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ABSTRACT 
Automatic modulation classification (AMC) is a challenging task in a non-cooperative environment 

where channel state information and signal parameters are not always available. Non -cooperative 

transmissions in military environments may be hampering or threatening to a user’s own goals. In 

this environment signals can use never before seen modulation types or even modulation types that 

are specifically designed to avoid interception, detection and classification. Modulation is in effect 

used here as another layer of encryption. Modulation types thus have to be classified blindly, that is,  

without the use of a priori signal and channel state information. Adaptive modulation techniques 

complicate the task of classifying adversaries’ signals even more. It is desirable to be able to track 

the changes in an adversary emitter’s modulation type, because the transmitter may be identified or 

their messages may be recovered, which is a critical aid in supporting battlefield decision making.  

The objective of this study is to classify and track changes of modulation types from a 

communications transmitter in a non-cooperative environment without channel state information. 

The secondary objective is to develop the method in such a way that the digital signal processing 

components thereof can be implemented on a hardware platform provided by the CSIR.  

Communication signals with modulation types Amplitude Shifts Keying (ASK) of order two and four, 

Phase Shift Keying (PSK) of order two and four, and Frequency Shift Keying (FSK) of order two and 

four were considered. The channel effects that were considered were AWGN noise and flat fading in 

a static multipath Rayleigh fading channel. 

A literature study was first performed to identify candidate algorithms for AMC that can be 

implemented on a hardware platform and the best classification algorithm that met the research 

objectives was selected. The performance of the selected algorithm was evaluated in both software 

and hardware under varying channel conditions whereafter the results were analysed and 

compared. The tracking of changes from one modulation type to another was performed by logging 

the modulation type over time. 

Feature based classification was selected to classify and track modulation types of a signal. Features 

based on the instantaneous amplitude, phase and frequency of a signal were used for feature 

extraction and a decision tree was used for classification. The method was tested under varying SNR 

conditions from 0 dB to 30 dB in an AWGN channel and flat fading conditions in a multipath Rayleigh 

fading channel at an SNR of 30 dB and 10 dB. Classification accuracy higher than 99 % was achieved 

on average for the SNR conditions. Classification performance of 97% and 93% was achieved on 

average for the fading conditions at 30 dB and 10 dB SNR respectively in software. The classification 

performance for hardware was 89% and 71% on average for the fading conditions at an SNR of 30 dB 

and 10 dB respectively. It was found that signal length has a significant effect on the classification 

performance. 

Keywords- Automatic Modulation Classification, Feature based classification, non-cooperative 

environment, Rayleigh flat fading, decision tree 
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1 INTRODUCTION 

1.1 Background 
The utilisation of the radio frequency (RF) spectrum includes communications, radio navigation, 

television- and radio broadcasting, and remote sensing of objects, areas or phenomena [1]. The 

utilisation of the RF spectrum has witnessed a great increase in the last few decades and continues 

to do so. Increases in numbers of wireless devices, technologies and applications as well as the 

constant drive towards higher data rates has led to congestion of the RF spectrum.  

Spectral congestion has led to the development of new technologies in military and civilian 

applications. Traditionally systems used to depend on fixed modulation and spectrum allocation. 

These systems are however being replaced by more advanced systems that are spectrum aware and 

able to adapt to the environment or situation. The systems change their parameters over time, 

which result in dynamic behaviour. The systems have capabilities such as frequency- and modulation 

agility which are used to compensate for the scarcity of available frequency bands. Techniques such 

as Automatic modulation classification (AMC) are required to automatically identify the modulation  

type of signals in order for receivers to select the correct demodulation method.  

Cooperative transmissions are a communication system’s own transmissions that are under the 

control of the transmitter receiver pair and are used to achieve the transmitter and receiver’s goals 

in the RF spectrum. Non-cooperative transmissions are transmissions that are not under a 

transmitter and receiver pair’s control. In the non-cooperative scenario, channel state information 

(CSI) and signal parameters may be unknown to the receiver and may be hampering or threatening 

to a transmitter and receiver pair’s own goals. From the perspective of this study, non-cooperative 

transmissions typically represent either illegal civilian transmissions or transmissions from 

adversaries in military scenarios. Thus the non-cooperative nature of some signals necessitates the 

requirement for AMC with no channel state information available, also known as blind AMC.  

1.1.1 Automatic Modulation Classification 

Modulation classification was initially done manually by signal engineers who were trained to 

identify several signal formats [2]. One of the most common methods still used today for modulation 

classification, as described in [3] and [4], is the use of a computer-based library that contains 

knowledge of known signal parameters gathered previously through electronic intelligence 

operations. Human signal engineers classify these recorded signals offline with the as sistance of 

computer methods and add them to the computer based library. 

Systems that classify signals based upon a fixed library containing a pre-determined set of  emitter 

characteristics have become unable to handle transmissions from dynamic emitters. The classi f iers 

are only able to classify a fixed variety of signals and their adaptation capability to new and unknown 

signals is limited. New and unknown signals need to be recorded and analysed in a laboratory, taking 

multiple days or hours. The systems are then retrained with knowledge of the previously unknown 

signals and redeployed in the field. Such processes are too slow and place military forces at a 

disadvantage as new unknown signals may appear in the field by the time systems are retrained [5] .  

The manual process of modulation classification was later automated with automatic modulation 
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classifiers which contributes to reducing the time taken to classify systems, and especial ly helps in 

the case where emitters are dynamic [2], [6].  

AMC is used to automatically ascertain the modulation type of a signal by applying one or more 

signal processing techniques and classification algorithms to the signals sensed in the environment 

[7]. It is often referred to as “an intermediate operation between signal detection and demodulation 

or system reaction” [8]. In the military domain, the AMC technique is critical for the purpose of 

electronic warfare. 

1.1.2 AMC in Electronic Warfare 

Electronic Warfare (EW) is any action that involves the use of electromagnetic or directed energy by 

military forces to attack an adversary, to control the utilisation of the EM spectrum, and to protect 

systems against attacks. EW exploits the electromagnetic (EM) spectrum by sensing, intercepting, 

manipulating, hardening and analysing signals to determine enemies’ applications of the spectrum 

and enforces suitable measures with the aim of control of the spectrum when necessary [9].  

EW includes three top level operational functions: electronic attack (EA), electronic protection (EP)  

and electronic support (ES) [9]. EA uses EM energy to attack electronic facilities and equipment with 

the purpose of degradation, neutralisation or destruction of enemy combat capability. It includes 

actions such as jamming, which is the primary measure for the prevention of communication 

between adversaries, and deception [10]. EP includes actions to protect the host platform from 

either friendly or hostile EW employment with the purpose of degradation, neutralisation or 

destruction of friendly combat capability. ES searches for and intercepts intentional or unintentional 

EM emissions to record, analyse, locate, and identify them in order to allow effective decision 

making for military operations. For a complete EW capability these three functions of EW are closely 

interconnected [9]. 

The need for automatic modulation classification (AMC), according to [2], first arose in military 

scenarios where modulation classification is required in Electronic Warfare (EW) systems for 

identification of adversary emitters, preparation of jamming signals and recovery of intercepted 

signals. The use of a modulation classifier in EW systems is illustrated in Figure 1. 

AMC is important for all three top level functions of EW. The knowledge of the modulation type can 

be used in ES to determine the appropriate demodulation method for intercepted signals. Messages 

transmitted from adversaries can then be recovered with the help of signal decrypting- and 

translating processes. AMC can also assist ES in classification, identification and the locating of 

adversary units. AMC can assist in determining the appropriate jamming technique in EA by 

identifying the modulation type and altering the jammer to modulation changes. The two mos t 

common jamming techniques are the emission of noise and spoofing. Spoofing includes the emission 

of false signals with the same modulation type and frequency as an adversary signal. As already 

mentioned, the goal of EP is to protect the military force’s own systems from an adversary’s EA 

measures. The military force’s own systems can be prevented from being jammed by monitoring the 

modulation type of the jamming signal and changing the modulation type of its own signals to make 

it more robust against the adversarial signal [10]. 
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Figure 1: Military Signal Intelligence System [10] 

 

AMC also has applications in civilian scenarios such as identifying interference sources, mo nitoring 

spectrum activities, detecting unlicensed users and managing the spectrum [11], [12]. AMC is a 

critical component of dynamic spectrum access/management (DSA) in the context of cognitive 

radios. AMC is used to sense and detect the absence or presence of primary users (PU) who have 

licenses for allocated frequency bands in the spectrum [12], [13]. Cognitive radios (CR), also known 

as secondary users (SU), then through the use of CR techniques intelligently access vacant channels 

while avoiding channels that are occupied by primary users (PU) [12]. For a SU to successfully 

operate in the DSA context, it needs to track modulation changes over time to ensure it continues to 

allow unaffected access for PUs. 

1.1.3 AMC for Modulation Change Tracking  

With the ever growing increase in utilisation of the spectrum, there are still challenges with regards 

to AMC that need to be addressed including tracking of transmitter modulation changes, i.e. logging 

the modulation type over time, through blind modulation classification. 

The tracking of modulation changes has been investigated in applications such as use of link 

adaption (LA), also known as adaptive coding and modulation (ACM) [10], [14]. Link adaption is 

where a single transmitter can employ multiple modulation types to control the data rate and 

bandwidth usage, in an effort to guarantee the integrity of the message. A modulation type is 

selected from a pool of candidate modulations according to channel conditions and system 

specifications. The receiver has to know the modulation type in order to demodulate the rece ived 

signal successfully. Information on the modulation type can be included in the transmitted signal to 

notify the receiver about modulation changes; however the spectrum efficiency is reduced by this 

method due to the additional modulation information overhead required. To overcome this 

problem, the modulation type of the received signal can be automatically identified through bl ind 

AMC [10].  

Another application of modulation change tracking occurs in AMC for adaptive power control in 

cognitive communications which is an interference avoidance technique in civilian cognitive radio 

applications [15], [16]. A PU’s allocated frequency band is accessed by a SU based on an Adaptive 

Coding and Modulation (ACM) protocol. Once the modulation type of the PU is identif ied, a power 

control scheme is used by the SU. The SU attempts to access the PU’s band and, if successful, 

increases its transmitting power until the PU changes i ts modulation type on the assumption that 
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the modulation change is due to the interference caused by the SU. As soon as the change in 

modulation type of the PU is detected, the SU reduces its transmitting power in an attempt to 

control the induced interference and allow both the PU and SU to utilise the channel [15]. 

Modulation change tracking is also used in DSA applications [17], [18]. The transmitter changes the 

modulation type according to the channel conditions and level of interference when occupying 

different available bands in the spectrum, known as white spaces, with different operating 

frequencies. The receiver has to constantly monitor the modulation type used by  the transmitter for 

correct demodulation of the received signals [17].  

The applications discussed above occur in cooperative environments. AMC is however a challenging 

task in non-cooperative environments. In both military and civilian spectrum use cases, the spectrum 

can contain signals from cooperative and non-cooperative communication systems. In a cooperative  

environment, a pool of candidate modulation types and a priori knowledge can be utilised to 

perform modulation classification, greatly simplifying the task. For unknown signals found in a 

military environment a pool of candidate modulation types is not always available or accurate 

enough to assist the classifier. There may even be never before seen modulation types as w ell as 

modulation types that are designed to avoid interception, detection and classification. Modulation is 

in effect used here as another layer of encryption to prevent adversaries from recovering their 

messages [19]. 

An example where adaptive modulation techniques are used to obscure transmissions is found in 

[20]. The paper discusses case studies of attacks targeting tactical military software defined radios 

(SDRs) in which adversaries identify vulnerabilities in the radio sets or in the communication channel 

between radio sets. The authors recommend the use of adaptive modulation techniques for 

transmission security in future development of new systems and architectures.  

The only study found on the topic of the tracking of changes in modulation types in a non-

cooperative environment was [21].  This study proposed a method for the detection of cognitive 

radios that use the spectrum illegally. These CRs avoid being charged for the use of the RF spectrum 

by hiding themselves between PUs. Changes in their signal parameters, such as modulation types, 

are tracked and the CRs are then detected accordingly.  

The challenge in our study is therefore to investigate the tracking of modulation changes in 

communications signals in a non-cooperative environment, specifically in military scenarios where 

frequently changing adaptive modulation types are used by adversaries to contribute in obscuring 

their transmissions. 

The algorithms that are already developed for the tracking of changes in modulation types have 

been developed for signals in cooperative environments where assistance and a priori  information 

about signal parameters are available. These algorithms will not necessarily be suitable for utilisation 

in non-cooperative environments and the classification accuracy may be inferior, which is a vital 

factor in military applications when suitable measures against adversaries need to be taken.  
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1.2 Problem Statement 
In a cooperative environment, a pool of candidate modulation types and a priori knowledge can be 

utilised to perform automatic modulation classification. For unknown signals found in a military 

environment a pool of candidate modulation types is not always available or accurate enough to 

assist the classifier. There may even be never before seen modulation types as well as modulation 

types that are designed to avoid interception, detection and classification. This is a problem because 

the modulation type of a signal effectively provides another layer of encryption in non-cooperative  

environments where a priori signal and channel state information are unknown. Signal parameters 

first have to be estimated and channel state information has to be determined for accurate 

classification. Adaptive modulation techniques complicate the task of classifying adversaries’ signals 

even more, because the signal modulation type changes quickly with time. It is desirable to be able  

to track the changes in adversary emitters’ modulation type. When the change from one modulation 

type to another modulation type of signals from a transmitter can be tracked, the transmitter may 

be identified or their messages may be recovered which is a critical aid in supporting battlefield 

decision making.  

The classification of the modulation type has to occur as quickly as possible in order to keep up with 

the change from one modulation type to another performed by the transmitter. The speed and 

processing power of a system required to process data for classificati on is thus important. The 

classifier also needs to be capable of classifying a wide range of modulation types in order to be able  

to keep tracking the varying modulation types. 

1.3 Research Objective 
The objective of this study is to classify and track changes of modulation types from a 

communications transmitter in a non-cooperative environment without channel state information.  

The secondary objective is to develop the method in such a way that the digital signal processing 

components thereof can be implemented on a hardware platform provided by the Council for 

Scientific and Industrial Research (CSIR). 

A complete capability required to track changes in transmitter modulation types includes the abi li ty 

to receive and digitise signals of interest, spectrum sensing functionality to detect signals of interest, 

signal parameter estimation, classification of signal modulation type, and the tracking of changes in 

that modulation type. This study focuses on the latter two steps, namely on developing a method 

capable of tracking changes in modulation types through classification of signal modulation type 

without the use of channel state information. This study focuses on the classification of 

communication signals, more specifically signals with digital modulation types of Amplitude Shift 

Keying (ASK) of order two and four, Phase Shift Keying (PSK) of order two and four, and Frequency 

Shift Keying (FSK) of order two and four. Modern communication systems make more use of  digi tal 

signals instead of analogue signals. The main reason for this is that digital modulations are better 

suited to digital data and are more robust against interference. The focus of this study is on a larger 

number digital modulation types with lower orders rather than fewer modulation types that 

included higher orders. This approach is chosen to create a baseline on which future work could 

expand to include higher order modulation types. 
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A digital radio frequency memory (DRFM), which is used for EW operations, is the target platform for 

hardware implementation [22]. The following elements of this system were provided for creation of  

the hardware demonstrator and are not developed within the scope of this study:  

 RF hardware 

 Digital hardware 

 Digital signal front-end processing firmware 

 Existing auxiliary firmware interfaces and modules 

 Test software 

1.4 Research Methodology 
In order to accomplish the research objective discussed above, the following methodology was 

followed. The first step is to identify candidate algorithms for AMC that can be implemented on a 

hardware platform. A literature study is performed to identify the state of the art in this f ie ld. The 

literature is critically evaluated and the best classification algorithm that meets the research 

objectives is selected. The selected algorithm is then evaluated in detail through simulation, 

whereafter a subset of the algorithm is implemented on a hardware platform. The performance of  

the selected algorithm is evaluated in both software and hardware in varying channel conditions, 

namely white noise and static flat Rayleigh fading, whereafter the results are analysed and 

compared. The outcome of the study is compared with the research objective, and critically 

evaluated in that context. 

The signal models used for the simulated signals are selected such that they create meaningful 

scenarios to evaluate the performance of the algorithm and provide credible test data for real world 

applications. The signal models include noise models and static flat Rayleigh fading channel mo dels 

which set limitations for accurate classification. 

AMC and tracking is simulated and tested in software and the algorithm for hardware 

implementation is developed and implemented on a concept demonstrator. The concept 

demonstrator is also tested with simulated data satisfying the same criteria mentioned for the 

software simulation. The results of the hardware implementation are compared to the software 

simulation results to show the validity of the hardware implementation.  

1.5 Structure of Dissertation 
This thesis documents the research outlined in this chapter as discussed in the background, problem 

statement, research objective and research methodology. The structure of the thesis closely follows 

the approach outlined in the research methodology.  

Chapter 2 consists of a literature study of the aspects that need to be considered to perform AMC. A 

signal model describing the signal parameters and channel effects is derived. A study on modulation 

classification is performed to obtain a suitable technique for AMC with regards to the research 

objectives of this study. The identification of different machine learning techniques as well as 

feature selection for machine learning techniques is performed. 

Chapter 3 presents the conceptual design which describes the  process followed for the development 

of the AMC algorithm for both software simulation and hardware implementation with the aid of 

functional flow diagrams. 
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Chapter 4 documents the simulation of communication signals for both the software and hardware 

implementation of the method, using the signal models derived in Chapter 2. The effect of signal 

processing and representation thereof are also derived. The simulation of the AMC algorithm in 

software is described as well as the hardware implementation. Datasets are generated for both 

approaches and results are obtained. 

Chapter 5 concludes the work by discussing the performance of the algorithm with regards to the 

channel effects. The findings of the work are discussed and future work is identified.  
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2 LITERATURE STUDY 
In order to select a suitable AMC algorithm for blind classification operable in real world scenarios, 

the algorithm must be applied to realistic signals. A model, representing a signal propagating 

through a channel with real world effects, will thus be derived first. The selected AMC algorithm has 

to be able to operate under the channel conditions selected. After the signal model is derived, there 

are several other metrics to take into consideration when comparing and selecting a sui table AMC 

algorithm. The system requirements determine the priority of the metric. The AMC algorithm 

meeting the requirements can then be selected. Techniques optimising the AMC algorithm, also 

meeting the requirements, will then be discussed.  

2.1 Signal Model 
The description of the signal model includes the transmitted signal, the effects of the channel on the 

signal propagating through the channel and finally the received signal.  

2.1.1 Digital Transmitted Signal 

Modern communication systems make more use of digital signals instead of analogue signals. The 

main reason for this is that digital modulations match digital data better and are more robust against 

interference [23]. The transmitted signal for digitally modulated signals can be presented by: 

𝑠(𝑡) = 𝐴(𝑡)cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡)) (1) 

= 𝑅𝑒{𝑠̃(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡} (2) 

where 𝐴(𝑡) is the amplitude,  𝑓𝑐  is the carrier frequency, ϕ(t) the phase of the signal and 𝑠̃(𝑡) =

𝐴(𝑡)𝑒𝑗ϕ(𝑡) represents the complex baseband signal [24].  

2.1.2 Channel Parameters and Effects 

2.1.2.1 Additive White Gaussian Noise 

One of the most widely used noise models for communication channels is the Additive White 

Gaussian Noise (AWGN) model [24]. Wideband Gaussian noise is caused by thermal vibrations in 

conductors as well as radiation from several sources. Over the bandwidth of interest, the Gaussian 

noise is assumed to be flat and white, which means that the noise samples are uncorrelated [24]. 

The probability density function of the Gaussian distribution is given by: 

𝑓(𝑥|𝜇,𝜎2) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  (3) 

where 𝜇  and 𝜎2  are the mean and variance of the distribution respectively [23]. 

In the AWGN model, noise with Gaussian distribution and zero-mean is added to the signal. The 

AWGN model is the elementary limitation on the accuracy of modulation classification and is used in 

most literature on modulation classification [23]. 

  



9 
 

2.1.2.2 Fading 

There are various phenomena in a wireless communication channel which alter a signal as it 

propagates through the channel. One of the primary effects is fading [25]. Fading is defined as “the 

variation in signal amplitude at the receiver caused by the characteristics of the signal path and 

changes in it” [25]. The effects can be categorised as large-scale effects and small-scale effects [24] . 

Large-scale effects cause slow fading and shadow fading due to the properties of the general terrain. 

When large objects such as buildings and hills are present, signals are not prevented from being 

propagated, but diffraction allows signals to propagate around the objects at a reduced power level.  

These effects change relatively slowly with time and they are taken into consideration with the 

prediction of coverage and service availability [24]. 

The small-scale effects change much faster than the large-scale effects relative to the properties of a 

transmitted signal. Small-scale effects are taken into consideration with the design of  transmitters 

and receivers as well as the selection of modulation types to be used [24]. Small-scale effects cause 

fast Rayleigh fading due to the local environment and movement in the channel within that 

environment [24]. Reflections against trees and buildings may cause a transmitted signal to arrive  at 

the receiver over multiple different paths and at different time instants causing multiple signals to 

arrive at the receiver each with its own amplitude, phase and time delay. This is known as multipath 

propagation. Because all of these signal components add up at the receiver, they may i nterfere with 

each other destructively or constructively. If there is motion in the channel, an additional effect 

caused by how the multiple paths vary over time, is present. This second effect causes distortion due 

to the Doppler shift [24]. The two types of effects can be described by the delay spread and the 

Doppler spread of the channel [26]. 

The multipath delay is described by the delay spread. The delay spread is the second central 

moment of the power delay profile (PDP) [10]. The PDP gives an estimation of the average power in 

the multipath and can be seen in Figure 2. First the average delay is calculated by: 

𝜏̅ =
∑𝑃ℎ(𝜏)𝜏

∑𝑃ℎ(𝜏)
 (4) 

Where 𝜏 and 𝑃ℎ(𝜏) are the delay and power of the individual paths. 

The average delay spread is defined as:  

𝜏2̅̅ ̅ =
∑𝑃ℎ(𝜏)𝜏

2

∑𝑃ℎ(𝜏)
 (5) 

The RMS delay spread is given by: 

𝜎𝑇= √𝜏
2̅̅ ̅ − 𝜏̅2 (6) 
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Figure 2: Power Delay Profile [27] 

 

The Delay spread causes two types of fading: frequency-flat fading and frequency selective fading. 

Frequency flat fading occurs when the symbol time is greater than the delay spread or equivalently 

when the signal bandwidth is smaller than the coherence bandwidth. The coherence bandwidth can 

be defined as bandwidth over which the frequency correlation is strong [26]. This is the bandwidth 

over which all the frequency components are passed by the channel with nearly equal gain and 

linear phase. The signal experiences constant attenuation and phase shift over the transmission 

period. In contrast, frequency selective fading occurs when the symbol time is less than the delay 

spread or equivalently when the signal bandwidth is greater than the coherence bandwidth. This 

effect results in the introduction of inter symbol interference by the channel [24].  

The movement of the receiver, transmitter or any other objects within in a channel, from which 

signals may reflect, introduces changes in the signal frequency. This is known as the Doppler Effect 

[25]. The Doppler Effect causes two types of fading: time-flat fading and time-selective  fading also 

known as slow fading and fast fading respectively. Slow fading is a large scale effect caused by 

reflections of signals from large objects that are far from the transmitter or receiver [24]. The 

movement in the channel is slow relative to the objects. The changes in the frequency are therefore 

small and the symbol time is smaller than the coherence time of the channel.  The co herence time 

can be defined as the period over which the correlation of the channel impulse response is strong 

[26]. The channel is thus almost constant over at least one symbol duration. Fast fading occurs when 

there are large changes in the signal frequency due to the movement in the channel [25]. The 

movement is fast relative to local objects in the environment [24]. The symbol time is larger than the 

coherence time of the channel. The impulse response changes rapidly within the symbol duration of  

the signal which leads to distortion due to frequency dispersion [26].  

Channels can thus be classified into one or more of the following types: Time-flat,  time -selective, 

frequency-flat and frequency selective. Channels are classified based on the signal to be transmitted 

and carried through that channel. Narrowband signals in mobile channels often experience flat -

fading, i.e. flat-frequency and time-selective fading [24]. For most radio channels with transmission 

frequencies less than 1 GHz the coherence bandwidths are normally tens of kilohertz. High 

frequency (HF) radio channels are however an exception, where narrow band channels can be 

frequency selective due to propagation modes. Wideband channels are often both frequency 

selective and time selective, when either the transmitter or receiver is in motion [24].  
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Narrowband static channels are considered in this study. In these channels, multipath interference 

(Rayleigh fading) and shadow fading occur the most [25]. The focus is therefore on the effect of  the 

delay spread due to multipath propagation in a static Rayleigh fading channel.  

2.1.3 Received Signal with Channel Effects 

A frequency-flat Rayleigh fading channel is modelled as a linear filter with an impulse response given 

by: 

ℎ(𝑡, 𝜏) =  ∑𝛼̃𝑖𝛿(𝜏 − 𝜏𝑖)

𝐿−1

𝑖=0

 (7) 

where 𝐿 is the number of multipaths, 𝛼̃ = 𝛼𝑖𝑒
𝑗𝜃𝑖   is the 𝑖𝑡ℎ path complex gain and 𝜏𝑖 the 𝑖𝑡ℎ path 

delay. The complex gain is assumed to be constant in a static channel [24]. 

In a multipath Rayleigh fading model, the phases of the various path components are independent 

and uniformly distributed between [0, 2𝜋] and the real and imaginary components of  the complex 

gain of each path are zero mean Gaussian random variables that are independent and identically 

distributed (i.i.d) [24].  

The received passband signal is the sum of the various multipath components after the signal has 

propagated through the fading channel and is given by:  

𝑟𝑝(𝑡) =∑𝑅𝑒{𝛼𝑖𝑒
𝑗𝜃𝑖 𝑠̃(𝑡 − 𝜏𝑖)𝑒

𝑗2𝜋𝑓𝑐𝑡}+ 𝑛(𝑡)

𝐿−1

𝑖=0

 (8) 

where 𝑛(𝑡) is the additive white Gaussian noise [24]. 

2.2 Automatic Modulation Classification 
Automatic Modulation Classification (AMC) is used to automatically ascertain the modulation type of  

a signal, by applying one or more signal processing techniques and classification algorithms to signals 

sensed from the environment [28]. AMC is used for a wide variety of RF spectrum applications 

including multiple signal classification [29], [30], [31]; classification in multipath fading channels [32] ,  

[33], [34]; dynamic spectrum access [17], [18]; blind modulation classification [35], [36], [37], [38], 

[39]; classification of orthogonal frequency-division multiplexing (OFDM) signals [40] ,  [14] ,  [41]  and 

link adaption [10], [14], [42], [43], [44], [45], [46], [47].  

There are two general approaches for the AMC of signals: likelihood-based (LB) classification and 

feature-based (FB) classification [48]. LB classification formulates the classif ication as a composite  

hypothesis-testing problem which assigns each candidate modulation type to the incoming signal 

under the hypothesis 𝐻𝑖 . The likelihood function is then used to find the correct modulation type of  

the signal. FB classification entails 2 steps, feature extraction and decision making. For feature 

extraction, a carefully selected set of hand crafted features are extracted from the signal of interest. A 

decision (classification of modulation type) is made based on the values of the features. 
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2.2.1 Likelihood Based Classifiers 

Likelihood based classifiers minimises the probability of incorrect classification [49] . When channel 

state information is known, LB classification is an optimal approach for AMC [49]. LB classifiers are 

able to classify digital modulation types including M-ASK, M-PSK, M-FSK, M-PAM, M-QAM [49] ,  [50]  

and [51]. From surveys on AMC in [49], [51] and [50] four general likelihood based classifiers have 

been identified. They include Maximum likelihood (ML) [51], [52], [53], average likelihood ratio test 

(ALRT) [49], [51], [54], [55], [56], General likelihood ratio test (GLRT) [49], [51], [57], [58], [59]  and 

Hybrid likelihood ratio test (HLRT) [49], [50], [59] , [60],  [61]. 

For a maximum likelihood classifier, the likelihood for each modulation hypothesis is tested. The 

likelihoods of the different hypotheses are compared and the maximum likelihood among all the 

candidate likelihoods is selected as the classified modulation type. With perfect channel knowledge, 

the ML method has very high classification accuracy because the computations are repeated for each 

modulation hypothesis. Furthermore, all the channel parameters must be known [51]. This method is 

also not robust against phase and frequency offsets [51] and it is more likely to classi fy a signal  as a 

certain modulation type with denser I-Q constellations [42].  

The next method, ALRT, treats unknown channel parameters as random variables and the likelihood 

function is calculated by taking the average over these variables. Each unknown parameter is 

replaced with an integral which includes all possible values of the unknown parameter and its 

corresponding probabilities [50]. The integration operations make this method more computationally 

complex and with many unknown parameters, this method becomes impractical [49].  

GLRT is a combination of maximum likelihood estimation and classification [51]. An unknown 

parameter is estimated under the assumption that the hypothesis 𝐻𝑖  is true. The maximum likelihood 

estimates over each unknown parameter are then used in the likelihood ratio test [50] . GLRT is less 

complex than ALRT by avoiding the integration calculations. The noise power also does not have to be 

known in order to compute the likelihood function of GLRT [49]. It is however a biased classifier 

towards higher order modulation types [51]. The likelihood for lower- and higher order modulation 

types are equal when lower order modulation types, e.g. 4-QAM and 16-QAM, are classified [51], 

[59].  

HLRT is a combination of ALRT and GLRT classifiers. The likelihood function is obtained by taking the 

average over the data symbols of a signal. The resulting likelihood function is then maximised with 

respect to the unknown parameter and the bias classification problem is in so doing removed [49] ,  

[51]. Additionally, HLRT is less computationally complex than ALRT, and achieves better classification 

performance compared to ALRT and GLRT. It is however more computationally complex than GLRT 

due to the exponential functions [49]. With several unknown parameters, this method becomes very 

time consuming when finding the maximum likelihood estimates of the parameters [49], [50] . Other 

less complex methods for parameter estimation can be used instead which is then what is described 

as a quasi-HLRT classifier in literature [49], [50], [62].  

Expectation maximisation (EM) is used in conjunction with the ML classifier in [63], [53] ,  [64]  in the 

case where multiple unknown channel parameters need to be estimated. EM is an iterative  process 

with two steps: an expectation step and a maximisation step. After initial estimated values are 

assigned to the unknown parameters, the expectation step evaluates the likelihood of the estimation. 

The maximisation step aims to maximise the likelihood function of the current iteration. This process 

is repeated until convergence is reached or a predefined number of iterations are executed, for each 
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modulation hypothesis of the ML classifier [63].  When compared to other classifiers (including an 

ML-classifier, a distribution-test based classifier, a moments FB classifier and a cumulants FB 

classifier), the EM-ML classifier showed to have the highest accuracy and proved to be more robust 

against AWGN and channel conditions [65]. With this method compensation of phase and frequency 

offsets are possible in the estimation stage of the channel parameters [65]. However, the 

computational complexity of the EM-ML classifier was the highest among all the classifiers in the 

complexity comparison due to the iterative estimation process [65].  

2.2.2 Feature Based Classifiers 

The computational complexity of likelihood classifiers gives rise to suboptimal classifiers with smaller 

computational cost such as feature based classifiers [49]. If feature based classifiers are properly 

designed, their performance can be near-optimal [50]. FB classifiers are able to classify digital 

modulation types including M-ASK, M-PSK, M-FSK, M-PAM, M-QAM [49], [50], [66] and some FB 

classifiers are able to also classify analogue modulation types including SSB, DSB, AM, FM and VSB 

[66], [67], [68]. Three main feature based classification methods include the extraction of  features 

based on the instantaneous amplitude, phase and frequency [50], [67], [69], [68], [70], features 

based on the wavelet transform [50], [71], [72] [73], [74] and features based on higher order 

statistics of the signal [17], [33], [75], [76], [77], [78], [79].  

The first method separates a pool of modulation types into subsets according to the properties 

contained in the instantaneous amplitude, phase and frequency of the different modulation types. 

The features based on the instantaneous amplitude, phase and frequency are used sequential ly to 

distinguish between subsets until each modulation type is discriminated.  A decision tree is often 

used for this FB method [66].  FB classification based on the instantaneous information is the most 

intuitive way to determine the modulation type of a signal [50] and has a simple implementation 

[17]. This method can also classify a wide variety of analogue and digital modulation types [66], [67] ,  

[68]. FB classification based on the instantaneous information however relies on feature value 

thresholds to be set in advance, which makes it more sensitive to noise and other channel effects 

[17]. From literature it is also evident that this method is not utilised for classification of modulation 

types with orders higher than four. Per illustration, [69] shows a case where by choosing a second 

set of thresholds, modulation types of order eight can also be distinguished. When the number of  

samples for calculation was increased, the results showed that good classification accuracy can be 

attained at an SNR of 10 dB. 

Wavelet transform based features are used to localise the transients in the instantaneous amplitude, 

phase and frequency of the received signal. After the wavelet transform is applied to the signal ,  the 

transient characteristics are extracted. The differences in transient characteristics of signals are used 

to distinguish between the different modulation types. This method is more robust against noise 

than instantaneous based features, but it has higher computational complexity than instantaneous 

based features [17]. This method has however been implemented on hardware in [80]. A drawback 

of features based on the wavelet transform can only classify between FSK, PSK and QAM signals. 

Other feature based methods such as higher-order statistics, are needed to discriminate between 

QAM and ASK signals [66]. There are instances in literature where classification of other modulation 

types occur where single carrier signals are distinguished from OFDM signals [81]; and where QPSK 

signals are distinguished from Gaussian Minimum Shift Keying (GMSK) signals [74]. Only two 

modulation types can be discerned from each other in these instances.  
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Higher order statistic features include the calculation of moments and cumulants of sig nals. These 

features characterise the shape of the distribution of the I&Q samples of a signal [82]. This method 

focuses on the classification of high order digital modulation types [66] and has high resistance to 

AWGN [17]. It is also more robust against phase and frequency offsets [82]. This method is normal ly 

used for FB classification of signals in a multipath fading channel [83], [84], [85]. It is however more 

computationally complex than features based on the instantaneous amplitude, phase and 

frequency.  

2.2.3 Approach Selection 

The following characteristics are proposed as good criteria when evaluating di fferent methods for 

AMC: versatility, classification accuracy with regards to different noise levels, robustness to channel 

conditions and computational efficiency [65]. These characteristics are used as guidelines for our 

evaluation and comparison of AMC algorithms to be used for this study. The main focus of this work is 

to operate in a non-cooperative environment where many signal- and channel parameters may be 

unknown. A design based on a classifier that needs perfect channel knowledge becomes logically 

unsound in a non-cooperative environment where perfect channel knowledge is unattainable. 

Secondly, the classification algorithm should be suited for hardware implementation and the system 

is intended to operate as fast as possible with good classification accuracy. A classifier that is costly in 

terms of time and computation is thus undesirable since computational complexity may impose 

limitations for hardware implementation.  Furthermore, in order to track changes in modulation type 

of a signal in a non-cooperative environment, a classifier that is able to classify a wide variety of 

modulation types is needed.  

From the literature study above it is evident that likelihood based classifiers are more accurate  than 

feature based classifiers at the expense of computational complexity. The computations are repeated 

for each modulation hypothesis and each sample. The process is again repeated for a number of 

iterations when the EM-ML classifier is used.  Furthermore, perfect channel knowledge is needed in 

the case of a ML classifier. Only one or two channel parameters can be unknown in the case of the 

likelihood ratio test classifiers. The EM-ML classifier is suitable for estimation of  multiple unknown 

channel parameters in a non-cooperative environment; it is however not cost effective in terms of  

computational complexity.  

Because computational cost and operation in non-cooperative environment take precedence for this 

system, feature based classifiers are rather considered. Features based on the instantaneous 

amplitude, phase and frequency can be performed relatively quickly without the burden of high 

computational complexity, making it better suited for hardware implementation. This method is 

capable of operating in a non-cooperative environment and also has the ability to classify a wide 

variety of modulation types, including analogue modulations. The features based on higher order 

statistics are less computationally complex than the LB classifiers. This method can classify a wide 

range of higher order digital modulation types and is more robust against phase and frequency offsets 

than features based on the instantaneous information. This method is however signi ficantly more 

computationally complex than the features based on the instantaneous information.  
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2.3 Machine Learning and Feature Selection 
Machine learning can be used as a decision making process for modulation classification. Machine 

learning algorithms learn from training data in order to make predictions. These algorithms can 

become very complex when the number of features they use for decision making is high due to the 

fact that each feature utilised by the algorithm adds another dimension to the feature space. 

Feature selection methods are used to select the most useful features for the machine algori thm to 

optimise classification performance. Computation time can be reduced by the reduction of the 

feature set and the classification accuracy can be improved. Both feature sele ction- and machine 

learning techniques will be discussed below. 

2.3.1 Machine Learning 

The objective of a machine learning algorithm is to identify an outcome or predict an outcome that 

is either numeric or categorical. A training dataset is used to train a model in order to fit the data. If  

a model fits data, it generalises well and does not overfit. The model is then used to predict an 

outcome based on a set of attributes, known as features, from a new input.  

Generalisation is how well a model performs with unseen data, and a test dataset can be used to 

evaluate its generalisation performance [86]. A model may overfit or underfit a training dataset. 

Poor generalization performance stems from a machine learning model either overfitting or 

underfitting the underlying structure in the data [87]. Overfitting occurs when the machine learning 

algorithm model learns the training data too well and performs poorly for independent test data 

[87]. With underfitting the opposite occurs. The model is not complex enough and cannot model the 

training data accurately enough. The complexity of the model is described by its bias -variance 

decomposition. The bias measures the difference between the average prediction over all  datasets 

and the true mean [88]. The variance measures how much the predictions vary around the true 

mean for individual datasets and shows how sensitive the model is to a specific dataset [88]. There is 

always a trade-off between the variance and bias of a model.  More complex or flexible models 

normally have high variance and low bias. These models tend to overfit if the model becomes too 

complex [89]. More rigid models have low variance and high bias [88]. These models tend to 

underfit, because they lack the freedom to model the structure of the underlying data [87].  

There are three types of learning: Supervised learning, unsupervised learning and reinforcement 

learning [89]. With supervised learning, the training set consists of input and output sample pairs. 

Each set of inputs can be mapped to an output label. The system uses these input-output pairs to 

train a model. The goal is to perform either classification or regression. Classification is the 

assignment of an input vector to a label or category. The label forms part of a set of finite number of  

discrete labels [90]. Regression is performed to predict a future value of a continuous variable [90] . 

For unsupervised learning, the output label is unknown. The system tries to find patterns in the i nput 

data and makes use of techniques such as clustering to group input samples or density estimation to 

ascertain the distribution of data [89], [90]. With reinforcement learning the system learns only from 

the input data without known output labels, but with reinforcements. When a good decision is 

made, the system is rewarded and similarly when a bad decision is made, a penalty is given 

according to a reward function [89].  The system tries to find actions that maximise the reward 

function [90]. 
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Since classification is the objective, supervised learning algorithms are considered. The most 

common machine learning techniques for FB classification include Decision trees, Arti f icial Neural 

Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbours (KNN) [91], [92]. 

Examples of the utilisation of these machine learning techniques for FB classification in literature are 

summarised in [91].  

Decision trees take a vector of feature values as input and return a single value, known as a decision, 

as output [89]. The tree makes the decision based on rules inferred from the feature values. The tree 

consists of nodes and branches. Each node is a test and each branch connected to the node is the 

outcome of the test. A branch can either have another split or a leaf node. A branch has a leaf  node 

when there is no other test to be performed and a class label can be assigned. The leaf node 

therefore represents or equates to a class label. The paths from the root to the leaf nodes represent 

classification rules. The splits are chosen such that each split results in purer branches [93]. A spl i t i s 

pure when it contains branches with only leaf nodes. The best features, selected by a feature 

selection algorithm, are thus used first in order to find the shortest paths to class labels and 

therefore results in the shallowest tree possible [89]. The tree can also be pruned to prevent 

overfitting and improve the classification accuracy [92]. Figure 3 shows an illustration of  a decision 

tree, where the grey box is the root, blue diamonds indicate a node, and the circles represent a leaf  

node where a classification is made.  

 

Figure 3: Illustration of a Decision Tree Model 

Decision trees are known for their simplicity and is seen as one of the most successful and powerful 

machine learning techniques because of their classification performance obtained given the 

simplicity of the trees [89], [94]. Decision trees have the advantage that it is fast to train, and quick 

to classify data samples when compared to other methods [94]. Decision trees are also accurate  for 

a wide range of classes [94]. Decision trees can be upgraded to classify more class labels by simply 

adding more branches [91]. Furthermore, no preparation of data is required before it i s uti l ised by 

the decision tree [94] and it can operate with a combination of numeric and categorical features as 

well as missing values [95]. They are also robust against outliers [95]. The decision making process of 

a decision tree is also easier for humans to comprehend [89]. Feature selection forms part of the 

training process for decision trees. This characteristic makes them resistant to the utilisation  of 

irrelevant features [95]. Branches of decision trees are however based on hard splits where 

thresholds have to be selected [96]. A decision is made by one node only at a time. The node 

consists of the selected threshold, which may be a local optimal decision, but may not be a global 
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optimal decision [96]. Decision trees also have high variance and thus tend to overfit. A small change 

in data can result in a completely different tree structure with different splits [97]. The latter two 

problems can be addressed by using the decision trees in an ensemble [94], [97]. 

Artificial neural networks (ANN) are inspired by the behaviour of the human brain. Multiple  highly 

complex, non-linear computations are done in parallel. These complex computations can however 

be broken down into very simplistic components. These components are known as  neurons. The 

neurons are constructed from the same computational function, however each has its own unique 

weights and biases and by combining the neurons, the algorithms can become a powerful 

computational algorithm [93]. ANNs have three types of layers: an input layer, hidden layers and an 

output layer. A network can have multiple hidden layers where each layer consists of nodes. The 

nodes are connected to nodes in other layers through weighted links, which propagate the 

activation from the current node to the next node. The weight of each link determines the sign and 

strength of each link [89]. The sum of the weighted inputs is computed at each node and an 

activation function is used to derive an output for the node [89]. The activation function can e i ther 

be a hard threshold, known as a perceptron, or a logistic function, known as a logistic perceptron 

[89]. The final value at an output node represents the class label. Back propagation is used for 

training of neural networks. The classification error is calculated for an output and gets propagated 

back through the neural network. The weights of the links are then modified in order to minimise  

the error [92]. Figure 4 shows an illustration of a three layer neural network. 

 

Figure 4: Illustration of a three layer Neural Network Model 

ANNs are known for their high classification accuracy and the ability to generalise well [92]. The 

flexibility of the nonlinear nodes in a neural network enables the network to learn and model 

relationships of complex data [91]. Since these algorithms aim to find the best values for the link 

weights, the learning method of these values can also be configured [93]. Furthermore, these 

models can be very compact which leads to faster computation than algorithms with similar 

generalisation performance such as SVM [88]. More nodes and layers can be added to increase the 

accuracy performance of the algorithms as well as to classify a larger number of classes [93]. The 

increase in the number of nodes and layers however leads to higher computational costs.  Another 

drawback of ANN is that outputs may yield a local optimum which may not be the global optimal 

solution [91]. 

The problem of local optimums of both decision trees and ANN techniques are overcome by support 

vector machines [91]. The function that determines the parameter values in the model is convex 

which means it has a single global optimum [89], [98]. Given labelled training data, SVMs aim to find 

the maximum distance between classes by finding a hyperplane in a feature space with the largest 
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margin between the different classes [93]. This is accomplished by finding the hyperplane that 

maximises the distance between the hyperplane and the nearest data points on both sides of the 

plane [99]. The hyperplane can then be used to classify new data samples. Support vectors are used 

to determine the hyperplane.  The support vectors are training samples closest to the hyperplane 

and therefore also the most difficult to distinguish. When the largest margin between these support 

vectors are found, the hyperplane can maximise the distance between classes [93]. The margin is 

calculated by the perpendicular distance from the dataset’s closest point [98]. For data that cannot 

be separated with a linear function the inputs are mapped to a higher-dimensional feature space 

where a linear separator can be found by means of a kernel function [89], [91]. An illustration of a 

linear SVM model is shown in Figure 5. 

 

Figure 5: Illustration of a Support Vector Machine Model 

Advantages of SVMs include their capability of processing high-dimensional data with few 

parameters needed [92] and their accuracy due to the convex objective function [88]. After these 

models are trained, their calculation speed is also much less than other techniques such as ANN. 

Only one dot product has to be calculated for every new input [89], [99]. Furthermore, SVMs only 

allow binary classification. If more than two classes are present, the algorithm constructs multiple 

SVMs in order to classify between one label and the rest of the labels [91].  

The last machine learning technique to consider is KNN. This technique does not require a training 

phase like the previous machine learning techniques. The training data is stored for the prediction 

phase [92]. The class label of an output is determined by a number of K nearest neighbouring 

samples to the new input sample. The majority vote amongst the nearest neighbouring sa mples i s 

assigned to the new input sample [89]. A distance function such as the Euclidian distance, just one 

choice among many others, is used to determine the distance between an input sample and each 

neighbour [93]. The number K is chosen as an odd number to prevent ties [89]. Figure 6 shows an 

illustration of a KNN model. 
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Figure 6: Illustration of a K-Nearest Neighbour Model 

This algorithm has high flexibility and is adaptable to multidimensional spaces [87]. It is also robust 

against outliers [95].  The decision boundaries of KNNs however depend on the input points and 

their positions. With few input samples, the model may become unstable [87].  Although a training 

phase is not needed, the computation time for classification is high since all computations are  done 

in the classification stage. The entire training set also needs to be stored and all features are used to 

compute the distances [89], thus the larger the dataset the more calculations need to be done for 

each classification. 

It can be seen that classification accuracy, computational complexity, ability to generalise and 

versatility to classify are metrics that were considered in literature when different techniques were 

evaluated.  Considering the advantages and disadvantages discussed in the previous paragraphs, the 

two comparative studies on machine learning techniques for FB classification, [91] and [92], are used 

to choose a machine learning technique, for this work.  

In [92] a comparative study on Decision Trees, KNN, ANN and SVM has been performed. The authors 

evaluated the performance of these machine learning techniques for blind FB-AMC under varying 

SNR by considering the accuracy and complexity of these machine learning techniques. In this study 

different MIMO configurations and SNR values have been used for the evaluation of the 

classification accuracy. SVM and ANN showed to have very competitive performance. The accuracy 

of SVM was however the highest. The overall performance of the four classifiers, under all 

conditions and configurations, showed to be very close. The computational complexity of  decision 

trees have been shown to be the lowest and SVMs and KNN to be the highest. ANN and SV M are 

also slower in training than decision trees and KNN. ANN however had the best performance -

complexity trade-off [92]. 

A survey on ANNs, SVMs and decision trees has been performed in [91]. It has also been shown that 

SVM has the highest classification accuracy and is able to generalise better than the other 

techniques at lower SNR. It is also mentioned that the design and implementation of decision trees 

are not complex. If needed, more decision points can be added to the tree to classify more 

modulation types, without the need of retraining the classifier. This is not possible  with the other 

machine learning techniques.  Decision trees are also the most used technique for various FB 

classification methods in literature investigated in this work [91]. 

Although the selecting of thresholds limits decision trees, its ability to classify a wide range of 

modulation types and its simplicity makes it an attractive machine learning technique. SVMs and 

ANNs are more accurate than decision trees, but their higher computational complexity and slower 
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prediction time than decision trees are drawbacks. KNN’s need to store all data points as well as the 

computation time is also undesirable. As mentioned previously, decision trees are fast to learn as 

well as making predictions. Its robustness against outliers and ability to select features in the training 

process are also great advantages over the other machine learning techniques. If necessary, decision 

trees can be used in ensemble to improve performance by addressing the local optimum and high 

variance problems. For instantaneous based features, it is evident from [91] and literature (see 

[100], [101], [102], [103] and [104] for examples) that decision trees are a well-used technique for 

this class of problem. An improved algorithm with the utilisation of a decision tree shows significant 

classification accuracy in [100]. The algorithm was tested against varying SNR as well phase shift. It is 

thus shown that the performance of decision trees can be improved. 

2.3.2 Feature Selection 

Feature selection aims to reduce a feature set by identifying the most useful features in order to 

make classifiers more accurate and efficient. Features that provide relevant information are selected 

while irrelevant and redundant features get eliminated without reducing the accuracy of the 

classifier. The features are selected based upon a selection criterion which measures the re levance 

of each feature [105]. Feature selection should not be confused with techniques such as Principle 

Component Analysis (PCA) where new features are created by combining existing features to reduce 

the dimensions of the feature space [105].  There are three main methods for feature selection: 

filter methods, wrapper methods and embedded methods. Filter methods use ranking techniques as 

criterion. Wrapper methods use search algorithms to find a subset and use the performance of a 

classifier as criterion. The subset of features that gives the highest classification performance is 

chosen. For embedded methods, feature selection is incorporated into the training process [105]. 

As mentioned in the previous section, decision trees select features to split on as part of the training 

process, which is thus an embedded method. It is therefore not necessary to compare between the 

three feature selection methods. The feature selection methods used in decision trees as well as the 

measures for splitting nodes will however be studied.  

A decision tree selects the most useful features to split a node. These features are selected based on 

the node impurity. A feature that will result in the purest branches will be selected f i rst.  There are  

three measures for node impurity: the misclassification error, the Gini Index and the cross -entropy 

of deviance [97].   

For a given node 𝑚 in a region, 𝑅𝑚, with 𝑁𝑚 observations, the portion of observations for class 𝑘 in 

node 𝑚, is presented by 𝑝̂𝑚𝑘. The three measures of node impurity, 𝑄𝑚(𝑇),  are then given by: 

Misclassification error: 

𝑄𝑚(𝑇) = 1 − 𝑝̂𝑚𝑘 (9) 
Gini Index:  

𝑄𝑚(𝑇) =∑ 𝑝̂𝑚𝑘

𝐾

𝑘=1

(1− 𝑝̂𝑚𝑘) (10) 

Cross-entropy of deviance: 

𝑄𝑚(𝑇) = −∑ 𝑝̂𝑚𝑘

𝐾

𝑘=1

log (𝑝̂𝑚𝑘) (11) 



21 
 

 

Figure 7: Node Impurity measures [97] 

Figure 7 shows the impurity measures as a function of the portion of observations. They are all 0 for 

𝑝̂𝑚𝑘 = 0 and 𝑝̂𝑚𝑘 = 1 and have a maximum at 𝑝̂𝑚𝑘 = 0.5. Cross-entropy has been scaled to go 

through (0.5, 0.5), which does not affect learning. The formation of the tree is thus constructed such 

that regions contain the highest portion of observations from one class [96]. 

Gini Index and cross-entropy are differentiable and can be optimised by gradient based optimisation 

methods [96]. Another advantage is that they have higher sensitivity to node probabilities [97]. 

These two methods are therefore normally used for growing a tree, where cross-entropy is the most 

popular method [106]. The misclassification error method is normally used to prune the tree [96], 

[97].  

2.4 Conclusion 
In this chapter a literature study has been performed on various techniques in order to find an 

algorithm for blind modulation classification in a non-cooperative environment. After a suitable 

signal model was derived, various techniques and methods for classification were discussed and one 

is chosen based on specific criteria. The criteria were operation in a non-cooperative environment, 

computation complexity, classification accuracy, and versatility. From the two main approaches for 

AMC (namely FB and LB classification), FB classification was chosen. This approach is less 

computationally complex and does not need channel state information. The latter characteristic i s 

vital in a non-cooperative environment where signals with unknown channel parameters may 

appear. Furthermore, instantaneous based features for FB classification have been chosen for the 

feature extraction stage, as opposed to wavelet transform and higher order statistics based features. 

Instantaneous based features are the least computational ly complex, suitable for hardware 

implementation and are able to classify a wide range of modulation types, including the modulation 

types of interest for this study. For the decision making stage, various machine learning techniques 

were considered. Decision trees were selected for their simplicity, fast run time and their abi l i ty to 

classify a wide range of modulation types, among other advantages. It is a proven machine learning 

technique in literature for FB classification tasks and the classification accuracy of this technique is 

close to other machine learning techniques such as SVMs and ANNS. The computation of the 

features as well as the construction of the decision tree is performed in the chapters that follow. 
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3 CONCEPTUAL DESIGN 
The results from Chapter 2 are used for the design decisions of  the system. Functional flow diagrams 

are used to explain the process to be followed for classification and tracking of changes in a signal.  

In order to track changes in transmitter modulation type, three main steps are required. The first 

step is to receive RF signals from the environment. This is typically through an antenna. The second 

step is to perform pre-processing on the received signals. After the necessary steps are taken to 

obtain the signal of interest and get it in its correct form, the classi fication of the modulation type 

and tracking of changes can take place. Figure 8 shows the functional flow block diagram of the main 

process.  
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Figure 8: Top Level Functional Flow Diagram with Focus on Automatic Modulation Classification & 

Tracking 

The main process consists of the following functions: 

- F.1: Signals in the selected frequency band are received by an antenna.  

- F.2: The instantaneous bandwidth (IBW) is captured from the RF signal and processed to I&Q 

baseband samples by a front-end processor. 

- F.3: The I&Q baseband samples of the signal of interest are used to perform the 

classification and tracking process in order to output the modulation type and any changes 

from one modulation type to another. 

The focus of this study is captured in the third functional block F.3: Perform classification and 

tracking. An understanding of the design of functional block F.2 is however needed, specifically with 

regards to the interfaces in order to design the third step correctly. These two steps will be discussed 

in detail below. 
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3.1 Front-end Processing 
After situational awareness is obtained from the RF band, which contain a wide range of RF signals,  

the IBW is captured. The IBW is designed to match the band of the analogue to digital converter 

(ADC). This frequency band contains various intentional, unintentional and unavoidable signal 

sources, including signals of interest, spurious signals and noise. Pre -processing is performed by the 

front-end processor of a digital receiver to obtain the signal of interest. General front-end 

processors include RF translation, analogue-to-digital conversion (ADC), detection and se lection of  

frequency of interest and digital down conversion [107], [108]. The detection of the centre 

frequency may occur using a phase-locked loop (PLL) or a direct digital frequency synthesizer (DDS). 

Figure 9 shows the functional flow block diagram of the front-end processing. 

Ref 2
Perform pre-
processing

F.2.3

Detect and select signal 
of interest

F.2.4

Perform digital down 
conversion

Ref 2
Perform pre-
processing

Baseband I&Q 
signal samples

F.2.2

Perform analogue to 
digital conversion

AND ANDDigitised 
RF signal

F.2.1

Perform RF Translation

Instantaneous 
bandwidth

Received 
RF signal 

Se
le

ct
ed

 
fr

eq
ue

nc
y 

b
an

d

Se
le

ct
ed

 
ce

nt
re

 f
re

qu
en

cy

 

Figure 9: Functional Flow Diagram of the Pre-processing Functional Block  
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The pre-processing consists of the following functions: 

- F.2.1: RF translation of the received RF signal mixes the signal down into a band where the 

ADC can sample the signal. 

- F.2.2: Analogue to digital conversion is performed to convert the RF down-mixed analogue 

signal to digital samples.  

- F2.3: The band in which the signal of interest resides is detected and the RF band centre 

frequency is selected using a PLL or DDS. The output of a PLL is locked to a crystal osci l lator 

reference, to provide a stable output frequency that is used for down mixing [107]. 

- F.2.4: Digital down conversion is performed to obtain the filtered baseband signal in its 

complex form. 

3.1.1 Analogue to Digital Conversion 

The IBW is converted to digital samples after the RF translation stage. The sampling frequency is 

chosen to be at least twice the bandwidth of the RF band of interest to satisfy the Nyquist condition. 
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Figure 10: Functional Flow Block Diagram of the Analogue to Digital Conversion Functional Block  

The analogue-to-digital conversion block consists of: 

- F.2.2.1: A low pass filter is used to remove all signals above 𝑓𝑠/2 to prevent aliasing to occur, 

where 𝑓𝑠 is the sampling frequency. 

- F.2.2.2: An ADC is used to convert the filtered RF band of interest to digital samples.  

3.1.2 Digital Down Conversion 

The digital down conversion consists of three main parts: in-phase and quadrature (I&Q) 

demodulation, low-pass filtering, and decimation. Phase information that needs to be maintained is 

contained within the I&Q samples of the complex signal. The complex signal is presented by: 

𝑧̃(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) (12) 



25 
 

Where 𝑥(𝑡) is the real part and 𝑦(𝑡) is the imaginary part of the complex signal, obtained from the 

real signal through a Hilbert transform. The baseband signal can be obtained from the complex 

passband signal. The complex baseband signal is given by: 

𝑟̃𝑏(𝑡) = 𝑟̃𝑝𝑒
−𝑗2𝜋𝑓𝑐𝑡  (13) 

such that: 

𝑟̃𝑏(𝑡) = 𝑟𝑏𝐼(𝑡) + 𝑗𝑟𝑏𝑄(𝑡) (14) 

where 𝑓𝑐  is the carrier frequency, 𝑟̃𝑝(𝑡) is the complex received passband signal and 𝑟𝑏𝐼(𝑡) and 𝑟𝑏𝑄(𝑡) 

are the baseband in-phase and quadrature signals respectively [109].  

A Hilbert filter or a mixer is used to obtain the complex baseband in-phase and quadrature (I&Q) 

samples.  A mixer uses a sine and a cosine signal which have 90 degrees offset in phase between 

them. These two signals are generated by a numerically controlled oscillator (NCO) to mix the output 

from the ADC to either baseband or an intermediate frequency (IF). The outputs of the mixer are 

complex digital samples consisting of in-phase and quadrature (I&Q) components [107] ,  [108] . The 

functional flow block diagram of the digital down conversion is shown in Figure 11. 
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Figure 11: Functional Flow Block Diagram of Digital Down Conversion Functional Block  
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The digital down conversion is performed by: 

- F.2.4.1: A Hilbert filter or an NCO and mixer are used to obtain the complex representation 

of the real input. The outputs of the mixer are baseband I&Q signals samples.  

- F.2.4.2: A low pass filter is used to pass the baseband I&Q samples. Frequencies above the 

selected cut-off frequency are filtered out. 

- F.2.4.3: Decimation is performed to reduce the sampling rate and bandwidth. A reduced 

sampling rate at the lower bandwidth increases the effective processing power avai lable  to 

process the resulting signal. 

3.2 Classification and Tracking 
The classification and tracking functional block receives the I&Q baseband samples in order to 

determine the modulation type of the signal as well as track changes from one modulation type to 

another. Two main steps are required, a classification and a tracking process. The functional flow 

block diagram is shown in Figure 12. After these two steps are taken, the system can output the 

status of the signal’s modulation type.  
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Perform blind 
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Ref 3
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F.3.2
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And
And

Ref 3
Perform classification 
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I&Q digital 
signal samples

Modulation 
label

Modulation 
status

 

Figure 12: Functional Flow Block Diagram of the Classification and Tracking Process  

The classification and tracking functional block consists of: 

- F.3.1: Features are extracted from the I&Q samples to perform blind classification where the 

output is a modulation class label. 

- F.3.2: The tracking of changes of the modulation type is performed by means of logging the 

modulation type over time, in order for external processes to utilise the status of the 

modulation type. 

Within this design blind modulation classification is performed through two distinct functional steps: 

feature extraction and decision making. In Chapter 2, instantaneous features were selected for 

feature extraction, and a decision tree classifier was selected as the machine learning technique  for 

decision making. The functional flow block diagram illustrating these functions is shown in Figure 13. 
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Figure 13: Functional Flow Block Diagram of the Blind Modulation Classification Functional Block 

The blind modulation classification is performed by: 

- F.3.1.1: Features are extracted from the I&Q input samples by using the instantaneous 

information of the signal.  

- F.3.1.2: The feature values are used to classify the modulation type of the intercepted signal  

using a decision tree classifier. The output of the decision tree is a modulation class label.  

3.2.1 Feature Extraction 

For feature extraction, the instantaneous amplitude, phase and frequency are calculated fro m the 

complex signal given in (12). Thereafter, features based on the instantaneous amplitude, phase and 

frequency are extracted. The functional flow block diagram illustrating these functions i s shown in  

Figure 14. 
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Figure 14: Functional Flow Block Diagram of the Feature Extraction Functional Block 

The feature extraction is performed by: 

- F.3.1.1.1: The instantaneous amplitude, phase and frequency is calculated from the complex 

signal consisting of the I&Q baseband samples. 

- F.3.1.1.2: Features are calculated by using the instantaneous information of the received 

baseband signal. 
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The instantaneous amplitude, phase and frequency are calculated from the complex signal (12). The 

polar form of the complex baseband signal is given by: 

𝑟̃𝑏(𝑡) = 𝐴(𝑡)𝑒
𝑗𝜙(𝑡) (15) 

where 𝐴(𝑡) and 𝜙(𝑡) are the instantaneous amplitude and phase respectively. The instantaneous 

amplitude is the magnitude of the complex I&Q signal, while the instantaneous phase is the angle of  

the signal. The instantaneous frequency is the derivative of the instantaneous phase. The 

instantaneous amplitude, phase and frequency are given by (16), (17) and (18) respective ly over 𝑁 

number of samples at time instants 𝑡 =
𝑖

𝑓𝑠
 with 𝑖 = 1,2, … , 𝑁 where 𝑓𝑠 is the sample frequency [109].    

𝐴[𝑖] = |𝑟̃[𝑖]| = √𝑟𝑏𝐼
2[𝑖] + 𝑟𝑏𝑄

2[𝑖] (16) 

𝜙[𝑖] = ∠𝑟̃[𝑖] = tan−1 [
𝑟𝑏𝑄[𝑖]

𝑟𝑏𝐼[𝑖]
] (17) 

𝑓[𝑖] =
1

2𝜋

𝑑𝜙(𝑡)

𝑑𝑡
=
1

2𝜋
[
𝜙[𝑖] − 𝜙[𝑖 − 1]

𝑇𝑠
] (18) 

where  

𝑇𝑠 =
1

𝑓𝑠
 (19) 

Before the feature values are calculated, the instantaneous amplitude and frequency are centred 

and normalised to compensate for channel gain. Additionally, the centred non-linear component of  

the instantaneous phase is obtained. 

𝐴𝑐𝑛[𝑖] =
𝐴[𝑖]

𝜇𝐴
−1 (20) 

𝑓𝑐𝑛[𝑖] =
𝑓[𝑖] − 𝜇𝑓

𝑓𝑠
 (21) 

𝜙𝑁𝐿[𝑖] = 𝜙[𝑖] − 𝜇𝜙 (22) 

where 𝜇𝐴, 𝜇𝜙 and 𝜇𝑓 are the averages of the instantaneous amplitude, phase and frequency 

respectively. 

Using the equations above, the extraction of the instantaneous amplitude, phase and frequency can 

be determined. The calculation of the instantaneous amplitude and phase in hardware i s less time 

consuming when using the polar form instead of the rectangular form of a signal. The calculation 

from the rectangular form includes computations such as division and square root, shown in (16) 

and (17), which may take multiple clock cycles and cause bottlenecks in the processing chain. The 

use of these complex functions should be kept to a minimum for hardware implementation due to 

computational resource limitations. The rectangular form of the signals is thus first converted to the 

polar form, before the instantaneous amplitude, phase and frequency are obtained. Figure 15 shows 

the functional flow block diagram to obtain the instantaneous amplitude, phase and frequency. 
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Figure 15: Functional Flow Block Diagram to Obtain Instantaneous Amplitude, Phase and Frequency 

The instantaneous information is obtained by: 

- F.3.1.1.1.1: The rectangular form of the signal, represented by the  I&Q samples, are 

converted to polar form. 

- F.3.1.1.1.2: The instantaneous amplitude and phase are obtained from the absolute value 

and angle of the polar signals samples respectively. The instantaneous phase is used to 

calculate the instantaneous frequency. 

- F.3.1.1.1.3: The instantaneous amplitude, phase and frequency are centred and normalised. 

After the instantaneous information is calculated, the features can be extracted. There are eight 

general instantaneous based features to consider [110], [111]. The eight features are given in (23)  to 

(25) and (27) to (31). Implementation on hardware is taken into consideration when features are 

selected. Features with lower computational cost, even at the cost of some accuracy, are better 

suited to hardware platforms such as FPGAs. Seven features from the eight features we re se lected 

based on this consideration. The eighth feature (31) was not selected because it requires an FFT to be 

calculated, which makes the computational cost of this feature high. It was therefore replaced with  

another amplitude based feature shown in equation (26) [112]. Four features are  derived from the 

instantaneous amplitude, two features from the instantaneous phase and the last two features from 

the instantaneous frequency.  

The four amplitude based features are the standard deviation of the absolute value of  the centred -

normalised instantaneous amplitude (23), the standard deviation of the centred-normalised 

instantaneous amplitude over the non-weak intervals of the signal (24), the kurtosis of the centred-

normalised instantaneous amplitude(25) and the mean of the centred-normalised instantaneous 

amplitude (26). The non-weak intervals are not sensitive to noise and can be detected by a threshold 

𝐴𝑡. The detection by means of a threshold is explained in more detail in Chapter 4.  

𝜎𝑎𝑎 = √
1

𝑁
(∑𝐴𝑐𝑛

2

𝑁

𝑖=1

[𝑖]) − (
1

𝑁
∑|𝐴𝑐𝑛[𝑖]|

𝑁

𝑖=1

)

2

 
(23) 
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𝜎𝑎 = √
1

𝑁𝑐
( ∑ 𝑎𝑐𝑛

2

𝐴𝑛[𝑖]>𝐴𝑡

[𝑖]) −(
1

𝑁𝑐
∑ 𝑎𝑐𝑛[𝑖]

𝐴𝑛[𝑖]>𝐴𝑡

)

2

 (24) 

where 𝑁𝑐 is number of samples for which 𝐴𝑛[𝑖] > 𝐴𝑡. 

𝜇42
𝑎 =

𝐸{𝐴𝑐𝑛
4 [𝑖]}

{𝐸{𝐴𝑐𝑛
2 [𝑖]}}

2 (25) 

 

𝐴𝑚𝑒𝑎𝑛 =
1

𝑁
∑|𝐴𝑐𝑛[𝑖]|

𝑁

𝑖=1

 (26) 

The two features based on the instantaneous phase are the standard deviation of the absolute value 

of the centred non-linear component of the instantaneous phase (27), and the standard deviation of  

the centred non-linear component of the direct instantaneous phase (28) calculated over the non-

weak intervals of the signal.  

𝜎𝑎𝑝 = √
1

𝑁𝑐
( ∑ 𝜙𝑁𝐿

2

𝐴𝑛[𝑖]>𝐴𝑡

[𝑖])−(
1

𝑁𝑐
∑ |𝜙𝑁𝐿[𝑖]|

𝐴𝑛[𝑖]>𝐴𝑡

)

2

 (27) 

 

𝜎𝑑𝑝 = √
1

𝑁𝑐
( ∑ 𝜙𝑁𝐿

2

𝐴𝑛[𝑖]>𝐴𝑡

[𝑖]) −(
1

𝑁𝑐
∑ 𝜙𝑁𝐿[𝑖]

𝐴𝑛[𝑖]>𝐴𝑡

)

2

 (28) 

The two frequency based features are the standard deviation of the absolute value of the centred -

normalised instantaneous frequency (29) and the kurtosis of the centred-normalised instantaneous 

frequency (30). 

𝜎𝑎𝑓 = √
1

𝑁𝑐
( ∑ 𝑓𝑐𝑛

2

𝐴𝑛[𝑖]>𝐴𝑡

[𝑖])−(
1

𝑁𝑐
∑ |𝑓𝑐𝑛[𝑖]|

𝐴𝑛[𝑖]>𝐴𝑡

)

2

 (29) 

 

𝜇42
𝑓
=

𝐸{𝑓𝑐𝑛
4 [𝑖]}

{𝐸{𝑓𝑐𝑛
2 [𝑖]}}

2 (30) 
 

The maximum value of the spectral power density of the centred-normalised instantaneous 

amplitude is given by: 

𝛾𝑚𝑎𝑥 = 𝑚𝑎𝑥|𝐷𝐹𝑇(𝐴𝑐𝑛[𝑖])|
2/𝑁𝑐 (31) 
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3.3 Conclusion 
The decisions of Chapter 2 were used to perform the conceptual design for tracking changes in 

emitter modulation type. This chapter provided insight of the pre-processing required to obtain the 

signal of interest for feature extraction.  The method for obtaining feature values as well as the 

method to utilise the feature values for decision making were discussed. It is shown that the 

instantaneous amplitude phase and frequency of the signal is obtained and used to calculate the 

feature values. For the decision making step, a decision tree is first trained and then used to classi fy 

and track changes in modulation types. The conceptual design can be used in Chapter 4 in which the 

implementation of the feature extraction and decision making process are explained in detail.  
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4 IMPLEMENTATION AND RESULTS 
The conceptual design in the previous chapter was used to develop a system capable of  classi fying 

six digital modulation types and tracking changes between modulation types. The design was f i rst 

simulated in Matlab after which an FPGA firmware design was implemented. Several experiments 

were performed in both simulation and hardware to evaluate the performance of the system. In the 

next section the generation of the input signals used for testing is described. Thereafter, both 

simulation and hardware implementation of the system are described in detail. The experiments 

performed are explained and the results are presented and discussed. 

4.1 Signal Generation 
For the simulation of the six digitally modulated signals, a message signal was first generated. 

Channel effects were then added to the modulated signals as required by the various experiments 

performed. More specifically, a sequence of 𝑁𝑠 random, independent integers , 𝑚= 0,1,… ,𝑀 − 1,  

was generated to create the levels of the message signal given by: 

𝜃(𝑡) =∑𝑚𝑖𝑝(𝑡 − 𝑛𝑇)

𝑁𝑠

𝑖

  (32) 

Where  𝑇 is the bit duration of the 𝑖𝑡ℎ integer and 𝑝(𝑡) is a rectangular pulse given by: 

𝑝(𝑡) =  {
+1  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇
 0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (33) 

Equation (1) was used to derive equation (34) for the six digitally modulated signals:  

𝑠𝜃(𝑡) = 𝐴𝜃 cos(2𝜋𝑓𝜃𝑡 + 𝜙𝜃) (34) 

Communication systems have definite bandwidths in which they operate. In order to create more 

realistic test signals, a band pass filter was used to band limit the generated signals. Bandwidths were 

selected in accordance to the proposed modulation type. The band limitation was thus performed 

after the generation of the modulated signal. The bandwidth (𝐵𝜔) contains 97.5% of the total average 

power of the signal [113]. 

∫ 𝐺𝑠(𝑓)𝑑𝑓 = 0.975∫ 𝐺𝑠(𝑓)𝑑𝑓
∞

−∞

𝑓𝑐+𝐵𝜔 2⁄

𝑓𝑐−𝐵𝜔 2⁄
 (35) 

The centre frequency (𝑓𝑐 ), symbol rate (𝑟𝑠) and sample frequency (𝑓𝑠) were chosen as 150 kHz, 12.5 

kBd and 1200 kHz respectively for all signal modulation types. These parameters were set to the same 

values selected in [110] in order to aid in comparison. The amplitude, phase and frequency for each 

modulation type as well as the bandwidths of the modulated signals are shown in Table 1. 
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Table 1: Signal Parameters 

Modulation Type 𝑨𝜽 𝝓𝜽 𝒇𝜽  Bandwidth 

2ASK 0.8𝜃+ 0.2 0 𝑓𝑐 4𝑟𝑠 

4ASK 0.25𝜃+ 0.25 0 𝑓𝑐 4𝑟𝑠 

2PSK 1 𝜋𝜃 +
𝜋

2
 𝑓𝑐 6𝑟𝑠 

4PSK 1 𝜋

2
𝜃 𝑓𝑐 6𝑟𝑠 

2FSK 1 0 𝑓𝑐+4𝑟𝑠𝜃− 2𝑟𝑠 8𝑟𝑠 

4FSK 1 0 𝑓𝑐+𝑟𝑠𝜃 

(𝑚 = −3, −1,1,3) 

8𝑟𝑠 

 

For the additive noise, a sequence of real numbers with Gaussian distribution and zero mean was 

generated. The size of the sequence of numbers was equal to 𝑁𝑠 . A bandpass filter with a bandwidth 

related to the intended modulated signal was used to filter the noise. In practice, the bandwidth of  a 

receiver is normally slightly larger than the bandwidth of the intercepted signal. The bandwidth was 

therefore chosen as 1.2 times the bandwidth of the signal. The desired SNR in decibels was obtained 

by multiplying the band-limited noise sequence {𝑛(𝑖)} with a coefficient 𝑅𝑠𝑛, which is the ratio of the 

signal power 𝑆𝑝 to noise power 𝑁𝑝 [67]: 

𝑅𝑠𝑛 = √
𝑆𝑝

𝑁𝑝
[10

−𝑆𝑁𝑅
20 ] (36) 

𝑆𝑝 =∑𝑠2(𝑖)

𝑁

𝑖=1

 (37) 

𝑁𝑝 =∑𝑛2(𝑖)

𝑁

𝑖=1

 (38) 

with 𝑖 = 1,2, … , 𝑁𝑠. 

For the fading channel, multipath delays and path gains were chosen such that they result in the 

desired delay spread as discussed in Chapter 2. Equation (40) was used to determine the delay spread 

values. The power of the kth multipath signal is given by: 

𝑃(𝜏𝑘) = 𝑎𝑘
2 (39) 

where 𝜏𝑘 is the excess delay and 𝑎𝑘 the amplitude. 

By substituting (39) into (6) the path delays and path gains could be selected to give the desired delay 

spread: 

𝜎𝑇 = √
∑𝑎𝑘

2 𝜏𝑘
2

∑𝑎𝑘
2 −(

∑𝑎𝑘
2𝜏𝑘

∑𝑎𝑘
2 )

2

 (40) 

The process of generating the input signals is shown in Figure 16. The impulse response and 

frequency response of a static Rayleigh fading channel simulated in Matlab is shown in Figure 17 and 
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Figure 18 respectively. These figures display examples of a single instance; the impulse and frequency 

response of the channel vary from test signal to test signal. 
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Figure 16: Flow Diagram of Signal Generation [114], [24] 

 

 

Figure 17: Impulse Response of a three-path 

Rayleigh Fading Channel Simulated in Matlab 

 

Figure 18: Frequency Response of a three-path 

Rayleigh Fading Channel Simulated in Matlab

4.2 Matlab Simulation 
In this section the simulation of the feature extraction, classification and tracking are described. The 

calculation of the instantaneous amplitude, phase and frequency is first explained. It is fol lowed by 

the calculation of the feature values and construction of the decision tree used for classi f ication of  

the modulation types. The last part discusses the tracking of changes in the modulation type. The 

experiments that were performed for the different parts of the system are then presented and 

described. 
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4.2.1 Implementation 

4.2.1.1 Instantaneous amplitude, phase and frequency 

The classification and tracking algorithm used the signals generated in section 4.1 as inputs. The 

complex baseband in-phase and quadrature signals were first obtained. To correspond with the filter 

that was pre-implemented on the hardware platform, a Type 3 Hilbert FIR filter of order 30 was f i rst 

used to obtain the Hilbert transform of the received signal. The filter, with frequency response 

shown in Figure 19, has unity gain and linear phase. The Hilbert filter is described in more detai l in 

section 4.3.1.1.1. 

 

Figure 19: Frequency Response of a Type 3 Hilbert FIR Filter 

The baseband in-phase and quadrature signals were then obtained by using equations (13) and (14) .  

The front-end processor for hardware implementation is capable of determining the carrier 

frequency and estimation of the carrier frequency is thus not required. For the Matlab simulation, 

equations (41) and (42) were used to mix the input signal to baseband in-phase and quadrature 

signals [109].  

𝑟𝑏𝐼(𝑡)  = 𝑥(𝑡) cos(2𝜋𝑓𝑐𝑡) + 𝑦(𝑡)sin(2𝜋𝑓𝑐𝑡) (41) 

𝑟𝑏𝑄(𝑡) = 𝑦(𝑡) cos(2𝜋𝑓𝑐𝑡) − 𝑥(𝑡) sin(2𝜋𝑓𝑐𝑡) (42) 

where 𝑥(𝑡) and 𝑦(𝑡) are defined in (12). For the calculation of the instantaneous amplitude, phase 

and frequency, equations (16) to (18) were used. With the calculation of the instantaneous phase, 

the phase is constrained by its principal value and is called the wrapped phase. The principal value i s 

in the range (−𝜋,𝜋] and has discontinuities of 2𝜋 radians when viewed as a function of  the radian 

frequency [115]. It can be corrected by adding multiples of ±2𝜋 to ensure a continuous function of  

phase. The unwrapping can be mathematically described as: 

𝐶𝑝(𝑖) = {

𝐶𝑝(𝑖− 1) − 2𝜋      𝑖𝑓 𝜙(𝑖 + 1) −𝜙(𝑖) > 𝜋

𝐶𝑝(𝑖− 1) + 2𝜋      𝑖𝑓 𝜙(𝑖) −𝜙(𝑖 + 1) > 𝜋

𝐶𝑝(𝑖− 1)     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (43) 

where {𝐶𝑝(𝑖)} is the phase correction sequence and 𝐶𝑝(𝑖) = 0. The unwrapped phase can then be 

given by:  

𝜙𝑢𝑤 = 𝜙(𝑖) + 𝐶𝑝(𝑖) (44) 
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After the angle of the complex signal was calculated, the unwrap function of Matlab was used to 

obtain the unwrapped instantaneous phase [116]. The difference between two consecutive samples 

of the unwrapped phase was then used to calculate the instantaneous frequency. The process for 

the calculation of the instantaneous amplitude, phase and frequency in Matlab simulation is shown 

in Figure 20.  
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Figure 20: Flow Diagram for Calculation of Instantaneous Amplitude, Phase and Frequency in Matlab 

Simulation 

 

Figure 21 to Figure 26 show the instantaneous amplitude, phase and frequency of the six  di f ferent 

modulation types. 

 
Figure 21: Behaviour of 2ASK over Time 

 
Figure 22: Behaviour of 4ASK over Time 
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Figure 23: Behaviour of 2PSK over Time 

 
Figure 24: Behaviour of 4PSK over Time 

 

 
Figure 25: Behaviour of 2FSK over Time 

 
Figure 26: Behaviour of 4FSK over Time 

 

From the figures it can be seen that the bit stream is contained in the instantaneous ampl itude for 

MASK. For MPSK the bit stream is contained in the instantaneous phase and for MFSK the bit stream 

is contained in the instantaneous phase and frequency. 

After the instantaneous information was obtained, equations (20) to (22) were used to calculate the 

centred-normalised amplitude and frequency, and the centred non-linear phase. A received 

passband signal contains an undesired linear phase component mainly contributed by the carrier 

frequency. The non-linear phase can be obtained by: 

𝜙𝑁𝐿(𝑖) = 𝜙𝑢𝑤 − 
2𝜋𝑓𝑐 𝑖

𝑓𝑠
 (45) 

Since the signal is at baseband when these calculations are performed, the linear component i s not 

present and the phase only needs to be centred at zero using equation (22).  

The next step was to determine the weak intervals of the signal. The weak intervals are found where 

there are phase transitions for MPSK (which can also be seen in Figure 33 and Figure 34). These parts 

of the signal are sensitive to noise [110]. The weak intervals of the signal can be detected by 

evaluating the amplitude against a threshold.  
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The authors of [110] evaluated the normalised amplitude values against a threshold and only made 

use of the non-weak intervals of the signal to calculate 𝜎𝑎, 𝜎𝑎𝑝, 𝜎𝑑𝑝 and 𝜎𝑎𝑓.  This method was not 

used here for two reasons: The number of samples might become too few if they were removed.  

The second reason is that the calculations of the features which are dependent on the evaluation of  

the amplitude samples can only start after the normalised amplitude is calculated. In order to f ind 

the normalised amplitude, the average of the amplitude has to be calculated. This will be time 

consuming and undesirable for hardware calculations. 

The following method was used instead to compensate for the weak amplitude values. After the 

centred-normalised amplitude was calculated, the amplitude samples were evaluated against a 

threshold and a constant value was assigned to the amplitude values that excee ded the threshold.  

From Figure 21 to Figure 26 it can be seen that 𝐴𝑐𝑛 of MPSK and MFSK should be zero and for MASK 

|𝐴𝑐𝑛| < 0.8. The amplitude threshold was thus set to 0.8. Amplitude values that exceeded the 

threshold were set to 0. 

A threshold method was also used for the instantaneous frequency to compensate for the transition 

effects of MPSK. The transition effects will be explained in section 4.2.2.1. In Figure 21 to Figure 26 i t 

can be seen that all frequency values should be |𝑓𝑐𝑛| < 0.05. The threshold was thus set to 0.05. 

Frequency values that exceeded the threshold were set to 0. The process to calculate the centred -

normalised amplitude, centred non-linear phase and centred-normalised frequency is shown in 

Figure 27. 

Threshold

Mean  ɸNL[i]ɸ[i] -

+

A[i] Mean ÷  

1

Acn[i]
+

-

Amplitude 
evaluation

Mean  × fcn[i]f[i] -

+

fs

Frequency 
evaluation

Threshold

 

Figure 27: Flow Diagram for Normalising and Centring the Instantaneous Amplitude, Phase and 

Frequency in Matlab Simulation 

4.2.1.2 Instantaneous based features 

The centred-normalised amplitude, centred non-linear phase and centred-normalised frequency 

were used as inputs to the algorithms presented in Figure 28, Figure 29 and Figure 30 respectively. 

The feature values were calculated using equations (23) to (30).  
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Figure 28: Flow Diagram for Instantaneous Amplitude Based Feature Extraction in Matlab Simulation 
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Figure 29: Flow Diagram for Instantaneous Phase Based Feature Extraction in Matlab Simulation 
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Figure 30: Flow Diagram for Instantaneous Frequency Based Feature Extraction in Matlab Simulation 
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4.2.1.3 Decision Tree Construction 

The decision tree was constructed using the Matlab fitctree object from the Statistics and Machine 

Learning Toolbox [117]. The function returns a binary classification decision tree which i s based on 

the input features in a matrix X and output labels in matrix Y. The branches of the tree were spl i t on 

the nodes based on the values of the input matrix X.  One of three tests for selecting the best 

features to split nodes as well as the criteria for splitting the nodes could be specified. 

The three tests for feature selection are: the standard CART (Classification and Regression Tree) test, 

the curvature test and the interaction-curvature test. The CART test selects the feature which 

maximises the split criterion gain over all the possible splits among all the features  [118]. The 

curvature test selects the feature which minimises the  p-value of the chi-square test of 

independence between each feature and the class label [119]. The curvature-interaction test 

performs the curvature test, and additionally performs the test between each pair of  features and 

the class label to prevent the selection of irrelevant features. The CART test is not sensitive to 

interactions between features and important features are less likely to be selected [120]. The 

curvature-interaction test, which test for both interaction between a features, and features and class 

labels, was thus selected. For the split criterion, the cross-entropy for node splitting criteria was also 

selected as discussed in Chapter 2. 

The tree was first grown and cross validation was then used to determine the best level to prune the 

tree to. The eight feature values obtained from the feature extraction calculations were 

concatenated into a [1x8] vector to form part of the input matrix X. The matrix X is the input training 

dataset consisting of multiple [1x8] vectors. The corresponding modulation types were used to form 

matrix Y consisting of the training labels. The unpruned tree’s classification error of the training set 

was determined by the re-substitution error using the resubLoss function [121]. The classification 

error is calculated by: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 
# 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (46) 

The classification error of the validation set was determined by cross-validation error using the 

cvloss function [121]. The tree overfits the training data if the re-substitution error is significantly 

smaller than the cross-validation error and the tree needs to be pruned. The best pruned level of the 

tree is then determined by the cvloss function. The function determines the tree for which the cross-

validation error is a minimum and returns the level that is within one standard error of the 

minimum. The prune function is then used to prune the tree to the best level. 

The predict function was used to determine the output of the decision tree. This function uses the 

constructed classification tree and vector X containing the feature values of the incoming signal as 

input and returns the predicted modulation type. 

  



41 
 

4.2.2 Results 

Various experiments were performed to investigate the performance of the algorithm for 

classification and tracking of transmitter modulation types. The different steps of the method were 

investigated separately and thereafter as a whole. The experiments include the calculation of the 

instantaneous amplitude, phase and frequency, the extraction of features from signals under varying 

SNR and fading conditions, the classification accuracy of the decision tree and the feature extraction 

from signals with decreasing signal lengths under varying SNR and fading conditions.  

4.2.2.1 Instantaneous Amplitude, Phase and Frequency 

The instantaneous amplitude, phase and frequency for each modulation type were first investigated 

in order to determine the degree to which the instantaneous amplitude, phase and frequency 

influence the measured features. The investigation was done by comparing the calculated 

instantaneous amplitude, phase and frequency to the expected theoretical instantaneous amplitude, 

phase and frequency.  

Figure 31 to Figure 36 show the instantaneous amplitude phase and frequency of the six different 

modulation types calculated from the received passband signal. No noise and no fading had been 

added to these signals.  

 
Figure 31: Calculated Instantaneous Amplitude, 

Phase and Frequency of 2ASK 

 
Figure 32: Calculated Instantaneous Amplitude, 

Phase and Frequency of 4ASK 

 

 
Figure 33: Calculated Instantaneous Amplitude, 

Phase and Frequency of 2PSK 

 
Figure 34: Calculated Instantaneous Amplitude, 

Phase and Frequency of 4PSK 
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Figure 35: Calculated Instantaneous Amplitude, 

Phase and Frequency of 2FSK 

 
Figure 36: Calculated Instantaneous Amplitude, 

Phase and Frequency of 4FSK 

 

From these figures, it can be seen that there were differences between the theoretical  

instantaneous information shown in Figure 21 to Figure 26 and calculated instantaneous 

information. The effect of the band limitation was evident for all six modulation types. The band 

limitations also caused variations in the amplitude of MPSK and MFSK at the boundaries of  symbol  

transitions, where for the theoretical case the amplitude of MPSK and MFSK is completely f lat. The 

calculation of the derivative of the phase to obtain the frequency caused fluctuations in frequency at 

symbol transitions of MPSK. The fluctuations in the frequency of MASK were also evident because of  

the small variations in the phase of MASK, where for the theoretical case the phase of MASK is 

completely flat. As discussed in section 4.2.1.1, these effects can influence the performance of  the 

system since these fluctuations can be falsely perceived as information in a modulation type’s 

instantaneous amplitude, phase or frequency. Some of these effects were compensated for by the 

threshold techniques explained in section 4.2.1.1 and the results are shown in Figure 37 to Figure 44. 

 
Figure 37: Centred-normalised Amplitude of 

2PSK before and after Adjustments  

 

 
Figure 38: Centred-normalised Amplitude of 

4PSK before and after Adjustments  
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Figure 39: Centred-normalised Amplitude of 

2ASK before and after Adjustments  

 
Figure 40: Centred-normalised Amplitude of 

2PSK before and after Adjustments  

 

 
Figure 41: Centred-normalised Frequency of 

2PSK before and after Adjustments 

 
Figure 42: Centred-normalised Frequency of 

4PSK before and after Adjustments  

 

 
Figure 43: Centred-normalised Frequency of 

2FSK before and after Adjustments  

 
Figure 44: Centred-normalised Frequency of 

4FSK before and after Adjustments 

 

It can be seen that the fluctuations in the amplitude of MPSK was compensated for to some extent, 

while the values of MASK were not affected. The variations in MFSK were too small to be 

compensated for. The fluctuations in the frequency of MPSK were also significantly compensated 
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for, while the values of MFSK were not affected. The variations in MASK were too small to be 

compensated for. 

4.2.2.2 Comparison without AWGN and fading 

Since the carrier frequency, symbol rate, sampling frequency, and features were adopted from 

[110], an experiment was performed to compare the calculated feature values to the values 

obtained by the authors of [110]. The experiment was performed for signal lengths of 0.12 seconds 

(144 000 samples), and 2048 samples, the latter matching the experimental setup of the authors. 

The experiment was performed for a longer signal (144 000 samples) in order to observe whether 

there was a significant difference in values when more samples were used. An unreal istical ly long 

signal of length 1 second was first simulated, and shortened in steps of 0.2 seconds each time 

comparing the feature values of the signals in the presence of AWGN and flat fading channel 

conditions. This comparison was done in order to find a sufficient signal length that exhibited the 

same characteristics that could be stored for reuse in tests. The stored signals could then be 

decreased through Matlab operations to a desirable signal length for further analysis as required. 

For baseline data, signals without any channel effects were used to calculate the feature values. Five 

hundred iterations were run for each modulation type. In each iteration, a new message signal was 

generated and modulated with the six different modulating signals. The averages of the five hundred 

feature values for each modulation type were calculated. Table 2 shows the values obtained by the 

authors of [110]  and Table 3 and Table 4 show the results of values calculated in Matlab. The 

features were explained in detail in section 3.2.1. 

Table 2: Feature Values obtained using 2048 Samples in [110] 

Modulation 
Type 

𝑨𝒎𝒆𝒂𝒏 𝝈𝒂𝒂 𝝈𝒂 𝝁𝟒𝟐
𝒂  𝝈𝒂𝒑 𝝈𝒅𝒑 𝝈𝒂𝒇 𝝁𝟒𝟐

𝒇
 

2ASK NA 0.00 0.5 1.5 0.03 0.03 0.00 1.0 

4ASK NA 0.32 0.4 1.8 0.03 0.03 0.00 1.0 

2PSK NA 0.00 0.1 2.2 0.304 1.57 0.10 3.6 
4PSK NA 0.00 0.1 2.8 4.77 6.67 0.13 3.7 

2FSK NA 0.00 0.0 1.0 6.39 9.47 0.06 1.4 
4FSK NA 0.00 0.0 1.0 5.62 8.50 0.48 1.7 

 

Table 3: Calculated Feature Values of Noise-free Signals over 0.12 second 

Modulation 
Type 

𝑨𝒎𝒆𝒂𝒏 𝝈𝒂𝒂 𝝈𝒂 𝝁𝟒𝟐
𝒂  𝝈𝒂𝒑 𝝈𝒅𝒑 𝝈𝒂𝒇 𝝁𝟒𝟐

𝒇
 

2ASK 0.6216 0.1357 0.6363 1.0848 0.0231 0.0237 0.0002 303.1075 
4ASK 0.3758 0.2012 0.4263 1.7307 0.0220 0.0223 0.0001 512.5669 

2PSK 0.0739 0.1124 0.1338 16.7709 0.1358 1.5749 0.0032 34.6618 
4PSK 0.0680 0.0923 0.1144 17.3388 1.0785 1.9018 0.0048 18.5439 

2FSK 0.0147 0.0230 0.0273 12.0843 0.8992 1.8122 0.0033 1.0471 

4FSK 0.0198 0.0295 0.0355 11.8130 0.9016 1.8186 0.0105 1.6803 
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Table 4: Calculated Feature Values of Noise-free Signals over 2048 Samples 

Modulation 
Type 

𝑨𝒎𝒆𝒂𝒏 𝝈𝒂𝒂 𝝈𝒂 𝝁𝟒𝟐
𝒂  𝝈𝒂𝒑 𝝈𝒅𝒑 𝝈𝒂𝒇 𝝁𝟒𝟐

𝒇
 

2ASK 0.5727 0.1776 0.5991 1.2809 0.1669 0.1669 0.0006 2.5412 

4ASK 0.3730 0.2151 0.4307 1.8708 0.1672 0.1682 0.0006 2.7227 

2PSK 0.0847 0.130 0.1297 15.9728 0.3780 1.5170 0.0030 29.6284 
4PSK 0.0817 0.0864 0.1162 14.3290 0.9209 1.5885 0.0043 15.5510 

2FSK 0.0293 0.0214 0.0311 50.8905 0.9095 1.8065 0.0057 1.3264 
4FSK 0.0351 0.0285 0.0384 15.8721 0.9155 1.8067 0.0107 1.8108 

 

It can be seen that the values were not identical to the values obtained in [110]. There might be 

several reasons for these differences. The first reason might be due to different transition effects 

experienced by the authors of [110] and also the different technique they used to remove the weak 

intervals of the signal as discussed in 4.2.1.1. The authors of [110] also used different methods to 

obtain the complex signal, the instantaneous phase and the instantaneous frequency as shown 

below.  

The phase is calculated by: 

𝜙(𝑡) =

{
 
 
 
 
 
 

 
 
 
 
 
 tan−1 [

𝑦(𝑡)

𝑥(𝑡)
]         𝑖𝑓 𝑥(𝑡) > 0,𝑦(𝑡) > 0

π− tan−1 [
𝑦(𝑡)

𝑥(𝑡)
] 𝑖𝑓 𝑥(𝑡) < 0,𝑦(𝑡) > 0

𝜋

2
                              𝑖𝑓 𝑥(𝑡) = 0, 𝑦(𝑡) > 0

π+ tan−1 [
𝑦(𝑡)

𝑥(𝑡)
]  𝑖𝑓 𝑥(𝑡) < 0, 𝑦(𝑡) < 0

3𝜋

2
                            𝑖𝑓 𝑥(𝑡) = 0, 𝑦(𝑡) < 0

2π− tan−1 [
𝑦(𝑡)

𝑥(𝑡)
] 𝑖𝑓 𝑥(𝑡) > 0,𝑦(𝑡) < 0

 (47) 

where 𝑥(𝑡) and 𝑦(𝑡) are defined in (12).  

Both the complex signal and frequency were calculated by means of the FFT. For the complex 
representation of signal, the spectrum 𝑋(𝑓) of the real signal  𝑥(𝑡) was obtained. The spectrum of  

the complex signal was then calculated by: 

𝑍(𝑓) = 2𝑈(𝑓)𝑋(𝑓) 
 

(48) 

where 𝑈(𝑓) is the unit step function in the frequency domain and is given by: 

𝑈(𝑓) = {

1 𝑖𝑓 𝑓 > 0

 
1

2
 𝑖𝑓 𝑓 = 0

 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(49) 
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The complex signal is then obtain by: 

𝑧(𝑡) = 𝐼𝐹𝐹𝑇{𝑍(𝑓)} 
 

(50) 

For the calculation of the frequency, the FFT was used to obtain the derivative of the phase in order 

to avoid numerical differentiation in the time domain and to obtain smoother results: 

𝑓(𝑡) = 𝐼𝐹𝐹𝑇{−j2π𝑓Φ(𝑓)} 
 

(51) 

where Φ(𝑓) is the Fourier transform of 𝜙(𝑡).  

In order to reduce the computational complexity for hardware implementation, these three 

methods were not followed and the techniques described in section 4.2.1.1  were used instead. It i s 

also worth noting that the method used in this study for the calculation of the instantaneous 

frequency is dependent on the sample frequency. There are several methods for the normal isation 

of the instantaneous frequency, including the utilisation of the symbol rate and sample frequency. 

The authors of [110] used the symbol rate for normalisation, which was not chosen for normalisation 

in this study as the symbol rate of the intercepted signal might be unknown and must then be 

estimated first. The sample frequency was therefore used instead for normalisation of the 

instantaneous frequency. 

The feature values however showed resemblance when compared. As discussed below, the 

modulation types that have information in their instantaneous amplitude, phase and frequency had 

corresponding values for the associated features. The results from the output of the features were 

promising on initial inspection with regard to the separability of the modulation types. The feature 

values obtained under different SNR conditions, which will be shown in section 4.2.2.3, also 

correspond to the results presented in [69] and [123] which provide further confidence that other 

authors in this field of study followed similar approaches, making our results later in this study 

directly comparable to their work. 

From the feature values it can be observed that: 

For 𝐴𝑚𝑒𝑎𝑛 

 MASK had larger values than the other modulation types. When the absolute values of  the 

amplitude are centred at zero, the modulation types with no amplitude information have 

values close to zero. Since the bit stream is contained in the amplitude of the signal for 

MASK, it contains amplitude information. 

For 𝜎𝑎𝑎 

 4ASK had the largest value among all the modulation types. The other modulation types 

have constant amplitude values except for 2ASK which has two levels. When these values 

are centred at zero, the absolute values are almost equal and the variance of the absolute 

amplitude results in values close to zero. Since 4ASK has four levels, the absolute values are  

not equal and the variance shows that it contains information in the absolute amplitude. 
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For 𝜎𝑎𝑝 

 4PSK had the largest value among all the modulation types. 2ASK and 4ASK have constant 

phase values, and 2PSK has two levels. When these values are centred at zero, the absolute  

values are almost equal and the variance of the absolute phase results in values close to 

zero. The variance shows that MFSK and 4PSK contain information in their absolute phase. 

For 𝜎𝑎𝑓 

 4FSK also had the largest value for among all the modulation types. The other modulation 

types have constant frequency values (zero) and 2FSK has two levels. When these values are  

centred at zero, the absolute values are almost equal and the variance of the absolute 

frequency results in values close to zero. Since 4FSK has four levels, the absolute values are  

not equal and the variance shows that it contains information in the absolute frequency. 

For 𝜎𝑎 

 MASK had the larger values than MPSK and MFSK. 2ASK and 4ASK have information in the 

instantaneous amplitude and thus have larger values than the modulation types with no 

information in their instantaneous amplitude. 

For 𝜎𝑑𝑝 

 MPSK and MFSK had larger values than MASK. MPSK and MFSK have information in the 

instantaneous phase and thus have larger values than MASK with no information in the 

instantaneous phase. 

For 𝜇42
𝑎  and 𝜇42

𝑓
 

 The compactness of the distribution of the instantaneous amplitude and frequency are 

measured with 𝜇42
𝑎  and 𝜇42

𝑓
 respectively. A large value is related to a wide distribution and a 

small value is related to a narrow distribution. The instantaneous frequency for MASK and 

MPSK should theoretically be zero, since they contain no frequency information. The band 

limitations and transition effects however caused different results. From Figure 31 to Figure 

34 it can be seen that the fluctuations caused the distribution of the values to seem wide 

and the kurtosis thus had a much larger value than the theoretical case.   

By comparing the results of the features calculated over 0.12 seconds (144 000 samples) and 2048 

samples, it can be seen that there were small differences in the values. With the utili sation of  only 

2048 samples, 𝜇42
𝑓

 was much smaller for MASK. Since signals with no channel effects were used, the 

results are not representative for all use cases. Signal lengths under different channel conditions 

were thus also analysed and will be discussed in section 4.2.2.5.  

The transition effects were compensated for to some extent and are explained in section 4.2.1.1. 

Table 5 shows the feature values without the compensation for the transition effects. 
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Table 5: Calculated Feature Values of Noise-free Signals over 2048 Samples without Compensation for 

Transitions Effects 

Modulation 
Type 

𝑨𝒎𝒆𝒂𝒏 𝝈𝒂𝒂 𝝈𝒂 𝝁𝟒𝟐
𝒂  𝝈𝒂𝒑 𝝈𝒅𝒑 𝝈𝒂𝒇 𝝁𝟒𝟐

𝒇
 

2ASK 0.6065 0.1795 0.6343 1.3375 0.1663 0.1674 0.0314 145.4208 
4ASK 0.3915 0.2190 0.4495 2.0420 0.1667 0.1677 0.0313 146.5168 

2PSK 0.1174 0.1841 0.2187 14.2361 0.3511 1.5293 0.0212 118.2436 

4PSK 0.1059 0.1645 0.1958 17.8525 1.0306 1.8570 0.0274 132.5924 
2FSK 0.0438 0.1325 0.1410 45.9698 0.9093 1.8065 0.0119 35.4323 

4FSK 0.0592 0.1490 0.1604 35.2507 0.9156 1.8080 0.0209 38.1050 
 

It can be seen that 𝜎𝑎𝑎 and 𝜎𝑎 of MPSK and MFSK were much larger and very close to the values of 

MASK. The same was evident for 𝜎𝑎𝑓 of MASK and MPSK. Without the removal of the fluctuations in 

the instantaneous amplitude and frequency, the feature values deviate significantly from the 

theoretical case, and become indistinguishable between many of the modulation types, which can 

lead to more misclassifications.  

4.2.2.3 Varying SNR conditions 

The first channel condition to be investigated was the effect of SNR on the feature values. For this 

experiment, AWGN was added to the signals. The SNR was increased by increments of  5 dB from 0 

dB to 30 dB to represent very poor to fairly good noise conditions.  Five hundred iterations for each 

SNR value were run and the averages of the five hundred iterations were calculated and plotted in 

Figure 45 to Figure 52. For each iteration, a new message signal and a new noise signal were 

generated. The feature values were calculated over a signal length of 0.12 s. 

 

 
Figure 45: Feature values of 𝑨𝒎𝒆𝒂𝒏  in an AWGN 

Channel in Matlab Simulation 

 

 
Figure 46: Feature values of 𝝈𝒂𝒂  in an AWGN 

Channel in Matlab Simulation 
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Figure 47: Feature values of 𝝈𝒂  in an AWGN 

Channel in Matlab Simulation 

 

 
Figure 48: Feature values of 𝝁𝟒𝟐

𝒂  in an AWGN 

Channel in Matlab Simulation 

 

 
Figure 49: Feature values of 𝝈𝒂𝒑  in an AWGN 

Channel in Matlab Simulation 

 
Figure 50: Feature values of 𝝈𝒅𝒑  in an AWGN 

Channel in Matlab Simulation 

 

 
Figure 51: Feature values of 𝝈𝒂𝒇 in an AWGN 

Channel in Matlab Simulation 

 
Figure 52: Feature values of 𝝁𝟒𝟐

𝒇
 in an AWGN 

Channel in Matlab Simulation 
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From these plots the following observations can be made: 

For 𝐴𝑚𝑒𝑎𝑛 

 4ASK was the least affected by the noise and the values remained almost constant over al l  

SNR conditions. The values of MPSK as well as MFSK lied very close to each other and were  

not easily separable. 2ASK and 4ASK were however well separable from an SNR of  5 dB and 

better. MASK were also well separable from MPSK and MFSK from an SNR of 5 dB. None of  

the values were separable at an SNR of 0 dB. 

For 𝜎𝑎𝑎 

 4ASK changed the least among all the modulation types. The values of MFSK lied very close 

to each other and were not really separable. 2ASK and 4ASK intersected at an SNR just 

above 15 dB which can lead to ambiguous interpretations for classification above and below 

this SNR. MPSK and MFSK were separable from an SNR of 10 dB and better. 2PSK and 4PSK 

were only separable adequately from an SNR of 15 dB. MASK were well separable from 

MPSK and MFSK from an SNR of 10 dB. The values of 2ASK however became closer to 2PSK 

as the SNR increased. None of the values were separable at an SNR of 0 dB. 

For 𝜎𝑎 

 The results of 𝜎𝑎 were very similar to 𝐴𝑚𝑒𝑎𝑛. The values were slightly larger and 2PSK and 

4PSK were more separable. The values of 2PSK and 4PSK were however still not easily 

separable. 

For 𝜇42
𝑎    

 MASK were the least affected by noise and the values remained almost constant. MPSK 

were the most affected by the noise and the values decreased drastically as the noise 

increased. MPSK and MFSK were separable from an SNR of 5 dB. MASK were also separable  

from MPSK and MFSK from 10 dB.  None of the values were separable at an SNR of 0 dB. 

For 𝜎𝑎𝑝 

 MFSK were not affected at all by noise and remained constant over the range of SNR’s from 

0 dB to 30 dB. The values of MASK and 2PSK increased as the SNR decreased. 2PSK and 4ASK 

intersected at an SNR of 15 dB and 2PSK and 2ASK intersected at an SNR just below 25 dB. I t 

led to ambiguous interpretations for classification above and below these SNR values. MFSK 

and 4PSK were however well separable from MASK and 2PSK over the range of SNR’s from 0 

dB to 30 dB.  

For 𝜎𝑑𝑝 

 MFSK were not affected by noise and remained constant over the range of SNR’s from 0 dB 

to 30 dB. MASK were the most affected by the noise and increases as the SNR decreases. 

MASK were well separable from MPSK and MFSK over the range of SNR’s from 0 dB to 30 dB. 

2PSK was also separable from MFSK and 4PSK over the range of SNR’s from 0 dB to 30 dB. 

4PSK was separable from MFSK from 10 dB. 
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For 𝜎𝑎𝑓 

 4FSK was the least affected by noise. 4FSK were also well separable from the other 

modulation types over the range of SNR’s from 0 dB to 30 dB. 4FSK was however only 

separable from 2FSK from an SNR of 5 dB. 2FSK was separable from the other modulation 

types from 0 dB to 20 dB. Although 4ASK was close to the values of the other modulation 

types, it was separable from the other modulation types from an SNR of 5 dB. 

For 𝜇42
𝑓

   

  MFSK were the least affected by the noise and remained almost constant over the range of  

SNR’s from 0 dB to 30 dB. MFSK was separable from the MASK and MPSK from an SNR of 5 

dB. 2PSK was the most affected by noise and the values decreased drastically as the SNR 

decreased. 2PSK was separable from an SNR of 15 dB. Although 4PSK changed only a little 

over the SNR range, MASK caused 4PSK to be inseparable from any modulation types. 

In summary, 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 had very similar results although the values differed. There was a 

correspondence between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 𝜇42
𝑎 . The phase based features, 𝜎𝑎𝑝 and 𝜎𝑑𝑝, of MFSK 

and 4PSK were the most robust against noise conditions. 4ASK was also more robust against noise 

when considering the amplitude based features. Similarly, 4FSK was more robust against noise when 

considering the frequency based features. Table 6 gives a summary of the modulation types that are  

distinguishable with the various features. The table is displayed to get an intuition on separabi li ty 

using these features in order to see if there is potential for a decision tree to work reliably on these 

features. The standard deviations of the features are also presented in Appendix A.1.1 to provide 

visual aid. 

Table 6: Separability of Modulation Types under varying SNR conditions  

Feature Distinguish between 

𝐴𝑚𝑒𝑎𝑛 MASK vs. MPSK and MFSK 2ASK vs. 4ASK 

𝜎𝑎𝑎 MASK vs. MPSK and MFSK  
𝜎𝑎 MASK vs. MPSK and MFSK 2ASK vs. 4ASK 

𝜇42
𝑎  MPSK vs. MFSK MASK vs. MPSK vs. MFSK 
𝜎𝑎𝑝 MFSK and 4PSK vs. MASK and 2PSK 4PSK vs. MFSK 

𝜎𝑑𝑝 MASK vs. MPSK and MFSK 2PSK vs. rest 

𝜎𝑎𝑓 4FSK vs. rest 2FSK vs. 4FSK 

𝜇42
𝑓

 MFSK vs. MASK and MPSK  

 

4.2.2.4 Varying SNR and flat fading conditions 

The next experiment was performed to evaluate the features under varying flat fading and SNR 

conditions. The Matlab RayleighChannel System object from the Communication System Toolbox 

was used to create the fading channel. The average path gains were set using AvgPathGaindB and 

the path gains were then randomly generated from an internal probability distribution function  for 

each iteration [114], [123]. A channel with 3 paths was created for each iteration. The path gains 

were chosen as constants and the path delays as independent variables.  The path delays were 

chosen such that the delay span was 𝑘 ×10 𝜇𝑠 where 𝑘 is a calculated weight factor and was chosen 

as 𝑘 = [0  0.025  0.1  0.75  1.5  2.5  5  7.5  10]. These values of 𝑘 resulted in 9 different values of 
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delay spread: [0 0.001 0.004 0.03 0.06 0.1 0.2 0.3  0.4]* 𝑇𝑠, where 𝑇𝑠 is the symbol time. The first and 

last path delays were fixed at 0 𝜇𝑠 and 10𝑘 𝜇𝑠 respectively to ensure a delay span from 0 𝜇𝑠  to 𝑘 × 

10 𝜇𝑠 in order to obtain the desired delay spread. The second path delay was chosen randomly 

between 2𝑘 𝜇𝑠 and 8𝑘 𝜇𝑠 in order to randomise the path delay of the second path for each 

iteration. The Doppler shift was set to 0 to create a static channel. The features were tested against 

these 9 delay spread values for an SNR of 10 dB and 30 dB respectively. An SNR of 30 dB is a strong 

signal case and from the previous analysis, at an SNR of 10 dB the features values showed good 

separability. Below 10 dB separability started to become an issue in some instances. Five hundred 

iterations for each delay spread value were performed. The averages of the five hundred i terations 

were calculated and plotted. For each iteration, a new message signal and noise were generated. 

The values were calculated over a signal length of 0.12 s. The results are shown in Figure 53 to Figure 

68 where 𝑅𝐷𝑆 is the ratio of the delay spread to the symbol time. The features for 30 dB SNR are 

shown on the left and for 10 dB SNR on the right. 

 
Figure 53: Feature values of 𝑨𝒎𝒆𝒂𝒏  in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 54: Feature values of 𝑨𝒎𝒆𝒂𝒏  in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 

 

 
Figure 55: Feature values of 𝝈𝒂𝒂  in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 56: Feature values of 𝝈𝒂𝒂  in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 
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Figure 57: Feature values of 𝝈𝒂  in a Flat Fading 

Channel at 30 dB SNR in Matlab Simulation 

 
Figure 58: Feature values of 𝝈𝒂  in a Flat Fading 

Channel at 10 dB SNR in Matlab Simulation 

 

 
Figure 59: Feature values of 𝝁𝟒𝟐

𝒂  in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 60: Feature values of 𝝁𝟒𝟐

𝒂  in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 

 

 
Figure 61: Feature values of 𝝈𝒂𝒑  in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 62: Feature values of 𝝈𝒂𝒑  in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 
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Figure 63: Feature values of 𝝈𝒅𝒑  in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 64: Feature values of 𝝈𝒅𝒑  in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 

 

 
Figure 65: Feature values of 𝝈𝒂𝒇 in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 66: Feature values of 𝝈𝒂𝒇 in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation 

 

 
Figure 67: Feature values of 𝝁𝟒𝟐

𝒇
 in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 
Figure 68: Feature values of 𝝁𝟒𝟐

𝒇
 in a Flat 

Fading Channel at 10 dB SNR in Matlab 

Simulation
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The results show that: 

For 𝐴𝑚𝑒𝑎𝑛  

 4ASK was the least affected by the flat fading and remained almost constant for all 𝑅𝐷𝑆 from 

0 to 0.4 for both SNR’s of 30 dB and 10 dB. MASK were well separable from MPSK and MFSK 

for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. 4ASK was however not separable for 𝑅𝐷𝑆  of 

0.4. 2ASK was also well separable from 4ASK over all the proposed channel conditions.  

For 𝜎𝑎𝑎  

 4ASK was the least affected by the flat fading and remained almost constant for all 𝑅𝐷𝑆 from 

0 to 0.4 for SNR of 30 dB. 4ASK was also separable from the other modulation types for all 

𝑅𝐷𝑆 from 0 to 0.4 for an SNR of 10 dB and for 𝑅𝐷𝑆 from 0 to 0.1 for an SNR of 30 dB. The 

effect of noise on 2ASK can be seen here. The feature values give ambiguous results i f  the 

SNR of signals are unknown. Modulation types were not separable in the same way at an 

SNR of 30 dB and 10 dB.  MASK was however separable from MPSK and MFSK for all 𝑅𝐷𝑆 

from 0 to 0.4 for an SNR of 10 dB.  

For 𝜎𝑎  

 MASK was the least affected by the flat fading conditions. 2ASK remained separable from al l  

the other modulation types for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. 4ASK were also 

separable for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. The value of 4ASK was however very 

close to 4FSK at an 𝑅𝐷𝑆 of 0.4. The values of 2PSK and 4PSK were also very close to each 

other from all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. 

For 𝜇42
𝑎    

 MASK were the least affected by the flat fading and remained almost constant for all 𝑅𝐷𝑆 

from 0 to 0.4 for an SNR of 30 dB. MPSK were the most affected by both SNR and flat fading. 

The values decreased drastically as 𝑅𝐷𝑆 increased. 2ASK was separable from the other 

modulation types for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. 4ASK was separable from the 

other modulation types for all 𝑅𝐷𝑆 from 0 to 0.4 for an SNR of 10 dB. The value of 4ASK was 

however very close to 4FSK at an 𝑅𝐷𝑆 of 0.4. Although 4ASK remained almost constant at an 

SNR of 30 dB, 4FSK caused 4ASK to only be separable for 𝑅𝐷𝑆 from 0 to 0.03. 

For 𝜎𝑎𝑝  

 MFSK were the least affected by the flat fading conditions and remained almost constant for 

all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. MFSK and 4PSK remained well separable from 

MASK and 2PSK for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values although 2ASK was greatly 

affected by noise.  

For 𝜎𝑑𝑝  

 MFSK and 4PSK were the least affected by the flat fading and remained almost constant for 

all 𝑅𝐷𝑆 from 0 to 0.4 for an SNR of 30 dB. Although MASK were greatly affected by noise, 
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MASK were still very well separable from MPSK and MFSK for all 𝑅𝐷𝑆 from 0 to 0.4 for both 

SNR values. MFSK were also separable from 4PSK for all the proposed channel conditions.  

For 𝜎𝑎𝑓  

 4FSK was the least affected by the flat fading conditions. 4FSK was well separable for al l  𝑅𝐷𝑆 

from 0 to 0.4 for both SNR values. 2FSK was separable for all 𝑅𝐷𝑆 from 0 to 0.4 for an SNR of  

10 dB. The effect of noise on 2FSK can be seen here. The feature values give ambi guous 

results if the SNR of signals are unknown. Modulation types are not separable in the same 

way at an SNR of 30 dB and 10 dB. 2ASK and 4ASK were however separable for all the 

proposed channel conditions. MPSK were also well separable from MASK for al l  𝑅𝐷𝑆 f rom 0 

to 0.4 for an SNR of 30 dB. 

For 𝜇42
𝑓

   

 MFSK were the least affected by the flat fading conditions and were well separable from 

MASK and MPSK for all 𝑅𝐷𝑆 from 0 to 0.4 for both SNR values. MASK were also separable 

from MPSK for all 𝑅𝐷𝑆 from 0 to 0.4 for an SNR of 10 dB. 4ASK was greatly affected by flat 

fading. The effect on MASK and 2PSK can lead to ambiguous interpretations for 

classification. 

𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 again showed very similar trends although the values differed. It can also be observed 

that there was a correspondence between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎, and 𝜇42
𝑎 . It can be seen that 𝜎𝑎𝑝 and 𝜎𝑑𝑝 

of MFSK and 4PSK were more robust against flat fading conditions. The amplitude based features o f  

MASK were also more robust against flat fading as well as the frequency based features of 4FSK. 

Table 7 gives a summary of the modulation types that are distinguishable with the various features.  

The standard deviations of the features are also presented in Appendix A.1.2 to provide visual aid for 

separability of the feature values. It can be seen that the features were more sensitive to fading 

conditions and misclassification might occur more. 

Table 7: Separability of Modulation Types under varying flat fading and SNR conditions  

Feature Distinguish between 
𝐴𝑚𝑒𝑎𝑛 MASK vs. MPSK and MFSK 2ASK vs. 4ASK 

𝜎𝑎𝑎 MASK vs. MPSK and MFSK 4ASK vs. MPSK and MFSK 
𝜎𝑎 MASK vs. MPSK and MFSK 2ASK vs. 4ASK 

𝜇42
𝑎  MPSK vs. MFSK  
𝜎𝑎𝑝 MFSK and 4PSK vs. MASK and 2PSK 2ASK vs. 4ASK 

𝜎𝑑𝑝 MASK vs. MPSK and MFSK 2PSK vs. rest 

𝜎𝑎𝑓 4FSK vs. rest 2ASK vs. 4ASK 

𝜇42
𝑓

 MFSK vs. MASK and MPSK  

4.2.2.5 Signal Length Effects 

Shorter signals consume less hardware resources and reduce calculation time. Additionally, since 

transmitters in a non-cooperative environment can change their modulation type quickly,  i t i s also 

desirable to classify modulation types using the fewest samples possible for quicke r classi fication 

turnaround time. The aim of the experiment is to determine how sensitive the features were to 

signal length. This is to aid in the decision for minimum signal length to still obtain good 

performance. The same signals generated in section 4.2.2.4 were used for this experiment. One 
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hundred signals for each fading value were used for an SNR of 10 dB and 30 dB respectively.  The 

feature values were calculated for 21 different signal lengths. For the maximum signal length, signals 

of 120 𝑚𝑠 were used. This is equal to: 

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 × 𝑓𝑠 (52) 

= (120 × 10−3)(1200 ×103) 

= 144 ×103 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

The signal length is decreased by 
144 ×103

15𝑖
 where 𝑖 = 1,2,3, … , 20. The last iteration thus consists of  

480 samples. For a symbol rate of 12.5 𝑘𝑏𝑎𝑢𝑑 and a sample frequency of 1200 𝑘𝐻𝑧, each symbol 

consists of 96 samples. The last iteration is thus calculated over 5 symbols. The averages of the 

iterations were calculated and the maximum and minimum values among all the fading conditions 

were plotted for each signal length. The results are shown in Figure 69 to Figure 84. Each figure 

shows the maximum and minimum feature value over all the fading conditions for each modulation 

type which are indicated as “max” and “min” on the graphs. 

 
Figure 69: Minimum and Maximum Feature 

values of 𝑨𝒎𝒆𝒂𝒏  in a Flat Fading Channel for 

different Signal Lengths at 30 dB SNR 

 
Figure 70: Minimum and Maximum Feature 

values of 𝑨𝒎𝒆𝒂𝒏  in a Flat Fading Channel for 

different Signal Lengths at 10 dB SNR 

 

 
Figure 71: Minimum and Maximum Feature 

values of 𝝈𝒂𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 72: Minimum and Maximum Feature 

values of 𝝈𝒂𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 
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Figure 73: Minimum and Maximum Feature 

values of 𝝈𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 74: Minimum and Maximum Feature 

values of 𝝈𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 

 

 
Figure 75: Minimum and Maximum Feature 

values of 𝝁𝟒𝟐
𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 76: Minimum and Maximum Feature 
values of 𝝁𝟒𝟐

𝒂  in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 

 

 
Figure 77: Minimum and Maximum Feature 

values of 𝝈𝒂𝒑  in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 78: Minimum and Maximum Feature 

values of 𝝈𝒂𝒑  in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 
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Figure 79: Minimum and Maximum Feature 

values of 𝝈𝒅𝒑  in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 80: Minimum and Maximum Feature 

values of 𝝈𝒅𝒑   in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 

 

 
Figure 81: Minimum and Maximum Feature 

values of 𝝈𝒂𝒇 in a Flat Fading Channel for 

Different Signal Lengths at 30 dB SNR 

 
Figure 82: Minimum and Maximum Feature 

values of 𝝈𝒂𝒇 in a Flat Fading Channel for 

Different Signal Lengths at 10 dB SNR 

 

 
Figure 83: Minimum and Maximum Feature 

values of 𝝁𝟒𝟐
𝒇

 in a Flat Fading Channel for 

Different Signal Lengths 

 
Figure 84: Minimum and Maximum Feature 

values of 𝝁𝟒𝟐
𝒇

 in a Flat Fading Channel for 

Different Signal Lengths 
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The results show that: 

For 𝐴𝑚𝑒𝑎𝑛: 

 At 30 dB SNR most modulation types remained relatively constant over the extent of the 

proposed signal lengths. Although the maximum values of MPSK only changed a little, MPSK 

intersected MFSK at the maximum values and can lead to ambiguous results when fewer 

signal samples are used. Although there was a decrease in the values of 2ASK, i t remain ed 

separable from the other modulation types. The minimum values of 2PSK and 4PSK as wel l  

as the minimum values of 2FSK and 4FSK were inseparable over the whole range of signal 

lengths. 

 At 10 dB SNR most modulation types also remained relatively constant over the extent of 

the proposed signal lengths. The maximum values of 2PSK became inseparable from the 

maximum values of 2FSK and 4PSK.  The minimum values of 2FSK and 4FSK were inseparable 

over the whole range of signal lengths. 

For 𝜎𝑎𝑎  

 At 30 dB SNR MFSK and MPSK remained relatively constant over the extent of the proposed 

signal lengths. The maximum values of 2PSK however increased as the signal length 

decreased and intersect 2FSK at the maximum values. The minimum value of 2ASK change d 

the most over the decreasing signal lengths and also intersected the maximum values of 

2FSK. The minimum values of 4ASK and the maximum values of 4FSK became inseparable. It 

can also be noted that the minimum and maximum values of MFSK were distributed far 

apart, showing the negative effects of fading on this feature. 

 At 10 dB SNR MASK decreased as the signal length decreased. The minimum values of  4ASK 

intersected the maximum values of all the other modulation types and can lead to 

ambiguous results when fewer signal samples are used. Although 2ASK decrease d, it 

remained separable from the other modulation types. 

For 𝜎𝑎  

 At 30 dB SNR MFSK and MPSK remained relatively constant over the extent of the proposed 

signal lengths. The maximum values of MPSK and MFSK as well as the minimum values of 

4ASK were very close which could lead to misclassification. This observation was however 

evident for all the signal lengths and not only for shorter signal lengths. Both maximum and 

minimum values of 2ASK remained separable from the other modulation types for all signal  

lengths. 

 At 10 dB SNR similar results were obtained. The minimum values of 4ASK however 

intersected the maximum values of MPSK and MFSK which could lead to ambiguous results 

when fewer signal samples are used. 

For 𝜇42
𝑎    

 At 30 dB the maximum values of MPSK varied over the range of signal lengths, but remained 

separable. Although the minimum values of all the modulation types remained almost 

constant for all the proposed signal lengths, the values were very close. This observation was 
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however evident for all the signal lengths and not only for shorter signal lengths. It can be 

seen that the maximum values of 2FSK and 4FSK intersected due to the fact that 2FSK 

decreased and 4FSK increased as the signal length decreased. 

 At 10 dB SNR the maximum and minimum values of all the modulation types, except for 

2ASK showed similar results. The values were very close to each other and multiple 

intersections occurred, which may lead to ambiguous results. 2ASK increased notably as the 

signal length decreased and the maximum values eventually intersected the minimum 

values of 4ASK. 

For 𝜎𝑎𝑝  

 At 30 dB SNR MPSK were greatly affected by signal length. 4PSK decreased and 2PSK 

increased as the signal length decreased. This caused the maximum values of 4PSK to 

intersect the values of MFSK and the minimum values of 2PSK to intersect the maximum 

values of MASK. This effect could lead to ambiguous results if different signal lengths are 

used for classification.  MASK and MFSK remained almost constant for all the proposed 

signal lengths.  

 At 10 dB SNR similar results were obtained. Since 2ASK had different values at 10 dB SNR, 

the minimum values of 2PSK intersected the minimum values of 2ASK. The minimum values 

of 2ASK also intersected the maximum values of 4ASK at shorter signal lengths. 

For 𝜎𝑑𝑝  

 At 30 dB SNR MASK and MFSK remained relatively constant over the extent of the proposed  

signal lengths. MPSK were the most affected by signal length. MASK, MPSK and MFSK were  

separable from each other for the proposed signal lengths. The maximum values of 4PSK 

however intersected the values of MFSK for longer signal lengths. 2PSK and 4PSK intersected 

for shorter signal lengths. Most of the values of 4ASK were within the range of  2ASK  for al l  

proposed signal lengths. MASK remained well separable from MPSK and MFSK for al l  signal  

lengths.   

 At 10 dB SNR similar results were obtained. 2ASK however had larger values than at 30 dB, 

which shows the effect of SNR on this feature. 

For 𝜎𝑎𝑓  

 At 30 dB MASK and MPSK remained almost constant for all the proposed signal lengths. The 

minimum values of 2FSK were the most affected by signal length. The values increased as 

signal length decreased. 2FSK and MPSK intersected and can lead to ambiguous results when 

different signal lengths are used for classification. It can however be noted that the 

distribution between the maximum and minimum values became smaller. Although the 

maximum and minimum values of 4FSK decreased as signal length decreases, 4FSK remained 

well separable from the other modulation types. 

 At 10 dB similar results were obtained. The distribution of the minimum and maximum 

values of 2FSK were however smaller and the minimum values did not intersect with any 

other modulation types. 
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For 𝜇42
𝑓

   

 At 30 dB SNR MPSK, MFSK and 2ASK remained almost constant for all the proposed signal 

lengths. 4ASK showed a significant decrease for the maximum values with the decrease of  

signal length and the maximum values of 4ASK were under the maximum values of  2PSK. It 

may lead to ambiguous results when different signal lengths are used for classification.  The 

minimum values of 2ASK and 4ASK became inseparable.  

 At 10 dB SNR MPSK and MFSK remained almost constant over the range of signal lengths. 

The values of MASK varied and caused intersections at various signal lengths. It may lead to 

ambiguous results when different signal lengths are used for classification. 

4.2.2.6 Decision tree 

The feature values obtained from the different experiments of section 4.2.2.3 and 4.2.2.4 were used 

for training and testing of the decision tree. The training dataset consisted of four hundred training 

vectors of each SNR condition from 0 dB to 30 dB for each of  the six modulation types. Furthermore, 

the training dataset consisted of four hundred training vectors of each fading condition at 30 dB and 

10 dB SNR respectively for each of the six modulation types. The decision tree used these values to 

grow the tree and used 10-fold cross validation to prune the tree. The following number of training 

vectors was used from each dataset: 

 SNR  : 400 training vectors of each SNR condition (7 x 6 x 400 = 16800) 

 Fading at 10 dB : 400 training vectors of each fading ratio condition (9 x 6 x 400 = 21600) 

 Fading at 30 dB : 400 training vectors of each fading ratio condition (9 x 6 x 400 = 21600) 

Due to the sizes of the trees, they are not presented here diagrammatically. The results of 

classification after training of the tree on the above dataset are shown in Table 8. 

Table 8: Results of the construction of the decision tree 

  Before Pruning After Pruning 

Test Training 
vectors 

Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Estimated 
Classification 
Error (%) 

1 60 000 111 1.04 4.14 58 2.73 4.09 3.83 
 

The test dataset consisted of one hundred test vectors of each SNR condition from 0 dB to 30 dB for 

each of the six modulation types. Furthermore, the test dataset consisted of one hundred test 

vectors of each fading condition at 30 dB and 10 dB SNR respectively for each of the six modulation 

types. The same test dataset was used for all the tests of the decision trees. The following number of 

test vectors was used from each dataset generated in the different tests for each modulation type:  

 SNR  : 100 test vectors of each SNR condition (7 x 6 x 100 = 4200) 

 Fading at 10 dB : 100 test vectors of each fading ratio condition (9 x 6 x 100 = 5400) 

 Fading at 30 dB : 100 test vectors of each fading ratio condition (9 x 6 x 100 = 5400) 

Confusion matrices were calculated to evaluate the performance of the decision tree for the 

different datasets. The confusion matrices show the correct classification and the misclassification 



63 
 

for each class. A confusion matrix for a two-class (Positive and Negative) classification problem can 

be presented as follows: 

 Predicted classes 

Positive Negative 

Tr
ue

  c
la

ss
es

 Positive True 
Positive 

False 
Negative 

Negative False 
Positive 

True 
Negative 

Figure 85: Confusion matrix for a two-class classification problem 

 

The true class labels are in the rows and the predicted class labels in the col umns. For true posi tive  

and true negative, the classes are correctly classified. For a false positive, a negative is misclassi fied 

as a positive. For a false negative, a positive is misclassified as negative.   

The confusion matrices, calculated for each SNR as well as each fading ratio at both 30 dB and 10 dB 

SNR, can be seen in Appendix B.1 and will be discussed below. Table 9 and Table 10 show the 

classification accuracy achieved by the decision tree for the proposed conditions.  

 

Table 9: Classification accuracy (% ) of the decision tree with full training dataset over varying SNR 

SNR (dB) 0 5 10 15 20 25 30 

Classification 
accuracy (%) 

96.17 99.67 100 100 100 100 100 

 

Table 10: Classification accuracy (% ) of the decision tree with full training dataset over varying 𝑹𝑫𝑺  at 

30 dB and 10 dB SNR 

𝑅𝐷𝑆 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

Classification 
accuracy at 
30 dB (%) 

100 99.67 99.5 99.5 99.17 98.83 97.33 92.00 89.33 

Classification 
accuracy at 
10 dB (%) 

100 95.33 97.17 94.5 97.17 91.67 91.5 86.17 84.83 

 

From Table 9 and Table 10  and the confusion matrices in Appendix B.1 it can be seen that: 

 The classification accuracy decreased as the fading conditions became worse and the SNR 

decreased. 

 The classification accuracy of the tree was very good for the SNR dataset. The tree had 100% 

classification accuracy down to an SNR of 5 dB. For an SNR of 0 dB a 96.17% classification 

accuracy was obtained. The most misclassifications occurred between 2FSK and 4FSK. 

 The performance of the tree was very good up to an 𝑅𝐷𝑆 of 0.2 for the fading dataset at an 

SNR of 30 dB. The classification accuracy was above 97.33%. For an 𝑅𝐷𝑆 of 0.3 the 

classification accuracy decreased to 92% and for an 𝑅𝐷𝑆 of 0.4 to 89.33%. It can be noted 

that misclassification mostly occurred between the MASK pairs, MPSK pairs and MFSK pairs 

and not between different classes of modulations. For an 𝑅𝐷𝑆 of 0.4 the misclassification 

between the MASK pairs, MPSK pairs and MFSK pairs increased. 
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 The classification accuracy varied for the different 𝑅𝐷𝑆 for the fading dataset at 10 dB.  From 

an 𝑅𝐷𝑆 of 0.1 the classification accuracy started to decrease from 91.67% to 84.83% for an 

𝑅𝐷𝑆 of 0.4. The performance of the tree was however better than 91% up to an 𝑅𝐷𝑆 of 0.2. 

The misclassification also mostly occurred between the MASK pairs, MPSK pairs and MFSK 

pairs. The misclassification of 2PSK as 2ASK or 4ASK was also notable from an 𝑅𝐷𝑆 of 0.3. 

The following experiment was performed to investigate the training sensitivity to the dataset size . 

The size of the training datasets were decreased to three hundred, two hundred, one hundred , and 

fifty training vectors of each SNR and each fading condition respectively for each of the six 

modulation types.  

Table 11: Results of the construction of the decision trees from five different training datasets  

  Before Pruning After Pruning 
Test Training 

vectors 
Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Estimated 
Classification 
Error (%) 

1 60 000 111 1.04 4.14 58 2.73 4.09 3.83 

2 45 000 88 1.09 4.30 53 2.50 4.20 3.91 
3 30 000 69 1.24 4.44 37 3.08 4.51 4.26 

4 15 000 53 1.11 4.77 26 3.35 4.95 4.59 

5 7500 32 1.55 5.71 23 3.09 5.39 5.24 
 

It can be seen that the complexity of the tree reduced by more than half when less samples were 

used, while the estimated classification error only increased a little.  

For the rest of the document, these five types of datasets used for training, including a ful l  dataset 

containing 400 training vectors of each channel condition, will be referred to as 400, 300, 200,100, 

and 50 training vectors respectively. Table 12 shows the classification accuracy of the decision trees  

over varying SNR’s. 

Table 12: Classification accuracy (% ) of decision trees with decreasing training sets over varying SNR 

using Feature Values obtained in Software 

Training 
vectors 

SNR (dB) 
0 5 10 15 20 25 30 

Test1 400  96.17 100 100 100 100 100 100 
Test2 300  96.17 99.67 100 100 100 100 100 

Test3 200  96.17 100 100 100 100 100 100 

Test4 100  94.83 100 100 100 100 100 100 

Test5 50  93.17 100 100 100 100 100 100 

From Table 12 it can be seen that the classification accuracy was very high and 100% classification 

accuracy was achieved for most tests of SNR greater than 0 dB. None of the tests achieved 100% 

classification accuracy for an SNR of 0 dB. Classification accuracy greater than 93% was however 

achieved for all the tests and a decrease in accuracy of 3% is observed between the biggest and 

smallest training dataset utilised.  

The following table and figures show the results of the decision tree s for varying flat fading 

conditions at 30 dB SNR. 
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Table 13: Classification accuracy (% ) of decision trees with decreasing training sets over varying  
𝑹𝑫𝑺  at 30 dB SNR using Feature Values obtained in Software 

Training 
vectors 

𝑹𝑫𝑺 
0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

Test1 400 100 99.67 99.5 99.5 99.17 98.83 97.33 92.00 89.33 

Test2 300  100 99.83 99.33 99.5 99.5 99.00 96.83 92.33 88.83 
Test3 200  100 99.67 99.50 99.33 99.67 98.83 96.83 92.33 88.00 

Test4 100  100 99.5 99.17 99.00 97.83 98.17 96.50 93.67 88.17 
Test5 50  100 99.67 99.50 98.50 98.33 98.00 96.67 91.17 87.00 

 

 
Figure 86: Classification Error for 400 training 

vectors under varying flat fading conditions at 

30 dB SNR 

 
Figure 87: Classification Error for 300 training 

vectors under varying flat fading conditions at 

30 dB SNR 

 

 
Figure 88: Classification Error for 200 training 

vectors under varying flat fading conditions at 

30 dB SNR 

 
Figure 89: Classification Error for 100 training 

vectors under varying flat fading conditions at 

30 dB SNR 
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Figure 90: Classification Error for 50 training vectors under 

varying flat fading conditions at 30 dB SNR 

 

From Table 13 and Figure 86 to Figure 90, it can be seen that the classification accuracy decreased as 

the fading conditions deteriorated. Classification accuracies higher than 91% were achieved for al l  

tests up to a fading ratio of 0.3 and higher than 87% for a fading ratio of 0.4. The largest decrease in 

accuracy between the biggest and smallest training dataset utilised was smaller than 2% and 

occurred at a fading ratio of 0.4. The misclassification of 2ASK and 2PSK was the main contribution to 

the classification errors. There was a significant increase in classification error from a fading ratio of  

0.2 to a fading ratio of 0.3. At fading ratios larger than 0.2 the misclassification of 2ASK started to 

occur. Table 14 and Figure 91 to Figure 95 show the classification accuracy of the decision tree for 

varying flat fading conditions at 10 dB SNR. 

Table 14: Classification accuracy (% ) of decision trees with decreasing training sets over varying 𝑹𝑫𝑺  at 

10 dB SNR using Feature Values obtained in Software 

Training 

vectors 
𝑹𝑫𝑺 

0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

Test1 400  100 95.33 97.17 94.5 97.17 91.67 91.5 86.17 84.83 
Test2 300  100 95.17 96.33 94.17 95.33 93.00 90.33 88.67 82.5 

Test3 200  100 94.50 96.83 92.67 95.33 90.67 90.83 85.67 83.00 

Test4 100  100 92.50 96.33 93.00 94.33 90.83 91.5 84.33 81.67 
Test5 50 100 92.83 94.17 90.67 92.00 87.50 88.83 81.83 79.33 
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Figure 91: Classification Error for 400 training 

vectors under varying flat fading conditions at 

10 dB SNR 

 
Figure 92: Classification Error for 300 training 

vectors under varying flat fading conditions at 

10 dB SNR 

 

 
Figure 93: Classification Error for 200 training 

vectors under varying flat fading conditions at 

10 dB SNR 

 

 
Figure 94: Classification Error for 100 training 

vectors under varying flat fading conditions at 

10 dB SNR

 

  
Figure 95: Classification Error for 50 training vectors under varying  

flat fading conditions at 10 dB SNR 
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From Table 14 and Figure 91 to Figure 95, it can be seen that there was a significant decrease in 

classification accuracy. Classification accuracies higher than 79% were achieved for all tests under all  

the flat fading conditions. The largest decrease in classification accuracy between the biggest and 

smallest training dataset utilised, was smaller than 6% and occurred at a fading ratio of 0.06. The 

misclassification of 2ASK and 2PSK was the main contribution to the classification errors. There was a 

significant increase in classification error from a fading ratio of 0.2 to a fading ratio of 0.3. At fading 

ratios larger than 0.2 the misclassification of 2ASK started to occur.  It is evident that 4PSK had the 

least classification errors. It can also be seen that the classification errors were smaller for some 

worse fading conditions which is counter intuitive and against the general trend in the data. This can 

be seen for a fading ratio of 0.06. For features such as 𝜎𝑎𝑎 and 𝜎𝑎𝑓 it can be seen that intersections 

of modulation types occurred at this ratio or just below this ratio. Thresholds of the decision tree 

might have been chosen accordingly. This might be one of the reasons for more accurate 

classification. 

When considering all the channel conditions, it can be seen that the maximum decrease in 

classification accuracy between the biggest and smallest training dataset utilised is 6%. The highest 

classification error is 20.66%, which is observed when using the smallest training dataset for a fading 

ratio of 0.4 at an SNR of 10 dB.  

4.3 Hardware Implementation 

4.3.1 Implementation 

For the hardware implementation, very high speed integrated circuit hardware description language 

(VHDL) was used to describe the behaviour of the design and a synthesis tool was used to map the 

architecture. The design was implemented in Xilinx’s Vivado 2016.2 environment. The feature 

extraction concept design was translated into VHDL code for implementation where its functionality 

was confirmed and evaluated in the hardware domain. The feature extraction module was designed 

and its functionality was tested in simulation. After satisfactory results were obtained, design 

constraints were added and a synthesis of the design was performed in order to evaluate the size  of  

the design and performance of its functionality. After acceptable results were obtained, the routing 

of the design was done. If timing requirements were not met, placement and routing as wel l  as the 

description of the design’s behaviour had to be improved. After all the requirements were met, a 

bitstream was generated and loaded onto the FPGA. The process is illustrated in Figure 96 [123]. 

Entering of 
Design

Functional 
Simulation of 

Design

Adding of 
Design 

Constraints

Synthesis of 
Design

Evaluation of 
Design Size 

and 
Performance

Placing and 
Routing of 

Design

Generating of 
Bitstream

Downloading 
of Bitstream 

to Device

 

Figure 96: Flow Diagram of development of Firmware 

Data was transferred between Matlab and the FPGA using User Datagram Protocol (UDP) Internet 

Protocol (IP). Feature extraction was performed on the data received by the FPGA. The feature 

values were sent back to Matlab and were used for evaluation or classification by the decision tree 

discussed in 4.2.2.6.  
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The extraction of the features in hardware was designed according to the specifications of  a front-

end processor provided by the Council for Scientific and Industrial Research (CSIR)1. It was designed 

with the prospect of future integration with the provided front-end processor. The analysis of  some 

front-end processor components as well as interaction with the front-end processor is first 

discussed. The transfer of data between Matlab and the FPGA is also explained. The design and 

implementation of feature extraction is then shown and described.  

4.3.1.1 Interaction with front-end processor 

The front-end processor provided by the CSIR is similar to the front-end processor described in 

Chapter 3, with additional features and improved performance. The front-end processor is however 

designed for high, agile bandwidth signals and operates at a sample frequency of 4GHz. A great 

amount of memory is used to generate signals for the front-end processor at the full bandwidth, 

whereafter a filter and decimation significantly reduces the data rate.  This method of testing is 

prohibitive and a better simulation approach was thus required. The effect of the front end 

processing within the frequency band of interest was therefore analysed instead to determine 

whether it is negligible. I&Q samples were then generated accordingly in Matlab. These samples, 

calculated from signals with the same signal parameters mentioned in section 4.1 were then used as 

input for the feature extraction block within the hardware. The signal parameters were kept the 

same in order to compare the feature values calculated in hardware with the feature values 

calculated in software. 

4.3.1.1.1 Hilbert Filter 

The effect of the Hilbert filter on a signal was analysed in Matlab simulation. The frequency response 

of the filter was investigated with the aim of deciding whether to neglect the effects of the f i l ter or 

not. 

A linear time-invariant (LTI) system can be fully characterised by its impulse response ℎ[𝑛] in the 

time domain. Given an input 𝑥[𝑛], the output 𝑦[𝑛] is given by the convolution sum [115]: 

𝑦[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]  

∞

𝑘=−∞

 (53) 

The frequency response 𝐻(𝑒𝑗𝜔)  is directly related to the impulse response through the Fourier 

transform. The Fourier transform of an output is given by: 

𝑌(𝑒𝑗𝜔) = 𝐻(𝑒𝑗𝜔)𝑋(𝑒𝑗𝜔) (54) 

Where 𝑌(𝑒𝑗𝜔) and 𝑋(𝑒𝑗𝜔) are the Fourier transforms of 𝑦[𝑛] and 𝑥[𝑛] respectively. In the polar 

form, the Fourier transform of the output is given by: 

|𝑌(𝑒𝑗𝜔)| = |𝐻(𝑒𝑗𝜔)| ∙ |𝑋(𝑒𝑗𝜔)| (55) 

∠𝑌(𝑒𝑗𝜔) = ∠𝐻(𝑒𝑗𝜔) +∠𝑋(𝑒𝑗𝜔) (56) 

                                                                 
 

1 The front-end processor was developed by the Radar and Electronic Warfare Competency Area in the 
Defence, Peace, Safety and Security (DPSS) unit.   
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Where |𝐻(𝑒𝑗𝜔)| is the gain or magnitude response of the LTI system and ∠𝐻(𝑒𝑗𝜔) the phase shift 

or phase response. The effects of the magnitude and phase on a signal are known as magnitude - and 

phase distortions. The group delay 𝜏(𝜔) is the derivative of the phase response and is given by: 

𝜏(𝜔) = 𝑔𝑟𝑑[𝐻(𝑒𝑗𝜔)] = −
𝑑

𝑑𝜔
{∠𝐻(𝑒𝑗𝜔)} (57) 

The group delay is used to describe the linearity of the phase. Noting that a delay in time is re lated 

to phase that is linear with frequency, the effect of delay can be characterised. A wideband signal 

can be seen as the superposition of narrowband signals with different centre frequencies. If the 

group delay of a wideband signal is constant with frequency, the delay for all of the narrowband 

signals will be identical. If the group delay is however not constant with frequency, the narrowband 

signals at different frequencies will undergo different delays which will result in time dispersion of  

the energy of the output signal. Phase nonlinearity thus causes time dispersion. 

If the impulse response of an ideal delay system is given by: 

ℎ[𝑛] = 𝛿[𝑛 − 𝑛𝑑] 
(58) 

where 𝑛𝑑 is the time delay. The frequency response is given by: 

𝐻(𝑒𝑗𝜔) = 𝑒−𝑗𝜔𝑛𝑑 (59) 

such that 

|𝐻(𝑒𝑗𝜔)| = 1 (60) 

∠𝐻(𝑒𝑗𝜔) = −𝜔𝑛𝑑 (61) 

Figure 97 shows the frequency responses of an ideal delay system with a time delay of 𝑛𝑑 = 16. 

 
Figure 97: Frequency Response of an Ideal Delay System at 𝒏𝒅  = 16 

 

A Parks McClellan Hilbert FIR filter of order M equal to 30 is used for I&Q demodulation in the front -

end processor. The coefficients of the filter were generated in Matlab. Because the filter has an even 

order and odd symmetry of coefficients, the filter is classified as a Type 3 FIR filter.   
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For a generalised linear-phase system, the frequency response is given by: 

𝐻(𝑒𝑗𝜔) = 𝐴(𝑒𝑗𝜔)𝑒−𝑗𝛼𝜔+𝑗𝛽 (62) 

such that the group delay is: 

𝜏(𝜔) = 𝛼 (63) 

and the linear phase is: 

∠𝐻(𝑒𝑗𝜔) = 𝛽 −𝜔𝛼 (64) 

where 𝛼 and 𝛽 are constants and 0 < 𝜔 < 𝜋. For a Type 3 FIR filter, the frequency response has the 

form: 

𝐻(𝑒𝑗𝜔) = 𝐴0(𝑒
𝑗𝜔)𝑒−𝑗𝜔

𝑀
2 (65) 

For the analysis of the Hilbert filter, a Dirac delta function was applied to the filter. Figure 98 shows 

the frequency response of the Dirac delta function at time delay 𝑛𝑑 = 0. Figure 99 shows the 

frequency response of the filter at time 𝑛𝑑 = 0 and Figure 100 shows the frequency response after 

the effect of filter delay for 𝑛𝑑 = 0 had been removed.  

 

Figure 98: Frequency response of Dirac delta function at 𝒏𝒅  = 0 

 

 
Figure 99: Frequency Response of Dirac Delta 

Function at 𝒏𝒅  = 0 with Effect of Filter Delay 

 
Figure 100: Frequency Response of Dirac Delta 

Function at 𝒏𝒅  = 0 with Filter Delay Removed 
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For 𝑀 = 30, it can be seen that the filter satisfies equation (65). With the delay removed, the 

magnitude- and phase response effects are negligibly small. By comparing Figure 98 and Figure 99  i t 

can be seen that the filter shows desired results in the passband, 𝑓𝑝1 < 𝑓 < 𝑓𝑝2. The group delay i s 

also constant and the filter has a linear phase with no effect of time dispersion. It can therefore be 

assumed that all narrowband signals in the given bandwidth will undergo identical delay.  It can also 

be concluded that the magnitude- and phase response effects can be neglected, due to the fact that 

these effects are negligibly small compared to other signal effects such as noise and quantisation 

which dominate these errors. 

4.3.1.1.2 Quantisation 

The operation of quantisation can be represented by [126]: 

𝑥[𝑛] = 𝑄(𝑥[𝑛]) (66) 

Where 𝑥[𝑛] is the input sample and 𝑥[𝑛] the quantised sample. A (𝐵 + 1)-bit quantiser generally 

has 2𝐵+1 quantised levels. The most significant bit is considered as the sign bit in a two’s-

complement system. The remaining bits in the code word represent the value. The parameter,  𝑋𝑚, 

determines the full scale level of an ADC. The step size of the quantised levels depends on  𝑋𝑚 and is 

given by: 

∆=
2𝑋𝑚
2𝐵+1

=
𝑋𝑚
2𝐵

 (67) 

The quantisation error is given by: 

𝑒[𝑛] = 𝑥[𝑛] −  𝑥[𝑛] (68) 

The quantisation error samples are uniformly distributed random variables and can be seen as 

additive white-noise. If sample values are rounded by quantisers to the nearest quantisation level , 

the quantisation noise samples are in the range  

−∆/2 ≤ 𝑒[𝑛] < ∆/2 (69) 

This is only true if  

(−𝑋𝑚− ∆/2) < 𝑥[𝑛] ≤ (𝑋𝑚 −∆/2) 
(70) 

If 𝑥[𝑛] is outside this range the values are clipped and the errors may be larger.  

With 𝑋𝑚 = 1 and a 10-bit ADC from (67): 

∆=
1

29
= 1.953 ×10−3 (71) 

and from (69): 

−9.766× 10−4 ≤ 𝑒[𝑛] < 9.766 ×10−4 (72) 

The signal-to-quantisation noise ratio (𝑆𝑁𝑅𝑄) of a (𝐵 + 1)-bit uniform quantiser is given by: 

𝑆𝑁𝑅𝑄 = 10𝑙𝑜𝑔10 (
𝜎𝑥
2

𝜎𝑒
2
)= 6.02𝐵 + 10.8 − 20𝑙𝑜𝑔10 (

𝑋𝑚
𝜎𝑥
) (73) 
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where  𝜎𝑥 is the RMS value of the amplitude of a signal and 𝜎𝑒
2 is the noise variance or noise power 

given by: 

𝑃𝑒𝑒(𝑒
𝑗𝜔) = 𝜎𝑒

2 =
∆2

12
=
2−2𝐵𝑋𝑚

2

12
 ,    |𝜔| ≤ 𝜋 

(74) 

If a cosine wave with amplitude of 1 is considered with 𝑋𝑚 = 1, then  𝜎𝑥 =
1

√2
 and 

𝑆𝑁𝑅𝑄= 6.02(9) + 10.8− 20𝑙𝑜𝑔10 (
1

0.7071
) 

𝑆𝑁𝑅𝑄 = 61.97 𝑑𝐵 

(75) 

given that the amplitude doesn’t exceed 𝑋𝑚.  From equation (72) and (75), it was concluded that the 

quantisation noise is much smaller than the signal to noise ratio of the investigated signals, and is 

thus negligible. 

4.3.1.1.3 Instantaneous Amplitude, Phase and Frequency 

The CSIR implemented front-end processor also supplies the instantaneous ampl itude, phase and 

frequency of the signal within its band. It was therefore only necessary to implement the calculation 

of the features based on the instantaneous information. The conversion of the I&Q signal samples to 

polar form of the front-end processor was analysed and the instantaneous amplitude, phase and 

frequency samples were generated accordingly. 

4.3.1.2 Data Transfer between Matlab and FPGA 

The Matlab function and FPGA process to transfer the data were provided and were not developed. 

The data thus only had to be converted to the correct form to be transferred. The instantaneous 

amplitude, phase and frequency samples of a signal were first converted from double-precision 

floating point values to scaled 16 bit integers. The samples were scaled according to the values that 

would have been obtained by using the front-end processor. Each instantaneous ampli tude, phase 

or frequency sample consisted of 16 bits and was type casted to two 8-bit unsigned integers as this is 

the data size required for transfer to the hardware system.  

The converted instantaneous amplitude, phase and frequency samples were sent in UDP packets to 

the FPGA and were written into three different memory blocks respectively. UDP packets contained 

16 words where each word consisted of 512 bits, or equivalently, 64 unsigned bytes. A word thus 

contained 32 samples. After all the data was sent, a final packet, containing one 32 bit word, was 

sent to the FPGA as a notification that all data had been sent. This notification was use d to ini tiate 

the calculations of the features. After the notification was received, the samples were read from 

memory. In normal operation of the front-end processor, the data is parallelised by a factor of 32 

between the ADC and the FPGA, so each clock cycle contains 32 signal samples when processed. 

Thirty two samples were thus read each clock cycle and used for the calculations. Once the 

calculations were done, the feature values were stored in a register and sent back to Matlab. Figure 

101 shows a flow diagram of the transfer of data. 
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Figure 101: Flow Diagram of Data Transfer between Matlab and FPGA 

4.3.1.3 Behavioural Design Considerations 

A Virtex7 VX690TFFG1930-2 FPGA was used for the implementation. DSP slices in an FPGA can be 

used for multiple parallel math operations such as multiplications, accumulate, add, etc. The Virtex7 

VX690TFFG1930-2 FPGA contains 3600 DSP48E1 Slices. A block diagram of a DSP48E1 Slice can be 

seen in Figure 102. The math portion of the DSP slice includes a 25-bit by 18-bit, two’s compl iment 

multiplier and a 48-bit accumulator. The result of the multiplier is a 43-bit output that is sign-

extended to 48-bits. An adder/subtracter can have three 48-bit inputs and results in a 48-bit output 

[125]. If the inputs are greater than the specified widths, one or more DSP slices are cascaded for the 

math operation. It is thus desirable to keep the inputs within the specified widths to avoid the 

unnecessary overutilisation of limited device resources. 

 

Figure 102: DSP48E1 Slice [125] 

 

For a DSP slice to operate at full speed (600 MHz), pipeline stages must be implemented by means of 

registers. For a multiply operation, three-stage pipelining is suggested. For non-multiply operations, 

two-stage pipelining is suggested. There is thus a trade-off between increased clock frequency and 

data latency [125].  
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4.3.1.4 Calculation of the features 

The feature calculations were performed in cascade to improve calculation speed. The feature 

extraction entity was designed to use thirty two cascaded paths, since 32 samples wi l l  be  received 

each clock cycle from the front-end processor. Shorter signals consume less hardware resources, and 

reduce calculation time. Since transmitters in a non-cooperative environment can change their 

modulation type quickly, it is desirable to classify modulation types using the fewest samples 

possible for quicker classification turnaround. The calculation of the features is also a subsystem that 

will from part of a greater system. The utilisation of device resources should thus also be kept to a 

minimum. From the results obtained in section 4.2.2.5, it can be seen that most feature values 

remain separable for the number of samples greater than 1920. A number of samples greater than 

1920 will thus be adequate. 2048 samples were chosen, since it is a power of 2 and simplif ies many 

calculations.  

If the feature values are calculated over 2048 samples, at least 64 clock cycles are needed by each 

math operation to process all 2048 samples. Independent operations, such as the calculations of the 

features based on the instantaneous amplitude, phase and frequency respectively , were performed 

in parallel. The dependent operations, such as the calculations to obtain the individual features, 

were performed sequentially. Many of the features consisted of intermediary calculation steps that 

were identical and calculated values could thus be re-used. Pipelining stages were implemented to  

ensure that the timing constraints were met. Some general operations include the multiplication, 

division, the calculation of the average, summation, the square root and squared power. These 

operations are explained in detail below: 

 For multiplication 

o First the bit width of a value was checked to determine whether it exceeded the bi t 

width of a multiplier. The bit width was determined by finding the position of the 

most significant bit.  

o If the bit width of the values exceeded the bit width of the input to a multiplier, the 

value was shifted right by the number of positions exceeding the bit width of the 

input. This was equivalent to dividing the value by a power of two where the power 

is equal to the number of positions it was shifted. This was done in order to reduce 

the number of multipliers used for a single multiplication operation.  

o After the multiplication was performed, the result is shifted left by the number of 

positions the two input values were shifted right. 

o It can be noted that there will be a decrease in accuracy. There is thus a trade-off 

between device resources and precision. 

 For division, the denominator was inverted and multiplication was performed. 

 The summation of thirty two values was performed by using an adder tree: 

o The depth of the tree is equal to the log2 of the number of inputs. 

o The tree starts with the number of branches equal to the number of inputs and ends 

with one branch. 

o Values are added together in pairs of two each clock cycle until only one value 

remains. 

o The number of branches is thus halved each clock cycle.  
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 The average was calculated as follows: 

o The average of the 32 values received in each clock cycle is calculated by adding the 

values together and dividing it by 32. The calculation is referred to as Paralle l  Mean 

in Figure 103 to Figure 106. An adder tree was used to add the values. The division 

was executed by right shifting the sum 5 positions right which is equivalent to 

division of 32. 

o The calculations in the latter step were performed 64 times which resulted in 64 

averages over 64 clock cycles. The average of the 64 values was calculated by 

accumulating the values each clock cycle and dividing the answer by 64 when 64 

clock cycles had passed. For this second average operation, right shifting was not 

used. If the number of samples utilised for the calculation of the features would 

change and would not be divisible by a power of two, the operation would not work. 

A counter was used instead to determine the value by which the accumulated value 

should be divided by. The calculation is referred to as Serial Mean in Figure 103 to 

Figure 106. 

 An IP component was used to calculate the square root. 

The adder-tree, average and divider were already developed generic entities and were not 

developed for the implementation of the feature extraction. The calculations of the normalised-

centred amplitude, phase and frequency are shown in Figure 103. The values were shifted left (or 

multiplied) whenever division was performed. This was done in order to retain precision of the 

values. It can be noted that the frequency samples were not normalised by the sampling frequency 

to prevent loss of precision. 
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Figure 103: Flow Diagram for normalising and centring the Instantaneous Amplitude, Phase and 

Frequency in Firmware 
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For the features based on the instantaneous amplitude, phase and frequency, the variance needed 

to be calculated for various features. Generic blocks were thus created to calculate averages of 

squared values as well as the squared values of averages. These blocks were then implemented 

where required for the different features. 

For the calculation of the 𝜇42
𝑎  and 𝜇42

𝑓
, which will be described in the following diagrams, the 

squared values resulted in 32 bits. When these values have to be squared again, they exceed the bi t 

width of a multiplier. The method discussed for multiplication was applied here. Since a value is 

multiplied by itself, the maximum bit width of the value cannot exceed the maximum bit width of  

the smallest input to a multiplier, which is 18 bits. The values were thus scaled to 18 bits, multipl ied 

and scaled back to their original size. After the fourth powers of the values were calculated, their 

average was calculated. As mentioned earlier, the calculation of the average requires the summation 

of the thirty two values. Since values of different sizes were added, each value could not be scaled 

individually according to the input width of an adder. The bits of the values were however divided 

into two parts in order to calculate the average of the 64 averages since a multiplier was required to 

calculate the average. The calculation of the average was designed to restrict the input in order to 

ensure the utilisation of a single multiplier for an operation. The average of the most significant bi ts 

and least significant bits were calculated separately. The answer of the most significant bits were 

then shifted and added to the answer of the least significant bits. It can again be noted that there i s 

a loss in accuracy and also a trade-off between device resources and precision. 
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Figure 104: Flow Diagram for Instantaneous Amplitude Based Feature Extraction in Firmware 
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The flow diagram in Figure 104 illustrates the following calculations to extract features 𝐴𝑚𝑒𝑎𝑛,  𝜎𝑎𝑎,  

𝜎𝑎 and 𝜇42
𝑎 : 

 For each clock cycle the absolute values of 32 normalised-centred instantaneous ampl itude 

samples were first obtained.  

 The average of the absolute values received in each clock cycle was calculated and resulted 

in 𝐴𝑚𝑒𝑎𝑛. 

 The squared values of the average of both direct and absolute amplitude were calculated. 

 The average of the squared values of the amplitude was calculated. Either the direct value or 

the absolute value could be used for calculations since the square of the values were used. 

 The averages of squared values from both the absolute and direct values were subtracted 

from the squared values averaged individually. The two answers resulted in the variance of  

the direct and absolute values respectively. 

 The square root of each was calculated to give 𝜎𝑎𝑎 and 𝜎𝑎.  

 The fourth power of either the direct or absolute value calculated by computing the squared 

value twice. 

 The average of the fourth power values was calculated.  

 The average of the fourth power values were divided by the squared value  of the average of  

the squared values to give 𝜇42
𝑎 . 
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Figure 105: Flow Diagram for Instantaneous Phase Based Feature Extraction in Firmware 

 

The flow diagram in Figure 105 explains the following calculations to extract features 𝜎𝑎𝑝 and 𝜎𝑑𝑝: 

 For each clock cycle the absolute values of 32 non-linear centred instantaneous phase 

samples were first obtained.  

 The squared values of the average of both direct and absolute phase were calculated. 

 The average of the squared values of the phase was calculated. Either the direct value or the 

absolute value could be used for calculations since the square of the values were used.  

 The averages of squared values from both the absolute and direct values were subtracted 

from the squared values averaged individually. The two answers resulted in the variance of  

the direct and absolute values respectively. 

 The square root of each was calculated to give 𝜎𝑎𝑝 and 𝜎𝑑𝑝.  
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Figure 106: Flow Diagram for Instantaneous Frequency Based Feature Extraction in Firmware 

 

The flow diagram in Figure 106 explains the following calculations to extract features 𝜎𝑎𝑓 and 𝜇42
𝑓

: 

 In each clock cycle the absolute values of 32 normalised-centred instantaneous frequency 

samples were first obtained.  

 The squared values of the average of both direct and absolute frequency were calculated. 

 The average of the squared values of the frequency was calculated. Either the direct value or 

the absolute value could be used for calculations since the square of the values were used. 

 The averages of squared values from the absolute were subtracted from the squared values 

averaged individually. The answer resulted in the variance of the absolute values. 

 The square root was calculated to give 𝜎𝑎𝑓.  

 The fourth power of either the direct or absolute value calculated by computing the squared 

value twice. 

 The average of the fourth power values was calculated. 

 The average of the fourth power values were divided by the squared value of the average of  

the squared values to give 𝜇42
𝑓

. 

It can be seen that many of the operations have redundant bits and that there is room for 

improvement of the design. Full functionality of the hardware implementation was however 

demonstrated. 

4.3.2 Results 

4.3.2.1 Comparison between simulation and hardware results 

The instantaneous information of the signals in section 4.2.2.4 was used for testing in which 2048 

samples were used for feature calculation. Figure 107 to Figure 122 show the results of the feature 

values under flat fading conditions for both 10 dB and 30 dB SNR. The results from simulation (using 

144 000 samples) and hardware implementation (using 2048 samples) are presented next to each 

other for easier one to one comparison in Appendix A.2. 
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Figure 107: Feature values of 𝑨𝒎𝒆𝒂𝒏  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 108: Feature values of 𝑨𝒎𝒆𝒂𝒏  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

 
Figure 109: Feature values of 𝝈𝒂𝒂  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 

 
Figure 110: Feature values of 𝝈𝒂𝒂  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

 
Figure 111: Feature values of 𝝈𝒂  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 112: Feature values of 𝝈𝒂  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 
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Figure 113: Feature values of 𝝁𝟒𝟐

𝒂   in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 114: Feature values of 𝝁𝟒𝟐

𝒂   in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

 
Figure 115: Feature values of 𝝈𝒂𝒑  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 116: Feature values of 𝝈𝒂𝒑  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

 
Figure 117: Feature values of 𝝈𝒅𝒑  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 118: Feature values of 𝝈𝒅𝒑  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 
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Figure 119: Feature values of 𝝈𝒂𝒇 in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 120: Feature values of 𝝈𝒂𝒇 in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

 
Figure 121: Feature values of 𝝁𝟒𝟐

𝒇
  in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 

 
Figure 122: Feature values of 𝝁𝟒𝟐

𝒇
  in a Flat 

Fading Channel at 10 dB SNR for Hardware 

Implementation 

 

The results show that: 

For 𝐴𝑚𝑒𝑎𝑛: 

 At 30 dB 2ASK had slightly smaller values than the values obtained in the software results. It 

can be seen in Figure 69 that the values of 2ASK decreased as the signal length decreased. 

The values of the other modulation types were very similar to the values obtained in 

software.  

 At 10 dB the values of 2ASK were also slightly smaller than the values obtained in the 

software results. 4ASK also showed small variations from values in the software results. 

Figure 70 shows the decrease in the values of MASK with decrease in signal length. It can be 

seen that 2ASK decreased more rapidly than 4ASK and therefore the values of 2ASK vary 

more than 4ASK in the hardware results from the software results. The values of  MPSK and 

MFSK were very similar to the values obtained in software. 
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For 𝜎𝑎𝑎: 

 At 30 dB SNR MASK had larger values in the hardware results than the values calculated in 

software. The values of 4ASK differ only by a small amount while 2ASK had increased 

significantly. In Figure 71 it can be seen that the minimum values of 2ASK increased as the 

number of samples decreased. The variance of the hardware and software results did 

however decrease for fading ratios above 0.2. The values of 2PSK also vary from the values 

obtained in software at fading ratios above 0.1.  The values of 2FSK also show variations at 

fading ratios from 0.03 to 0.2.  

 At 10 dB SNR the values of all the modulation types were slightly higher than the values of  

the software results. Figure 72 shows however that the decrease in signal length was not the 

reason for the decrease in the feature values. 

For 𝜎𝑎 

 At 30 dB SNR the values of 2ASK was smaller than the values obtained in software. The other 

modulation types had very similar results than the results obtained in software.  From Figure 

73 it can be seen than the values of 2ASK decreased as the signal length decreased. 

 At 10 dB SNR the values of 2ASK were again smaller than the values obtained in software. 

The values of 4ASK were also slightly smaller. In Figure 74 it can be seen that the values of 

2ASK decreased notably as the signal length decreased and 4ASK also decreased sl ightly as 

the signal length decreased. The values of MPSK and MFSK were almost identical to the 

values obtained in software. 

For 𝜇42
𝑎  

 At 30 dB SNR the values of MPSK and MFSK were notably smaller at lower fading ratios, 

while the values of MFSK were almost identical to the values obtained in software. The 

decrease in the values of 2PSK is unexpected given that its values increased as signal length 

decreased as observed in Figure 75. The trade-off between calculation accuracy and device  

resources can thus be seen here. 

 At 10 dB SNR the values of MFSK and MASK were also higher than the values obtaine d in 

software. In Figure 76 it can be seen that the values of MASK increased as the signal  length 

decreased.  

For 𝜎𝑎𝑝 

 At 30 dB SNR the value of 4PSK is slightly smaller than the values obtained in software. The 

values of 2PSK and MASK were however significantly larger than the software results for the 

lower fading ratios. The variance in the values decreased at larger fading ratios. In Figure 77 

it can be seen that the values of 4PSK decreased as the signal le ngth decreased and the 

minimum values of 2PSK increased as the signal length decreased. It is however interesting 

to see that the values of MASK remained almost constant as the signal length decreased, but 

differences were observed between hardware and software results. Although the 

modulation types remain separable the increase and decrease in values might lead to 

misclassification when values obtained from hardware are used. 
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 At 10 dB SNR the values of both 4PSK and 2PSK were smaller than the software results while 

the values of MFSK and MASK almost remained constant. The values of 2ASK were however 

smaller than the results obtained in software.  In Figure 78 it can be seen that the values of  

4PSK decreased as the signal length decreased while the minimum values of 2PSK increased 

as the signal length decreased.  The values of 2ASK also decreased as the as the signal length 

decreased. 

For 𝜎𝑑𝑝 

 At 30 dB SNR the values of MPSK and MFSK were smaller than the values obtained in 

software, while the values of MASK were slightly larger than the software results. In  Figure 

79 it can be seen that the values of MPSK decreased as the signal length decreased, while 

and the maximum values of MASK increased slightly as the signal length decreased. It is 

however interesting to see that the values of MFSK were smaller for the hardware results, 

while the values remained almost constant as the signal length decreased. 

 At 10 dB SNR the values of MSPK were smaller while MASK and MFSK were very similar to 

the results obtained in software. In Figure 80 it can be seen that the values of MSPK 

decreased significantly as the signal length decreased. 

For 𝜎𝑎𝑓 

 At 30 dB SNR the values of 2FSK were significantly smaller than the values obtained in 

software. The other modulation types had almost identical results than the software results. 

In Figure 81 it can be seen that the minimum values of 2FSK increased significantly as the 

signal length decreased. Although the values of 4FSK decreased as the signal length  

decreased, the value remained almost constant for the number of samples equal to or 

higher than 2048 samples. 

 At 10 dB SNR the values of all the modulation types were slightly smaller, except for the 

values of 4FSK which were notably smaller. In Figure 82 it can be seen that the values of 

4FSK decreased as the signal length decreased. 

For 𝜇42
𝑓

 

 At 30 dB SNR it can be seen that MASK have very different results from the results obtained 

in software, while the values of MPSK and MFSK were very similar. In Figure 83 it can be 

seen that the values of 4ASK decreased significantly for the first decrease in signal length. 

The great difference in the values of MASK however requires further investigation. 

 At 10 dB SNR the values of all the modulation type were very similar to the results obtained 

in software, except for MASK from a fading ratio of 0.3. In Figure 84 it can be seen that the 

values of MASK varied with the decrease in signal length. 

In summary, the results show that the values correspond to the values obtained in 4.2.2.4 and are 

very similar for most features. The calculation of the feature values in hardware showed to be 

feasible. By comparing the figures of the signal length analysis with that of the results obtained in 

this section, it can be seen that most differences were due to the number of samples used for 

calculation. Very similar results were obtained for modulation types that were not affected by the 

number of signals used for calculation of the feature values. For the calculation of 𝜇42
𝑎  and 𝜇42

𝑓
 much 
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bigger differences were observed. It can thus be seen that measures taken to improve device 

resource utilisation and computational complexity influenced feature values. The differences in the 

values of MASK for 𝜇42
𝑓

 required further investigation. For direct comparison the simulations were 

repeated at the same signal length as that used for hardware, namely 2048 samples. These feature 

values can be seen in Appendix A.3. Similar results were obtained than for the hardware results for 

𝜇42
𝑓

, although the values of MASK from hardware were slightly smaller. It is thus confirmed that the 

major factor contributing to the big difference in feature values were due to the number of samples 

used.  

4.3.2.2 Comparison between simulation and firmware results of decision tree 

From the observations in the results of the previous section, it was not expected that the decision 

trees constructed in section 4.2.2.6 would work as well for classification when 2048 samples are 

used to calculate the feature values. The performance of these decision trees was how ever 

investigated by using the feature values calculated in hardware. The same set of signals investigated 

in software simulation for the testing of the decision tree was used for the hardware investigation.  

Table 15 and Table 16 show the classification accuracy achieved by the decision tree using the 

hardware results. 

Table 15: Classification accuracy (% ) of decision trees with decreasing training sets over varying 𝑹𝑫𝑺  at 

30 dB SNR using Feature Values obtained in Hardware 

Training 

vectors 
𝑹𝑫𝑺 

0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 
Test1 400  71.5 73.6 75.5 76.5 80.17 80.00 75.5 68.17 68.33 

Test2 300  71.67 74.17 75.83 75.67 79.83 80.5 76.00 68.83 68.83 
Test3 200  72.33 77.33 77.67 76.83 79.17 79.00 76.17 67.33 68.33 

Test4 100  70.5 74.00 75.00 75.67 78.50 78.33 74.50 69.00 65.00 
Test5 50  70.17 76.00 76.00 77.33 81.17 78.5 76.50 71.00 66.83 

 

Table 16: Classification accuracy (% ) of decision trees with decreasing training sets over varying 𝑹𝑫𝑺  at 

10 dB SNR using Feature Values obtained in Hardware 

Training 

vectors 
𝑹𝑫𝑺 

0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

Test1 400  71.17 64.33 65.17 64.5 64.17 64.33 61.50 59.50 60.50 
Test2 300  72.17 64.33 65.83 63.83 64.00 63.50 61.83 61.33 62.17 

Test3 200  71.67 66.17 66.83 65.00 64.17 65.33 62.67 61.83 60.17 

Test4 100  75.33 67.33 65.67 64.67 64.50 63.33 64.83 61.83 60.50 
Test5 50  73.67 66.00 64.50 64.33 64.83 64.17 64.17 61.17 61.5 

 

From Table 15 and Table 16 it can be seen that that classification accuracy decreased on average by 

22.89% and 29.24% for the biggest dataset at an SNR of 30 dB and 10 dB respectively.  The 

classification accuracies are however still much better than random chance (100/6). For 30 dB and 

10 dB SNR, the highest and the lowest classification accuracy were 80.5% and 65.00%, and 75.33 and 

59.5% respectively. It is however interesting to see that there was not a significant decre ase in 

classification errors when smaller datasets were used. It can also be seen that the classification 

accuracy increased as the fading conditions deteriorated until a fading ratio of 0.2 for 30 dB SNR.  The 

reason for this behaviour is still unknown and is subject to further investigation. 
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From the confusion matrices in Appendix B.2, it can be seen that most misclassifications occurred 

between different orders within modulations of the same type. More specifically, the higher order 

modulation types were typically misclassified as the lower order modulation types. It can be seen 

that 4PSK was the most effected by the number of samples utilised for the calculation of the 

features. For poor fading conditions, 4PSK was almost completely misclassified. The misclassification 

of 4PSK became worse for 10 dB SNR. The results showed that 4PSK put a limitation on the number 

of samples required for accurate classification. Future work may include finding features that are 

more distinguishable on 4PSK. 

The decision tree thus had limited performance when a test dataset obtained in hardware with a 

different signal length was used. It was thus required to construct a decision tree using feature 

values calculated from 2048 samples for direct comparison with the hardware. Another tree was 

therefore constructed in Matlab using feature values calculated from 2048 samples, matching the 

signal lengths used for hardware instead of 144000 samples used in the original tree construction. 

Because the datasets obtained in hardware did not have full representation of all SNR conditions, 

only 10 dB and 30 dB SNR, it was necessary to construct a new tree in Matlab with full 

representation of all the channel conditions. The goal was to determine whether the hardware 

implementation was feasible for calculating feature values from signals under combined SNR and flat 

fading conditions. A dataset containing feature values calculated from signals only under SNR 

conditions was therefore not generated in hardware. Table 17 shows the results of the construction 

of the trees using sizes of training datasets as discussed in section 4.2.2.6. 

Table 17: Results of the construction of the decision trees  using 2048 samples 

  Before Pruning After Pruning 

Test Training 
vectors 

Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Tree 
depth 
(levels) 

Re-
substitution 
Error (%) 

Cross 
Validation 
Error (%) 

Estimated 
Classification 
Error (%) 

1 60 000 154 3.56 14.00 63 10.25 14.14 12.40 

2 45 000 126 3.81 14.29 63 10.38 14.39 12.78 
3 30 000 110 3.77 14.22 38 11.59 14.68 13.04 

4 15 000 73 4.10 15.07 35 10.93 15.21 14.00 
5 7500 47 4.15 16.27 26 10.25 16.01 15.47 

 

It can be seen that the estimated classification errors increased notably compared to the estimated 

classification errors of the tree constructed in section 4.2.2.6. There is also an increased in the depth, 

thus the complexity, of the trees. 

The tables below show the results of the decision tree for varying flat fading conditions at 30 dB and 

10 dB SNR respectively. The top value in each cell is the classification accuracy achieved for feature 

values obtained from software, indicated with S, and the bottom values in each cell is the 

classification accuracy achieved for feature values obtained from hardware , indicated with H. 

  



87 
 

Table 18: Classification accuracy (% ) of decision trees with decreasing training sets over varying 𝑹𝑫𝑺  at 

30 dB SNR using Feature Values obtained from 2048 samples 

Training 

vectors 
S/H 𝑹𝑫𝑺 

0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

400 

S 97.83 97.00 96.50 95.67 96.00 93.00 87.33 80.83 74.17 

H 96.00 94.33 93.17 93.00 93.83 92.17 86.50 80.67 74.50 

300 

S 97.67 96.83 96.00 94.67 96.00 92.67 87.83 79.00 74.83 

H 98.83 93.83 93.5 92.67 93.67 91.5 85.67 79.33 73.83 

200 

S 96.17 96.67 95.33 93.5 94.67 91.83 87.17 78.17 74.67 

H 94.83 93.83 94.00 91.00 91.67 90.5 85.17 77.33 74.83 

100 

S 95.33 95.33 95.7 94.00 94.33 92.67 87.50 77.00 74.83 

H 95.33 95.00 94.67 91.00 91.50 89.50 85.17 76.83 74.17 

50 

S 93.50 95.00 92.67 91.17 92.83 89.83 83.67 75.33 74.67 

H 93.00 94.50 92.00 91.17 91.67 87.83 83.33 73.83 73.50 

 

Table 19: Classification accuracy (% ) of decision trees with decreasing training sets over varying 𝑹𝑫𝑺  at 

10 dB SNR using Feature Values obtained from 2048 samples 

Training 

vectors 
S/H 𝑹𝑫𝑺 

0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4 

400  S 92.33 77.00 79.83 78.00 78.83 73.83 76.17 72.00 69.17 

H 84.50 72.00 72.4 70.83 73.17 71.83 69.33 68.33 65.17 

300  S 92.5 77.50 79.33 79.50 79.17 73.5 75.00 73.50 67.33 

H 83.00 71.33 72.32 69.32 74.50 70.50 68.33 68.17 63.67 

200  S 91.33 77.17 78.33 77.50 78.67 73.50 73.67 72.00 67.5 

H 84.00 70.67 72.33 70.67 75.50 70.33 69.67 67.33 62.50 

100  S 90.50 75.17 77.00 76.50 78.33 73.17 70.00 73.33 65.50 

H 86.67 73.00 75.17 74.33 75.67 70.33 68.17 69.83 64.50 

50  S 90.00 73.50 76.67 76.83 76.00 70.00 71.50 69.00 61.83 

H 89.33 72.00 72.17 76.33 75.17 71.33 69.33 66.00 57.17 

 

For 30 dB SNR the results from software and hardware were very similar. At 10 dB SNR the 

classification accuracies for the hardware results however decreased notably for lower fading ratios. 

At higher fading ratios the classification accuracies from hardware were closer to the classi f ication 

accuracies from the software results. Classification accuracy higher than 73% and 57% was achieved 

for all training datasets for 30 dB and 10 dB SNR respectively. For a full training dataset, classification 

accuracy higher than 74% and 65% was achieved for 30 dB and 10 dB SNR respectively. Classification 

accuracy higher than 83% was achieved for all training datasets up to a fading ratio of 0.2 for 30 dB 
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SNR. For 10 dB SNR, classification accuracy higher than 70% was achieved for al training datasets up 

to a fading ratio of 0.1. It can be seen that the classification accuracy decreased notably for fading 

ratios above 0.3. 

The following figures and Appendix B.3 show the results of the decision tree of the hardware results 

for varying flat fading conditions at 30 dB and 10 dB SNR respectively.  The decision tree was 

constructed with a full training dataset. 

 
Figure 123: Classification Error for 400 training 

vectors under varying flat fading conditions at 

30 dB SNR for Hardware Implementation 

 
Figure 124: Classification Error for 400 training 

vectors under varying flat fading conditions at 

10 dB SNR for Hardware Implementation 

 

It can be seen that the misclassification of 2PSK was the biggest contributor to the classification 

error for 30 dB SNR and the misclassification of 4ASK for 10 dB SNR. It can also be seen that the 

classification error for 10 dB increased only a little as the fading ratio increased.  For both 10 dB and 

30 dB SNR it can again be seen that 4PSK is the most robust for classification in these channel 

conditions. 

It can be concluded that the number of samples utilised for calculation of the feature values play a 

significant role in the classification performance of the decision tree. Potential remedies to this are  

discussed in the future work section 5.1. 

4.4 Modulation Change Tracking 

4.4.1 Implementation 

The tracking was performed by logging the modulation output of the decision tree in a register to be 

utilised by external processes that may follow. The modulation output was recorded and evaluated 

after each classification. If the modulation type remained the same as the previous classification, no 

change was recorded. If the modulation type was different from the previous classification, a flag 

was set to indicate a change in modulation type and the status of the flag was recorded. The tracking 

process is illustrated in Figure 125. 
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Figure 125: Flow Diagram for Tracking Changes in Modulation Types  

4.4.2 Results 

The logging of the modulation type sufficiently addressed the tracking from one modulation type to 

another. For deeper investigation into the tracking behaviour, the effect of modulation type 

transitions was investigated. 

4.4.2.1 Modulation Transition Effects 

In section 4.3.2.2 the classification of modulation types was performed over a window consisting of  

2048 samples. Up to this point it was assumed that one type of modulation filled the whole window. 

The transition from one modulation type to another may however have an effect on the 

classification performance since varying signal lengths from the two different modulation types i s 

contained within a single classification window. The next experiment was performed to investigate 

the effect of modulation transition within a window. The signals were investigated at an SNR of  30 

dB. Two assumptions were made for this experiment. The first assumption is that data throughput 

wants to be maintained and a modulation type will therefore only change to another type of 

modulation with the same order. The second assumption is that there is no period during the 

transition from one modulation type to another in which a signal is not present. In other words, the 

modulation change is instantaneous. Practically there may be signal effects due to handover, and 

negotiation elements within the communication protocols. The experiment was performed by 

replacing samples of a modulation type incrementally with samples of another modulation type until 

the initial modulation type is absent and only the new modulation type was present. For each 

increment 10% of the initial modulation type is replaced with the other modulation type. For the 

hardware implementation 2048 samples were used for calculation of feature values, which is 

discussed in section 4.3.1. For this experiment 2050 samples where used to aid in the analysis 

process, since 2050 is divisible by 10 while 2048 is not. The difference in classification performance 

between 2048 and 2050 is assumed negligible.  For each increment 500 iterations were performe d. 

Since the features extracted from the signals are not sensitive to the time order in which they 

appear, inversing the order of modulation type switching would produce the same results. The 

decision tree constructed for 2048 samples in section 4.3.2.2 was used for this experiment. The 

outcome of the experiment is shown in Figure 126 to Figure 131. 
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Figure 126: The Effect of Modulation Transition 

from 2ASK to 2FSK 

 
Figure 127: The Effect of Modulation Transition 

from 4ASK to 4FSK

 

 
Figure 128: The Effect of Modulation Transition 

from 2PSK to 2FSK 

 
Figure 129: The Effect of Modulation Transition 

from 4PSK to 4FSK

  

 
Figure 130: The Effect of Modulation Transition 

from 2PSK to 2ASK 

 
Figure 131: The Effect of Modulation Transition 

from 4PSK to 4ASK 
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From the results it can be seen that misclassifications occurred between different orders within 

modulations of the same type as both modulation types become equally present  in the window. 

More specifically, the higher order modulation types were usually misclassified as the lower order 

modulation types. This misclassification was also evident in section 4.3.2.2. For modulation order of  

2, 2FSK was the most affected and misclassified as 4FSK. While 2PSK was the least affected when 

dominantly present, 2ASK was the least affected when both modulation types were equally present 

and when least present in the window. For modulation order of 4,  4FSK was the least affected. 4A SK 

was the most affected, especially where 4ASK was less than 90% present. Although misclassifications 

of modulation orders of the same type occurred, it can be seen that very  few misclassifications of 

other modulation types occurred.  

4.5 Parameter Assumption Validity 
For this study, the carrier frequency and signal bandwidth was assumed to be known, as is standard 

practice in literature to date [113], [110], [123], [69], [128]. However, when the carrier frequency 

and bandwidth is estimated in practice, uncertainties are introduced that could introduce offsets 

between the estimated values and the true values. These offsets could negatively affect the feature 

values which in turn could negatively affect classification accuracy. 

The authors of [110] presented three methods to estimate the carrier frequency, although a 

preselected carrier frequency with zero estimation error was used in their work. Three methods 

were tested in simulation by the authors, in order to obtain the most accurate method for 

estimation of the carrier frequency. The tests were performed for an SNR of 5 dB, 10 dB, 15 dB and 

20 dB. The results from [110] showed that their third method, modified zero-crossings, had 100% 

accurate estimation for an SNR above 10dB. For both 5 dB and 10 dB only 2FSK and 4FSK had an 

offset of 149.5±5.0 kHz and 149.1±2.7 kHz respectively. It can thus be seen the estimation of the 

carrier frequency becomes less accurate at lower SNR and may have an effect on feature values. This 

effect and the true performance of carrier frequency estimation techniques in hardware require  

further investigation in future work before conclusions can be drawn on the performance of the 

feature based classification method in practice. 

In literature signals are matched to their bandwidth. This bandwidth varies for ASK, FSK and PSK (as 

can be seen in Table 1. This is knowledge that has to be estimated in a non-cooperative 

environment, or for which a design decision (i.e. fixed bandwidth) has to be made. Non-cooperative 

receivers normally have a bandwidth that is suited for various types of signals and is therefore wider 

to accommodate all the intended signals as opposed to cooperative receivers where the received 

signal parameters are known and filters can be matched exactly to those parameters . Since the 

amount of noise increases with the increase of a filter bandwidth, signals with narrower bandwidths 

will have more noise when filtered over a wider bandwidth. Features that are sensitive to noise may 

thus be affected and impact the feature values.  

To investigate whether this wider noise filter and thus increased noise in the system impacts the 

feature values, noise with different bandwidths was simulated. The feature values of  signals with 

noise filter bandwidths matched to the modulated signal, as described in section 4.1 and [110],  was 

compared to signals with a fixed noise filter bandwidth. The bandwidth for the noise was chosen as 
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1.2 times the bandwidth selected for MFSK, which had the widest bandwidth of all the modulation 

types considered. Two features, 𝜎𝑎𝑓 and 𝜇42
𝑓

, showed notably different values. The differences in the 

feature values can be seen in Figure 132 to Figure 135.  

 
Figure 132: Feature values of 𝝈𝒂𝒇 in an AWGN 

Channel with assumption that signal bandwidth 

is known 

 
Figure 133: Feature values of 𝝈𝒂𝒇 in an AWGN 

Channel without assumption that signal 

bandwidth is known 

 
Figure 134: Feature values of 𝝁𝟒𝟐

𝒇
 in an AWGN 

Channel with assumption that signal bandwidth 

is correctly estimated 

 

 
Figure 135: Feature values of 𝝁𝟒𝟐

𝒇
 in an AWGN 

Channel without assumption that signal 

bandwidth is correctly estimated 

 

The differences thus required further investigation and the feature values were calculated only for 

the bandlimited noise thereafter. The feature values for the bandlimited noise generated according 

to the related modulated signals are shown in Appendix A.4. The plots were scaled to the values of  

the plots for signals in an AWGN channel, Figure 45 to Figure 52, to aid in comparison.  

From the results in Appendix A.4 it can be seen that the features based on the instantaneous 

frequency were affected by the amount of noise due to the size of the bandwidth. The values of 

both features were different for different bandwidths. These features are thus sensitive to the 

bandwidth choice. Further investigation is required; it is however beyond the scope of this study.  It 

is nevertheless worth noting that the feature values affected by the noise could potentially be used 

to derive valuable information such as the amount of noise in a system when 𝜎𝑎𝑓 and 𝜇42
𝑓

 are 

observed. The SNR could possibly also be determined if the modulation type is known. 
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4.6 Conclusion 
The design of the of the feature extraction, classification and tracking modules were implemented in 

this chapter. The design was first implemented in software by simulating an algorithm in Matlab. 

Several experiments were then performed to guide the design of the system and evaluate the 

performance of the design. The calculated instantaneous amplitude, phase and frequency were first 

compared to the theoretical instantaneous amplitude, phase and frequency from literature . It was 

determined that the instantaneous amplitude of MPSK contained weak intervals where symbol 

transitions occur. The transition effects influenced the values of the features and thus needed to be 

compensated for. Fluctuations in the instantaneous frequency of MPSK were also observed where 

symbol transitions occur. The calculation of the derivative of the phase to obtain the frequency 

caused unwanted fluctuations that were not observed in the theoretical representation in literature. 

These fluctuations were also compensated for by evaluating the values against a threshold and 

replacing any value that exceeded the threshold with a constant value.  

The calculated feature values were compared to values obtained in [110] thereafter, since the signal 

parameters and features were adopted from their work. It was found that although the values 

differed from the values obtained in [110], there was a large degree of similarity in the values. The 

modulation types that have information in the instantaneous amplitude, phase and frequency had 

corresponding values for the associated features. The results thus still gave promising results to 

separate the different modulation types.  

The feature values were analysed under varying SNR conditions. The SNR ranged from 0 dB to 30 dB 

in increments of 5 dB. 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 had very similar results although the values differed. It was also 

observed that there is a relation between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 𝜇42
𝑎 . The phase based features, 𝜎𝑎𝑝 and 

𝜎𝑑𝑝, of MFSK and 4PSK were the most robust against noise conditions. 4ASK was more robust 

against noise when considering the amplitude based features. Similarly, 4FSK was more robust 

against noise when considering the frequency based features. From these results it was concluded 

that all modulation types were distinguishable from each other when the features were used in 

combination. 

The features values were analysed under combinations of varying SNR and flat fading conditions.  A 

static flat fading channel with three multi paths were simulated for the experiment. The features 

were tested against 9 different fading values that ranged from 0 to 0.4. 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 again showed 

very similar results although the values differed. It could also be observed that there was a re lation 

between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 𝜇42
𝑎 . 𝜎𝑎𝑝 and 𝜎𝑑𝑝 of MFSK and 4PSK were more robust against flat fading 

conditions. The amplitude based features of MASK were also more robust against flat fading as wel l  

as the frequency based features of 4FSK. It was also concluded that all modulation types w ere 

distinguishable from each other within the SNR and fading condition ranges, given the set of 

features evaluated. 

Next the sensitivity of the algorithm to varying signal lengths was investigated. Signals with SNR and 

fading effects were used for the experiment. The minimum and maximum values among all the 

fading conditions were plotted for both 10 dB and 30 dB SNR. From the results it could also be seen 

that the values of different modulation types overlapped for some features and thus unambiguous 

results cannot be obtained with signals of different lengths. The results of this experiment were also 
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used to determine whether the number of samples to use for hardware implementation was enough 

for accurate results. 

A decision tree was constructed next to perform the classification of signal modulation types. The 

feature values obtained from the previously discussed experiments were used to train and test the 

decision tree. The classification accuracy of the tree was determined by using test vectors from the 

varying SNR dataset, the varying fading at 30 dB SNR dataset and the varying fading at 10 dB SNR 

dataset. The tree was also tested for decreasing training datasets. For the varying SNR the 

classification accuracy was very high and 100% classification accuracy was achieved for most tests of  

SNR greater than 0 dB. None of the tests achieved 100% classification accuracy for an SNR of 0 dB. 

Classification accuracy greater than 93% was however achieved for all the tests and a decrease in 

accuracy of 3% is observed between the biggest and smallest training dataset utilised. For varying 

fading at 30 dB SNR classification accuracies higher than 91% were achieved for all tests up to a 

fading ratio of 0.3 and higher than 87% for a fading ratio of 0.4. The largest decre ase in accuracy 

between the biggest and smallest training dataset utilised, was smaller than 2% and occurred at a 

fading ratio of 0.4. For varying fading at 10 dB SNR classification accuracies higher than 79% were 

achieved for all tests under all the flat fading conditions. The largest decrease in classification 

accuracy between the biggest and smallest training dataset utilised, was smaller than 6% and 

occurred at a fading ratio of 0.06. It can be concluded that the constructed decision tree had good 

performance for various datasets containing feature values from signals experiencing different 

channel effects. 

After these experiments were performed for the software simulation of the algori thm, a f i rmware 

design was implemented to an FPGA. A front-end processor was provided by the CSIR and was not 

implemented for this study. The effects of the processing performed by the front-end processor was 

however analysed to determine whether the effects of this processing could be considered 

negligible. It was found that the effect of the Hilbert filter and the effect of quantisation noise were 

negligibly small in comparison to the SNR of the signals tested, and was therefore ignored. The 

provided front-end processor also supplies the instantaneous amplitude, phase and frequency 

samples. It was therefore only necessary to implement the calculation of the features based o n the 

instantaneous information on the hardware platform. The conversion of the I&Q signal  samples to 

polar form of the front-end processor was analysed and the instantaneous amplitude, phase and 

frequency samples were generated accordingly using the same signals generated for the software 

simulation experiments. 2048 samples were used for the calculation of the feature values in 

hardware. It was found that the most feature values were similar to the results obtained in software, 

however the differences of some feature values can be ascribed to the difference in the number of  

samples used for calculations.  

The feature values calculated in hardware were used to determine the classification accuracy of  the 

decision tree when using the hardware results. It was found that the decision tree trained on longer 

signal lengths in software did not translate to the same level of accuracy for the shorter signal 

lengths. A new decision tree constructed from feature values calculated from 2048 samples was 

trained instead. The classification performance of the new tree was, as expected, lower than the 

tree constructed using longer signals. Classification accuracy higher than 73% and 57% was achieved 

for all training datasets for 30 dB and 10 dB SNR respectively. For a full training dataset, classification 

accuracy higher than 74% and 65% was achieved for 30 dB and 10 dB SNR respectively. Classification 
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accuracy higher than 83% was achieved for all training datasets up to a fading ratio of 0.2 for 30 dB 

SNR. For 10 dB SNR, classification accuracy higher than 70% was achieved for al training datasets up 

to a fading ratio of 0.1. It can be seen that the classification accuracy decreased notably for fading 

ratios above 0.3.  

It can be concluded that although the decision tree is adequate for signals experiencing various 

channel effects, the tree showed significantly reduced classification performance for signals with 

different signal lengths to what the tree was trained on. and that another tree had to be 

constructed. It was also concluded that 4PSK puts a limitation on the minimum number of  samples 

required for accurate classification. An analysis should be performed to determine the optimal 

classification accuracy against the number of samples, which may vary from one application to 

another.  

The modulation class output of the decision tree was used to track changes between modulation 

types by logging the modulation type over time. The effect of modulation transition within a 

classification window was investigated and it was found that that most misclassifications occurred 

between different orders of modulation types from the same family as 2 modulation types become 

equally present in the window. Although misclassifications between modulations of different orders 

of the same family occurred, very few misclassifications of other modulation types occurred. The 

modulation type that was most present in this window was most often correctly classified. It can be 

concluded that modulation types can at least be correctly classified as from the same fami ly,  when 

two modulation types are equally present in a classification window for most occurrences. Further 

research is required to study the full effect of modulation transitions on follow on processes that 

utilise this information, as well as to determine if a modulation transition can be detected and 

flagged within a single window, instead of using the difference of modulation type between t wo 

subsequent windows. 

The similarity in the results of 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and also the relation between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 𝜇42
𝑎  

raise the concern that there may be too many and thus irrelevant amplitude based features. More 

features may be needed that are not based on the instantaneous amplitude and rather based on the 

instantaneous phase or frequency might be needed. 
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5 CONCLUSION 

5.1 Summary of Work 
Automatic modulation classification is a challenging task in a non-cooperative environment where 

channel state information and signal parameters are not always available. Non-cooperative 

transmissions in military environments may be hampering or threatening to a user’s own goals. In 

this environment signals can use never before seen modulation types or even modulation types that 

are specifically designed to avoid interception, detection and classification. Modulation is in effect 

used here as another layer of encryption. Modulation types thus have to be classified blindly, that is,  

without the use of a priori signal and channel state information. Adaptive modulation techniques 

complicate the task of classifying adversaries’ signals even more, because the signal modulation 

changes quickly with time. It is desirable to be able to track the changes in an adversary emitter’s 

modulation type. When the change from one modulation type to another modulation type in the 

signals from a transmitter can be tracked, the transmitter may be identified or their messages may 

be recovered, which is a critical aid in supporting battlefield decision making. 

This study investigated the development of methods to classify transmitter modulation types, to aid 

in tracking changes in these modulation types in non-cooperative environments where adversaries 

use adaptive modulation techniques.  

A complete capability required to track changes in transmitter modulation types includes the abi li ty 

to receive and digitise signals of interest, spectrum sensing functionality to detect signals of interest, 

signal parameter estimation, classification of signal modulation, and the ability to track changes in 

that modulation. This study however only focused on the latter two steps, namely on developing an 

algorithm capable of tracking changes in modulation types through classification  of signal 

modulation without the use of a priori signal information. Communication signals with modulation 

types Amplitude Shifts Keying (ASK) of order two and four, Phase Shift Keying (PSK) of order two and 

four, and Frequency Shift Keying (FSK) of order two and four were considered. The channel  effects 

that were considered were AWGN noise and flat fading in a static multipath Rayleigh fading channel.  

From literature it was found that there are two main approaches to classify and track modulation 

types in a non-cooperative environment. The first approach is Likelihood based classification, which 

formulates the classification as a composite hypothesis- testing problem. For this approach, each 

modulation type is assigned to the incoming signal under a hypothesis. The likelihood function is 

then used to find the correct modulation type of the signal. The second approach is feature based 

classification which entails 2 steps, feature extraction and decision making. Several features are 

extracted from the incoming signal and a decision is made based on the feature values. 

From the literature study in Chapter 2 it was found that likelihood based classifiers are more 

accurate than feature based classifiers at the expense of computational complexity. The 

computations are repeated for each modulation hypothesis and each sample. Perfect channel 

knowledge is furthermore needed. For some LB methods one or two channel parameters can be 

unknown. The Expectation maximisation–maximum likelihood classifier is suitable in a non-

cooperative environment, but is not cost effective in terms of computational complexity.  
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The main focus was to operate in a non-cooperative environment where many signal- and channel 

parameters may be unknown. A classifier that needs perfect channel knowl edge becomes 

inoperable here. Secondly, the classification algorithm should be feasible for hardware 

implementation and the system should operate as quickly as possible with good classification 

accuracy. A classifier that is costly in terms of time and computational resources is thus undesirable. 

Computational complexity may also impose limitations for hardware implementation.  Furthermore, 

in order to accurately track changes in modulation type of a signal in a non-cooperative 

environment, a classifier that is able to classify a wide variety of modulation types is needed. 

Because operation in non-cooperative environment and computational cost took precedence in this 

study, feature based classifiers were considered. Feature based classification methods inclu de the 

extraction of features based on the instantaneous amplitude, phase and frequency, features based 

on the wavelet transform and features based on higher order moments and cumulants of a signal. 

Features based on the instantaneous amplitude, phase and frequency were selected, because 

features can be extracted quickly without high computational complexity and is feasible for 

hardware implementation. Additionally, this method is able to operate in a non-cooperative 

environment and has the ability to classify a wide variety of modulation types. 

For classification, several machine learning techniques were also investigated. From the three types 

of learning categories, namely supervised learning, unsupervised learning and reinforcement learning, 

supervised learning was selected since the objective is to classify, and data with labels were available. 

The most used machine learning techniques for feature based classification include Decision trees, 

Artificial Neural Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbour (KNN) 

[91], [92]. 

Decision trees were chosen over ANN and SVM because they are fast to learn and predict. Their 

robustness against outliers and ability to select features in the training process are also great 

advantages over the other machine learning techniques. If necessary, decision trees can be used in 

ensemble through techniques such as random forest and random trees to improve performance by 

addressing the local optimum and high variance problems. 

Based on the information gathered through the literature study, a conceptual design was completed. 

To perform tracking of modulation type changes, a system requires three main processes. The f i rst 

step is to receive RF signals from the environment. The second step is to perform pre-processing on 

the received signals. After the necessary steps were taken to obtain the signal of interest and get i t 

in its correct form, the classification of the modulation type and tracking of changes can take place, 

which is the third and final step. This study's main focus was on this last step, within the context of  

the first two. An understanding of the previous steps was however required in order to design the 

third step correctly. A conceptual design encapsulating all three steps was performed. 

From literature, eight general features were identified. During this investigation, a feature with high 

computational complexity was exchanged with a similar yet less computationally expensive one. The 

design of the feature extraction, classification and tracking was first modelled in the software 

modelling tool Matlab, whereafter a part of the design was translated to hardware using Xilinx’s 

Vivado 2016.2 environment. Several experiments were performed to evaluate the performance of  

the design. It was found that symbol transitions of MPSK had effects on the calculation of the 
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instantaneous amplitude and frequency. These effects had to be compensated for by means of a 

threshold method, to ensure that the feature values calculated were not adversely affected.  

The feature values were analysed under varying SNR and flat fading channel conditions. For varying 

SNR the phase based features, 𝜎𝑎𝑝 and 𝜎𝑑𝑝, showed the most robust behaviour when calculated on 

signals consisting of modulation types of MFSK and 4PSK. 4ASK was also more robust against noise  

when only considering the amplitude based features. Similarly, 4FSK was more robust against noise  

when considering only the frequency based features. For varying SNR and fading conditions, a static 

flat fading channel with three multi paths at 30 dB and 10 dB SNR was considered. Features 𝜎𝑎𝑝 and 

𝜎𝑑𝑝 showed the most robust behaviour when calculated on signals consisting of modulation types of 

MFSK and 4PSK. Amplitude based features when calculated on MASK, and frequency based features 

when calculated on 4FSK was also more robust than the rest of the modulation types when 

calculated in the presence of flat fading. 

An important variable in this study was the signal length. Shorter signals consume less hardware 

resources and reduce calculation time. Additionally, since transmitters i n a non-cooperative 

environment can change their modulation type quickly, it is also desirable to classify modulation 

types using the fewest samples possible for quicker classification turnaround time. An analysis on 

the selected set of features over the entire range of SNR and fading conditions considered for this 

study showed that feature values of different modulation types overlapped. However, most feature 

values remained separable for signals with more than 1920 samples. 

A decision tree was constructed to perform the classification of signal modulation types. A dataset of 

simulated random signals modulated by the 6 chosen modulation types were generated both with 

bandlimited white noise only, and bandlimited white noise with flat fading. The dataset con tained 

signals with an SNR from 0 dB to 30 dB as well as flat fading ratios from 0 to 0.4. This dataset was 

used to train and test the decision tree. Results showed that the classification performance was 

insensitive to SNR, and achieved perfect prediction performance for SNR values greater than 5 dB. 

None of the tests achieved 100% classification accuracy for an SNR of 0 dB. Classification accuracy 

higher than 93% was however achieved for all the tests, and a decrease of 3% is observed between 

the utilisation of the biggest training dataset and the smallest training dataset. At 10 dB SNR under 

varying fading conditions classification accuracies higher than 91% were achieved for all tests up to a 

fading ratio of 0.3 and higher than 87% for a fading ratio of 0.4. The largest decrease in accuracy 

between the biggest and the smallest training dataset utilised was smaller than 2% and occurred at a 

fading ratio of 0.4. For varying fading at 10 dB SNR classification accuracies higher than 79% were 

achieved for all tests under all the flat fading conditions. The largest decrease in classification 

accuracy between the biggest and the smallest training dataset utilised was smaller than 6% and 

occurred at a fading ratio of 0.06. Thus the decision tree can be trained on a small amount of data, 

however this warrants further investigation. 

For the hardware implementation, the feature extraction step was implemented on the FPGA on the 

hardware platform, as subsequent steps are better suited to DSPs or CPUs , that do not form part of  

the hardware platform at this time. A front-end processor was provided which supplies the 

instantaneous amplitude, phase and frequency samples. The front-end processor was however not 

used for the lab based hardware tests, since this platform is designed for high, agile bandwidth 

signals and operates at a sample frequency of 4GHz. A great amount of memory is required to 
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generate signals for the front-end processor at the full bandwidth, whereafter a filter and 

decimation significantly reduces the data rate. This method for testing is prohibitive and a better 

simulation approach was thus required. The effect of the front end processing within the frequency 

band of interest was therefore analysed instead to determine whether it introduces significant 

effects that should be taken into consideration. No significant effects were found and I&Q samples 

where generated accordingly in Matlab. The feature extraction block was designed to match the 

interface specifications of the front-end processor with the aim of future integration. A sample 

length of 2048 was used for the calculation of the feature values in hardware. It was found that the 

most feature values were similar to the results obtained in software, however some differences 

were observed that is attributed to the difference in the sample lengths used.  

The feature values calculated in hardware were used to determine the classification accuracy of  the 

decision tree when using the hardware results. It was found that although the decision tree was 

adequate for signals experiencing various channel effects, the tree showed significantly reduced 

classification performance for signals with different signal lengths to what the tree was trained on. 

To overcome this limitation, a new tree had to be constructed. The classification performance of the 

new tree was, as expected, lower than the tree constructed using longer signals, performing 7.9% 

and 21.2% worse on average for the biggest dataset at an SNR of 30 dB and 10 dB respectively, 

which were 14.99% and 8.04% more than the initial tree. 

The modulation class output of the decision tree was used to track changes between modulation 

types by logging the modulation type over time. The effect of modulation transition within a 

classification window was investigated and it was found that that most misclassifications occurred 

between different orders of modulation types from the same family as 2 modulation types become 

equally present in the window. For modulation order of 2, 2FSK was the most affected and 

misclassified as 4FSK. For modulation order of 4, 4FSK was the least affected. 4ASK was the most 

affected, and misclassified as 2ASK. Although misclassifications between modulations of  di f ferent 

orders of the same family occurred, very few misclassifications of other modulation types occurred. 

The modulation type that was most present in this window was most often correctly classified.  

Considering the results obtained in this study, many valuable conclusions can be drawn. It was 

shown in literature that the classification accuracy by using features based on the instantaneous 

amplitude, phase and frequency for varying SNR conditions is high in the context of the assumptions 

[69], [103], [113], which was confirmed in this study. The classification accuracy on these features in 

varying fading conditions has received little investigation in literature up to this point. The results 

obtained in this study have shown that these features can be used in flat fading channels under 

varying SNR conditions, with only a slight reduction in performance of 2.74% and 6.85% on average 

for an SNR of 30 dB and 10 dB respectively. The calculation of these features in hardware was 

published once before [129]. In our study it was shown that these features are feasible for hardware 

implementation and that the results can be used for classification by means of a decision tree. When 

two different modulation types were present in a classification window, it was shown that the signal  

was classified as the same modulation type as the signal that is most present in the window  in most 

cases. Misclassifications between modulation types from the same family with different orders did 

however occur. It was shown that further investigation is required to determine the number of 

samples required for feature calculation to achiever high classification accuracy, and the 
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assumptions of known signal centre frequency and accurate noise filter bandwidth has to be 

challenged as these could have serious consequences for implementation. 

5.2 Outcome of Study 
The objective of this study was to classify and track changes of modulation types from a 

communications transmitter in a non-cooperative environment without channel state information. 

The secondary objective was to develop the method in such a way that the digital signal processing 

components thereof can be implemented on a hardware platform provided by the CSIR.  

During this study, feature based classification was used to successfully classify modulation types of  

signals from a single communications transmitter without the use of channel state information. This 

was achieved by using features based on the instantaneous amplitude, phase and frequency of a 

signal for feature extraction and a decision tree for classification. The method was tested under 

varying SNR conditions from 0 dB to 30 dB and performed well, achieving classification accuracy 

higher than 96 % for the worst SNR condition. The change from one modulation type to another was 

successfully performed by logging the modulation type, and any changes, over time for use by 

external processes. The secondary objective was successfully achieved by implementing the feature 

extraction process on a hardware demonstrator provided by the CSIR. The feature values obtained in 

hardware reflected the results obtained in software. The feature values obtained in hardware was 

also successfully used to classify the proposed modulation types. The study thus successfully 

addressed all of the research objectives. 

Additionally to the objectives of the study, many other goals were achieved. The classif ication was 

successfully performed under varying flat fading ratios from 0 to 0.4 in a static multipath Rayleigh 

fading channel at an SNR of 30 dB and 10 dB. Classification accuracy higher than 89% and 84% were 

achieved for the worst fading condition at 30 dB and 10 dB SNR respectively. In addition to the 

investigation under varying fading conditions, the effect of signal length and training dataset size 

were also investigated. Furthermore, a tree was reconstructed to improve the classification 

performance for feature values obtained from hardware. Lastly the effect of modulation transitions 

within a classification window was also investigated, which was beyond the scope of this study. 

Many valuable discoveries were also made during the investigation of the additional work. It was 

found that signal length has a significant effect on the classification performance. It was found that 

some of the feature values had correspondence in their results and there may be a large degree of  

duplicate information between the features. This discovery led to the exploring of a new feature 

which yielded promising results. The new feature gave insight and raised many questions on how 

new, less complex features can be utilised without reducing classification accuracy whi le  reducing 

computational load. 

5.3 Future work 
Some challenges were identified during this study. The similarity in the results of 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 

also the relation between 𝐴𝑚𝑒𝑎𝑛 and 𝜎𝑎 and 𝜇42
𝑎  raised the concern that there may be a large 

degree of duplicate information between the amplitude features, that could simply increase 

processing load and not yield significant classification accuracy gains. Additionally, more unique 

features which are not based on the instantaneous amplitude and rather based on the 

instantaneous phase or frequency might be needed. It was beyond the scope of this study to derive  
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and investigate the utilisation of new features. The utilisation of the standard deviation of the direct 

value of the phase, 𝜎𝑑𝑓, was however investigated, since the standard deviation of the direct value 

of both the phase and amplitude were already calculated and the information was thus readily 

available to use for calculation of the feature with minimal additional effort. This feature was not 

found in literature and from Figure 136 to Figure 145, it can be seen that this new feature shows 

promise, subject to further investigation. 

With this new feature, 2FSK and 4FSK remain separable from the other modulation types for al l  the 

proposed channel conditions. When comparing 𝜎𝑑𝑓 based on the direct value with its absolute value 

counterpart 𝜎𝑎𝑓 which is used in literature, it is seen that 𝜎𝑑𝑓 provides additional separability for 

2FSK where 𝜎𝑎𝑓 did not. 

 
Figure 136: Feature values of 𝝈𝒅𝒇 in an AWGN Channel in Matlab Simulation 

 

 

Figure 137: Feature values of 𝝈𝒅𝒇 in a Flat 

Fading Channel at 30 dB SNR in Matlab 

Simulation 

 

 
 

Figure 138: Feature values of 𝝈𝒅𝒇 in a Flat 

Fading Channel at 30 dB SNR for Hardware 

Implementation 
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Figure 139: Feature values of 𝝈𝒅𝒇 in a Flat 

Fading Channel at an SNR of 10 dB in Matlab 

Simulation 

 
Figure 140: Feature values of 𝝈𝒅𝒇 in a Flat 

Fading Channel at an SNR of 10 dB for 

Hardware 

 

The results of 𝜎𝑑𝑓 raise many questions. Since  𝜎𝑎 and 𝐴𝑚𝑒𝑎𝑛 are very similar, will 𝜎𝑑𝑝 and 𝜎𝑑𝑓  also 

be similar to the mean of the absolute value of the phase and frequency respectively? The 

calculation of the kurtosis occupies much more device resources, is it possible to replace the kurtosis 

with another feature without reducing the classification accuracy?  Can more modulation types be 

classified with new features? Can one simply or create other, less complex features that do not 

reduce classification accuracy while reducing computational load.  

Although a wide range of modulation types can be classified using features based on the 

instantaneous amplitude, phase and frequency, this study was limited to six digital modulation 

types. The decision tree was trained to classify these six modulation types exclusively. An obvious 

extension of this work is to include more modulation types, possibly guided by a study tha t shows 

the prevalence of modulation types in modern use. The combination of features to classi fy a wider 

range of modulation types such as a combination of higher order statistics to classify higher order 

modulation types as well, can be considered. An example of combining features to classi fy a wide 

range of modulation types can be found in [100]. 

In Chapter 1, unknown signals that might be specifically designed to avoid sensing, detection and 

classification were identified as one of the challenges in a non-cooperative environment. Although a 

wide variety of modulation types can be classified and more features can be added in order to 

enlarge the modulation pool, these unknown signals might still be able to avoid classification . 

Unsupervised learning is a method capable of finding patterns in data and grouping data with similar 

characteristics together. Such methods can be used in collaboration with the current algorithm to 

identify these signals. The results of the unsupervised learning algorithms can be used as feedback 

to the current algorithm and these signals can then potentially be classified or characterised in this 

manner.  

The sample frequency, 1200 kHz, of the signals from which features were calculated was much 

higher than required to prevent aliasing to occur. This sample frequency was however used in order 

to compare with the results in [110]. It is expected that different sample frequencies will have an 

effect on the feature values and that there will be a trade-off between the sample frequency and the 

degree of separability that could be achieved with the features. An investigation is thus required to 

determine the effect of the sample frequency on the feature values. 



103 
 

For this study features were only investigated in a static flat fading channel. Further research is 

required to determine whether the use of a threshold to find the weak intervals in the instantaneous 

amplitude and the fluctuations in the instantaneous frequency due to the symbol transitions of 

MPSK will be adequate in channels where signals might experience other fading effects than flat 

fading. Future work also includes determining how well the system works when tested against real  

world data. 

The decision tree constructed with the feature values extracted in software was adequate for 

classifying signals experiencing various channel effects, however classification performance suffered 

when the signal length was varied. Most differences in feature values between software and 

hardware results were due to the utilisation of different signal lengths. Further research is thus 

required to determine the classification performance of decision trees when utilising different signal  

lengths and to determine the optimal number of samples needed to construct a tree that still 

exhibits good classification performance while minimising signal length. Further research is also 

required to determine how fast a transmitter could change its modulation type in order to 

determine if enough signal samples can be obtained for accurate classification as the minimum 

signal length is an obvious limitation in this scenario. 

The modulation class output of the decision tree was used to track changes between modulation 

types by logging the modulation type over time and the effect of modulation transition within a 

window was investigated. Further research is required to study the full effect of modulation 

transitions on follow on processes that utilise this information, as well as to determine if a 

modulation transition can be detected and flagged within a single window, instead of using the 

difference of modulation type between two subsequent windows. 
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APPENDIX A 

A.1.1 Matlab results with standard deviations in AWGN Channel 
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A.1.2 Matlab results with standard deviations in AWGN Channel 
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A.2. Matlab results (left) vs. Hardware results (right) 
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A.3. Results using 2048 samples in Matlab 
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A.4. The effect of noise filter bandwidth 
Bandlimited noise with assumption (left) and bandlimited noise without assumption (right) 

  

 
Figure 141: 𝑨𝒎𝒆𝒂𝒏  calculated for bandlimited 

noise with assumption 

 
Figure 142: 𝝈𝒂𝒂  calculated for bandlimited noise 

with assumption 

 

 
Figure 143: 𝝈𝒂  calculated for bandlimited noise 

with assumption 

 
Figure 144: 𝝁𝟒𝟐

𝒂  calculated for bandlimited noise 

with assumption 

 

 
Figure 145: 𝝈𝒂𝒑  calculated for bandlimited noise 

with assumption 

 
Figure 146: 𝝈𝒅𝒑  calculated for bandlimited noise 

with assumption 
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Figure 147: 𝝈𝒂𝒇 calculated for bandlimited noise 

with assumption 

 
Figure 148: 𝝁𝟒𝟐

𝒇
 calculated for bandlimited noise 

with assumption 
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APPENDIX B 

B.1. Confusion Matrices of Software Results 
400 rea lisations (SNR): 

0 dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 98 2 0 0 0 0 

4ASK 2 98 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 0 100 0 0 
2FSK 0 0 0 0 90 10 

4FSK 0 0 0 0 9 91 

Classification error = 3.83 

5 dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 
4PSK 0 0 0 100 0 0 

2FSK 0 0 0 0 98 2 

4FSK 0 0 0 0 0 100 

Classification error = 0.33% 

10 dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 100 0 0 0 0 0 
4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 
4PSK 0 0 0 100 0 0 

2FSK 0 0 0 0 100  

4FSK 0 0 0 0 0 100 

Classification error = 0% 

15 dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 
4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 0 100 0 0 
2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0% 

 

 

 

 

 

 

 

 

 

 

20dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 0 100 0 0 
2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0 

25dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 
4PSK 0 0 0 100 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0% 

30 dB 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 100 0 0 0 0 0 
4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 
4PSK 0 0 0 100 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0% 
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400 rea lisations (fading at 30 dB SNR): 

30 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 0 100 0 0 
2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0 

30 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 
2PSK 0 0 99 1 0 0 

4PSK 0 1 0 99 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0.33 

30 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 1 99 0 0 0 0 
2PSK 0 0 99 1 0 0 

4PSK 0 0 1 99 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0.5 

30 dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 
4PSK 0 0 0 98 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 1 99 

Classification error = 0.5 

30dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 2 98 0 0 0 0 

2PSK 0 0 99 1 0 0 
4PSK 0 0 1 99 0 0 

2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 1 99 

Classification error = 0.83 

 

 

 

 

 

 

30 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 99 0 1 0 0 0 

4ASK 2 98 0 0 0 0 

2PSK 0 1 98 1 0 0 

4PSK 0 0 1 99 0 0 
2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 1 99 

Classification error = 1.17 

30 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 6 91 2 1 0 0 
2PSK 0 0 98 2 0 0 

4PSK 0 0 1 99 0 0 

2FSK 0 0 0 0 98 2 

4FSK 0 0 0 0 2 98 

Classification error = 2.67 

30 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 86 11 2 1 0 0 

4ASK 7 93 0 0 0 0 
2PSK 3 4 86 7 0 0 

4PSK 1 0 1 98 0 0 

2FSK 0 0 0 0 96 4 

4FSK 0 0 0 0 7 93 

Classification error = 8.00 

30 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 80 17 2 1 0 0 

4ASK 7 91 2 0 0 0 

2PSK 1 1 85 13 0 0 
4PSK 0 0 2 98 0 0 

2FSK 0 0 0 0 92 7 

4FSK 0 0 0 0 10 90 

Classification error = 10.67 
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400 rea lisations (fading at 10 dB SNR): 

10 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 100 0 0 0 0 0 

4ASK 0 100 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 0 100 0 0 
2FSK 0 0 0 0 100 0 

4FSK 0 0 0 0 0 100 

Classification error = 0% 

10 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 91 8 1 0 0 0 

4ASK 4 95 1 0 0 0 
2PSK 0 0 97 3 0 0 

4PSK 0 0 0 100 0 0 

2FSK 0 0 0 0 91 9 

4FSK 0 0 0 0 2 98 

Classification error = 4.67% 

10 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 96 4 0 0 0 0 

4ASK 5 93 2 0 0 0 
2PSK 0 0 99 1 0 0 

4PSK 0 0 1 99 0 0 

2FSK 0 0 0 0 97 3 

4FSK 0 0 0 0 1 99 

Classification error = 2.83% 

10dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 90 9 0 1 0 0 

4ASK 3 97 0 0 0 0 

2PSK 0 0 94 5 1 0 
4PSK 0 0 1 100 0 0 

2FSK 0 0 0 0 92 8 

4FSK 0 0 0 0 6 94 

Classification error = 5.5% 

10dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 97 3 0 0 0 0 

4ASK 1 99 0 0 0 0 

2PSK 0 0 99 1 0 0 
4PSK 0 0 1 99 0 0 

2FSK 0 0 0 0 92 8 

4FSK 0 0 0 0 3 97 

Classification error = 2.83% 

 

 

 

 

 

 

10 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 90 8 1 1 0 0 

4ASK 7 89 3 1 0 0 

2PSK 0 0 97 3 0 0 

4PSK 0 0 1 99 0 0 
2FSK 0 0 0 0 90 10 

4FSK 0 0 0 0 15 85 

Classification error = 8.33% 

10 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 94 5 0 0 0 0 

4ASK 14 85 1 0 0 0 
2PSK 1 0 94 5 0 0 

4PSK 1 0 0 99 0 0 

2FSK 0 0 0 0 94 6 

4FSK 0 0 0 0 17 83 

Classification error = 8.5% 

10 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 80 19 1 0 0 0 

4ASK 18 79 3 0 0 0 
2PSK 3 4 83 10 0 0 

4PSK 2 1 3 94 0 0 

2FSK 0 0 0 0 95 5 

4FSK 0 0 0 0 14 86 

Classification error = 13.83% 

10 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 62 36 2 0 0 0 

4ASK 14 83 3 0 0 0 

2PSK 4 4 82 10 0 0 
4PSK 0 0 3 97 0 0 

2FSK 0 0 1 1 96 2 

4FSK 0 0 0 0 11 89 

Classification error = 15.17% 
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B.2 Confusion Matrices of Hardware Results 
400 rea lisations (fading at 30 dB SNR): 

30 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 89 0 0 0 0 0 

4ASK 40 60 0 0 0 0 
2PSK 0 0 100 0 0 0 
4PSK 0 9 68 23 0 0 

2FSK 0 0 0 0 100 0 
4FSK 0 0 0 0 43 57 

Classification error = 28.50 

30 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 88 11 0 0 0 0 

4ASK 30 69 0 0 0 0 
2PSK 0 3 96 1 0 0 

4PSK 0 17 40 43 0 0 

2FSK 0 0 1 0 97 2 
4FSK 0 0 0 0 51 49 

Classification error = 26.33 

30 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 90 8 0 0 2 0 

4ASK 29 69 0 0 2 0 
2PSK 0 5 95 1 0 0 

4PSK 0 15 41 44 0 0 

2FSK 0 0 2 1 95 2 
4FSK 0 0 0 0 40 60 

Classification error = 24.5 

30 dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 95 5 0 0 0 0 

4ASK 40 60 0 0 0 0 
2PSK 0 1 99 0 0 0 

4PSK 0 19 36 45 0 0 
2FSK 0 0 1 0 97 2 
4FSK 0 0 0 0 37 63 

Classification error = 23.5 

30dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 95 0 0 0 0 0 

4ASK 28 72 0 0 0 0 
2PSK 0 1 99 0 0 0 

4PSK 0 17 29 54 0 0 
2FSK 0 0 1 0 99 0 
4FSK 0 0 0 0 38 62 

Classification error = 19.83 

 

 

 

 

 

30 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 91 7 1 0 1 0 

4ASK 22 77 0 0 1 0 
2PSK 4 5 89 2 0 0 
4PSK 0 8 42 50 0 0 

2FSK 0 0 0 0 97 3 
4FSK 0 0 1 0 23 76 

Classification error = 20.00 

30 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 87 13 0 0 0 0 

4ASK 14 86 2 1 0 0 
2PSK 1 8 88 3 0 0 

4PSK 0 14 51 35 0 0 

2FSK 0 0 0 1 95 4 
4FSK 0 0 0 1 37 62 

Classification error = 24.50 

30 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 66 32 1 1 0 0 

4ASK 16 84 0 0 0 0 
2PSK 8 14 75 3 0 0 

4PSK 4 20 49 27 0 0 

2FSK 0 0 3 1 94 2 
4FSK 0 0 2 2 33 63 

Classification error = 31.83 

30 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 69 30 1 0 0 0 

4ASK 10 89 1 0 0 0 
2PSK 11 7 71 11 0 0 

4PSK 6 18 49 27 0 0 
2FSK 0 0 4 1 91 4 
4FSK 0 0 2 1 34 63 

Classification error = 31.67 
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400 rea lisations (fading at 10 dB SNR): 

10 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 91 9 0 0 0 0 

4ASK 50 50 0 0 0 0 

2PSK 0 8 92 0 0 0 

4PSK 0 22 59 19 0 0 
2FSK 0 0 0 0 88 12 

4FSK 0 0 0 1 12 87 

Classification error = 28.83% 

10 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 83 10 6 1 0 0 

4ASK 49 95 1 1 0 0 
2PSK 0 13 83 3 1 0 

4PSK 1 14 56 26 2 1 

2FSK 0 0 0 0 73 27 

4FSK 0 0 0 1 23 76 

Classification error = 35.67% 

10 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 81 14 4 1 0 0 

4ASK 39 55 6 0 0 0 
2PSK 0 12 86 2 0 0 

4PSK 3 23 54 20 0 0 

2FSK 0 0 1 0 70 29 

4FSK 0 0 0 0 21 79 

Classification error = 34.83% 

10dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 84 10 6 0 0 0 

4ASK 50 46 4 0 0 0 

2PSK 0 10 84 1 3 2 
4PSK 1 13 59 22 3 2 

2FSK 0 0 0 1 72 27 

4FSK 0 0 0 0 21 79 

Classification error = 35.5% 

10dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 87 12 1 0 0 0 

4ASK 46 50 3 1 0 0 

2PSK 0 11 86 2 0 1 
4PSK 2 18 58 20 2 0 

2FSK 0 0 3 1 72 24 

4FSK 0 0 2 0 28 70 

Classification error = 35.83% 

 

10 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 81 15 4 0 0 0 

4ASK 38 54 8 0 0 0 

2PSK 2 8 87 3 0 0 

4PSK 5 23 47 25 0 0 
2FSK 0 0 1 1 68 30 

4FSK 0 0 1 0 28 71 

Classification error = 35.67% 

10 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 74 21 4 1 0 0 

4ASK 47 46 7 0 0 0 
2PSK 3 11 79 5 1 1 

4PSK 4 16 52 28 0 0 

2FSK 0 0 0 0 71 29 

4FSK 0 0 0 0 29 71 

Classification error = 38.5% 

10 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 71 24 5 0 0 0 

4ASK 46 51 3 0 0 0 
2PSK 10 10 75 5 0 0 

4PSK 5 19 57 19 0 0 

2FSK 0 1 4 2 78 15 

4FSK 0 1 3 1 32 63 

Classification error = 40.50% 

10 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 68 30 2 0 0 0 

4ASK 35 59 5 1 0 0 

2PSK 17 11 69 3 0 0 
4PSK 12 17 51 20 0 0 

2FSK 0 0 2 1 77 20 

4FSK 0 0 1 0 29 70 

Classification error = 39.50% 
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B.3 Confusion Matrices of Hardware Results (2048 samples) 
400 rea lisations (fading at 30 dB SNR): 

30 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 87 13 0 0 0 0 

4ASK 1 98 1 0 0 0 
2PSK 0 0 100 0 0 0 
4PSK 0 0 8 92 0 0 

2FSK 0 0 0 0 100 0 
4FSK 0 0 0 0 1 99 

Classification error = 4.00% 

30 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 88 10 2 0 0 0 

4ASK 5 92 2 0 0 1 
2PSK 0 0 98 2 0 0 

4PSK 0 0 4 96 0 0 

2FSK 0 0 0 0 98 2 
4FSK 0 0 0 0 6 94 

Classification error = 5.67% 

30 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 87 11 2 0 0 0 

4ASK 16 81 1 1 0 1 
2PSK 0 0 99 1 0 0 

4PSK 0 0 0 100 0 0 

2FSK 0 0 0 1 96 3 
4FSK 0 0 0 0 4 96 

Classification error = 6.83% 

30 dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 96 4 0 0 0 0 

4ASK 17 83 0 0 0 0 
2PSK 0 0 96 4 0 0 

4PSK 0 0 5 95 0 0 
2FSK 0 0 0 0 99 1 
4FSK 0 0 0 0 11 89 

Classification error = 7.00% 

30dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 93 3 1 0 0 0 

4ASK 14 86 0 0 0 0 
2PSK 0 0 98 2 0 0 

4PSK 0 0 5 95 0 0 
2FSK 0 0 0 0 99 1 
4FSK 0 0 0 0 11 89 

Classification error = 6.17% 

 

 

 

 

 

30 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 92 3 0 1 1 0 

4ASK 16 82 2 0 0 0 
2PSK 1 0 94 5 0 0 
4PSK 0 0 3 97 0 0 

2FSK 0 0 0 0 98 2 
4FSK 0 0 0 1 9 90 

Classification error = 7.83% 

30 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 86 12 2 0 0 0 

4ASK 15 85 0 0 0 0 
2PSK 2 1 78 19 0 0 

4PSK 0 0 8 92 0 0 

2FSK 0 0 0 1 92 7 
4FSK 0 0 0 0 14 86 

Classification error = 13.50% 

30 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 72 23 4 1 0 0 

4ASK 15 85 0 0 0 0 
2PSK 2 0 70 28 0 0 

4PSK 6 0 4 90 0 0 

2FSK 0 0 1 1 89 9 
4FSK 0 0 1 2 19 78 

Classification error = 19.33% 

30 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 64 31 4 1 0 0 

4ASK 18 79 3 0 0 0 
2PSK 3 1 57 39 0 0 

4PSK 5 0 9 86 0 0 
2FSK 0 0 3 1 88 8 
4FSK 0 0 3 1 23 73 

Classification error = 25.50% 
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400 rea lisations (fading at 10 dB SNR): 

10 dB 
𝑅𝐷𝑆=0.00 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 91 9 0 0 0 0 

4ASK 54 46 0 0 0 0 

2PSK 0 0 100 0 0 0 

4PSK 0 0 11 89 0 0 
2FSK 0 0 0 0 87 13 

4FSK 0 0 0 0 6 94 

Classification error = 15.50% 

10 dB 
𝑅𝐷𝑆=0.001 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 82 12 2 4 0 0 

4ASK 54 37 6 3 0 0 
2PSK 4 0 80 14 2 0 

4PSK 2 0 8 87 2 1 

2FSK 0 0 0 0 67 33 

4FSK 0 0 0 1 20 79 

Classification error = 28.00% 

10 dB 
𝑅𝐷𝑆=0.004 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 85 12 1 2 0 0 

4ASK 45 46 5 4 0 0 
2PSK 2 0 79 19 0 0 

4PSK 2 1 13 84 0 0 

2FSK 0 0 0 0 66 34 

4FSK 0 0 0 0 25 75 

Classification error = 27.50% 

10dB 
𝑅𝐷𝑆=0.03 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 78 10 6 6 0 0 

4ASK 50 44 5 1 0 0 

2PSK 1 0 78 19 1 1 
4PSK 1 1 10 86 2 0 

2FSK 0 0 0 2 66 32 

4FSK 0 0 0 0 27 73 

Classification error = 29.17% 

10dB 
𝑅𝐷𝑆=0.06 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 86 9 2 3 0 0 

4ASK 47 45 5 3 0 0 

2PSK 2 0 79 18 1 0 
4PSK 1 0 12 86 1 0 

2FSK 0 0 0 3 67 30 

4FSK 0 0 2 1 21 76 

Classification error = 26.83% 

 

 

 

 

 

 

10 dB 
𝑅𝐷𝑆=0.1 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 83 11 3 3 0 0 

4ASK 39 48 8 5 0 0 

2PSK 2 0 78 19 1 0 

4PSK 7 0 8 85 0 0 
2FSK 0 0 0 1 67 32 

4FSK 0 0 3 0 27 70 

Classification error = 28.17% 

10 dB 
𝑅𝐷𝑆=0.2 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 76 15 3 6 0 0 

4ASK 42 50 5 3 0 0 
2PSK 1 1 66 30 2 0 

4PSK 2 0 10 88 0 0 

2FSK 0 0 0 2 60 38 

4FSK 0 0 0 1 23 76 

Classification error = 30.67% 

10 dB 
𝑅𝐷𝑆=0.3 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 71 21 3 5 0 0 

4ASK 44 50 2 4 0 0 
2PSK 4 0 72 24 0 0 

4PSK 1 1 16 82 0 0 

2FSK 0 0 0 7 67 26 

4FSK 0 0 4 2 26 68 

Classification error = 31.67% 

10 dB 
𝑅𝐷𝑆=0.4 

2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

2ASK 67 27 2 4 0 0 

4ASK 39 51 4 6 0 0 

2PSK 16 0 53 31 0 0 
4PSK 9 1 11 78 1 0 

2FSK 0 0 4 2 75 19 

4FSK 0 0 2 2 29 67 

Classification error = 34.83% 

 


