.

Consider a simplified example where a party trades with two counterparties
under the terms of the collateral agreements listed in Table 3.2. Given the
MTM values in Table 3.1, the collateral calculations from the perspective
of Party A are shown in Table 3.3. In case (a) the net portfolio value is
R−195,000. As the threshold represents uncollateralised exposure, only the
exposure above the threshold will be collateralised. The amount is rounded
and exceeds the minimum transfer amount, hence Party A will be required
to post collateral to the value of R100,000. In case (b) the net portfolio value
is R−200,000 which is reduced further by taking the value of held collateral
into account. Applying thresholds and rounding results in Party A again
being obliged to post collateral.

Trade Id Product Counterparty MTM
1 Interest Rate Swap Standard Bank R−300,000
2 Forward Rate Agreement Standard Bank R50,000
3 Forward Rate Agreement Standard Bank R55,000
4 Interest Rate Swap Rand Merchant Bank R−300, 000
5 Interest Rate Swap Rand Merchant Bank R100, 000

Table 3.1: Trade exposures

Id Counterparty Threshold MTA13 Rounding
SB CSA Standard Bank 100000 50000 10000
RMB CSA Rand Merchant Bank 50000 10000 5000

Table 3.2: Collateral agreements

13Minimum Transfer Amount.
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(a) CSA with Standard Bank

Party A
MTM −195,000
Existing collateral 0
Required collateral −95,000
Credit support amount −100,000

(b) CSA with Rand Merchant Bank

Party A
MTM −200,000
Existing collateral 50,000
Required collateral −200,000
Credit support amount −200,000

Table 3.3: Collateral calculation
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Chapter 4

Collateral optimisation

This chapter shows how the most basic form of a collateral optimisation
problem can be formulated in a similar way to the transportation problem
introduced in Section 2.1.3. An integer formulation is presented1 with con-
straints that more accurately reflect the problem as explained in Chapter
3.

4.1 Problem definition

Collateral optimisation is concerned with the optimal allocation of collat-
eral from a pool of available assets to meet margin call requirements as
illustrated in Figure 4.1. The goal is to minimise the cost of using collateral
and maximise the value of the assets that are retained in the collateral in-
ventory. Certain restrictions such as the type of collateral that may be used
or limitations on the quantities that can be allocated must also be taken
into consideration.

For a high level overview of collateral optimisation, the driving factors and
benefits of optimisation, see [51]. Some of the limitations of collateral opti-
misation, and the building blocks that need to be in place before advanced
optimisation techniques can be applied are highlighted in [52].

Margin Call RequirementsCollateral Inventory

Asset1

Asset2

...

Assetn

Requirement1

Requirement2

...

Requirementm

Figure 4.1: Asset allocation

1An earlier formulation was presented in [50].
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Defining the cost of collateral assets is particularly important when speci-
fying the objective function. The cost assigned to each asset is the primary
driver of the allocation process. The simplest approach is to assign a pref-
erence weighting to each asset whereby the institution prefers to post lower
ranked assets and retain assets with a higher rating. This weighting could
be assigned manually or derived as function of certain properties of the asset
itself, such as credit rating, liquidity or maturity of the asset.

If an institution has insufficient collateral to meet collateral requirements,
it may engage in collateral transformation (also called collateral swaps or
collateral upgrades), whereby collateral of the required type is traded for
assets that are less easily used to secure transactions. Collateral transfor-
mation differs from collateral optimisation in that optimisation attempts to
make the best use of existing assets in the collateral inventory, whereas with
transformation, the inventory is adjusted by acquiring the required collateral
[40]. For example an institution with a large corporate bond portfolio that
is required to post cash for derivatives contracts can use a repo to borrow
cash using the corporate bonds as collateral. If the institution is required to
post government bonds, it can use the securities lending market to borrow
sovereign bonds in exchange for the corporate bonds. Therefore, the cost of
funding collateral is one of the key factors that needs to be considered when
establishing which collateral is most valuable.

The economic and operational costs of collateral are important factors when
specifying the cost of using assets in the collateral inventory. See [53] for
a discussion of the limitations of a preference ranking cost model and the
various factors and benefits of defining an institution specific economic cost
model. For a detailed analysis of funding value adjustment (FVA) and the
implications of funding collateral on derivatives pricing, see [47]. An in-
depth analysis of optimising collateral allocation is given in [54]. The paper
states that the goal of optimisation is not only to minimise the cost of posted
collateral but also to minimise funding costs and maximise the liquidity of
the retained inventory. The paper also quantifies the additional benefits of
collateral optimisation, as well as other factors that act as constraints, that
may need to be taken into consideration during the optimisation process.

The formulations in following sections assume that the cost function of assets
has already been defined and focuses on the optimal allocation of collateral
using mathematical optimisation methods.

4.2 Basic formulation

The fundamental problem can be modelled in a similar way to the trans-
portation problem described in Section 2.1.3. The objective is to minimise
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the cost of posting collateral when allocating assets from the collateral in-
ventory to meet the margin call requirements.

Consider a simplified version of the model in which a number of assets
(A1 . . . A5) are used to meet requirements (R1, R2). Table 4.1 lists the avail-
able units of each asset and required amounts. Table 4.2 lists the cost per
unit of allocating an asset to a specific requirement.

Assets
Asset Available Units

A1 220
A2 170
A3 10
A4 30
A5 90

Requirements
Requirement Required Amount

R1 200
R2 300

Table 4.1: Assets and requirements

Assets
Requirements A1 A2 A3 A4 A5

R1 10 7 3 2 1
R2 10 8 4 2 1

Table 4.2: Allocation costs

Introducing the variable xar to represent the number of units of an asset Ai

delivered to a requirement Rj , a linear programming formulation is given by

minimise

10x11 + 10x12 + 7x21 + 8x22 + 3x31

+4x32 + 2x41 + 2x42 + x51 + x52
(4.1)

subject to
x11 + x12 ≤ 220 (4.2)

x21 + x22 ≤ 170 (4.3)

x31 + x32 ≤ 10 (4.4)

x41 + x42 ≤ 30 (4.5)

x51 + x52 ≤ 90 (4.6)

x11 + x21 + x31 + x41 + x51 = 200 (4.7)

x12 + x22 + x32 + x42 + x52 = 300 (4.8)

xar ≥ 0 (4.9)
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For such a problem with m assets and n requirements the total number of
constraints is m+n and the total number of variables in the objective func-
tion is mn. The availability constraints (4.2) to (4.6) prevent the allocation
of more units of an asset than are available. The requirement constraints
(4.7) and (4.8) ensure that each requirement is met.

This problem can also be represented graphically as a bipartite graph with
nodes divided into two disjoint sets, one for the assets and one for the
requirements. As illustrated in Figure 4.2, the arcs represent the movement
of assets across the network and the problem now is one of determining the
minimum cost flow through the network. The positive asset nodes (Ai) can
be seen as “sources” of flow entering the network and the negative nodes (Rj)
as “sinks” where flow leaves the network. In order to ensure that the total
flow into the network equals the total flow leaving the network, the available
assets must be completely exhausted when meeting the requirements. In the
linear programming formulation, the number of available assets (220+170+
10 + 30 + 90 = 520) exceeds the required demand (200 + 300 = 500). In
the network model, a dummy requirement R3 is introduced to consume the
excess 20 supply, giving the following equivalent linear program

minimise

10x16 + 7x26 + 3x36 + 2x46 + x56 + 10x17 + 8x27

+4x37 + 2x47 + x57 + x18 + x28 + x38 + x48 + x58
(4.10)

subject to
x16 + x17 + x18 = 220 (4.11)

x26 + x27 + x28 = 170 (4.12)

x36 + x37 + x38 = 10 (4.13)

x46 + x47 + x48 = 30 (4.14)

x56 + x57 + x58 = 90 (4.15)

− 1x16 +−1x26 +−1x36 +−1x46 +−1x56 = −200 (4.16)

− 1x17 +−1x27 +−1x37 +−1x47 +−1x57 = −300 (4.17)

− 1x18 +−1x28 +−1x38 +−1x48 +−1x58 = −20 (4.18)

xar ≥ 0 (4.19)
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Figure 4.2: Flow Network

4.3 Integer formulation

A more realistic example with a more representative set of constraints re-
quires the use of the integer programming techniques introduced in Section
2.2.3.

Let A be the index set of assets in the collateral inventory and let R be
the index set of requirements that are obliged to be met. Let xar ∈ Z+ be
a decision variable that represents the number of units of an asset a ∈ A
allocated to requirement r ∈ R and let car be the cost per unit of each
movement. An integer linear programming formulation is given by

min
∑
a∈A

∑
r∈R

xarcar (4.20)

s.t. ∑
r∈R

xar ≤ ua ∀a ∈ A (4.21)∑
a∈A

xarma ≥ vr ∀r ∈ R (4.22)

xar ≥ 0 (4.23)

Availability constraints (4.21) prevent the allocation of more units of an
asset than are available in the inventory where ua is the number of available
units for each asset.
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Requirement constraints (4.22) ensure that the value of the posted collateral
at least meets the value of the required amount vr of the margin call, where
ma is the market value per unit of an asset.

As an example, consider the list of assets in the collateral inventory in Table
4.3 and the margin call requirements listed in Table 4.4. The cost of allo-
cating an asset to a call is listed in Table 4.5, and the specific instruments
the assets refer to are listed in Table 4.6.

Id Name Market Value Per Unit Available Units Lot Size Minimum Units
A1 ZAR R100 1000 1 1
A2 R186 R500 500 1 1
A3 ES23 R200 0 1 1
A4 TL20 R115 0 1 1
A5 TKG R110 0 1 1
A6 AGL R150 2000 1 1

Table 4.3: Collateral inventory

Id Required Amount Agreement Maximum Number Assets
R1 R100,000 SB CSA 3
R2 R200,000 RMB CSA 3

Table 4.4: Margin call requirements

Assets
Requirements A1 A2 A3 A4 A5 A6

R1 5 3 2 2 1 1
R2 5 3 2 2 1 1

Table 4.5: Cost matrix

Id Type Issuer Coupon Maturity ISIN2

ZAR Cash Republic of South Africa

R186 Government Bond Republic of South Africa 10.5 2026/12/21 ZAG000016320

ES23 Corporate Bond Eskom Holdings 10 2023/01/25 ZAG000074212

TL20 Corporate Bond Telkom SA Limited 6 2020/02/24 ZAG000021528

TKG Equity Telkom SA Limited ZAE000044897

AGL Equity Anglo American plc GB00B1XZS820

Table 4.6: Cash and securities

2International Securities Identification Number (ISIN).
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Implementing this basic case using IBM ILOG CPLEX (Appendix B.4 and
B.5) results in the three collateral movements indicated in Figure 4.3. The
two requirements are satisfied without using cash which had the highest
cost. Requirement R2 with a required amount of R200000 is 100% satisfied
using 400 units of asset A2 with a unit cost of 3. Requirement R1 is slightly
overcollateralised using 100 units of A2 and 334 units of A6 resulting in
R100100. The resulting objective function value is (400×3+100×3+334×
1 = 1834)

A1
ZAR

(1000)

A2 R186 (500)

A3 ES23 (0)

A4 TL20 (0)

A5 TKG (0)

A6
AGL

(2000)

Requirement 1
R100,000

Requirement 2
R200,000

Collateral Inventory

Margin Call Requirements

Cost: 1834

R
18

6

A
G

L

R
18

6

100%

50.1%50%

100 @ R500 = R50000

334 @ R150 = R50100

400
@

R
500

=
R200000

Figure 4.3: Allocation costs

4.3.1 Eligibility

An eligibility matrix captures the eligibility of an asset to be posted as col-
lateral to a specific requirement. With ear ∈ {0, 1} defined as in the matrix
below, and incorporated into the requirement constraints (4.22), asset A6

becomes ineligible for either requirement. The optimal solution is forced to
draw upon asset A1 to meet the requirements.
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A1 A2 A3 A4 A5 A6

R1 1 1 1 1 1 0
R2 1 1 1 1 1 0

Table 4.7: Eligibility matrix

4.3.2 Substitution

This basic model could be extended to support collateral substitution and
recall by allowing the decision variable xar to take negative values. An
alternative approach is to introduce an additional decision variable zar ∈ Z+

that represents the number of units of an asset a ∈ A that can be recalled
from a requirement r ∈ R.

Let sr ∈ {0, 1} indicate whether substitutions are allowed under the agree-
ment or not, and let tar be the number of units of an asset that are currently
allocated to a specific requirement. The objective function is altered to
accommodate the additional decision variable and an additional constraint
(4.24) ensures that it is not possible to recall more than is initially allocated.

zar ≤ srtar ∀a ∈ A, ∀r ∈ R (4.24)

Suppose requirement R1 has an initial allocation of 5 units of A5 with a
total value of (R110 × 5 = R550). It is cheaper to recall the 5 units and
post an additional number of A6 units to replace the recalled collateral. In
this case 337 units of A6 to the value of R50550 are posted to R1 and both
calls are satisfied exactly. The total cost is reduced to (100× 3 + 400× 3 +
337× 1− 5× 1 = 1832).

4.3.3 Lot Size

As assets are usually only allocated in discrete lot sizes, la is introduced into
the objective function and the constraints, xar and zar will then represent
the number of units allocated as a function of the lot size. A minimum lot
size constraint is introduced with ba giving the minimum number of units of
an asset that can be allocated to meet a requirement. Let yar be a binary
indicator variable such that

yar =

{
1 if asset a is allocated to requirement r

0 otherwise
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The minimum lot size constraint is given by

yarba ≤ xarla ≤ yarua (4.25)

The logic employed in (4.25) ensures that if yar is 1 then xar ≥ ba and if yar
is 0 then xar is forced to 0.

4.3.4 Fragmentation

Reusing yar, the number assets assigned to a call, can be limited in order to
reduce fragmentation. fr places an upper bound on the number of different
types of assets that are used to meet a call.

∑
a∈A

yar ≤ fr ∀r ∈ R (4.26)

Similarly, concentration limits could be used to diversify the composition
of assets by industry sector or issuer. Such constraints could be applied to
individual requirements or to all assets in the collateral inventory.

4.3.5 Diversification

Diversification constraints limit the allocation of specific assets or from a
specific issuer when meeting a particular call.

Asset level diversification Let dar be a limit on the proportion of asset
a that is allowed to be assigned to requirement r.

xarearmala∑
k∈A

xkrekrmklk
≤ dar ∀a ∈ A, ∀r ∈ R (4.27)

Issuer level diversification Let dir be a limit on the proportion of issuer
i that is allowed to be assigned to requirement r and let A(i) be an index
set used in order to filter assets from a particular issuer i ∈ I.

∑
a∈A(i)

xarearmala∑
k∈A

xkrekrmklk
≤ dir ∀i ∈ I, ∀r ∈ R (4.28)
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4.3.6 Complete formulation

The complete formulation is given by

min
∑
a∈A

∑
r∈R

xarlacar −
∑
a∈A

∑
r∈R

zarlacar (4.29)

s.t. ∑
r∈R

xarla ≤ ua ∀a ∈ A (4.30)∑
a∈A

xarlamaear − zarlama ≥ vr ∀r ∈ R (4.31)

zar ≤ srtar∀a ∈ A,∀r ∈ R (4.32)

yarba ≤ xarla ≤ yarua∀a ∈ A, ∀r ∈ R (4.33)∑
a∈A

yar ≤ fr ∀r ∈ R (4.34)

xarlamaear∑
k∈A

xkrlkmkekr
≤ dar ∀a ∈ A, ∀r ∈ R (4.35)

∑
a∈A(i)

xarlamaear∑
k∈A

xkrlkmkekr
≤ dir ∀i ∈ I,∀r ∈ R (4.36)

xar ≥ 0 (4.37)
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Chapter 5

Computational results

This chapter gives details of how the test data files were generated, and
presents the results of implementing and testing the model on the various
data sets. Different problem sizes are compared, and the effect of the sparsity
of the eligibility matrix is shown. The influence of initial allocations and the
impact of diversification constraints are reported.

5.1 Model implementation

The model for the integer formulation outlined in Section 4.3 was imple-
mented and tested using IBM ILOG CPLEX Optimization Studio version
12.7.1. Comparative results were generated on the Amazon EC2 cloud-
computing platform using a m4.2xlarge instance with 8 vCPUs and 32GiB
of memory. CPLEX was configured with a mixed integer programming
(MIP) emphasis that balances optimality and feasibility. A dynamic MIP
search method in deterministic parallel mode was used.

5.2 Data file generation

Chapter 3 described the types of data required before collateral optimisation
can take place. The required amount calculation, for instance, depends on
information from the collateral agreements. This information is not always
readily available, due to the fact that banks are still finalising the processes
and systems for capturing data of this nature. The agreements themselves
are also still evolving in line with legislation. For these reasons, synthetic
data was generated for the purposes of this study.

To test the integer model, various test data files were generated. The number
of assets and requirements were varied between 100 and 500, in increments
of 100, resulting in 5 × 5 = 25 variations. The density of the eligibility
matrix was varied between 25, 50, 75 and 100%, resulting in an additional 4
variations, where a sparse matrix implies that fewer assets are available to
meet the requirements.

55



When initial allocations are present, the collateral giver is entitled to replace
the existing collateral with cheaper eligible alternatives. A variation was
added for call requirements where initial asset allocations were present, and
another variation where no initial allocations were present.

The number of available units and the market value per unit for each of
the assets were randomly generated. Similarly for the requirements, the
required amounts were randomly generated. No bounds were placed on the
diversification of assets or issuers. In order to establish an average runtime,
5 different random files were generated for each of the variations, resulting
in 25× 4× 2× 5 = 1000 test data files.

For cases where no more than a certain percentage of a call requirement
can be satisfied by the same asset, asset diversification constraints are in-
troduced. To test the effect of such constraints, a further set of files were
generated with only 100 assets and a 100 requirements, in which the as-
set diversification percentage was varied between 70, 80, 90 and 100%. As
above, 5 different random files were generated.

5.3 Transportation algorithm results

As described in Chapter 4, the basic collateral optimisation problem can be
represented as a balanced transportation problem that can be solved using
transportation algorithms.

In order to demonstrate the use of a transportation algorithm on the col-
lateral optimisation problem, the modified distribution method was imple-
mented in the Python programming language. An implementation of the
stepping stone method is provided in Appendix B, but as stated in Section
2.1.3, the modified distribution method is computationally more efficient
and therefore only results for this method were generated.

Runtime performance was compared across various problem instances. Test
data files with an equal number of assets and requirements were generated.
The problem instances were balanced before being passed to the algorithm
and the northwest corner method was used to find the basic initial feasible
solution. Table 5.1 shows the increase in runtime as the problem size in-
creases. The performance of the Amazon cloud computing platform (AWS
EC2) is compared to that of an Intel i5-3317U CPU @ 1.70GHz. Perfor-
mance on the cloud platform is roughly five times faster than the dual core
machine.

It should be noted that due to Python’s Global Interpreter Lock (GIL) the
implementation is not making full use of all the processor cores. The Python
implementation makes use of the NumPy library’s efficient arrays, and can
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be refined and improved further for example, by using the multiprocessing
package. However, the final column in Table 5.1 shows how fast a CPLEX
implementation of the basic formulation is. These results are from the dual
core machine, where CPLEX has been instructed to use only a single thread.
On the cloud platform, the solving duration for CPLEX when multithread-
ing is enabled is less than a second for all problem size variations of this
basic model.

Figure 5.1 shows that the computational effort with respect to problem
size. The following sections describes the performance of a more complete
formulation of the problem implemented using the CPLEX optimisation
software package.

Assets Requirements AWS EC2 i5-3317U CPLEX

100 100 2 10 0

200 200 19 118 0

300 300 91 338 3

400 400 171 817 5

500 500 343 2548 10

Table 5.1: Modified distribution method solving duration in seconds
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Figure 5.1: Modified distribution method solving duration
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5.4 Integer program results

5.4.1 Problem size variations

Table 5.2 shows the average solving duration in seconds as the number of
assets and requirements is varied. The number of initial allocations per call
has been set to zero and all assets are eligible to be posted to every call.
These values are plotted in Figure 5.2. As described in Section 2.2.3, the
CPLEX relative MIP gap tolerance1 was set to 0.01, instructing the solver
to stop as soon as a feasible integer solution proved to be within 1% of the
optimal is found.

It is evident from the heatmap in Table 5.2 that the solver is quite easily
able to find an optimal solution, even with 500 assets in the inventory and
500 requirements that need to be met. Figure 5.2 shows the increase in
time taken to solve the problem as the number of assets and requirements
increase, and gives an indication as to the exponential nature of the problem.

Number of requirements
Number of assets 100 200 300 400 500

100 0.00 1.00 2.00 3.00 4.40
200 1.80 4.00 7.00 9.80 13.20
300 4.00 8.60 13.60 18.60 25.20
400 6.00 13.40 21.20 28.80 44.80
500 9.60 20.20 32.20 49.40 78.40

Table 5.2: Average solving duration in seconds

1IloCplex.DoubleParam EpGap - Sets a relative tolerance on the gap between the best
integer objective and the objective of the best node remaining.
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Figure 5.2: Average solving time for assets and requirements

5.4.2 Eligibility matrix density

The impact of varying the density of the eligibility matrix between 25% and
100% is illustrated in Figure 5.3, which shows that the runtimes decrease
linearly as the eligibility matrix becomes more sparse.

This is likely due to the fact that the solver preprocessor is simplifying the
problem. As discussed in Section 2.2.3, the presolver is able to reduce the
size of the problem by decreasing the number of rows and columns based on
the binary eligibility value. This is similar to the way that certain arcs could
be excluded from a network flow formulation of the problem, as there is no
path from a certain asset to a particular requirement. A custom preprocessor
could also exclude these values from the input data before passing the data
to the solver.
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5.4.3 Initial allocations

To test the effect of substitutions, the runtimes of call requirements with
initial allocations were compared to those where there were no initial asset
allocations. Table 5.3 shows the average solving time in seconds with “False”
indicating that no initial allocations were present and “True” indicating a
random number of initial allocations were generated per call. These values
are plotted in Figure 5.4.

As expected, when initial allocations are present, additional computational
effort is required to solve the problem. From Figure 5.4 it appears that tak-
ing previously allocated collateral into consideration could possibly increase
the exponential growth rate of the problem.

Initial allocation
Number of Req False True

100 4.28 4.56
200 9.44 12.24
300 15.20 19.76
400 21.92 29.40
500 33.20 42.20

Table 5.3: Initial allocation average solving duration in seconds
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5.4.4 Diversification

The results of varying the asset diversification percentage between 70% and
100% are shown in Table 5.4. A time limit of 10 minutes was set in CPLEX
for finding a solution to the problem2. Once this time limit is reached,
the program reports the objective value of the current best solution and
the relative MIP gap. The status indicates whether an optimal solution was
returned or whether solving was aborted due to the time limit being reached.

With the diversification percentage set to 100%, i.e. where there is no limit
on the percentage composition of assets that are used to meet a particular
call, the optimal solution is found very quickly. However, when the pro-
portion of an asset that is assigned to meet a requirement is constrained,
the solution is not found in a reasonable amount of time. It is clear that
introducing a diversification percentage significantly affects the time taken
to solve the model. Table 5.4 shows the cases where CPLEX has stopped
due to the time limit, and was only able to find a feasible integer solution
that was within 20% of the optimal solution.

2IloCplex.DoubleParam TiLim - Sets the maximum time, in seconds, for a call to an
optimiser.
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% Asset
Diversification

Solving
Duration

Cplex
Status

MIP
Relative Gap

Objective
Value

70% 600 AbortTimeLim 0.228312 234.816107

70% 600 AbortTimeLim 0.236872 233.422710

70% 600 AbortTimeLim 0.238918 233.754236

70% 600 AbortTimeLim 0.244675 231.709513

70% 600 AbortTimeLim 0.256874 228.881757

80% 600 AbortTimeLim 0.219213 228.306086

80% 600 AbortTimeLim 0.222089 226.875527

80% 600 AbortTimeLim 0.225224 230.925027

80% 600 AbortTimeLim 0.232585 228.719331

80% 600 AbortTimeLim 0.248602 227.452867

90% 600 AbortTimeLim 0.173254 228.489343

90% 600 AbortTimeLim 0.177279 225.563920

90% 600 AbortTimeLim 0.177478 228.207200

90% 600 AbortTimeLim 0.183292 228.728429

90% 600 AbortTimeLim 0.217746 227.045425

100% 0 Optimal 0.0 108.884805

100% 0 Optimal 0.0 109.538293

100% 0 Optimal 0.0 109.980338

100% 0 Optimal 0.0 110.967328

100% 0 Optimal 0.0 111.069271

Table 5.4: Asset diversification percentage
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Chapter 6

Conclusion

This dissertation gave an overview of linear and integer programming and
related algorithms.

The function of collateral management and the factors driving the increased
demand for collateral were discussed. In particular, the impact of regulation
and the role of technology were highlighted. The importance of the optimal
allocation of collateral and the need for advanced information systems were
also noted.

The various types of constraints that are applicable to the collateral op-
timisation problem were discussed and a mathematical formulation of the
problem was presented. The model was implemented and tested on various
data sets. The results showed that the collateral optimisation problem with
a set of basic constraints can be solved within a reasonable amount of time,
even for relatively large problem sizes. However, certain types of constraints,
such as those related to the diversification of assets, can significantly affect
the time taken to solve the model.

Future work could explore the applicability of the model to real-world data
sets. The model could also be extended to include various other types of
constraints such as recalling collateral when it becomes ineligible, for ex-
ample after a ratings downgrade. A multiperiod model could be developed
that not only takes the current collateral requirements into consideration,
but also future collateral requirements. Future collateral requirements could
be forecast based on future cashflows or corporate actions.

This study only considered computation time as a measure of the behaviour
and performance of the model, but both memory usage and solution time
rise as the number of integer variables grow. For mixed integer programs,
the set of active nodes in the branch and bound tree can consume large
amounts of memory. The problem size alone may not be a good indicator of
the lower bound on memory usage. It could be useful to analyse the CPLEX
log file to gauge how variations in the data impact memory usage. The log
file contains the time spent in the current MIP optimisation as well as the
amount of memory used by branch-and-cut. More detailed experiments
could be performed with different CPLEX parameters that control variable
selection and node selection as described in 2.2.3.
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The effectiveness of constraint programming at expressing institutional-
specific requirements could also be explored. For example, the fact that
a certain type of asset was previously posted to satisfy a requirement, may
imply that more of the same asset should be posted, even if the allocation
is not the most optimal.

In order to overcome the limitations seen in the diversification constraints,
heuristics methods might be employed to find good approximate solutions
in cases where the standard algorithms were not able to find a solution in a
reasonable amount of time.

Institutions that are faced with the challenge of selecting and implementing
a collateral management system at significant expense, should consider us-
ing open source solvers to develop an in-house optimisation model. Such a
prototype could ensure that the necessary building blocks are in place before
trying to optimise the allocation process. For example, collateral agreements
need to be electronically captured, with eligibility criteria, netting sets etc.
and the composition of assets in the inventory and their associated costs
needs to be well defined. Once these foundations are in place, the organi-
sation can consider spending further capital on more advanced commercial
software and solvers to handle the more complicated types of requirements
and constraints.
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Possession, repo and rehypothecation. Journal of Economic Theory, 147(2):477 –
500, 2012.

67

https://www.dnb.nl/binaries/415234_DX0_DNB_OS_12-05_eng-WEB_tcm46-309555.pdf
https://www.dnb.nl/binaries/415234_DX0_DNB_OS_12-05_eng-WEB_tcm46-309555.pdf
http://www.treasury.gov.za/OTC/Explanatory%20Memo%20%20Regulating%20OTC%20Markets_July2016.pdf
http://www.treasury.gov.za/OTC/Explanatory%20Memo%20%20Regulating%20OTC%20Markets_July2016.pdf
http://www.dtcc.com/~/media/Files/Downloads/WhitePapers/CollateralMGMT_WhitePaper.ashx
http://www.dtcc.com/~/media/Files/Downloads/WhitePapers/CollateralMGMT_WhitePaper.ashx
https://www-935.ibm.com/services/multimedia/SIS_-_The_Optimization_of_everything_whitepaper.pdf
https://www-935.ibm.com/services/multimedia/SIS_-_The_Optimization_of_everything_whitepaper.pdf
http://www.clearstream.com/blob/66616/9250c222407c9aad032ff51f8e4befa3/eltonpickford-data.pdf
http://www.clearstream.com/blob/66616/9250c222407c9aad032ff51f8e4befa3/eltonpickford-data.pdf
http://www.4sight.com/media/9412/4sight%20and%20Rule%20Financial%20Whitepaper%20-%20Buy%20Side%20Collateral%20Challenges%20and%20Opportunities.pdf
http://www.4sight.com/media/9412/4sight%20and%20Rule%20Financial%20Whitepaper%20-%20Buy%20Side%20Collateral%20Challenges%20and%20Opportunities.pdf
http://www.4sight.com/media/9412/4sight%20and%20Rule%20Financial%20Whitepaper%20-%20Buy%20Side%20Collateral%20Challenges%20and%20Opportunities.pdf
http://www.isda.org/publications/pdf/2005isdacollateralguidelines.pdf
http://www.bis.org/publ/cgfs49.pdf


[50] P.G. Reynolds and S.E. Terblanche. An integer linear programming formulation for
collateral optimisation. In Proceedings of the 44th Annual ORSSA Conference, pages
54–61. Operations Research Society of South Africa.

[51] Martin Seagroatt. 4sight white paper: Collateral Optimisation in a Centrally Cleared
World.
http://www.4sight.com/media/2310/4sight%20Whitepaper%20-%20Collateral%

20Optimisation%20in%20a%20Centrally%20Cleared%20World.pdf

, 2012. Accessed: 2017-08-17.

[52] Martin Seagroatt and Paul Wilson. 4sight white paper: Collateral Optimization -
Beyond Cheapest to Deliver and the Big Red Button.
http://www.4sight.com/media/8202/4sight%20Whitepaper%20-%20Beyond%

20Cheapest%20to%20Deliver%20and%20the%20Big%20Red%20Button.pdf

, 2015. Accessed: 2017-08-17.

[53] Ted Allen and Ed Hellaby. SunGard white paper: Collateral Optimization - How it
really works.
http://finance.flemingeurope.com/webdata/4201/WP_

CollateralOptimization_HowItReallyWorks_2013.pdf

, 2013. Accessed: 2017-09-01.

[54] Thomas Schiebe, Sendi Cigura, Ted Allen, and Sven Ludwig. Sapient Global Markets
and FIS: Techniques for post-trade collateral optimization.
https://www.fisglobal.com/solutions/institutional-and-wholesale/

asset-management/-/media/fisglobal/files/report/

techniques-for-post-trade-collateral-optimization.pdf

, 2016. Accessed: 2017-08-01.

68

http://www.4sight.com/media/2310/4sight%20Whitepaper%20-%20Collateral%20Optimisation%20in%20a%20Centrally%20Cleared%20World.pdf
http://www.4sight.com/media/2310/4sight%20Whitepaper%20-%20Collateral%20Optimisation%20in%20a%20Centrally%20Cleared%20World.pdf
http://www.4sight.com/media/8202/4sight%20Whitepaper%20-%20Beyond%20Cheapest%20to%20Deliver%20and%20the%20Big%20Red%20Button.pdf
http://www.4sight.com/media/8202/4sight%20Whitepaper%20-%20Beyond%20Cheapest%20to%20Deliver%20and%20the%20Big%20Red%20Button.pdf
http://finance.flemingeurope.com/webdata/4201/WP_CollateralOptimization_HowItReallyWorks_2013.pdf
http://finance.flemingeurope.com/webdata/4201/WP_CollateralOptimization_HowItReallyWorks_2013.pdf
https://www.fisglobal.com/solutions/institutional-and-wholesale/asset-management/-/media/fisglobal/files/report/techniques-for-post-trade-collateral-optimization.pdf
https://www.fisglobal.com/solutions/institutional-and-wholesale/asset-management/-/media/fisglobal/files/report/techniques-for-post-trade-collateral-optimization.pdf
https://www.fisglobal.com/solutions/institutional-and-wholesale/asset-management/-/media/fisglobal/files/report/techniques-for-post-trade-collateral-optimization.pdf


Appendix A: Exhibits���������	
	���	��	�������������	����	�������	������������	����		����������	����	 	!����"��#�	 �����	����������	�$�%���	��	&������	���#'							 ()*+,-(./01.2/34.25-)6278-2.9-*013:2/3:08-+884;32/34.<-(.;=		>?@*(A-)BCCD?A-+EE@F-	/4-/G0-);G09H50-/4-/G0---()*+-I28/01-+J100K0./--L���L	��	�"	M92/0-()*+-I28/01-+J100K0./N		�������		>B)ADI@?-F	��L	M.2K0-4O-;4H./01721/PN-	 QRC21/P-+ST- QRC21/P-UST-			!���	����V	�$����������	"����	����	�"�	��L	��	�$�%���	���	���	����	W�����	���������	��"����L	��	���X�	��L	��	����	�"	���	����L$���		���	���	�$������	�"	����	����������	����$L����	�����$�	�����������	��������	���#�	'��#�		��L	Y�	���	���L��	�$�����	������������	���	�$�	��	����	����V	�������$��	�	!����������	�"��	�����	����	����V	�������$���	���	���"��������#�			C212J127G-Z=--(./01710/2/34.		����������L	�����	���	���������	L�"���L	��	����	����V	��	���������	��	����	���������	��X�	���	��������	�����"��L	�$��$���	��	[��������	�\�	��L	���	��"�������	��	����	����V	��	[���������	���	��	[���������	�"	����	����V�		��	���	�X���	�"	���	�������������	�������	����	����V	��L	���	�����	���X������	�"	����	����L$���	����	����V	����	���X����	��L	��	���	�X���	�"	���	�������������	�������	[��������	��	��L	���	�����	]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]�	!���	L��$����	��	���	�����L�L	��	������	�	������	��	�����	���$����	��������	�X��	���	������	�����"����L	$�L��	���	������		[������	�����L���	��	���������	�	����������	�����������	����L	��	���	��������	�"	�	������	��	�����	���$����	��������	���$�L	�����L��	$����	���	����	���L��	�$�����	���L	�&������	���#	��	���	����	���L��	�$�����	����V	�̂��	_��̀	���#�	��	������������	'	!���	���L��	�$�����	����V	���	����	�������L	"��	$��	����	����	W�����	����������	�$�%���	��	&������	����		a����	���$�L	����$��	�����	�����	�LX�����	��	��	���	������	$��	��L	�""���	�"	����	"���	��L	���	������������	��	�������������		��	������$����	$����	���$�L	����$��	�����	�����	�LX�����	�"	����	����	��	��X�	���	���L��	�$�����	����V	��L�	�$�%���	��	�	��X������	���	�����	����	&������	���	��	��	��X�	���	���L��	�$�����	����V	�$�%���	��	�	L�""�����	��X������	���	����	����	��X������	���	����	�"	���	����	W�����	���������	�����	&������	���	"��	���	���L��	�$�����	����V	��L	̂��	_��̀	���	"��	���	����	�"	���	����	W�����	���������#�						
Figure A.1: ISDA Credit Support Annex
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Figure A.2: ISDA CSA eligible collateral
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Securities borrowing and lending

• Securities or stock lending refers to the lending of securities by one
party to another in exchange for collateral.
• Motivated by the need to borrow securities.
• Market in Europe represented by the International Securities Lending

Association (ISLA).
• Legal contract: Global Master Securities Lending Agreement (GM-

SLA).

Borrower Lender

Borrow R1000 worth of securities (100 @ R10)

Deliver R1050 worth of collateral (cash or non-cash)

Lender applies 5% margin

to the value of loan

Figure A.3: Securities borrowing and lending

Repurchase agreement

• A repurchase agreement (repo) is the sale of securities together with
an agreement from the seller to buy them back at a future date and
price. If the seller defaults during the life of the deal, the buyer can
sell the asset to offset the loss. The asset therefore acts as collateral
and mitigates the credit risk that the buyer has on the seller.
• Motivated by the need to borrow and lend cash.
• Market in Europe represented by the European Repo and Collat-

eral Council (ERCC) of the International Capital Market Association
(ICMA).
• Legal contract: Global Master Repurchase Agreement (GMRA).

Borrower
(Seller)

Lender
(Buyer)

106 units @ R10×(1 − 0.05) = R1007 (market value = R1060)

Lend R1000 Cash

Deliver R1060 worth of securities as collateral

Lender applies a 5% haircut to

the value of the collateral

Figure A.4: Repurchase agreement
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Over the counter derivative

• A derivative is a security that’s value is derived from the performance
of an underlying asset.

• Trading is done directly between two counterparties as opposed to
trading on an exchange.

• Terms are documented in an International Swaps and Derivatives
Association (ISDA) Master Agreement with Credit Support Annex
(CSA).

Example: An Interest Rate Swap (IRS) is an interest rate derivative that can
be used to hedge exposure to changes in interest rates or to take advantage of
a declining interest rate environment by changing from a fixed to a floating
rate. Party A agrees to pay Party B a fixed rate of interest based on a
specified notional amount and party B agrees to make floating rate payments
to Party A linked to a rate index such as 3 month JIBAR1.If interest rates
rise, Party A benefits as they are paying a fixed rate but now receiving the
difference between the fixed rate and the higher floating rate. Party B gains
if interest rates drop.

Party A
(Payer)

Party B
(Receiver)

Fixed rate

Floating rate linked to reference rate

Party that is in-the-money has credit

risk and will call for collateral

Figure A.5: OTC derivative

1The Johannesburg Interbank Average Rate (JIBAR) benchmark average interest rate
at which South African banks are prepared to lend to one another in Rand with a maturity
of 3 months.
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Appendix B: Source Code

1 from numpy import dot , array , linalg , subtract , min , amax ,

where

2 from numpy.linalg import inv

3

4 def simplex_method ():

5 c = array([6, 9, 0, 0])

6 A = array([

7 [10, 20, 1, 0],

8 [40, 30, 0, 1]])

9 b = array ([[200] , [450]])

10

11 nonbasic_idx = array([0, 1]);

12 basic_idx = array([2, 3]);

13

14 optimal = False

15 iteration = 0;

16 while not optimal:

17 iteration += 1

18 print "iteration", iteration

19 B = A[:, basic_idx ];

20 N = A[:, nonbasic_idx ];

21 cb = c[basic_idx ];

22 cn = c[nonbasic_idx ];

23 xn = array ([[0], [0]])

24 xb = inv(B).dot(b);

25 reduced_costs = subtract(cn , cb.dot(inv(B)).dot(N))

26 max_rc = amax(reduced_costs)

27 if max_rc <= 0:

28 print "optimal"

29 optimal = True

30 print "Z", dot(cb , xb)

31 else:

32 entering_idx = where(reduced_costs == max_rc)

33 entering_variable = nonbasic_idx[entering_idx ];

34 entering_column = N[:, entering_variable ];

35 ratios = xb / inv(B).dot(entering_column);

36 positive_ratios = ratios[ratios > 0]

37 min_ratio = min(positive_ratios)

38 ratios = ratios.tolist ()

39 leaving_idx = ratios.index(min_ratio)

40 tmp = basic_idx[leaving_idx]

41 basic_idx[leaving_idx] = nonbasic_idx[entering_idx]

42 nonbasic_idx[entering_idx] = tmp

Source Code B.1: Python simplex algorithm
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1 def northWestCornerMethod(supply , demand , matrix):

2 supply = np.array(supply)

3 demand = np.array(demand)

4 for r in range(0, len(supply)):

5 for c in range(0, len(demand)):

6 quantity = min(supply[r], demand[c])

7 if quantity > 0:

8 matrix[r][c] = quantity

9 supply[r] -= quantity;

10 demand[c] -= quantity;

11 if supply[r] == 0:

12 r += 1

13 break;

14

15 def leastCostMethod(supply , demand , costs , matrix):

16 supply = np.array(supply)

17 demand = np.array(demand)

18 costs = np.array(costs)

19 cells = []

20 removedSupply = set()

21 removedDemand = set()

22 for r in range(0, len(supply)):

23 for c in range(0, len(demand)):

24 cells.append ((r, c));

25 cellsSortedByCost = sorted(cells , key=lambda (a, b): costs[

a][b])

26 for cell in cellsSortedByCost:

27 r = cell [0]

28 c = cell [1]

29 if supply[r] > 0 and demand[c] > 0:

30 quantity = min(supply[r], demand[c])

31 if quantity > 0:

32 matrix[r][c] = quantity

33 supply[r] -= quantity;

34 demand[c] -= quantity;

35

36 def getAdjacentCells(cell , cells):

37 adjacentCells = [None , None]

38 for c in cells:

39 if c != cell:

40 if adjacentCells [0] is None and c[0] == cell [0]:

41 adjacentCells [0] = c

42 elif adjacentCells [1] is None and c[1] == cell [1]:

43 adjacentCells [1] = c

44 if adjacentCells [0] is not None and adjacentCells

[1] is not None:

45 break

46 return adjacentCells

47

48 def removeCellsWithNoAdjacentCells(cells):

49 removed = False

50 for cell in cells:

51 adjacentCells = getAdjacentCells(cell , cells)

52 if adjacentCells [0] == None or adjacentCells [1] == None
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:

53 cells.remove(cell)

54 removed = True

55 return removed

56

57 def getClosedPath(cell , cells):

58 path = [cell]

59 path.extend(cells)

60 while True:

61 result = removeCellsWithNoAdjacentCells(path)

62 if result == False:

63 break

64 stones = []

65 prev = cell

66 for i in range(len(path)):

67 stones.append(prev)

68 prev = getAdjacentCells(prev , path)[i % 2]

69 return stones

70

71 def fixDegeneracy(supply , demand , matrix , cells):

72 epsilon = 0.000000000000000000000001

73 for r in range(0, len(supply)):

74 for c in range(0, len(demand)):

75 if matrix[r][c] == 0:

76 path = getClosedPath ((r, c), cells)

77 if len(path) == 0:

78 matrix[r][c] = epsilon

79 return

80

81 def steppingStoneMethod(matrix):

82 steppingStones = []

83 for r in range(0, len(supply)):

84 for c in range(0, len(demand)):

85 if matrix[r][c] != 0:

86 steppingStones.append ((r, c))

87 if (len(supply) + len(demand) - 1) != len(steppingStones):

88 fixDegeneracy(steppingStones)

89

90 maxReducedCost = 0;

91 finalPath = None

92 leavingVariable = None

93 for r in range(0, len(supply)):

94 for c in range(0, len(demand)):

95 if matrix[r][c] != 0:

96 continue

97

98 path = getClosedPath ((r, c), steppingStones)

99 reducedCost = 0

100 minQuantity = sys.maxsize

101 leavingCandidate = None

102 sign = 1;

103 for p in path:

104 change = sign * (costs[p[0]][p[1]])

105 reducedCost = reducedCost + change
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106 if sign == -1:

107 if matrix[p[0]][p[1]] < minQuantity:

108 minQuantity = matrix[p[0]][p[1]];

109 leavingCandidate = p

110 sign = sign * -1;

111

112 if reducedCost < maxReducedCost:

113 finalPath = path

114 leavingVariable = leavingCandidate

115 maxReducedCost = reducedCost

116

117 if leavingVariable is not None:

118 quantity = matrix[leavingVariable [0]][ leavingVariable

[1]]

119 sign = 1

120 for p in finalPath:

121 matrix[p[0]][p[1]] = matrix[p[0]][p[1]] + (sign *

quantity)

122 sign = sign * -1;

123

124 steppingStoneMethod(matrix)

125

126 def modifiedDistributionMethod(supply , demand , costs , matrix):

127 supply = np.array(supply)

128 demand = np.array(demand)

129 costs = np.array(costs)

130 while True:

131 stoneCells = []

132 for r in range(0, len(supply)):

133 for c in range(0, len(demand)):

134 if matrix[r][c] != 0:

135 stoneCells.append ((r, c))

136

137 if (len(supply) + len(demand) - 1) != len(stoneCells):

138 fixDegeneracy(supply , demand , matrix , stoneCells)

139

140 uv = []

141 stoneCosts = []

142 for r in range(0, len(supply)):

143 for c in range(0, len(demand)):

144 if matrix[r][c] != 0:

145 if len(uv) == 0:

146 u = [0] * len(supply)

147 v = [0] * len(demand)

148 u[r] = 0

149 v[c] = 1

150 u.extend(v)

151 uv.append(u)

152 stoneCosts.append(costs[r][c])

153

154 u = [0] * len(supply)

155 v = [0] * len(demand)

156 u[r] = 1

157 v[c] = 1
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158 u.extend(v)

159 uv.append(u)

160 stoneCosts.append(costs[r][c])

161

162 a = np.array(uv)

163 b = np.array(stoneCosts)

164 x = np.linalg.solve(a, b)

165 minReducedCost = None

166 enteringVariable = None

167 for r in range(0, len(supply)):

168 for c in range(0, len(demand)):

169 if matrix[r][c] == 0:

170 c_ij = costs[r][c]

171 u_i = x[r]

172 v_j = x[len(supply) + c]

173 reducedCost = c_ij - (u_i + v_j)

174 if minReducedCost is None or reducedCost <

minReducedCost:

175 minReducedCost = reducedCost

176 enteringVariable = (r, c)

177

178 if minReducedCost < 0:

179 path = getClosedPath(enteringVariable , stoneCells)

180 minQuantity = None

181 plus = True

182 for cell in path:

183 r = cell [0]

184 c = cell [1]

185 quantity = matrix[r][c]

186 if not plus and (minQuantity == None or

quantity < minQuantity):

187 minQuantity = quantity

188 plus = not plus

189

190 plus = True

191 for cell in path:

192 r = cell [0]

193 c = cell [1]

194 if plus:

195 matrix[r][c] = matrix[r][c] + minQuantity

196 else:

197 matrix[r][c] = matrix[r][c] - minQuantity

198 plus = not plus

199

200 else:

201 break

Source Code B.2: Python transportation algorithms
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1 dvar int x11;

2 dvar int x12;

3 dvar int x13;

4 dvar int x21;

5 dvar int x22;

6 dvar int x23;

7 dvar int x31;

8 dvar int x32;

9 dvar int x33;

10

11 minimize 3 * x11 + 7 * x12 + 15 * x13 + 0 * x21 + 8 * x22 + 6 *

x23 + 10 * x31 + 2 * x32 + 5 * x33;

12

13 subject to {

14 x11 + x12 + x13 == 5;

15 x21 + x22 + x23 == 20;

16 x31 + x32 + x33 == 25;

17 x11 + x21 + x31 == 15;

18 x12 + x22 + x32 == 25;

19 x13 + x23 + x33 == 10;

20 x11 >= 0;

21 x12 >= 0;

22 x13 >= 0;

23 x21 >= 0;

24 x22 >= 0;

25 x23 >= 0;

26 x31 >= 0;

27 x32 >= 0;

28 x33 >= 0;

29 }

Source Code B.3: OPL transportation example

78



1 tuple AssetTuple {

2 string id;

3 string name;

4 float marketValuePerUnit;

5 float availableUnits;

6 }

7

8 tuple RequirementTuple {

9 string id;

10 string name;

11 float requiredAmount;

12 }

13

14 {AssetTuple} Assets = ...;

15 {RequirementTuple} Requirements = ...;

16

17 float Costs[Assets ][ Requirements] = ...;

18 int Eligibility[Assets ][ Requirements] = ...;

19

20 dvar int+ x[Assets ][ Requirements ];

21

22 minimize

23 sum(a in Assets , r in Requirements)

24 x[a][r] * Costs[a,r];

25

26 subject to

27 {

28 AvailabilityConstraints:

29 forall (a in Assets)

30 sum(r in Requirements) x[a][r] <= a.availableUnits;

31

32 RequirementConstraints:

33 forall(r in Requirements)

34 sum(a in Assets) (x[a][r] * a.marketValuePerUnit *

Eligibility[a,r]) >= r.requiredAmount;

35 }

36

37 execute DISPLAY {

38 for(var a in Assets) {

39 for(var r in Requirements) {

40 writeln(a.name ," ",r.name ," ",x[a][r]," ",x[a][r] * a.

marketValuePerUnit);

41 }

42 }

43 };

Source Code B.4: OPL collateral optimisation basic example
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1 Assets = {

2 <A1,"ZAR" ,100,1000>,

3 <A2,"R186" ,500,500>,

4 <A3,"ES23" ,200,0>,

5 <A4,"TL20" ,115,0>,

6 <A5,"TKG" ,110,0>,

7 <A6,"AGL" ,150,2000>,

8 };

9

10 Requirements = {

11 <R1,"Call1" ,100000>,

12 <R2,"Call2" ,200000>,

13 };

14

15 Costs = [

16 [5,5],

17 [3,3],

18 [2,2],

19 [2,2],

20 [1,1],

21 [1,1],

22 ];

23

24 Eligibility = [

25 [1,1],

26 [1,1],

27 [1,1],

28 [1,1],

29 [1,1],

30 [0,0],

31 ];

Source Code B.5: OPL collateral optimisation basic example data
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