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ABSTRACT

Automatic modulation classification (AMC) is achallenging taskinanon-cooperative environment
where channel state information and signal parameters are not always available. Non -cooperative
transmissions in military environments may be hampering or threatening to a user’s own goals. In
this environmentsignals can use neverbeforeseen modulation types oreven modulation types that
are specifically designed to avoid interception, detection and classification. Modulation is in effect
used here as anotherlayerof encryption. Modulation types thus have to be classified blindly, thatis,
without the use of a priori signal and channel state information. Adaptive modulation techniques
complicate the task of classifying adversaries’ signals even more. It is desirable to be able to track
the changesin an adversary emitter’s modulation type, because the transmitter may be identified or
theirmessages may be recovered, which isacritical aid in supporting battlefield decision making.

The objective of this study is to classify and track changes of modulation types from a
communications transmitterin a non-cooperative environment without channel state information.
The secondary objective is to develop the method in such a way that the digital signal processing
componentsthereof can be implemented on a hardware platform provided by the CSIR.

Communication signals with modulation types Amplitude Shifts Keying (ASK) of ordertwo and four,
Phase Shift Keying (PSK) of order two and four, and Frequency Shift Keying (FSK) of order two and
fourwere considered. The channel effects that were considered were AWGN noiseand flatfadingin
a static multipath Rayleigh fading channel.

A literature study was first performed to identify candidate algorithms for AMC that can be
implemented on a hardware platform and the best classification algorithm that met the research
objectives was selected. The performance of the selected algorithm was evaluated in both software
and hardware under varying channel conditions whereafter the results were analysed and
compared. The tracking of changes from one modulation type to anotherwas performedbylogging
the modulation type overtime.

Feature based classification was selected to classify and track modulation types of asignal. Features
based on the instantaneous amplitude, phase and frequency of a signal were used for feature
extractionand a decision tree was used for classification. The method was tested undervaryingSNR
conditionsfrom 0 dB to 30 dB inan AWGN channel and flatfading conditionsin a multipath Rayleigh
fading channel at an SNR of 30 dB and 10 dB. Classification accuracy higher than 99 % was achieved
on average for the SNR conditions. Classification performance of 97% and 93% was achieved on
average forthe fading conditions at 30 dB and 10 dB SNRrespectively in software. The classification
performance for hardware was 89% and 71% on average forthe fading conditions atan SNR of 30 dB
and 10 dB respectively. It was found that signal length has a significant effect on the classification
performance.

Keywords- Automatic Modulation Classification, Feature based classification, non-cooperative
environment, Rayleigh flat fading, decision tree
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1 INTRODUCTION

1.1 Background

The utilisation of the radio frequency (RF) spectrum includes communications, radio navigation,
television- and radio broadcasting, and remote sensing of objects, areas or phenomena [1]. The
utilisation of the RF spectrum has witnessed agreatincrease inthe lastfew decadesand continues
to do so. Increases in numbers of wireless devices, technologies and applications as well as the
constantdrive towards higher datarates hasled to congestion of the RF spectrum.

Spectral congestion has led to the development of new technologies in military and civilian
applications. Traditionally systems used to depend on fixed modulation and spectrum allocation.
These systems are however being replaced by more advanced systems that are spectrum aware and
able to adapt to the environment or situation. The systems change their parameters over time,
which resultin dynamicbehaviour. The systems have capabilities such as frequency-and modulation
agility which are used to compensate for the scarcity of available frequency bands. Techniques such
as Automaticmodulation classification (AMC) are required to automatically identify the modulation
type of signalsin orderfor receivers toselect the correct demodulation method.

Cooperative transmissions are a communication system’s own transmissions that are under the
control of the transmitter receiver pairand are used to achieve the transmitter and receiver’s goals
in the RF spectrum. Non-cooperative transmissions are transmissions that are not under a
transmitterand receiver pair’s control. Inthe non-cooperative scenario,channel state information
(CSl) and signal parameters may be unknown to the receiverand may be hamperingorthreatening
to a transmitterandreceiver pair’'s own goals. From the perspective of this study, non-cooperative
transmissions typically represent either illegal civilian transmissions or transmissions from
adversariesin military scenarios. Thus the non-cooperative nature of some signals necessitates the
requirement for AMCwith no channel state information available, also known as blind AMC.

1.1.1 AutomaticModulation Classification

Modulation classification was initially done manually by signal engineers who were trained to
identify several signal formats [2]. One of the most common methods still used today for modulation
classification, as described in [3] and [4], is the use of a computer-based library that contains
knowledge of known signal parameters gathered previously through electronic intelligence
operations. Human signal engineers classify these recorded signals offline with the assistance of
computer methods and add themto the computerbased library.

Systems that classify signals based upon afixed library containing a pre-determined set of emitter
characteristics have become unable to handle transmissions from dynamicemitters. The classifiers
are only able to classify afixed variety of signals and their adaptation capability to new and unknown
signalsislimited. New and unknown signals need to be recorded and analysed in alaboratory, taking
multiple days orhours. The systems are then retrained with knowledge of the previously unknown
signals and redeployed in the field. Such processes are too slow and place military forces at a
disadvantage as new unknown signals may appearinthe field by the time systems are retrained [5].
The manual process of modulation classification was later automated with automatic modulation



classifiers which contributes to reducing the time taken to classify systems, and especially helps in
the case where emitters are dynamic[2], [6].

AMC is used to automatically ascertain the modulation type of a signal by applying one or more
signal processingtechniques and classification algorithms to the signals sensed in the environment
[7]. 1t is oftenreferred to as “an intermediate operation between signal detection and demodulation
or system reaction” [8]. In the military domain, the AMC technique is critical for the purpose of
electronicwarfare.

1.1.2 AMCinElectronic Warfare

Electronic Warfare (EW) is any action that involves the use of electromagneticordirected energy by
military forces to attack an adversary, to control the utilisation of the EM spectrum, and to protect
systems against attacks. EW exploits the electromagnetic (EM) spectrum by sensing, intercepting,
manipulating, hardening and analysing signals to determine enemies’ applications of the spectrum
and enforces suitable measures with the aim of control of the spectrum when necessary [9].

EW includesthree top level operational functions: electronicattack (EA), electronic protection (EP)
and electronicsupport (ES) [9]. EA uses EM energy to attack electronicfacilities and equipment with
the purpose of degradation, neutralisation or destruction of enemy combat capability. It includes
actions such as jamming, which is the primary measure for the prevention of communication
between adversaries, and deception [10]. EP includes actions to protect the host platform from
either friendly or hostile EW employment with the purpose of degradation, neutralisation or
destruction of friendly combat capability. ES searchesforand intercepts intentional or unintentional
EM emissions to record, analyse, locate, and identify them in order to allow effective decision
making for military operations. Foracomplete EW capability these three functions of EW are closely
interconnected [9].

The need for automatic modulation classification (AMC), according to [2], first arose in military
scenarios where modulation classification is required in Electronic Warfare (EW) systems for
identification of adversary emitters, preparation of jamming signals and recovery of intercepted
signals. The use of a modulation classifierin EW systemsisillustratedin Figure 1.

AMC is importantforall three top level functions of EW. The knowledge of the modulationtype can
be usedinES to determinethe appropriate demodulation method forintercepted signals. Messages
transmitted from adversaries can then be recovered with the help of signal decrypting- and
translating processes. AMC can also assist ES in classification, identification and the locating of
adversary units. AMC can assist in determining the appropriate jamming technique in EA by
identifying the modulation type and altering the jammer to modulation changes. The two most
common jamming techniques are the emission of noise and spoofing. Spoofingincludes the emission
of false signals with the same modulation type and frequency as an adversary signal. As already
mentioned, the goal of EP is to protect the military force’s own systems from an adversary’s EA
measures. The military force’s own systems can be prevented from being jammed by monitoring the
modulation type of the jammingsignal and changing the modulation type of its own signalsto make
it more robust against the adversarial signal [10].
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Figure 1: Military Signal Intelligence System [10]

AMC also has applicationsincivilian scenarios such as identifyinginterference sources, monitoring
spectrum activities, detecting unlicensed users and managing the spectrum [11], [12]. AMC is a
critical component of dynamic spectrum access/management (DSA) in the context of cognitive
radios. AMC is used to sense and detect the absence or presence of primary users (PU) who have
licenses forallocated frequency bandsinthe spectrum [12], [13]. Cognitive radios (CR),also known
as secondary users (SU), then through the use of CR techniques intelligently access vacantchannels
while avoiding channels that are occupied by primary users (PU) [12]. For a SU to successfully
operate inthe DSA context, it needs to track modulation changes overtime to ensure it continues to
allow unaffected access for PUs.

1.1.3 AMCfor Modulation Change Tracking

With the evergrowingincrease in utilisation of the spectrum, there are still challenges withregards
to AMC that need to be addressed including tracking of transmitter modulation changes, i.e. logging
the modulation type overtime, through blind modulation classification.

The tracking of modulation changes has been investigated in applications such as use of link
adaption (LA), also known as adaptive coding and modulation (ACM) [10], [14]. Link adaption is
where a single transmitter can employ multiple modulation types to control the data rate and
bandwidth usage, in an effort to guarantee the integrity of the message. A modulation type is
selected from a pool of candidate modulations according to channel conditions and system
specifications. The receiver has to know the modulationtype inordertodemodulate the rece ived
signal successfully. Information on the modulation typecan beincluded in the transmitted signal to
notify the receiverabout modulation changes; however the spectrum efficiencyis reduced by this
method due to the additional modulation information overhead required. To overcome this
problem, the modulation type of the received signal can be automaticallyidentified through blind
AMC [10].

Another application of modulation change tracking occurs in AMC for adaptive power control in
cognitive communications whichisaninterference avoidance techniqueincivilian cognitive radio
applications [15], [16]. A PU’s allocated frequency band is accessed by a SU based on an Adaptive
Coding and Modulation (ACM) protocol. Once the modulation type of the PUisidentified, a power
control scheme is used by the SU. The SU attempts to access the PU’s band and, if successful,
increases its transmitting power until the PU changes its modulation type on the assumption that
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the modulation change is due to the interference caused by the SU. As soon as the change in
modulation type of the PU is detected, the SU reduces its transmitting power in an attempt to
control the induced interference and allow both the PUand SU to utilise the channel [15].

Modulation change trackingis also used in DSA applications [17], [18]. The transmitterchanges the
modulation type according to the channel conditions and level of interference when occupying
different available bands in the spectrum, known as white spaces, with different operating
frequencies. The receiver has to constantly monitorthe modulation type used by the transmitterfor
correct demodulation of the received signals [17].

The applications discussed above occurin cooperative environments. AMCis howeverachallenging
task in non-cooperative environments. In both military and civilian spectrum use cases, the spectrum
can containsignals from cooperative and non-cooperative communication systems. In a cooperative
environment, a pool of candidate modulation types and a priori knowledge can be utilised to
perform modulation classification, greatly simplifying the task. For unknown signals found in a
military environment a pool of candidate modulation types is not always available or accurate
enough to assist the classifier. There may even be never before seen modulation types as well as
modulationtypesthat are designed to avoid interception, detection and classification. Modulation is
in effect used here as another layer of encryption to prevent adversaries from recovering their
messages [19].

An example where adaptive modulation techniques are used to obscure transmissions is found in
[20]. The paper discusses case studies of attacks targeting tactical military software defined radios
(SDRs) in which adversariesidentify vulnerabilities in the radio sets orin the communication channel
between radio sets. The authors recommend the use of adaptive modulation techniques for
transmission security in future development of new systems and architectures.

The only study found on the topic of the tracking of changes in modulation types in a non-
cooperative environment was [21]. This study proposed a method for the detection of cognitive
radios that use the spectrumillegally. These CRs avoid being charged for the use of the RF spectrum
by hiding themselves between PUs. Changesin theirsignal parameters, suchas modulation types,
are tracked and the CRs are then detected accordingly.

The challenge in our study is therefore to investigate the tracking of modulation changes in
communications signalsinanon-cooperative environment, specifically in military scenarios where
frequently changing adaptive modulation types are used by adversaries to contribute in obscuring
theirtransmissions.

The algorithms that are already developed for the tracking of changes in modulation types have
been developedforsignalsin cooperative environments where assistance and a priori information
aboutsignal parameters are available. These algorithms will not necessarily be suitablefor utilisation
in non-cooperative environments and the classification accuracy may be inferior, which is a vital
factor in military applications when suitable measures against adversaries need to be taken.



1.2 Problem Statement

In a cooperative environment, a pool of candidate modulation types and a priori knowledge can be
utilised to perform automatic modulation classification. For unknown signals found in a military
environment a pool of candidate modulation types is not always available or accurate enough to
assistthe classifier. There may even be never beforeseen modulation typesaswell as modulation
typesthat are designed to avoid interception, detection and classification. Thisis a problem because
the modulation type of asignal effectively provides anotherlayer of encryptionin non-cooperative
environments where a priori signal and channel state information are unknown. Signal parameters
first have to be estimated and channel state information has to be determined for accurate
classification. Adaptive modulation techniques complicate the task of classifying adversaries’ signals
even more, because the signal modulation type changes quickly with time. Itis desirableto be able
to track the changesin adversary emitters’ modulation type. Whe n the change from one modulation
type to another modulation type of signals from a transmitter can be tracked, the transmitter may
be identified or their messages may be recovered which is a critical aid in supporting battlefield
decision making.

The classification of the modulation type has to occur as quickly as possiblein orderto keep up with
the change from one modulation type to another performed by the transmitter. The speed and
processing power of a system required to process data for classification is thus important. The
classifieralso needsto be capable of classifying a wide range of modulation typesinordertobeable
to keep tracking the varying modulation types.

1.3 Research Objective

The objective of this study is to classify and track changes of modulation types from a
communications transmitterin a non-cooperative environment without channel state information.
The secondary objective is to develop the method in such a way that the digital signal processing
components thereof can be implemented on a hardware platform provided by the Council for
Scientificand Industrial Research (CSIR).

A complete capability required to track changesin transmitter modulation typesincludes the ability
to receive and digitise signals of interest, spectrum sensing functionality to detect signals of interest,
signal parameter estimation, classification of signal modulation type, and the tracking of changes in
that modulation type. This study focuses on the latter two steps, namely on developing a method
capable of tracking changes in modulation types through classification of signal modulation type
without the use of channel state information. This study focuses on the classification of
communication signals, more specifically signals with digital modulation types of Amplitude Shift
Keying (ASK) of ordertwo and four, Phase Shift Keying (PSK) of ordertwo and four, and Frequency
Shift Keying (FSK) of ordertwo and four. Modern communication systems make more use of digital
signals instead of analogue signals. The main reason for this is that digital modulations are better
suited to digital dataand are more robust againstinterference. The focus of thisstudyisona larger
number digital modulation types with lower orders rather than fewer modulation types that
included higher orders. This approach is chosen to create a baseline on which future work could
expandtoinclude higherorder modulation types.



A digital radio frequency memory (DRFM), which is used for EW operations, is the target platform for
hardware implementation [22]. The following elements of this system were provided for creation of
the hardware demonstratorand are not developed within the scope of this study:

e RF hardware

e Digital hardware

e Digital signal front-end processing firmware

e Existingauxiliary firmware interfaces and modules

e Testsoftware

1.4 Research Methodology

In order to accomplish the research objective discussed above, the following methodology was
followed. The first step is to identify candidate algorithms for AMC that can be implemented on a
hardware platform. A literature study is performed to identify the state of the art in this field. The
literature is critically evaluated and the best classification algorithm that meets the research
objectives is selected. The selected algorithm is then evaluated in detail through simulation,
whereafterasubsetof the algorithmis implemented on a hardware platform. The performance of
the selected algorithm is evaluated in both software and hardware in varying channel conditions,
namely white noise and static flat Rayleigh fading, whereafter the results are analysed and
compared. The outcome of the study is compared with the research objective, and critically
evaluatedinthat context.

The signal models used for the simulated signals are selected such that they create meaningful
scenarios to evaluate the performance of the algorithm and provide credible test dataforreal world
applications. The signal modelsinclude noise models and staticflat Rayleigh fading channel mo dels
which set limitations foraccurate classification.

AMC and tracking is simulated and tested in software and the algorithm for hardware
implementation is developed and implemented on a concept demonstrator. The concept
demonstrator is also tested with simulated data satisfying the same criteria mentioned for the
software simulation. The results of the hardware implementation are compared to the software
simulation results to show the validity of the hardware implementation.

1.5 Structure of Dissertation

Thisthesis documents the research outlined in this chapteras discussedin the background, problem
statement, research objective and research methodology. The structure of the thesis closely follows
the approach outlined in the research methodology.

Chapter 2 consists of a literature study of the aspects that need to be considered to perform AMC. A
signal model describing the signal parameters and channel effectsis derived. A study on modulation
classification is performed to obtain a suitable technique for AMC with regards to the research
objectives of this study. The identification of different machine learning techniques as well as
feature selection for machine learning techniquesis performed.

Chapter 3 presents the conceptual design which describes the processfollowed forthe development
of the AMC algorithm for both software simulation and hardware implementation with the aid of
functional flow diagrams.



Chapter4 documents the simulation of communication signals for both the software and hardware
implementation of the method, using the signal models derived in Chapter 2. The effect of signal
processing and representation thereof are also derived. The simulation of the AMC algorithm in
software is described as well as the hardware implementation. Datasets are generated for both
approaches and results are obtained.

Chapter 5 concludes the work by discussing the performance of the algorithm with regards to the
channel effects. The findings of the work are discussed and future work is identified.



2 LITERATURE STUDY

In orderto selectasuitable AMCalgorithm for blind classification operablein real world scenarios,
the algorithm must be applied to realistic signals. A model, representing a signal propagating
through a channel with real world effects, will thus be derived first. The selected AMC algorithm has
to be able to operate underthe channel conditions selected. After the signal model is derived, there
are several other metrics to take into consideration when comparingand selecting a suitable AMC
algorithm. The system requirements determine the priority of the metric. The AMC algorithm
meeting the requirements can then be selected. Techniques optimising the AMC algorithm, also
meeting the requirements, will then be discussed.

2.1 Signal Model
The description of the signal model includes the transmitted signal, the effects of the channel onthe
signal propagating through the channel andfinally the received signal.

2.1.1 Digital Transmitted Signal

Modern communication systems make more use of digital signalsinstead of analogue signals. The
main reason for thisis that digital modulations match digital data betterand are more robust against
interference [23]. The transmitted signal for digitally modulated signals can be presented by:

s(t) = A(t) cos(anCt + qb(t)) (1)

= Re{S‘(t)ejz”fCt} (2)

where A(t) is the amplitude, f. is the carrier frequency, ¢ (t) the phase of the signal and §(t) =
A(t)e/?( represents the complex baseband signal [24].

2.1.2 Channel Parameters and Effects

2.1.2.1 Additive White Gaussian Noise

One of the most widely used noise models for communication channels is the Additive White
Gaussian Noise (AWGN) model [24]. Wideband Gaussian noise is caused by thermal vibrations in
conductors as well as radiation from several sources. Overthe bandwidth of interest, the Gaussian
noise is assumed to be flat and white, which means that the noise samples are uncorrelated [24].
The probability density function of the Gaussian distributionis given by:

1 _(x=w?
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where  and g2 are the mean and variance of the distribution respectively [23].

(3)

In the AWGN model, noise with Gaussian distribution and zero-mean is added to the signal. The
AWGN modelisthe elementary limitation on the accuracy of modulation classificationandis usedin
most literature on modulation classification [23].



2.1.2.2 Fading

There are various phenomena in a wireless communication channel which alter a signal as it
propagatesthrough the channel. One of the primary effectsis fading [25]. Fadingis defined as “the
variation in signal amplitude at the receiver caused by the characteristics of the signal path and
changesinit” [25]. The effects can be categorised as large-scale effects and small-scale effects [24].
Large-scale effects cause slow fading and shadow fading due to the properties of the general terrain.
When large objects such as buildings and hills are present, signals are not prevented from being
propagated, but diffraction allows signals to propagate around the objects ata reduced powerlevel.
These effects change relatively slowly with time and they are taken into consideration with the
prediction of coverage and service availability [24].

The small-scale effects change much fasterthan the large-scale effects relative to the properties of a
transmitted signal. Small-scale effects are taken into consideration with the design of transmitters
and receivers as well as the selection of modulation types to be used [24]. Small-scale effects cause
fast Rayleigh fading due to the local environment and movement in the channel within that
environment [24]. Reflections against trees and buildings may cause a transmitted signal to arrive at
the receiverover multiple different paths and at different time instants causing multiple signals to
arrive at the receivereach with its own amplitude, phase and time delay. Thisis known as multipath
propagation. Because all of these signal components add up at the receiver, they mayinterfere with
each other destructively or constructively. If there is motion in the channel, an additional effect
caused by how the multiple paths vary overtime, is present. This second effect causes distortion due
to the Doppler shift [24]. The two types of effects can be described by the delay spread and the
Dopplerspread of the channel [26].

The multipath delay is described by the delay spread. The delay spread is the second central
moment of the powerdelay profile (PDP) [10]. The PDP gives an estimation of the average power in
the multipath and can be seenin Figure 2. Firstthe average delay s calculated by:

X P,(0)1
NG) (4)

Where t and Py, (7) are the delay and power of the individual paths.

T=

The average delay spreadis defined as:
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The RMS delay spreadis given by:
op =12 — 12 (6)



— +— RMS Delay Spread
90 ——

+——— Mean Excess Delay

95 ——

. +— Maximum Excess Delay

-100 —+

rN\\ Noise Threshold
A A /

Received Signal Level (dBm)

<105 ——

| | | 1 | | | | | 1
| I I I I ! I I I I

0 50 100 150 200 250 300 350 400 450

Excess Delay (ns)

Figure 2: Power Delay Profile [27]

The Delay spread causes two types of fading: frequency-flat fading and frequency selective fading.
Frequency flatfading occurs when the symbol time is greater thanthe delay spread orequivalently
when the signal bandwidth is smallerthan the coherence bandwidth. The coherence bandwidth can
be defined as bandwidth overwhich the frequency correlation is strong [26]. This isthe bandwidth
over which all the frequency components are passed by the channel with nearly equal gain and
linear phase. The signal experiences constant attenuation and phase shift over the transmission
period. In contrast, frequency selective fading occurs when the symbol time is less than the delay
spread or equivalently when the signal bandwidth is greater than the coherence bandwidth. This
effectresultsinthe introduction of inter symbol interference by the channel [24].

The movement of the receiver, transmitter or any other objects within in a channel, from which
signals may reflect, introduces changesin the signal frequency. Thisis known as the Doppler Effect
[25]. The Doppler Effect causes two types of fading: time-flat fading and time-selective fading also
known as slow fading and fast fading respectively. Slow fading is a large scale effect caused by
reflections of signals from large objects that are far from the transmitter or receiver [24]. The
movementinthe channelisslow relative to the objects. The changesinthe frequency are therefore
small and the symbol time is smaller than the coherence time of the channel. Thecoherence time
can be defined as the period over which the correlation of the channelimpulseresponseis strong
[26]. The channelisthus almost constant over at least one symbol duration. Fast fading occurs when
there are large changes in the signal frequency due to the movement in the channel [25]. The
movementis fastrelative tolocal objectsin the environment [24]. The symbol time is largerthan the
coherence time of the channel. The impulse response changes rapidly within the symbolduration of
the signal which leads to distortion due to frequency dispersion [26].

Channels canthus be classified into one or more of the following types: Time-flat, time-selective,
frequency-flatand frequency selective. Channels are classified based onthe signal to be transmitted
and carried through that channel. Narrowband signals in mobile channels often experience flat-
fading, i.e. flat-frequency and time-selective fading [24]. For most radio channels with transmission
frequencies less than 1 GHz the coherence bandwidths are normally tens of kilohertz. High
frequency (HF) radio channels are however an exception, where narrow band channels can be
frequency selective due to propagation modes. Wideband channels are often both frequency
selectiveand time selective, when eitherthe transmitterorreceiverisin motion [24].
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Narrowband staticchannels are considered in this study. Inthese channels, multipathinterference
(Rayleigh fading) and shadow fading occurthe most [25]. The focus istherefore onthe effect of the
delay spread due to multipath propagationin astatic Rayleigh fading channel.

2.1.3 Received Signal with Channel Effects
A frequency-flat Rayleigh fading channel is modelled as alinear filter with animpulse response given
by:

L-1
h(t1) = Z &6(t— 1) 7)
i=0
where L is the number of multipaths, & = a;e/f is the it" path complex gain and 7; the it" path
delay. The complex gainisassumedto be constantin a staticchannel [24].

In a multipath Rayleigh fading model, the phases of the various path componentsare independent
and uniformly distributed between [0, 27t] and the real and imaginary componentsof the complex
gain of each path are zero mean Gaussian random variables that are independent and identically
distributed (i.i.d) [24].

The received passband signal is the sum of the various multipath components after the signal has

propagated through the fadingchannel andis given by:

L-1
() = ZRe{aief9i§(t—Tl-)efZ”fCt}+ n(t) (8)
i=0

where n(t) isthe additive white Gaussian noise [24].

2.2 Automatic Modulation Classification

Automatic Modulation Classification (AMC) is used to automatically ascertain the modulation type of
a signal, by applying one or more signal processing techniques and classificationalgorithmstosignals
sensed from the environment [28]. AMC is used for a wide variety of RF spectrum applications
including multiple signal classification [29], [30], [31]; classification in multipath fading channels [32],
[33], [34]; dynamic spectrum access [17], [18]; blind modulation classification [35], [36], [37], [38],
[39]; classification of orthogonal frequency-division multiplexing (OFDM) signals [40], [14], [41] and
linkadaption [10], [14], [42], [43], [44], [45], [46], [47].

There are two general approaches for the AMC of signals: likelihood-based (LB) classification and
feature-based (FB) classification [48]. LB classification formulatesthe classification as a composite
hypothesis-testing problem which assigns each candidate modulation type to the incoming signal
underthe hypothesis H;. The likelihood function is then usedto find the correct modulation type of
the signal. FB classification entails 2 steps, feature extraction and decision making. For feature
extraction, a carefully selectedset of hand crafted features are extracted from the signal of interest. A
decision (classification of modulation type) is made based on the values of the features.
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2.2.1 Likelihood Based Classifiers

Likelihood based classifiers minimises the probability of incorrect classification [49]. When channel
state information is known, LB classification is an optimal approach for AMC [49]. LB classifiers are
able to classify digital modulationtypes including M-ASK, M-PSK, M-FSK, M-PAM, M-QAM [49], [50]
and [51]. From surveys on AMC in [49], [51] and [50] four general likelihood based classifiers have
beenidentified. They include Maximum likelihood (ML) [51], [52], [53], average likelihood ratio test
(ALRT) [49], [51], [54], [55], [56], General likelihood ratio test (GLRT) [49], [51], [57], [58], [59] and
Hybrid likelihoodratio test (HLRT) [49], [50], [59], [60], [61].

For a maximum likelihood classifier, the likelihood for each modulation hypothesis is tested. The
likelihoods of the different hypotheses are compared and the maximum likelihood among all the
candidate likelihoods is selected as the classified modulation type. With perfect channelknowledge,
the ML method has very high classification accuracy because the computations are repeated foreach
modulation hypothesis. Furthermore, all the channel parameters must be known [51]. This methodis
alsonotrobustagainst phase and frequency offsets [51] and itis more likely to classify a signal as a
certain modulation type with denser I-Q constellations [42].

The next method, ALRT, treats unknown channel parameters as randomvariables and the likelihood
function is calculated by taking the average over these variables. Each unknown parameter is
replaced with an integral which includes all possible values of the unknown parameter and its
corresponding probabilities [50]. The integration operations make this method more computationally
complex and with many unknown parameters, this method becomes impractical [49].

GLRT is a combination of maximum likelihood estimation and classification [51]. An unknown
parameteris estimated underthe assumption that the hypothesis H; is true. The maximum likelihood
estimates over each unknown parameterare then usedinthe likelihood ratio test [50]. GLRT is less
complexthan ALRT by avoiding the integration calculations. The noise power also does not have to be
known in order to compute the likelihood function of GLRT [49]. It is however a biased classifier
towards higher order modulation types [51]. The likelihood for lower-and higherorder modulation
types are equal when lower order modulation types, e.g. 4-QAM and 16-QAM, are classified [51],
[59].

HLRT is a combination of ALRT and GLRT classifiers. The likelihoodfunction is obtained by taking the
average over the datasymbols of asignal. The resulting likelihood functionisthen maximised with
respecttothe unknown parameter and the bias classification problemisinsodoing removed [49],
[51]. Additionally, HLRT is less computationally complexthan ALRT, and achieves better classification
performance compared to ALRT and GLRT. It is however more computationally complex than GLRT
due to the exponential functions [49]. With several unknown parameters, this method becomes very
time consuming when finding the maximum likelihood estimates of the parameters [49], [50]. Other
less complexmethods for parameter estimation can be used instead whichisthenwhatisdescribed
as a quasi-HLRT classifierin literature [49], [50], [62].

Expectation maximisation(EM) is used in conjunction with the MLclassifierin [63], [53], [64] in the
case where multiple unknown channel parameters need to be estimated. EMis an iterative process
with two steps: an expectation step and a maximisation step. After initial estimated values are
assigned to the unknownparameters, the expectation step evaluates the likelihood of the estimation.
The maximisation step aims to maximise the likelihood function of the currentiteration. This process
isrepeated untilconvergence is reached ora predefined number of iterations are executed, for each
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modulation hypothesis of the ML classifier [63]. When compared to other classifiers (including an
ML-classifier, a distribution-test based classifier, a moments FB classifier and a cumulants FB
classifier), the EM-MLclassifier showed to have the highestaccuracy and provedto be more robust
against AWGN and channel conditions [65]. With this method compensation of phase and frequency
offsets are possible in the estimation stage of the channel parameters [65]. However, the
computational complexity of the EM-ML classifier was the highest among all the classifiers in the
complexity comparison due to the iterative estimation process [65].

2.2.2 Feature Based Classifiers

The computational complexity of likelihood classifiers gives rise to suboptimal classifiers with smaller
computational cost such as feature based classifiers [49]. If feature based classifiers are properly
designed, their performance can be near-optimal [50]. FB classifiers are able to classify digital
modulation types including M-ASK, M-PSK, M-FSK, M-PAM, M-QAM [49], [50], [66] and some FB
classifiers are able to also classify analogue modulation types including SSB, DSB, AM, FM and VSB
[66], [67], [68]. Three main feature based classification methods include the extraction of features
based on the instantaneous amplitude, phase and frequency [50], [67], [69], [68], [70], features
based on the wavelet transform [50], [71], [72] [73], [74] and features based on higher order
statistics of the signal [17], [33], [75], [76], [77], [78], [79].

The first method separates a pool of modulation types into subsets according to the properties
containedinthe instantaneous amplitude, phase and frequency of the different modulation types.
The features based on the instantaneous amplitude, phase and frequency are used sequentially to
distinguish between subsets until each modulation type is discriminated. A decision tree is often
used forthis FB method [66]. FB classification based on the instantaneous information is the most
intuitive way to determine the modulation type of a signal [50] and has a simple implementation
[17]. This method can also classify awide variety of analogue and digital modulation types [66], [67],
[68]. FB classification based on the instantaneous information however relies on feature value
thresholds to be set in advance, which makes it more sensitive to noise and other channel effects
[17]. From literatureitisalso evident that this method is not utilised for classification of modulation
types with orders higher than four. Per illustration, [69] shows a case where by choosing a second
set of thresholds, modulation types of order eight can also be distinguished. When the number of
samples for calculation was increased, the results showed that good classification accuracy can be
attained at an SNRof 10 dB.

Wavelet transform based features are used to localise the transients in the instantaneous amplitude,
phase and frequency of the received signal. Afterthe wavelet transformis applied tothe signal, the
transient characteristics are extracted. The differences in transient characteristics of signals are used
to distinguish between the different modulation types. This method is more robust against noise
than instantaneous based features, but it has higher computational complexity thaninstantaneous
based features [17]. This method has howeverbeenimplemented on hardware in [80]. A drawback
of features based on the wavelet transform can only classify between FSK, PSK and QAM signals.
Otherfeature based methods such as higher-order statistics, are neededtodiscriminate between
QAM and ASK signals [66]. There are instancesin literature where classification of other modulation
typesoccur where single carriersignals are distinguished from OFDMsignals [81];and where QPSK
signals are distinguished from Gaussian Minimum Shift Keying (GMSK) signals [74]. Only two
modulation types can be discerned from each otherinthese instances.
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Higher order statisticfeaturesincludethe calculation of moments and cumulants of signals. These
features characterise the shape of the distribution of the I& Q samples of asignal [82]. This method
focuses on the classification of high order digital modulation types [66] and has high resistance to
AWGN [17]. It is also more robust against phase and frequency offsets [82]. This method is normally
used for FB classification of signalsin a multipath fading channel [83], [84], [85]. Itishowever more
computationally complex than features based on the instantaneous amplitude, phase and
frequency.

2.2.3 ApproachSelection

The following characteristics are proposed as good criteriawhenevaluating different methods for
AMC: versatility, classification accuracy with regards to different noise levels, robustness to channel
conditions and computational efficiency [65]. These characteristics are used as guidelines for our
evaluation and comparison of AMC algorithms to be used for this study. The main focusof this work is
to operate inanon-cooperative environment where many signal- and channel parameters may be
unknown. A design based on a classifier that needs perfect channel knowledge becomes logically
unsound in a non-cooperative environment where perfect channel knowledge is unattainable.
Secondly, the classification algorithm should be suited for hardware implementationand the system
isintended to operateas fast as possible with good classification accuracy. A classifier thatis costly in
terms of time and computation is thus undesirable since computational complexity may impose
limitations for hardwareimplementation. Furthermore, in ordertotrack changesin modulationtype
of a signal in a non-cooperative environment, a classifier that is able to classify a wide variety of
modulationtypesis needed.

Fromthe literature study above itis evident that likelihood based classifiers are more accurate than
feature based classifiers at the expense of computational complexity. The computations are repeated
for each modulation hypothesis and each sample. The process is again repeated for a number of
iterations whenthe EM-MLclassifieris used. Furthermore, perfect channel knowledgeis needed in
the case of a ML classifier. Only one or two channel parameters can be unknown in the case of the
likelihood ratio test classifiers. The EM-ML classifieris suitable for estimation of multiple unknown
channel parameters in anon-cooperative environment;itis howevernot costeffective in terms of
computational complexity.

Because computational cost and operation in non-cooperative environment take precedencefor this
system, feature based classifiers are rather considered. Features based on the instantaneous
amplitude, phase and frequency can be performed relatively quickly without the burden of high
computational complexity, making it better suited for hardware implementation. This method is
capable of operating in a non-cooperative environment and also has the ability to classify a wide
variety of modulation types, including analogue modulations. The features based on higher order
statistics are less computationally complex than the LB classifiers. This method can classify a wide
range of higher orderdigital modulation typesandis more robust against phase and frequency offsets
thanfeatures based onthe instantaneous information. This method is however significantly more
computationallycomplex than the features based on the instantaneous information.
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2.3 Machine Learning and Feature Selection

Machine learning can be used as a decision making process for modulation classification. Machine
learning algorithms learn from training data in order to make predictions. These algorithms can
become very complex when the number of features they use for decision makingis high due to the
fact that each feature utilised by the algorithm adds another dimension to the feature space.
Feature selection methods are used to select the most useful features for the machine algorithm to
optimise classification performance. Computation time can be reduced by the reduction of the
feature set and the classification accuracy can be improved. Both feature sele ction- and machine
learning techniques will be discussed below.

2.3.1 Machine Learning

The objective of amachine learningalgorithmis to identify an outcome orpredictanoutcome that
iseithernumericorcategorical. Atraining datasetis used to traina modelinorderto fitthe data. If
a model fits data, it generalises well and does not overfit. The model is then used to predict an
outcome based on a setof attributes, known as features, fromanew input.

Generalisation is how well a model performs with unseen data, and a test dataset can be used to
evaluate its generalisation performance [86]. A model may overfit or underfit a training dataset.
Poor generalization performance stems from a machine learning model either overfitting or
underfitting the underlying structure in the data [87]. Overfitting occurs when the machine learning
algorithm model learns the training data too well and performs poorly for independent test data
[87]. With underfitting the opposite occurs. The model is not complex enough and cannot model the
training data accurately enough. The complexity of the model is described by its bias-variance
decomposition. The bias measures the difference between the average prediction overall datasets
and the true mean [88]. The variance measures how much the predictions vary around the true
mean for individual datasets and shows how sensitive the modelisto a specificdataset [88]. There s
always a trade-off between the variance and bias of a model. More complex or flexible models
normally have high variance and low bias. These models tend to overfit if the model becomes too
complex [89]. More rigid models have low variance and high bias [88]. These models tend to
underfit, because theylack the freedom to model the structure of the underlying data [87].

There are three types of learning: Supervised learning, unsupervised learning and reinforcement
learning [89]. With supervised learning, the training set consists of input and output sample pairs.
Each set of inputs can be mapped to an output label. The system uses these input-output pairs to
train a model. The goal is to perform either classification or regression. Classification is the
assignmentof aninputvectorto a label or category. The label forms part of a set of finite number of
discrete labels [90]. Regressionis performed to predict afuture value of a continuous variable [90].
For unsupervised learning, the outputlabelis unknown. The system tries to find patternsin the i nput
data and makes use of techniques such as clustering to group input samples or density estimation to
ascertainthe distribution of data [89], [90]. With reinforcement learning the system learns only from
the input data without known output labels, but with reinforcements. When a good decision is
made, the system is rewarded and similarly when a bad decision is made, a penalty is given
according to a reward function [89]. The system tries to find actions that maximise the reward
function [90].
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Since classification is the objective, supervised learning algorithms are considered. The most
common machine learning techniques for FB classification include Decision trees, Artificial Neural
Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbours (KNN) [91], [92].
Examples of the utilisation of these machinelearning techniques for FB classification in literature are
summarisedin [91].

Decision treestake avectorof feature values asinput and return a single value, known as a decision,
as output [89]. The tree makes the decision based on rulesinferred fromthe feature values. The tree
consists of nodes and branches. Each node is a test and each branch connected to the node is the
outcome of the test. A branch can either have anothersplitora leaf node. Abranch hasa leaf node
when there is no other test to be performed and a class label can be assigned. The leaf node
therefore represents orequatestoaclasslabel. The paths from the root to the leaf nodes represent
classification rules. The splits are chosen such that each splitresultsin purer branches [93]. A split is
pure when it contains branches with only leaf nodes. The best features, selected by a feature
selection algorithm, are thus used first in order to find the shortest paths to class labels and
therefore results in the shallowest tree possible [89]. The tree can also be pruned to prevent
overfittingand improve the classification accuracy [92]. Figure 3 shows an illustration of a decision
tree, where the grey boxis the root, blue diamondsindicate anode, and the circlesrepresent a leaf
node where aclassificationis made.

Figure 3: lllustration of a Decision Tree Model

Decisiontrees are known fortheirsimplicity and is seen as one of the most successful and powerful
machine learning techniques because of their classification performance obtained given the
simplicity of the trees [89], [94]. Decision trees have the advantage thatitis fast to train, and quick
to classify datasamples when compared to other methods [94]. Decision trees are also accurate for
awide range of classes [94]. Decision trees can be upgraded to classify more classlabels by simply
adding more branches [91]. Furthermore, no preparation of dataisrequired beforeitis utilised by
the decisiontree [94] and it can operate with a combination of numericand categorical features as
well as missing values [95]. They are also robust against outliers [95]. The decision making process of
a decision tree is also easier for humans to comprehend [89]. Feature selection forms part of the
training process for decision trees. This characteristic makes them resistant to the utilisation of
irrelevant features [95]. Branches of decision trees are however based on hard splits where
thresholds have to be selected [96]. A decision is made by one node only at a time. The node
consists of the selected threshold, which may be a local optimal decision, but may not be a global
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optimal decision [96]. Decision trees also have high variance and thus tend to overfit. A small change
in data can result in a completely different tree structure with different splits [97]. The latter two
problems can be addressed by using the decisiontreesinan ensemble [94], [97].

Artificial neural networks (ANN) are inspired by the behaviour of the human brain. Multiple highly
complex, non-linear computations are done in parallel. These complex computations can however
be broken down into very simplistic components. These components are known as neurons. The
neurons are constructed from the same computational function, however each hasits own unique
weights and biases and by combining the neurons, the algorithms can become a powerful
computational algorithm [93]. ANNs have three types of layers: aninputlayer, hidden layers and an
output layer. A network can have multiple hidden layers where each layer consists of nodes. The
nodes are connected to nodes in other layers through weighted links, which propagate the
activation fromthe currentnode to the next node. The weight of each link determines the sign and
strength of each link [89]. The sum of the weighted inputs is computed at each node and an
activation functionis used to derive an output forthe node [89]. The activation function can either
be a hard threshold, known as a perceptron, or alogistic function, known as a logistic perceptron
[89]. The final value at an output node represents the class label. Back propagation is used for
training of neural networks. The classification erroris calculated foran outputand getspropagated
back through the neural network. The weights of the links are then modified in order to minimise
the error [92]. Figure 4 shows an illustration of athree layer neural network.

Figure 4: lllustration of a three layer Neural Network Model

ANNSs are known for their high classification accuracy and the ability to generalise well [92]. The
flexibility of the nonlinear nodes in a neural network enables the network to learn and model
relationships of complex data [91]. Since these algorithms aim to find the best values for the link
weights, the learning method of these values can also be configured [93]. Furthermore, these
models can be very compact which leads to faster computation than algorithms with similar
generalisation performance such as SVM [88]. More nodes and layers canbe addedtoincrease the
accuracy performance of the algorithms as well as to classify a larger number of classes [93]. The
increase inthe numberof nodes and layers howeverleads to highercomputational costs. Another
drawback of ANN is that outputs may yield a local optimum which may not be the global optimal
solution [91].

The problem of local optimums of both decision treesand ANN techniques are overcome by support
vector machines [91]. The function that determines the parameter values in the model is convex
which meansithas a single global optimum [89], [98]. Given labelled training data, SVMs aimto find
the maximum distance between classes by findinga hyperplanein afeature space with the largest
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margin between the different classes [93]. This is accomplished by finding the hyperplane that
maximises the distance between the hyperplane and the nearest data points on both sides of the
plane [99]. The hyperplane canthen be usedto classify new datasamples. Supportvectorsare used
to determine the hyperplane. The support vectors are training samples closest to the hyperplane
and therefore also the most difficultto distinguish. When the largest margin between these support
vectors are found, the hyperplane can maximise the distance between classes [93]. The margin is
calculated by the perpendiculardistance from the dataset’s closest point [98]. Fordata that cannot
be separated with a linear function the inputs are mapped to a higher-dimensional feature space
where a linear separator can be found by means of a kernel function [89], [91]. An illustration of a
linear SVMmodelisshownin Figure 5.
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Figure 5: lllustration of a Support Vector Machine Model

Advantages of SVMs include their capability of processing high-dimensional data with few
parameters needed [92] and their accuracy due to the convex objective function [88]. After these
models are trained, their calculation speed is also much less than other techniques such as ANN.
Only one dot product has to be calculated for every new input [89], [99]. Furthermore, SVMs only
allow binary classification. If more than two classes are present, the algorithm constructs multiple
SVMs inorderto classify between one labeland the rest of the labels [91].

The last machine learning techniqueto consideris KNN. This technique does notrequire a training
phase like the previous machine learning techniques. The training datais storedforthe prediction
phase [92]. The class label of an output is determined by a number of K nearest neighbouring
samplestothe newinputsample. The majority vote amongst the nearest neighbouring samplesis
assigned tothe new inputsample [89]. A distance function such as the Euclidian distance, just one
choice among many others, is used to determine the distance between an input sample and each
neighbour [93]. The number K is chosen as an odd number to prevent ties [89]. Figure 6 shows an
illustration of aKNN model.
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Figure 6: lllustration of a K-Nearest Neighbour Model

This algorithm has high flexibility and is adaptable to multidimensional spaces [87]. Itis also robust
against outliers [95]. The decision boundaries of KNNs however depend on the input points and
theirpositions. With few input samples, the model may become unstable [87]. Although a training
phaseis not needed, the computation time for classification is high since all computationsare done
inthe classification stage. The entire training setalso needs to be stored and all features are used to
compute the distances [89], thus the larger the dataset the more calculations need to be done for
each classification.

It can be seen that classification accuracy, computational complexity, ability to generalise and
versatility to classify are metrics that were consideredin literature when differenttechniques were
evaluated. Consideringthe advantages and disadvantages discussed in the previous paragraphs, the
two comparative studies on machine learning techniques for FB classification, [91] and [92], are used
to choose a machine learning technique, for this work.

In [92] a comparative study on Decision Trees, KNN, ANN and SVMhas been performed. The authors
evaluated the performance of these machine learning techniques for blind FB-AMC under varying
SNR by consideringthe accuracy and complexityof these machine learning techniques. Inthis study
different MIMO configurations and SNR values have been used for the evaluation of the
classification accuracy. SVMand ANN showed to have very competitive performance. The accuracy
of SVM was however the highest. The overall performance of the four classifiers, under all
conditions and configurations, showed to be very close. The computational complexity of decision
trees have been shown to be the lowest and SVMs and KNN to be the highest. ANN and SV M are
also slower in training than decision trees and KNN. ANN however had the best performance -
complexity trade-off [92].

A survey on ANNs, SVMs and decision trees has been performedin [91]. It has also beenshown that
SVM has the highest classification accuracy and is able to generalise better than the other
techniquesatlowerSNR. Itis also mentioned that the design and implementation of decision trees
are not complex. If needed, more decision points can be added to the tree to classify more
modulation types, without the need of retraining the classifier. Thisis not possible with the other
machine learning techniques. Decision trees are also the most used technique for various FB
classification methodsin literature investigated in this work [91].

Although the selecting of thresholds limits decision trees, its ability to classify a wide range of
modulation types and its simplicity makes it an attractive machine learning technique. SVMs and
ANNs are more accurate than decision trees, but their higher computational complexityand slower
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predictiontime than decision trees are drawbacks. KNN’s need to store all data pointsas well as the
computation time is also undesirable. As mentioned previously, decision trees are fast to learn as
well as making predictions. Its robustness against outliers and ability to select features in the training
processare also great advantages overthe other machine learning techniques. If necessary, decision
trees can be usedin ensemble toimprove performance by addressingthe local optimum and high
variance problems. For instantaneous based features, it is evident from [91] and literature (see
[100], [101], [102], [103] and [104] for examples) that decision trees are a well-used technique for
this class of problem. Animproved algorithm with the utilisation of a decision tree shows significant
classification accuracy in [100]. The algorithm was tested against varying SNR as well phase shift. Itis
thus shown that the performance of decision trees can be improved.

2.3.2 Feature Selection

Feature selection aims to reduce a feature set by identifying the most useful features in order to
make classifiers more accurate and efficient. Features that provide relevantinformation are selected
while irrelevant and redundant features get eliminated without reducing the accuracy of the
classifier. The features are selected based upon aselection criterion which measures the relevance
of each feature [105]. Feature selection should not be confused with techniques such as Principle
Component Analysis (PCA) where new features are created by combining existing features to reduce
the dimensions of the feature space [105]. There are three main methods for feature selection:
filter methods, wrapper methods and embedded methods. Filter methods use ranking techniques as
criterion. Wrapper methods use search algorithms to find a subset and use the performance of a
classifier as criterion. The subset of features that gives the highest classification performance is
chosen. Forembedded methods, feature selectionisincorporated into the training process [105].

As mentionedinthe previous section, decision trees select features to spliton as part of the training
process, whichisthusan embedded method. Itistherefore not necessary to compare between the
three feature selection methods. The feature selection methods usedin decisiontreesaswell asthe
measuresforsplittingnodes willhowever be studied.

A decision tree selects the most usefulfeatures to splitanode. These features are selected based on
the node impurity. Afeature that will resultinthe purest branches will be selectedfirst. There are
three measures fornode impurity: the misclassification error, the Gini Index and the cross-entropy
of deviance [97].

Foragivennode minaregion, R,,,, with N,,, observations, the portion of observationsforclass k in
node m, is presented by P, The three measures of node impurity, Q,,,(T), are then given by:

Misclassification error:

Qm(T) =1 — Py (9)
Gini Index:
K
(1) =) Prse (1= ) (10
Cross-entropy of deviance: =
K
On(T) == Prni10grmi) (1)
k=1
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Figure 7: Node Impurity measures [97]

Figure 7 shows the impurity measures as afunction of the portion of observations. Theyare all 0 for
Pmi = 0 and P = 1 and have a maximum at P, = 0.5. Cross-entropy has been scaled to go
through (0.5, 0.5), which does not affectlearning. The formation of the tree is thus constructed such
that regions contain the highest portion of observations from one class [96].

GiniIndex and cross-entropy are differentiable and can be optimised by gradient based optimisation
methods [96]. Another advantage is that they have higher sensitivity to node probabilities [97].
These two methods are therefore normally used for growingatree, where cross-entropy is the most
popular method [106]. The misclassification error method is normally used to prune the tree [96],
[97].

2.4 Conclusion

In this chapter a literature study has been performed on various techniques in order to find an
algorithm for blind modulation classification in a non-cooperative environment. After a suitable
signal model was derived, various techniques and methods for classification were discussed and one
ischosenbased on specificcriteria. The criteria were operationinanon-cooperativeenvironment,
computation complexity, classification accuracy, and versatility. Fromthe two mainapproaches for
AMC (namely FB and LB classification), FB classification was chosen. This approach is less
computationallycomplexand does not need channel state information. The lattercharacteristicis
vital in a non-cooperative environment where signals with unknown channel parameters may
appear. Furthermore, instantaneous based features for FB classification have been chosen for the
feature extraction stage, as opposed to wavelet transform and higher order statistics based features.
Instantaneous based features are the least computationally complex, suitable for hardware
implementation and are able to classify a wide range of modulation types, including the modulation
types of interestforthis study. Forthe decision making stage, various machinelearningtechniques
were considered. Decision trees wereselected fortheir simplicity, fastruntime and their ability to
classify awide range of modulation types, among otheradvantages. Itisa proven machinelearning
techniqueinliterature for FB classification tasks and the classification accuracy of this technique is
close to other machine learning techniques such as SVMs and ANNS. The computation of the
features as well as the construction of the decision tree is performed in the chapters that follow.
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3 CONCEPTUAL DESIGN

The results from Chapter2 are used for the design decisions of the system. Functional flow diagrams
are usedto explainthe processto be followed for classification and tracking of changesin a signal.

In order to track changes in transmitter modulation type, three main steps are required. The first
stepisto receive RFsignals from the environment. Thisis typically through anantenna. The second
step is to perform pre-processing on the received signals. After the necessary steps are taken to
obtain the signal of interest and get itin its correct form, the classification of the modulation type
and tracking of changes can take place. Figure 8 shows the functional flow block diagram of the main
process.
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Figure 8: Top Lewel Functional Flow Diagram with Focus on Automatic Modulation Classification &
Tracking
The main process consists of the following functions:

- F.1:Signalsinthe selected frequency band are received by an antenna.

- F.2: The instantaneous bandwidth (IBW) is captured from the RF signal and processed to 1&Q
baseband samples by afront-end processor.

- F.3: The 1&Q baseband samples of the signal of interest are used to perform the
classification and tracking processin orderto output the modulationtype and any changes
from one modulation type to another.

The focus of this study is captured in the third functional block F.3: Perform classification and
tracking. An understanding of the design of functionalblock F.2is however needed, specifically with
regardsto the interfacesin orderto design the third step correctly. These two steps willbe discussed
indetail below.
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3.1 Front-end Processing

Aftersituational awarenessis obtained fromthe RF band, which contain a wide range of RF signals,
the IBW is captured. The IBW is designed to match the band of the analogue to digital converter
(ADC). This frequency band contains various intentional, unintentional and unavoidable signal
sources, including signals of interest, spurious signals and noise. Pre-processingis performed by the
front-end processor of a digital receiver to obtain the signal of interest. General front-end
processorsinclude RF translation, analogue-to-digital conversion (ADC), detection and selection of
frequency of interest and digital down conversion [107], [108]. The detection of the centre
frequency may occur usinga phase-locked loop (PLL) oradirect digital frequency synthesizer (DDS).
Figure 9 shows the functional flow block diagram of the front-end processing.
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The pre-processing consists of the following functions:

- F.2.1: RF translation of the received RF signal mixes the signal downintoaband where the
ADC can sample the signal.

- F.2.2: Analogue to digital conversionis performed to convert the RFdown-mixed analogue
signal to digital samples.

- F2.3: The band in which the signal of interest resides is detected and the RF band centre
frequencyisselected usingaPLLor DDS. The outputofa PLLislockedto a crystal oscillator
reference, to provide astable outputfrequency thatis used fordown mixing [107].

- F.2.4: Digital down conversion is performed to obtain the filtered baseband signal in its
complex form.

3.1.1 Analogueto Digital Conversion
The IBW is converted to digital samples after the RF translation stage. The sampling frequency is

chosento be at leasttwice the bandwidth of the RF band of interest to satisfy the Nyquist condition.
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Figure 10: Functional Flow Block Diagram of the Analogue to Digital Conwersion Functional Block
The analogue-to-digital conversion block consists of:

- F.2.2.1: Alow pass filteris used to remove all signals above f;/2to preventaliasing to occur,
where f; isthe sampling frequency.
- F.2.2.2: An ADCisusedto convertthe filtered RF band of interest to digital samples.

3.1.2 Digital Down Conversion

The digital down conversion consists of three main parts: in-phase and quadrature (1&Q)
demodulation, low-passfiltering, and decimation. Phase information that needs to be maintained is
contained within the 1&Q samples of the complexsignal. The complex signal is presented by:

Z(t) = x(t) +jy(t) (12)
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Where x(t) is the real part and y(t) is the imaginary part of the complex signal, obtained from the
real signal through a Hilbert transform. The baseband signal can be obtained from the complex
passband signal. The complex baseband signal is given by:

7y (t) = F e /2t (13)
such that:

7y () = 11(t) + o (£) (14)
where f; isthe carrier frequency, 7, (t) isthe complex received passband signal and 3, (t) and 1, (t)
are the basebandin-phase and quadrature signals respectively [109].

A Hilbert filter or a mixer is used to obtain the complex baseband in-phase and quadrature (1&Q)
samples. A mixer uses a sine and a cosine signal which have 90 degrees offset in phase between
them. These two signals are generated by a numerically controlled oscillator (NCO) to mix the output
from the ADC to either baseband or an intermediate frequency (IF). The outputs of the mixer are
complex digital samples consisting of in-phase and quadrature (1&Q) components [107], [108]. The
functional flow block diagram of the digital down conversion is shownin Figure 11.
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Figure 11: Functional Flow Block Diagram of Digital Down Conwersion Functional Block
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The digital down conversionis performed by:

- F.2.4.1: AHilbertfilteroran NCO and mixerare used to obtainthe complex representation
of the real input. The outputs of the mixerare baseband | &Qsignals samples.

- F.2.4.2: Alow pass filteris used to pass the baseband 1&Q samples. Frequencies above the
selected cut-offfrequency are filtered out.

- F.2.4.3: Decimation is performed to reduce the sampling rate and bandwidth. A reduced
samplingrate at the lowerbandwidth increases the effective processing poweravailable to
processthe resultingsignal.

3.2 (lassification and Tracking

The classification and tracking functional block receives the 1&Q baseband samples in order to
determine the modulation type of the signal as well as track changes from one modulation type to
another. Two main steps are required, a classification and a tracking process. The functional flow
block diagram is shown in Figure 12. After these two steps are taken, the system can output the
status of the signal’s modulation type.

1&Q digital
signal samples \ 4
F3.1
> Perform blind ]
modulation classification
- Ref 3
Ref 3 Moldutlaltl on @ Perform classification
Perform classification abe and tracking
and tracking v
F.3.2

A 4

Track the changesin [—
modulation types

Modulation
status

Figure 12: Functional Flow Block Diagram of the Classification and Tracking Process
The classification and tracking functional block consists of:

- F.3.1: Features are extracted fromthe I&Q samples to perform blind classification where the
outputisa modulation classlabel.

- F.3.2: The tracking of changes of the modulation type is performed by means of logging the
modulation type over time, in order for external processes to utilise the status of the
modulation type.

Within this design blind modulation classification is performed through two distinct functional steps:
feature extraction and decision making. In Chapter 2, instantaneous features were selected for
feature extraction, and adecision tree classifier was selected as the machine learningtechnique for
decision making. The functional flow block diagram illustrating these functionsis shownin Figure 13.
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Figure 13: Functional Flow Block Diagram of the Blind Modulation Classification Functional Block
The blind modulation classification is performed by:

- F.3.1.1: Features are extracted from the 1&Q input samples by using the instantaneous
information of the signal.

- F.3.1.2: The feature values are used to classify the modulation type of the intercepted signal
using a decision tree classifier. The output of the decisiontree isamodulation class label.

3.2.1 Feature Extraction

For feature extraction, the instantaneous amplitude, phaseand frequency are calculated from the
complexsignal givenin (12). Thereafter, features based on the instantaneous amplitude, phase and
frequency are extracted. The functional flow block diagramiillustrating these functions is shown in
Figure 14.

1&Q digital
signal samples

F.3.1.1.1

P Calculate instantaneous
parameters

Instantaneous Ref 3.1.1
Ref3.1.1 @ amplitude, phase Extract features

Extract features and frequency

F.3.1.1.2

Y

Calculate features

Feature values

Figure 14: Functional Flow Block Diagram of the Feature Extraction Functional Block
The feature extractionis performed by:

- F.3.1.1.1: Theinstantaneous amplitude, phase and frequency is calculated from the complex
signal consisting of the I&Q baseband samples.

- F.3.1.1.2: Features are calculated by using the instantaneous information of the received
basebandsignal.
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The instantaneous amplitude, phase and frequency are calculated from the complex signal (12). The
polarform of the complex baseband signal is given by:

iy (t) = A(t)e/*® (15)

where A(t) and ¢(t) are the instantaneous amplitude and phase respectively. The instantaneous
amplitude is the magnitude of the complex I&Qsignal, while the instantaneous phase isthe angle of
the signal. The instantaneous frequency is the derivative of the instantaneous phase. The
instantaneous amplitude, phase and frequency are given by (16), (17) and (18) respectively over N

numberofsamplesattimeinstantst = fLwithi = 1,2, ..., N where f; isthe sample frequency [109].
S

Ali] = I7[i]| = erzz[i]+rqu[i] (16)
¢li] = £7[i] = tan™? [Z(j—[llﬂ (17)
] - L90@ _ 1|9l = ol — 1)
=% ar T o T, (18)
where
1
L=+ (19)

Before the feature values are calculated, the instantaneous amplitude and frequency are centred
and normalised to compensate forchannel gain. Additionally, the centred non-linear component of
the instantaneous phase is obtained.

Acnlil = L, 1 (20)
li] -

fenlil = % (21)

dnlil = @ lil — ug (22)

where p,, ug and uy are the averages of the instantaneous amplitude, phase and frequency

respectively.

Usingthe equations above, the extraction of the instantaneous amplitude, phase and frequency can
be determined. The calculation of the instantaneous amplitude and phase in hardware is less time
consuming when using the polar form instead of the rectangular form of a signal. The calculation
from the rectangular form includes computations such as division and square root, shown in (16)
and (17), which may take multiple clock cycles and cause bottlenecks in the processing chain. The
use of these complex functions should be kepttoaminimum for hardware implementation due to
computational resource limitations. The rectangularform of the signalsis thus first convertedto the
polarform, before the instantaneous amplitude, phase and frequency are obtained. Figure 15shows
the functional flow block diagram to obtain the instantaneous amplitude, phase and frequency.
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Figure 15: Functional Flow Block Diagram to Obtain Instantaneous Amplitude, Phase and Frequency
The instantaneousinformationis obtained by:

- F.3.1.1.1.1: The rectangular form of the signal, represented by the 1&Q samples, are
convertedto polarform.

- F.3.1.1.1.2: The instantaneous amplitude and phase are obtained from the absolute value
and angle of the polar signals samples respectively. The instantaneous phase is used to
calculate the instantaneous frequency.

- F.3.1.1.1.3: The instantaneous amplitude, phase and frequency are centred and normalised.

After the instantaneous information is calculated, the features can be extracted. There are eight
general instantaneous based features to consider [110], [111]. The eight features are givenin (23) to
(25) and (27) to (31). Implementation on hardware is taken into consideration when features are
selected. Features with lower computational cost, even at the cost of some accuracy, are better
suited to hardware platforms such as FPGAs. Seven features from the eight features were selected
based on this consideration. The eighth feature (31) was not selected because it requiresan FFTto be
calculated, which makes the computational cost of this feature high. [t was therefore replaced with
another amplitude based feature shown in equation (26) [112]. Fourfeaturesare derived from the
instantaneous amplitude, two features from the instantaneous phase and the last two features from
the instantaneous frequency.

The fouramplitude based featuresare the standard deviation of the absolute value of the centred -
normalised instantaneous amplitude (23), the standard deviation of the centred-normalised
instantaneous amplitude overthe non-weak intervals of the signal (24), the kurtosis of the centred-
normalised instantaneous amplitude(25) and the mean of the centred-normalised instantaneous
amplitude (26). The non-weak intervals are not sensitive to noise and can be detected by athreshold
A;. The detection by means of athresholdis explained in more detail in Chapter 4.

1w 1w i (23)
Oga = N(; Agn [l]> - <N ;lAcn[i]l)
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1 1
Oag = |73 Z agn [i] N_ Acn ] (24)
Apli>Ar € Anli>Ae
where N isnumber of samples forwhich A, [i] > A;.
o _ E{AG[
42 = 2 (25)
{E{az,[}}
N
1 .
Amean = NZ|Acn[l]| (26)
i=1

The two features based on the instantaneous phase are the standard deviation of the absolutevalue
of the centred non-linear component of the instantaneous phase (27), and the standard deviation of
the centred non-linear component of the directinstantaneous phase (28) calculated over the non-
weak intervals of the signal.

2

1 1
dap = |~ Z on. 1] |- N Z |pneLill (27)
C \anlil>As € anlil>Ar
2
1 _ 1 .
Tap = |3 2 b ] | = N Z b lil (28)
AV EYR € anlil>Ar

The two frequency based features are the standard deviation of the absolute valueofthe centred -
normalised instantaneous frequency (29) and the kurtosis of the centred-normalised instantaneous
frequency (30).

2

1 . 1 .
af = |3~ f&lil |- T | fen 2] (29)
“\a,lil>A ¢ A ll>A
n t n t

F_ EU&ID
Hyp = IR
{Ff21}
The maximum value of the spectral power density of the centred-normalised instantaneous
amplitudeisgiven by:

(30)

Ymax = max|DFT (A, [iDI?/N, (31)
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3.3 Conclusion

The decisions of Chapter 2 were used to perform the conceptual design for tracking changes in
emitter modulation type. This chapter provided insight of the pre -processing required to obtain the
signal of interest for feature extraction. The method for obtaining feature values as well as the
method to utilise the feature values for decision making were discussed. It is shown that the
instantaneous amplitude phase and frequency of the signal is obtained and used to calculate the
feature values. Forthe decision making step, adecision tree isfirsttrained and then used to classify
and track changesin modulation types. The conceptual design can be usedin Chapter4in whichthe
implementation of the feature extraction and decision making process are explained in detail.
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4 IMPLEMENTATION AND RESULTS

The conceptual designin the previous chapterwas used to develop asystem capable of classifying
six digital modulation types and tracking changes between modulation types. The design was first
simulated in Matlab afterwhich an FPGA firmware design was implemented. Several experiments
were performed in both simulation and hardware to evaluate the performance of the system.Inthe
next section the generation of the input signals used for testing is described. Thereafter, both
simulation and hardware implementation of the system are described in detail. The experiments
performed are explained and the results are presented and discussed.

4.1 Signal Generation

For the simulation of the six digitally modulated signals, a message signal was first generated.
Channel effects were then added to the modulated signals asrequired by the various experiments
performed. More specifically, a sequence of Ny random, independentintegers, m=0,1,...,M — 1,
was generated to create the levels of the messagessignal given by:

Ng
o(t) = z mp(t —nT) (32)

Where Tisthe bitduration of the i, integerand p(t) is arectangular pulse given by:

+1 for0<t<T
t) =
p() { 0 otherwise (33)

Equation (1) was used to derive equation (34) for the six digitallymodulated signals:
se(t) =Ap COS(Zﬂf9t+¢9) (34)

Communication systems have definite bandwidths in which they operate. In order to create more
realistictestsignals, a band pass filter was used to band limit the generated signals. Bandwidths were
selectedin accordance to the proposed modulation type. The band limitation was thus performed
afterthe generationof the modulated signal. The bandwidth (B,,) contains 97.5% of the total average
power of the signal [113].

fe+Byy /2 oo
[ apar=0975 | c(pa (35)

fC_Ba)/z

The centre frequency (f;), symbol rate (r5) and samplefrequency (f;) werechosen as 150 kHz, 12.5
kBd and 1200 kHz respectivelyforall signal modulation types. These parameters were setto the same
valuesselectedin [110] in ordertoaid in comparison. The amplitude, phase and frequency for each
modulation typeaswell as the bandwidths of the modulated signals are shown in Table 1.
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Table 1: Signal Parameters

Modulation Type A do fo Bandwidth
2ASK 086+ 0.2 0 7. 4r,
4ASK 0256 + 0.25 0 1. 4,
2PSK 1 6 + ’2_‘ fe 675
4PSK 1 To fe 675
2
2FSK 1 0 fet+4rd — 2rg 87
4FSK 1 0 f.+rd 81,
(m=-3,-1,123)

For the additive noise, a sequence of real numbers with Gaussian distribution and zero mean was
generated. The size of the sequence of numbers was equalto N, . A bandpass filter with abandwidth
relatedtothe intended modulated signal was used to filter the noise. In practice, thebandwidth of a
receiveris normally slightlylargerthan the bandwidthof the intercepted signal. The bandwidth was
therefore chosen as 1.2 times the bandwidth of the signal. The desiredSNRin decibels was obtained

by multiplying the band-limited noise sequence {n(i)} with a coefficient R, whichis the ratioof the
signal power S, to noise power N, [67]:

(36)

(37)

(38)

i=1

withi =12, ..., N,

For the fading channel, multipath delays and path gains were chosen such that they result in the
desired delay spreadas discussed in Chapter 2. Equation (40) was used to determinethe delayspread
values. The power of the k' multipath signal is given by:

P(t)) = aj; (39)
where 1 isthe excess delay and a; the amplitude.

By substituting (39) into (6) the path delays and path gains could be selected to give the desired delay
spread:

ar =

Yapti <Z a;2<Tk>2 (40)

Yajp Yaj

The process of generating the input signals is shown in Figure 16. The impulse response and
frequency response of astatic Rayleighfading channelsimulated in Matlabis shownin Figure 17 and
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Figure 18 respectively. These figures display examples of a single instance; the impulse and frequency

response of the channelvary fromtestsignaltotestsignal.

White
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noise Rsn
generation
White
. G .
Interpolating aU§SIan
noise
generation
White
Gaussian
noise
generation N
Digital Band pass
filtering filtering
Modulated Band pass
signal —p °2N9P ()
; filtering
generation

Figure 16: Flow Diagram of Signal Generation [114], [24]
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Figure 17: Impulse Response of a three-path
Rayleigh Fading Channel Simulated in Matlab

4.2 Matlab Simulation
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Figure 18: Frequency Response of a three-path
Rayleigh Fading Channel Simulated in Matlab

In this section the simulation of the feature extraction, classification and tracking are described. The
calculation of the instantaneous amplitude, phase and frequency is first explained. Itisfollowed by

the calculation of the feature values and construction of the decision tree used forclassification of

the modulation types. The last part discusses the tracking of changes in the modulation type. The
experiments that were performed for the different parts of the system are then presented and

described.
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4.2.1 Implementation

4.2.1.1 Instantaneous amplitude, phaseand frequency

The classification and tracking algorithm used the signals generated in section 4.1 as inputs. The
complex baseband in-phaseand quadrature signals werefirst obtained. To correspond with the filter
that was pre-implemented on the hardware platform, a Type 3 Hilbert FIRfilter of order30 was first
used to obtain the Hilbert transform of the received signal. The filter, with frequency response
shownin Figure 19, has unity gain and linear phase. The Hilbertfilteris describedin more detail in
section4.3.1.1.1.

Magnitude (dB)

. . I . . I . . .
0 01 02 03 04 05 06 07 08 09 1
Normalized Frequency (=« rad/sample)

-1000

-2000

Fhase (degrees)

3000 ] ] | ] ] | ] ] ]
0 01 02 03 04 05 06 07 08 09 1
Normalized Frequency (=« rad/sample)

Figure 19: Frequency Response of a Type 3 Hilbert FIR Filter
The basebandin-phase and quadrature signals were then obtained by using equations (13) and (14).

The front-end processor for hardware implementation is capable of determining the carrier
frequency and estimation of the carrierfrequencyis thus notre quired. Forthe Matlab simulation,
equations (41) and (42) were used to mix the input signal to baseband in-phase and quadrature
signals [109].

11 (t) = x(t) cos2nf.t) + y(t) sin(2nf,t) (41)
Tpo(t) = y(t) cos2nf.t) — x(t) sin(2nf.t) (42)

where x(t) and y(t) are definedin (12).Forthe calculation of the instantaneous amplitude, phase
and frequency, equations (16) to (18) were used. With the calculation of the instantaneous phase,
the phase is constrained by its principal value and is called the wrapped phase. The principal valueis
inthe range (—m, ] and has discontinuities of 2r radians when viewed as afunction of the radian
frequency [115]. It can be corrected by adding multiples of +2m to ensure a continuous function of
phase. The unwrapping can be mathematically described as:

Coi—1D—-2m ifp(i+1)—¢p()>n
C,() ={Cpi—-D+2r ifp(D -+ >n (43)
C,(i—1) elsewhere
where {Cp(i)} is the phase correction sequence and C,,(i) = 0. The unwrapped phase can then be

given by:

Guw = ¢ + Cp ) (44)
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After the angle of the complex signal was calculated, the unwrap function of Matlab was used to
obtainthe unwrapped instantaneous phase [116]. The difference between two consecutive samples
of the unwrapped phase was then used to calculate the instantaneous frequency. The process for
the calculation of the instantaneous amplitude, phase and frequency in Matlab simulationis shown

inFigure 20.
A
cos(2mf.t)
| +
) 4
90 degree
phase shift CZ ) m(t)
A
v "
—H X A N N .
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I
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Figure 20: Flow Diagram for Calculation of Instantaneous Amplitude, Phase and Frequency in Matlab

Simulation

Figure 21 to Figure 26 show the instantaneous amplitude, phase and frequency of the six different

modulation types.
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Figure 21: Behaviour of 2ASK ower Time

Figure 22: Behaviour of 4ASK ower Time
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Figure 23: Behaviour of 2PSK owver Time Figure 24: Behaviour of 4PSK over Time
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From the figuresitcan be seenthatthe bit streamis containedintheinstantaneous amplitude for
MASK. For MPSK the bit stream is contained in the instantaneous phase and for MFSK the bit stream

iscontainedinthe instantaneous phase and frequency.

Afterthe instantaneous information was obtained, equations (20) to (22) were used to calculate the
centred-normalised amplitude and frequency, and the centred non-linear phase. A received
passband signal contains an undesired linear phase component mainly contributed by the carrier
frequency. The non-linear phase can be obtained by:

dnL (l) = puw — 27;1[61. (45)

Since the signal is at baseband when these calculations are performed, the linear component is not
presentandthe phase only needsto be centred at zero using equation (22).

The nextstep was to determinethe weak intervals of the signal. The weak intervals are found where
there are phase transitions for MPSK (which can also be seenin Figure 33 and Figure 34). These parts
of the signal are sensitive to noise [110]. The weak intervals of the signal can be detected by

evaluatingthe amplitude against athreshold.
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The authors of [110] evaluated the normalised amplitude values againstathresholdandonly made
use of the non-weak intervals of the signal to calculate g4, 04y, 04p and a5 Thismethod was not
used here for two reasons: The number of samples might become too few if they were removed.
The second reasonis that the calculations of the features which are dependent on the evaluation of
the amplitude samples can only start after the normalised amplitude is calculated. In order to find
the normalised amplitude, the average of the amplitude has to be calculated. This will be time
consuming and undesirablefor hardware calculations.

The following method was used instead to compensate for the weak amplitude values. After the
centred-normalised amplitude was calculated, the amplitude samples were evaluated against a
threshold and a constant value was assigned to the amplitude values that exceeded the threshold.
From Figure 21 to Figure 26 it can be seenthat A.,, of MPSK and MFSK should be zero and for MASK
|A| < 0.8. The amplitude threshold was thus set to 0.8. Amplitude values that exceeded the
threshold were setto0.

A threshold method was also used for the instantaneous frequency to compensateforthe transition
effects of MPSK. The transition effects will be explained in section 4.2.2.1. In Figure 21 to Figure 26 it
can be seen that all frequency values should be |f.,,| < 0.05. The threshold was thus set to 0.05.
Frequency values thatexceeded the threshold were setto 0. The processto calculate the centred-
normalised amplitude, centred non-linear phase and centred-normalised frequency is shown in
Figure 27.

Threshold

Ali] | Mean oo > Acn[i]
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Figure 27: Flow Diagram for Normalising and Centring the Instantaneous Amplitude, Phase and
Frequency in Matlab Simulation
4.2.1.2 Instantaneous based features
The centred-normalised amplitude, centred non-linear phase and centred-normalised frequency
were used asinputsto the algorithms presented in Figure 28, Figure 29 and Figure 30 respectively.
The feature values were calculated using equations (23) to (30).
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Figure 28: Flow Diagram for Instantaneous Amplitude Based Feature Extraction in Matlab Simulation
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4.2.1.3 Decision Tree Construction

The decision tree was constructed using the Matlab fitctree object from the Statistics and Machine
Learning Toolbox [117]. The function returns a binary classification decision tree which is based on
the inputfeaturesin a matrix Xand outputlabelsin matrix Y. The branches of the tree were split on
the nodes based on the values of the input matrix X. One of three tests for selecting the best
featurestosplitnodesaswell asthe criteriaforsplittingthe nodes could be specified.

The three tests for feature selection are: the standard CART (Classification and Regression Tree) test,
the curvature test and the interaction-curvature test. The CART test selects the feature which
maximises the split criterion gain over all the possible splits among all the features [118]. The
curvature test selects the feature which minimises the p-value of the chi-square test of
independence between each feature and the class label [119]. The curvature-interaction test
performs the curvature test, and additionally performs the test between each pair of features and
the class label to prevent the selection of irrelevant features. The CART test is not sensitive to
interactions between features and important features are less likely to be selected [120]. The
curvature-interaction test, which testforboth interaction between afeatures, and features and class
labels, was thus selected. Forthe splitcriterion, the cross-entropy for node splitting criteria was also
selected asdiscussedin Chapter 2.

The tree was first grown and cross validation was then used to determine the bestlevel to prune the
tree to. The eight feature values obtained from the feature extraction calculations were
concatenatedintoa[1x8] vectorto form part of the input matrix X. The matrix X is the inputtraining
dataset consisting of multiple [1x8] vectors. The corresponding modulation types were used toform
matrix Y consisting of the training labels. The unpruned tree’s classification error of the training set
was determined by the re-substitution error using the resubLoss function [121]. The classification
error is calculated by:

# misclassifications (46)

Classification error =
f Total # observations

The classification error of the validation set was determined by cross-validation error using the
cvloss function [121]. The tree overfits the training data if the re-substitution error is significantly
smallerthanthe cross-validation error and the tree needs to be pruned. The best pruned level of the
tree isthen determined by the cvloss function. The function determines the tree for which the cross-
validation error is a minimum and returns the level that is within one standard error of the
minimum. The prunefunctionisthen usedto prune the tree tothe bestlevel.

The predict function was used to determine the output of the decisiontree. Thisfunction uses the
constructed classification tree and vector X containing the feature values of theincoming signal as
inputandreturns the predicted modulation type.
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4.2.2 Results

Various experiments were performed to investigate the performance of the algorithm for
classification and tracking of transmitter modulation types. The different steps of the method were
investigated separately and thereafter as a whole. The experiments include the calculation of the
instantaneous amplitude, phase and frequency, the extraction of features from signals under varying
SNRand fading conditions, the classification accuracy of the decision tree and the feature extraction
fromsignals with decreasing signallengths undervarying SNR and fading conditions.

4.2.2.1 Instantaneous Amplitude, Phase and Frequency
The instantaneous amplitude, phase and frequency for each modulation type were firstinvestigated

in order to determine the degree to which the instantaneous amplitude, phase and frequency
influence the measured features. The investigation was done by comparing the calculated
instantaneous amplitude, phase and frequency to the expected theoretical instantaneous amplitude,

phase and frequency.

Figure 31 to Figure 36 show the instantaneous amplitude phase and frequency of the six different
modulation types calculated from the received passband signal. No noise and no fading had been

addedto these signals.

2ASK: Instantaneous Amplitude

L 15
2 1n 7 T AN 1 A e nr
= | e Y I | I N
gosri] AT AW T B A Ly U Uy
< 0
o 05 1 15 2 25 3 35 4 45 5
Time (s) w107
2ASK: Instantaneous Phase
0.5
(]
[}
g or o
o
05
o 05 1 15 2 25 3 35 4 45 5
Time (s) %1073
o o 21073 2ASK: Instantaneous Frequency
5
2
o
2 0pr T Lt W sy Lo il
2
w -5
o 05 1 15 2 25 3 35 4 45 5
Time (s) %1073

Figure 31: Calculated Instantaneous Amplitude,

Phase and Frequency of 2ASK
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Figure 32: Calculated Instantaneous Amplitude,

Phase and Frequency of 4ASK
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Figure 34: Calculated Instantaneous Amplitude,

Phase and Frequency of 4PSK
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Figure 35: Calculated Instantaneous Amplitude,

4FSK: Instantaneous Amplitude
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Figure 36: Calculated Instantaneous Amplitude,

Phase and Frequency of 2FSK

Phase and Frequency of 4FSK

From these figures, it can be seen that there were differences between the theoretical
instantaneous information shown in Figure 21 to Figure 26 and calculated instantaneous
information. The effect of the band limitation was evident for all six modulation types. The band
limitations also caused variationsinthe amplitude of MPSK and MFSK at the boundaries of symbol
transitions, where forthe theoretical case the amplitude of MPSK and MFSK is completely flat. The
calculation of the derivative of the phase to obtain the frequency caused fluctuations in frequency at
symbol transitions of MPSK. The fluctuationsin the frequency of MASK were also evident because of
the small variations in the phase of MASK, where for the theoretical case the phase of MASK is
completelyflat. Asdiscussedinsection 4.2.1.1, these effects caninfluence the performance of the
system since these fluctuations can be falsely perceived as information in a modulation type’s
instantaneous amplitude, phase orfrequency. Some of these effects were compensated for by the
threshold techniques explainedin section 4.2.1.1 and the results are shownin Figure 37 to Figure 44.
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Figure 40: Centred-normalised Amplitude of
2PSK before and after Adjustments
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Figure 41: Centred-normalised Frequency of

2PSK before and after Adjustments
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Figure 42: Centred-normalised Frequency of
4PSK before and after Adjustments
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Figure 43: Centred-normalised Frequency of
2FSK before and after Adjustments

Figure 44: Centred-normalised Frequency of
4FSK before and after Adjustments

It can be seenthatthe fluctuations inthe amplitude of MPSK was compensated fortosome extent,
while the values of MASK were not affected. The variations in MFSK were too small to be

compensated for. The fluctuations in the frequency of MPSK were also significantly compensated
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for, while the values of MFSK were not affected. The variations in MASK were too small to be
compensated for.

4.2.2.2 ComparisonwithoutAWGN and fading

Since the carrier frequency, symbol rate, sampling frequency, and features were adopted from
[110], an experiment was performed to compare the calculated feature values to the values
obtained by the authors of [110]. The experiment was performed forsignal lengthsof 0.12 seconds
(144 000 samples), and 2048 samples, the latter matching the experimental setup of the authors.
The experiment was performed for a longer signal (144 000 samples) in order to observe whether
there was a significant difference in values when more samples were used. Anunrealistically long
signal of length 1 second was first simulated, and shortened in steps of 0.2 seconds each time
comparing the feature values of the signals in the presence of AWGN and flat fading channel
conditions. This comparison was done in order to find a sufficient signal length that exhibited the
same characteristics that could be stored for reuse in tests. The stored signals could then be
decreased through Matlab operations to a desirable signal length for furtheranalysis as required.

For baseline data, signals without any channel effects were used to calculate the feature values. Five
hundred iterationswererun foreach modulationtype. Ineachiteration, anew message signal was
generated and modulated with the six different modulating signals. The averages of the five hundred
feature values foreach modulation type were calculated. Table 2shows the values obtained by the
authors of [110] and Table 3 and Table 4 show the results of values calculated in Matlab. The
features were explainedin detail in section 3.2.1.

Table 2: Feature Values obtained using 2048 Samples in [110

_l;/;:t:ulation Amean Oaa o, [Ty Oap Oap Ouf P‘i )
2ASK NA 0.00 0.5 15 0.03 0.03 0.00 1.0
4ASK NA 0.32 0.4 1.8 0.03 0.03 0.00 1.0
2PSK NA 0.00 0.1 2.2 0.304 1.57 0.10 3.6
4PSK NA 0.00 0.1 2.8 4.77 6.67 0.13 3.7
2FSK NA 0.00 0.0 1.0 6.39 9.47 0.06 14
4FSK NA 0.00 0.0 1.0 5.62 8.50 0.48 1.7
Table 3: Calculated Feature Values of Noise-free Signals over 0.12 second
1“-,;;2 ulation | Aean Oaa o, T8 Oap Oap Ouf l‘i )
2ASK 0.6216 0.1357 0.6363 1.0848 0.0231 0.0237 0.0002 303.1075
4ASK 0.3758 0.2012 0.4263 1.7307 0.0220 0.0223 0.0001 512.5669
2PSK 0.0739 0.1124 0.1338 16.7709 | 0.1358 1.5749 0.0032 34.6618
4PSK 0.0680 0.0923 0.1144 17.3388 | 1.0785 1.9018 0.0048 18.5439
2FSK 0.0147 0.0230 0.0273 12.0843 | 0.8992 1.8122 0.0033 1.0471
4FSK 0.0198 0.0295 0.0355 11.8130 | 0.9016 1.8186 0.0105 1.6803




Table 4: Calculated Feature Values of Noise-free Signals over 2048 Samples

H a
-I;/;Z:ulatlon Amean Oua Oq ", Oap Oap Ouf ﬂi )
2ASK 0.5727 0.1776 0.5991 1.2809 0.1669 0.1669 0.0006 2.5412
4ASK 0.3730 0.2151 0.4307 1.8708 0.1672 0.1682 0.0006 2.7227
2PSK 0.0847 0.130 0.1297 15.9728 | 0.3780 1.5170 0.0030 29.6284
4PSK 0.0817 0.0864 0.1162 14.3290 | 0.9209 1.5885 0.0043 15.5510
2FSK 0.0293 0.0214 0.0311 50.8905 | 0.9095 1.8065 0.0057 1.3264
4FSK 0.0351 0.0285 0.0384 15.8721 | 0.9155 1.8067 0.0107 1.8108

It can be seen that the values were not identical to the values obtained in [110]. There might be
several reasons for these differences. The first reason might be due to different transition effects
experienced by the authors of [110] and also the differenttechniquethey used to remove the weak
intervals of the signal as discussed in 4.2.1.1. The authors of [110] also used different methods to
obtain the complex signal, the instantaneous phase and the instantaneous frequency as shown
below.

The phaseis calculated by:

(. [Y@®)
[
y®

m—tan~?! [@] if x(t) <0,y(t) >0

if x(t) >0,y() >0

NI

if x(t)=0,y() >0

B (t) =4 (47)

y(t)
x(t)
3

> ifx(t)=0,y(t)<0

T+ tan~?! [ if x(t) <0,y(t) <0

k211 —tan~! [%] if x(t) >0,y(t) <0

where x(t) and y(t) are definedin (12).

Both the complex signal and frequency were calculated by means of the FFT. For the complex
representation of signal, the spectrum X (f) of the real signal x(t)was obtained.The spectrum of
the complex signal was then calculated by:

Z(H) =20NHX{) (48)
where U(f) isthe unitstep functioninthe frequency domain andis given by:
lif f>0
u(f) = %iffzo (49)

0 otherwise
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The complex signal isthen obtain by:

For the calculation of the frequency, the FFT was used to obtain the derivative of the phasein order
to avoid numerical differentiation in the time domain and to obtain smootherresults:

f(t) = IFFT{=j2nf®(f)} (51)
where @ (f) isthe Fouriertransform of ¢(t).

In order to reduce the computational complexity for hardware implementation, these three
methods were not followed and the techniques describedinsection 4.2.1.1 were usedinstead. It is
also worth noting that the method used in this study for the calculation of the instantaneous
frequencyis dependent on the sample frequency. There are several methods forthe normalisation
of the instantaneous frequency, including the utilisation of the symbol rate and sample frequency.
The authors of [110] used the symbol rate for normalisation, which was not chosen for normalisation
in this study as the symbol rate of the intercepted signal might be unknown and must then be
estimated first. The sample frequency was therefore used instead for normalisation of the
instantaneous frequency.

The feature values however showed resemblance when compared. As discussed below, the
modulation types that have informationintheirinstantaneous amplitude, phase and frequency had
correspondingvaluesforthe associated features. The results fromthe output of the features were
promisingoninitial inspection with regard to the separability of the modulation types. The feature
values obtained under different SNR conditions, which will be shown in section 4.2.2.3, also
correspond to the results presented in [69] and [123] which provide further confidence that other
authors in this field of study followed similar approaches, making our results later in this study
directly comparable totheirwork.

From the feature valuesitcan be observed that:
For Apean

e MASK had larger valuesthanthe other modulation types. When the absolute values of the
amplitude are centred at zero, the modulation types with no amplitude information have
values close to zero. Since the bit stream is contained in the amplitude of the signal for
MASK, it contains amplitude information.

Forogq

e 4ASK had the largest value among all the modulation types. The other modulation types
have constant amplitude values except for 2ASK which has two levels. When these values
are centred at zero, the absolute values are almost equal and the variance of the absolute
amplitude resultsinvalues close to zero. Since 4ASK has four levels, the absolute values are
not equal and the variance shows that it contains informationinthe absoluteamplitude.
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For Oap

e 4PSK had the largest value among all the modulation types. 2ASK and 4ASK have constant
phase values, and 2PSK has two levels. When thesevalues are centred at zero, the absolute
values are almost equal and the variance of the absolute phase results in values close to
zero. The variance shows that MFSK and 4PSK contain informationin theirabsolute phase.

For o,y

e 4FSK also had the largest value for among all the modulation types. The other modulation
types have constant frequency values (zero) and 2FSK has two levels. When these values are
centred at zero, the absolute values are almost equal and the variance of the absolute
frequency resultsinvalues close tozero. Since 4FSK has four levels, the absolutevalues are
not equal and the variance shows thatit containsinformationin the absolutefrequency.

For o,

e MASK had the larger values than MPSK and MFSK. 2ASK and 4ASK have information in the
instantaneous amplitude and thus have larger values than the modulation types with no
informationintheirinstantaneous amplitude.

For gy

e MPSK and MFSK had larger values than MASK. MPSK and MFSK have information in the
instantaneous phase and thus have larger values than MASK with no information in the
instantaneous phase.

For ug, and -“52

e The compactness of the distribution of the instantaneous amplitude and frequency are
measured with u$, and u£2 respectively. Alarge valueisrelated to a wide distributionand a
small value is related to a narrow distribution. The instantaneous frequency for MASK and
MPSK should theoretically be zero, since they contain no frequency information. The band
limitations and transition effects however caused different results. From Figure 31to Figure
34 it can be seen that the fluctuations caused the distribution of the values to seem wide
and the kurtosis thus had a much larger value than the theoretical case.

By comparing the results of the features calculated over 0.12 seconds (144 000 samples) and 2048
samples, itcan be seenthatthere were small differencesin the values. With the utilisation of only
2048 samples, uf:Z was much smaller for MASK. Since signals with no channel effects were used, the
results are not representative for all use cases. Signal lengths under different channel conditions
were thus also analysed and will be discussed in section 4.2.2.5.

The transition effects were compensated for to some extent and are explained in section 4.2.1.1.
Table 5 shows the feature values without the compensation forthe transition effects.
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Table 5: Calculated Feature Values of Noise-free Signals over 2048 Samples without Compensation for
Transitions Effects

Modulation

Amean

a'aa

Oq

a
Ky

I

O'ap adp O'af ”42

Type

2ASK 0.6065 0.1795 0.6343 1.3375 0.1663 0.1674 0.0314 145.4208
4ASK 0.3915 0.2190 0.4495 2.0420 0.1667 0.1677 0.0313 146.5168
2PSK 0.1174 0.1841 0.2187 14.2361 | 0.3511 1.5293 0.0212 118.2436
4PSK 0.1059 0.1645 0.1958 17.8525 | 1.0306 1.8570 0.0274 132.5924
2FSK 0.0438 0.1325 0.1410 45.9698 | 0.9093 1.8065 0.0119 35.4323
4FSK 0.0592 0.1490 0.1604 35.2507 | 0.9156 1.8080 0.0209 38.1050

It can be seen that g,, and g, of MPSK and MFSK were much larger and very close to the values of
MASK. The same was evidentfor o, s of MASK and MPSK. Without the removal of the fluctuationsin
the instantaneous amplitude and frequency, the feature values deviate significantly from the
theoretical case, and become indistinguishable between many of the modulationtypes, which can
lead to more misclassifications.

4.2.2.3 Varying SNR conditions

The firstchannel conditionto be investigated was the effect of SNRon the feature values. For this
experiment, AWGN was added to the signals. The SNRwas increased by increments of 5 dB from 0
dB to 30 dB to representvery poorto fairly good noise conditions. Five hundred iterations for each
SNRvalue were run and the averages of the five hundred iterations were calculated and plotted in
Figure 45 to Figure 52. For each iteration, a new message signal and a new noise signal were
generated. The feature values were calculated overasignal length of 0.12 s.
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From these plots the following observations can be made:

For Apean

Forogq,

For o,

For u$,

For gy

For gy

4ASK was the least affected by the noise and the values remained almost constant over all
SNR conditions. The values of MPSK as well as MFSK lied very close to each other and were
not easily separable. 2ASK and 4ASK were however well separablefromanSNRof 5 dB and
better. MASK were also well separable from MPSK and MFSK froman SNRof 5 dB. None of
the values were separableatan SNR of O dB.

4ASK changed the leastamongall the modulation types. The values of MFSK lied very close
to each other and were not really separable. 2ASK and 4ASK intersected at an SNR just
above 15 dB which can lead to ambiguous interpretations for classification above and below
this SNR. MPSK and MFSK were separable from an SNR of 10 dB and better. 2PSK and 4PSK
were only separable adequately from an SNR of 15 dB. MASK were well separable from
MPSK and MFSK from an SNR of 10 dB. The values of 2ASK however became closer to 2PSK
as the SNR increased. None of the values were separable atan SNR of 0 dB.

The results of g, were very similarto A,,eqn- The values were slightly larger and 2PSK and
4PSK were more separable. The values of 2PSK and 4PSK were however still not easily
separable.

MASK were the least affected by noise and the values remained almost constant. MPSK
were the most affected by the noise and the values decreased drastically as the noise
increased. MPSK and MFSK were separable froman SNR of 5 dB. MASK were alsoseparable
from MPSK and MFSK from 10 dB. None of the values were separable atan SNR of 0 dB.

MFSK were not affected atall by noise and remained constant over the range of SNR’s from
0 dB to 30 dB. The values of MASK and 2PSK increased as the SNR decreased. 2PSK and 4ASK
intersected atan SNR of 15 dB and 2PSK and 2ASK intersected atan SNRjustbelow 25 dB. It
led to ambiguous interpretations for classification above and below these SNR values. MFSK
and 4PSK were howeverwellseparable from MASK and 2PSK over the range of SNR’sfrom 0
dB to 30 dB.

MFSK were not affected by noise and remained constant overthe range of SNR’s from 0 dB
to 30 dB. MASK were the most affected by the noise and increases as the SNR decreases.
MASK were well separable from MPSK and MFSK overthe range of SNR’s from 0 dB to 30 dB.
2PSK was also separable from MFSK and 4PSK over the range of SNR’s from 0 dB to 30 dB.
4PSK was separable from MFSK from 10 dB.

50



For o,y

e 4FSK was the least affected by noise. 4FSK were also well separable from the other
modulation types over the range of SNR’s from 0 dB to 30 dB. 4FSK was however only
separable from 2FSK from an SNR of 5 dB. 2FSK was separable from the other modulation
types from 0 dB to 20 dB. Although 4ASK was close to the values of the other modulation
types, it was separable from the other modulation types froman SNR of 5 dB.

For uf;z

e MFSK were the least affected by the noise and remained almost constant overtherange of
SNR’s from 0 dB to 30 dB. MFSK was separable from the MASK and MPSK from an SNR of 5
dB. 2PSK was the most affected by noise and the values decreased drastically as the SNR
decreased. 2PSK was separable from an SNR of 15 dB. Although 4PSK changed only a little
overthe SNR range, MASK caused 4PSK to be inseparablefrom any modulation types.

In summary, Apean and o, had very similar results although the values differed. There was a
correspondence between A,eqn and g, and py,. The phase based features, Oqp and a4y, of MFSK
and 4PSK were the most robust against noise conditions. 4ASK was also more robust against noise
when considering the amplitude based features. Similarly, 4FSK was more robust against noise when
consideringthe frequency based features. Table 6 gives a summary of the modulation typesthatare
distinguishable with the various features. The table is displayed to getanintuition on separability
usingthese featuresinordertoseeif thereis potential foradecisiontree toworkreliablyon these
features. The standard deviations of the features are also presented in Appendix A.1.1to provide
visual aid.

Table 6: Separability of Modulation Types under varying SNR conditions

Feature Distinguish between
Amean | MASK vs. MPSK and MFSK 2ASK vs. 4ASK
Oaa MASK vs. MPSK and MFSK
04 MASK vs. MPSK and MFSK 2ASK vs. 4ASK
U MPSK vs. MFSK MASK vs. MPSK vs. MFSK
Oap MFSK and 4PSKvs. MASK and 2PSK 4PSK vs. MFSK
Oap MASK vs. MPSK and MFSK 2PSK vs. rest
Oaf 4FSK vs. rest 2FSK vs. 4FSK
#{;2 MFSK vs. MASK and MPSK

4.2.2.4 VaryingSNRand flatfading conditions

The next experiment was performed to evaluate the features under varying flat fading and SNR
conditions. The Matlab RayleighChannel System object from the Communication System Toolbox
was used to create the fading channel. The average path gains were set using AvgPathGaindB and
the path gainswere thenrandomly generated from aninternal probability distribution function for
each iteration [114], [123]. A channel with 3 paths was created for each iteration. The path gains
were chosen as constants and the path delays as independent variables. The path delays were
chosensuch that the delay spanwas k X 10 us where k isa calculated weight factor and was chosen
as k =[0 0.025 0.1 0.75 1.5 2.5 5 7.5 10]. These values of k resulted in 9 different values of
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delay spread:[00.001 0.004 0.03 0.06 0.1 0.20.3 0.4]* T, where T isthe symbol time. The firstand
last path delays were fixed at 0 us and 10k us respectivelytoensure adelayspanfrom 0 us to k X
10 us in order to obtain the desired delay spread. The second path delay was chosen randomly
between 2k us and 8k us in order to randomise the path delay of the second path for each
iteration. The Dopplershift was set to 0 to create a staticchannel. The features were tested against
these 9 delay spread values for an SNR of 10 dB and 30 dB respectively. An SNR of 30dB is a strong
signal case and from the previous analysis, at an SNR of 10 dB the features values showed good
separability. Below 10dB separability started to become anissue insomeinstances. Five hundred
iterations foreach delay spread value were performed. The averages of the five hundrediterations
were calculated and plotted. For each iteration, a new message signal and noise were generated.
The values were calculated overasignal length of 0.12 s. The results are shownin Figure 53 to Figure
68 where Rpgis the ratio of the delay spread to the symbol time. The features for 30 dB SNR are

shownonthe leftand for 10 dB SNRon the right.
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A n in Multipath Rayleigh Fading Channel at 10 dB SNR
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o, in Multipath Rayleigh Fading Channel at 30 dB SNR
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Figure 57: Feature values of o, in a Flat Fading
Channel at 30 dB SNR in Matlab Simulation
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Figure 61: Feature values of a,, in a Flat

Fading Channel at 30 dB SNR in Matlab
Simulation
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Fading Channel at 10 dB SNR in Matlab
Simulation
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Tdp in Multipath Rayleigh Fading Channel at 30 dB SNR
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Simulation
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Fading Channel at 10 dB SNR in Matlab
Simulation
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Simulation
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The results show that:
For Apean

e 4ASK wasthe leastaffected by the flatfadingand remained almost constant forall Rpgfrom
0to 0.4 forboth SNR’s of 30 dB and 10 dB. MASK were well separable from MPSKand MFSK
for all Rpg from 0 to 0.4 for both SNR values. 4ASK was however not separable for Rpg of
0.4. 2ASK was also well separablefrom 4ASK over all the proposed channel conditions.

Forog,q

e 4ASK wasthe leastaffected by the flatfadingand remained almost constant forall Rpsfrom
0 to 0.4 for SNR of 30 dB. 4ASK was also separable from the other modulation types for all
Rpg from 0 to 0.4 for an SNR of 10 dB and for Rpsfrom 0 to 0.1 for an SNR of 30 dB. The
effect of noise on 2ASK can be seen here. The feature values give ambiguous results if the
SNR of signals are unknown. Modulation types were not separable in the same way at an
SNR of 30 dB and 10 dB. MASK was however separable from MPSK and MFSK for all Rp¢
from 0 to 0.4 for an SNR of 10 dB.

For o,

e MASK wasthe least affected by the flat fading conditions. 2ASK remained separablefromall
the other modulation types for all Rpsfrom 0 to 0.4 for both SNR values. 4ASK were also
separable forall Rpsfrom0 to 0.4 forboth SNRvalues. The value of 4ASK was howeververy
close to 4FSK at an Rpg of 0.4. The values of 2PSK and 4PSK were also very close to each
otherfromall Rps from0 to 0.4 for both SNRvalues.

For i,

e MASK were the least affected by the flat fading and remained almost constant forall Rpg
from 0 to 0.4 for an SNR of 30 dB. MPSK were the most affected by both SNRand flat fading.
The values decreased drastically as Rpg increased. 2ASK was separable from the other
modulationtypesforall Rps from 0to 0.4 for both SNR values. 4ASK was separable from the
othermodulationtypesforall Rps from0to 0.4 for an SNR of 10 dB. The value of 4ASK was
howeververy close to 4FSKat an Rpg of 0.4. Although 4ASK remained almost constantat an
SNR of 30 dB, 4FSK caused 4ASK to only be separable for R s from 0 to 0.03.

Foragy

e MFSK were the least affected by the flat fading conditions and remained almost constant for
all Rps from 0to 0.4 for both SNR values. MFSK and 4PSK remained well separable from
MASK and 2PSK for all Rpg from 0 to 0.4 for both SNR values although 2ASK was greatly
affected by noise.

Forogy

e MFSK and 4PSK were the least affected by the flatfadingand remained almost constant for
all Rpgfrom 0 to 0.4 for an SNR of 30 dB. Although MASK were greatly affected by noise,
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MASK were still very well separable from MPSK and MFSK for all Rpsfrom 0to 0.4 for both
SNRvalues. MFSK were also separable from 4PSK for all the proposed channel conditions.

For o,y

o 4FSK wasthe least affected by the flatfading conditions. 4FSK was well separable forall Rpg
from 0 to 0.4 for both SNR values. 2FSK was separable forall Rpsfrom0 to 0.4 for an SNR of
10 dB. The effect of noise on 2FSK can be seen here. The feature values give ambiguous
results if the SNR of signals are unknown. Modulation types are not separable in the same
way at an SNR of 30 dB and 10 dB. 2ASK and 4ASK were however separable for all the
proposed channel conditions. MPSK were also well separable from MASK for all Rpsfrom O
to 0.4 for an SNR of 30 dB.

f

For uy,

e MFSK were the least affected by the flat fading conditions and were well separable from
MASK and MPSK for all Rpgfrom O to 0.4 for both SNR values. MASK were also separable
from MPSK for all Rpgfrom O to 0.4 for an SNR of 10 dB. 4ASK was greatly affected by flat
fading. The effect on MASK and 2PSK can lead to ambiguous interpretations for
classification.

Apmeanand g, again showed very similar trends although the values differed. It can also be observed
that there was a correspondence between Acqnand o, and pg,. It can be seen that g4, and oy,
of MFSK and 4PSK were more robust against flat fading conditions. The amplitude based features o f
MASK were also more robust against flat fading as well as the frequency based features of 4FSK.
Table 7 gives asummary of the modulation types that are distinguishable with the various features.
The standard deviations of the features are also presented in AppendixA.1.2to provide visual aid for
separability of the feature values. It can be seen that the features were more sensitive to fading
conditions and misclassification might occur more.

Table 7: Separability of Modulation Types under varying flat fading and SNR conditions

Feature Distinguish between
Amean | MASK vs. MPSK and MFSK 2ASK vs. 4ASK
Oaa MASK vs. MPSK and MFSK 4ASK vs. MPSK and MFSK
o, MASK vs. MPSK and MFSK 2ASK vs. 4ASK
[Tyes MPSK vs. MFSK
Oap MFSK and 4PSK vs. MASK and 2PSK 2ASK vs. 4ASK
Oap MASK vs. MPSK and MFSK 2PSK vs. rest
Oaf 4FSK vs. rest 2ASK vs. 4ASK
), | MFSKvs. MASK and MPSK

4.2.2.5 SignalLength Effects
Shorter signals consume less hardware resources and reduce calculation time. Additionally, since

transmittersina non-cooperative environment can change theirmodulation type quickly, it is also
desirable to classify modulation types using the fewest samples possibleforquicke r classification
turnaround time. The aim of the experiment is to determine how sensitive the features were to
signal length. This is to aid in the decision for minimum signal length to still obtain good
performance. The same signals generated in section 4.2.2.4 were used for this experiment. One
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hundred signals for each fading value were used for an SNR of 10 dB and 30 dB respectively. The
feature values were calculated for 21 different signal lengths. Forthe maximum signal length, signals
of 120 ms were used. Thisis equal to:

# of samples = signal time X f; (52)
= (120 x 1073)(1200 x 103)

=144 x 103 samples

The signal lengthis decreased by%:i103 wherei = 1,2,3, ..., 20. The lastiteration thus consists of
480 samples. For a symbol rate of 12.5 kbaud and a sample frequency of 1200 kHz, each symbol
consists of 96 samples. The last iteration is thus calculated over 5 symbols. The averages of the
iterations were calculated and the maximum and minimum values amongall the fading conditions
were plotted for each signal length. The results are shown in Figure 69 to Figure 84. Each figure

shows the maximum and minimum featurevalue overall the fading conditions for each modulation

type which are indicated as “max” and “min” on the graph:s.

A for different signal lenghts at 30 dB SNR
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o, for different signal lenghts at 30 dB SNR
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The results show that:

For Apmean:

e At 30 dB SNR most modulation types remained relatively constant over the extent of the
proposed signal lengths. Although the maximum values of MPSK only changed a little, MPSK
intersected MFSK at the maximum values and can lead to ambiguous results when fewer
signal samplesare used. Although there was adecrease inthe values of 2ASK, it remained
separable from the other modulation types. The minimum values of 2PSKand 4PSK as well
as the minimum values of 2FSK and 4FSK were inseparable over the whole range of signal
lengths.

e At 10 dB SNR most modulation types also remained relatively constant over the extent of
the proposed signal lengths. The maximum values of 2PSK became inseparable from the
maximum values of 2FSK and 4PSK. The minimum values of 2FSK and 4FSK were inseparable
overthe whole range of signal lengths.

Forogq,

e At 30 dB SNRMFSK and MPSK remained relatively constant over the extent of the proposed
signal lengths. The maximum values of 2PSK however increased as the signal length
decreased and intersect 2FSK at the maximum values. The minimum value of 2ASKchange d
the most over the decreasing signal lengths and also intersected the maximum values of
2FSK. The minimum values of 4ASK and the maximum values of 4FSK became inseparable. It
can also be noted that the minimum and maximum values of MFSK were distributed far
apart, showingthe negative effects of fading on this feature.

e At 10 dBSNRMASK decreased as the signal length decreased. The minimum values of 4ASK
intersected the maximum values of all the other modulation types and can lead to
ambiguous results when fewer signal samples are used. Although 2ASK decreased, it
remained separable from the other modulation types.

Foro,

e At 30 dB SNR MFSK and MPSK remained relatively constant overthe extent of the proposed
signal lengths. The maximum values of MPSK and MFSK as well as the minimum values of
4ASK were very close which could lead to misclassification. This observation was however
evidentforall the signal lengths and not only forshortersignal lengths. Both maximum and
minimum values of 2ASK remained separable from the other modulation typesforall signal
lengths.

e At 10 dB SNR similar results were obtained. The minimum values of 4ASK however
intersected the maximum values of MPSK and MFSK which could lead to ambiguous results
when fewersignal samples are used.

For ug,

e At 30 dB the maximum values of MPSK varied overthe range of signal lengths, but remained
separable. Although the minimum values of all the modulation types remained almost
constantfor all the proposed signal lengths, the values werevery close. This observation was
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however evident for all the signal lengths and not only for shorter signal lengths. It can be
seen that the maximum values of 2FSK and 4FSK intersected due to the fact that 2FSK
decreased and 4FSKincreased as the signal length decreased.

e At 10 dB SNR the maximum and minimum values of all the modulation types, except for
2ASK showed similar results. The values were very close to each other and multiple
intersections occurred, which may lead to ambiguous results. 2ASK increased notably as the
signal length decreased and the maximum values eventually intersected the minimum
values of 4ASK.

Forogy

e At 30 dB SNR MPSK were greatly affected by signal length. 4PSK decreased and 2PSK
increased as the signal length decreased. This caused the maximum values of 4PSK to
intersect the values of MFSK and the minimum values of 2PSK to intersect the maximum
values of MASK. This effect could lead to ambiguous results if different signal lengths are
used for classification. MASK and MFSK remained almost constant for all the proposed
signal lengths.

e At 10 dB SNR similar results were obtained. Since 2ASK had different values at 10 dB SNR,
the minimumvalues of 2PSKintersected the minimum values of 2ASK. The minimumvalues
of 2ASK alsointersected the maximum values of 4ASK at shortersignal lengths.

Forogy,

e At 30 dBSNRMASK and MFSK remained relatively constant overthe extent of the proposed
signal lengths. MPSK were the most affected by signal length. MASK, MPSKand MFSK were
separable from each other for the proposed signal lengths. The maximum values of 4PSK
howeverintersected the values of MFSK forlongersignal lengths. 2PSK and 4PSK intersected
for shortersignal lengths. Most of the values of 4ASK were withinthe range of 2ASK for all
proposedsignal lengths. MASK remained well separable from MPSK and MFSK for all signal
lengths.

e At 10 dBSNRsimilar results were obtained. 2ASK however had larger values than at 30 dB,
which shows the effect of SNRon this feature.

For o,y

e At 30 dB MASK and MPSK remained almost constantforall the proposed signal lengths. The
minimum values of 2FSK were the most affected by signal length. The values increased as
signal length decreased. 2FSK and MPSK intersected and can lead to ambiguous results when
different signal lengths are used for classification. It can however be noted that the
distribution between the maximum and minimum values became smaller. Although the
maximum and minimum values of 4FSK decreased as signal length decreases, 4FSK remained
well separablefromthe other modulation types.

e At 10 dB similar results were obtained. The distribution of the minimum and maximum
values of 2FSK were however smaller and the minimum values did not intersect with any
othermodulation types.
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For ,u{:z

e At 30 dB SNR MPSK, MFSK and 2ASK remained almost constant for all the proposed signal
lengths. 4ASK showed asignificant decrease forthe maximumvalues withthe decrease of
signal length and the maximumvalues of 4ASK were underthe maximumvalues of 2PSK. It
may lead toambiguous results when different signallengths are used for classification. The
minimum values of 2ASK and 4ASK became inseparable.

e At 10 dB SNR MPSK and MFSK remained almost constant over the range of signal lengths.
The values of MASK varied and caused intersections at various signal lengths. [t may lead to
ambiguousresults when different signal lengths are used for classification.

4.2.2.6 Decisiontree

The feature values obtained from the different experiments of section 4.2.2.3 and 4.2.2.4 were used
for trainingandtesting of the decisiontree. The training dataset consisted of four hundred training
vectors of each SNR conditionfrom 0dB to 30 dB foreach of the six modulation types. Furthermore,
the training dataset consisted of four hundred training vectors of each fading condition at 30 dB and
10 dB SNR respectively for each of the six modulation types. The decisiontree used these values to

grow the tree and used 10-fold cross validation to prune the tree. The following numberof training
vectors was used from each dataset:

e SNR : 400 training vectors of each SNR condition (7 x 6 x 400 = 16800)
e Fadingat 10 dB : 400 training vectors of each fading ratio condition (9x 6 x 400 = 21600)
e Fadingat 30 dB : 400 training vectors of each fading ratio condition (9x 6 x 400 = 21600)

Due to the sizes of the trees, they are not presented here diagrammatically. The results of
classification aftertraining of the tree onthe above dataset are shownin Table 8.

Table 8: Results of the construction of the decision tree

Before Pruning AfterPruning
Test | Training | Tree Re- Cross Tree Re- Cross Estimated
vectors | depth | substitution | Validation | depth substitution | Validation | Classification
(levels) | Error (%) Error (%) (levels) | Error (%) Error (%) Error (%)
1 60000 | 111 1.04 4.14 58 2.73 4.09 3.83

The test dataset consisted of one hundred test vectors of each SNR conditionfrom 0dB to 30 dB for
each of the six modulation types. Furthermore, the test dataset consisted of one hundred test
vectors of each fading condition at 30 dB and 10 dB SNRrespectively for each of the sixmodulation
types. The same test dataset was used forall the tests of the decision trees. The following number of
testvectors was used from each dataset generated in the different tests for each modulation type:

e SNR : 100 testvectors of each SNR condition (7x 6 x 100 = 4200)
e Fadingat 10 dB : 100 testvectors of each fadingratio condition (9x 6 x 100 = 5400)
e Fadingat 30 dB : 100 testvectors of each fadingratio condition (9x 6 x 100 = 5400)

Confusion matrices were calculated to evaluate the performance of the decision tree for the
different datasets. The confusion matrices show the correct classification and the misclassification
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for each class. A confusion matrix fora two-class (Positive and Negative) classification problem can
be presented as follows:

Predicted classes
Positive Negative
Positive | True
Positive

True
Negative

Negative

True classes

Figure 85: Confusion matrix for a two-class classification problem

The true class labelsare inthe rows and the predicted class labelsinthe columns. Fortrue positive
and true negative, the classes are correctly classified. For afalse positive, anegative is misclassified
as a positive. Forafalse negative, a positiveis misclassified as negative.

The confusion matrices, calculated foreach SNR as well as each fading ratio at both 30 dB and 10 dB
SNR, can be seen in Appendix B.1 and will be discussed below. Table 9 and Table 10 show the
classification accuracy achieved by the decision tree forthe proposed conditions.

Table 9: Classification accuracy (%) of the decision tree with full training dataset ower varying SNR

SNR(dB) 0 5 10 15 20 25 30

Classification | 96.17 99.67 100 100 100 100 100
accuracy (%)

Table 10: Classification accuracy (%) of the decision tree with full training dataset over varying Rps at
30 dB and 10 dB SNR

Rps 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4

Classification | 100 99.67 99.5 99.5 99.17 98.83 97.33 92.00 89.33
accuracy at
30 dB (%)

Classification | 100 95.33 97.17 94.5 97.17 91.67 91.5 86.17 84.83
accuracy at
10 dB (%)

From Table 9 and Table 10 and the confusion matricesin Appendix B.1litcan be seen that:

e The classification accuracy decreased as the fading conditions became worse and the SNR
decreased.

e Theclassification accuracy of the tree was very good for the SNR dataset. The tree had 100%
classification accuracy down to an SNR of 5 dB. For an SNR of 0 dB a 96.17% classification
accuracy was obtained. The most misclassifications occurred between 2FSK and 4FSK.

e The performance of the tree was very good up to an R s of 0.2 for the fading dataset at an
SNR of 30 dB. The classification accuracy was above 97.33%. For an Rpg of 0.3 the
classification accuracy decreased to 92% and for an Rpg of 0.4 to 89.33%. It can be noted
that misclassification mostly occurred between the MASK pairs, MPSK pairsand MFSK pairs
and not between different classes of modulations. For an Rpg of 0.4 the misclassification
between the MASK pairs, MPSK pairs and MFSK pairsincreased.
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e Theclassificationaccuracy varied forthe different Rpsforthe fading datasetat 10 dB. From
an Rpg of 0.1 the classification accuracy started to decrease from 91.67% to 84.83% for an
Rpg of 0.4. The performance of the tree was however better than 91% up to an Rpgof 0.2.
The misclassification also mostly occurred between the MASK pairs, MPSK pairs and MFSK
pairs. The misclassification of 2PSK as 2ASK or 4ASK was also notable froman R g of 0.3.

The following experiment was performed to investigate the training sensitivity tothe dataset size.

The size of the training datasets were decreased to three hundred, two hundred, one hundred, and
fifty training vectors of each SNR and each fading condition respectively for each of the six

modulation types.

Table 11: Results of the construction of the decision trees from five different training datasets

Before Pruning AfterPruning
Test | Training | Tree Re- Cross Tree Re- Cross Estimated
vectors | depth | substitution | Validation | depth substitution | Validation | Classification
(levels) | Error (%) Error (%) (levels) | Error (%) Error (%) Error (%)
1 60000 | 111 1.04 414 58 2.73 4.09 3.83
2 45000 | 88 1.09 4.30 53 2.50 4.20 3.91
3 30000 | 69 1.24 4.44 37 3.08 4.51 4.26
4 15000 | 53 1.11 4.77 26 3.35 4.95 4.59
5 7500 32 1.55 5.71 23 3.09 5.39 5.24

It can be seen that the complexity of the tree reduced by more than half when less samples were

used, while the estimated classification erroronly increased alittle.

For the rest of the document, these five types of datasets used fortraining, includinga full dataset
containing 400 training vectors of each channel condition, will be referred to as 400, 300, 200,100,
and 50 training vectors respectively. Table 12 shows the classification accuracy of the decisiontrees
overvarying SNR’s.

Table 12: Classification accuracy (%) of decision trees with decreasing training sets over varying SNR
using Feature Values obtained in Software

Training SNR (dB)

vectors 0 5 10 15 20 25 30
Testl | 400 | 96.17 100 100 100 100 100 100
Test2 | 300 | 96.17 99.67 100 100 100 100 100
Test3 | 200 | 96.17 100 100 100 100 100 100
Test4 | 100 | 94.83 100 100 100 100 100 100
Test5 | 50 93.17 100 100 100 100 100 100

From Table 12 it can be seen that the classification accuracy was very high and 100% classification
accuracy was achieved for most tests of SNR greater than 0 dB. None of the tests achieved 100%

classification accuracy for an SNR of 0 dB. Classification accuracy greater than 93% was however
achieved for all the tests and a decrease in accuracy of 3% is observed between the biggest and

smallesttraining dataset utilised.

The following table and figures show the results of the decision trees for varying flat fading

conditions at 30 dB SNR.
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Table 13:

Classification accuracy (% )of decision trees with decreasing training sets over varying

R,¢ at 30 dB SNR using Feature Values obtained in Software

Training Rps
vectors 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4
Testl | 400 | 100 99.67 99.5 99.5 99.17 98.83 97.33 92.00 89.33
Test2 | 300 | 100 99.83 99.33 99.5 99.5 99.00 96.83 92.33 88.83
Test3 | 200 | 100 99.67 99.50 99.33 99.67 98.83 96.83 92.33 88.00
Test4 | 100 | 100 99.5 99.17 99.00 97.83 98.17 96.50 93.67 88.17
Test5 | 50 100 99.67 99.50 98.50 98.33 98.00 96.67 91.17 87.00
Outcome of Test 1 at 30 dB SNR for Outcome fo Test 2 at 30 dB SNR for
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From Table 13 and Figure 86 to Figure 90, it can be seen that the classification accuracy decreased as
the fading conditions deteriorated. Classification accuracies higher than 91% were achieved for all
tests up to a fadingratio of 0.3 and higherthan 87% for a fadingratio of 0.4. The largestdecrease in
accuracy between the biggest and smallest training dataset utilised was smaller than 2% and
occurred at a fadingratio of 0.4. The misclassification of 2ASK and 2PSK was the main contribution to
the classification errors. There was asignificantincrease in classification errorfromafading ratio of
0.2 to a fading ratio of 0.3. At fading ratios larger than 0.2 the misclassification of 2ASK started to
occur. Table 14 and Figure 91 to Figure 95 show the classification accuracy of the decision tree for
varyingflatfading conditions at 10 dB SNR.

Table 14: Classification accuracy (%) of decision trees with decreasing training sets over varying Rps at
10 dB SNR using Feature Values obtained in Software

Training Rps

vectors 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4
Testl | 400 | 100 95.33 97.17 94.5 97.17 91.67 91.5 86.17 84.83
Test2 | 300 | 100 95.17 96.33 94.17 95.33 93.00 90.33 88.67 82.5
Test3 | 200 | 100 94.50 96.83 92.67 95.33 90.67 90.83 85.67 83.00
Test4 | 100 | 100 92.50 96.33 93.00 94.33 90.83 91.5 84.33 81.67
Test5| 50 | 100 92.83 94.17 90.67 92.00 87.50 88.83 81.83 79.33
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From Table 14 and Figure 91 to Figure 95, it can be seen that there was a significant decrease in
classification accuracy. Classification accuracies higherthan 79% were achieved forall testsunderall
the flat fading conditions. The largest decrease in classification accuracy between the biggest and
smallest training dataset utilised, was smaller than 6% and occurred at a fading ratio of 0.06. The
misclassification of 2ASK and 2PSK was the main contribution to the classification errors. There was a
significantincreasein classification errorfroma fading ratio of 0.2 to a fadingratio of 0.3. At fading
ratios larger than 0.2 the misclassification of 2ASK started to occur. It is evident that 4PSK had the
least classification errors. It can also be seen that the classification errors were smaller for some
worse fading conditions whichis counterintuitive and againstthe general trend in the data. Thiscan
be seenfora fadingratio of 0.06. For featuressuchas g,4 and o, it can be seenthat intersections
of modulation types occurred at this ratio or just below this ratio. Thresholds of the decision tree
might have been chosen accordingly. This might be one of the reasons for more accurate
classification.

When considering all the channel conditions, it can be seen that the maximum decrease in
classification accuracy between the biggest and smallest training dataset utilised is 6%. The highest
classification erroris 20.66%, which is observed when using the smallest training dataset forafading
ratio of 0.4 at an SNR of 10 dB.

4.3 Hardware Implementation

4.3.1 Implementation

For the hardware implementation, very high speed integrated circuit hardware description language
(VHDL) was used to describe the behaviour of the design and a synthesistoolwasused to map the
architecture. The design was implemented in Xilinx’s Vivado 2016.2 environment. The feature
extraction concept design was translated into VHDL code forimplementation where its functionality
was confirmed and evaluated inthe hardware domain. The feature extraction module was designed
and its functionality was tested in simulation. After satisfactory results were obtained, design
constraints were added and a synthesis of the design was performedin orderto evaluate the size of
the design and performance of its functionality. After acceptable results were obtained, therouting
of the design was done. If timing requirements were not met, placementand routingas well as the
description of the design’s behaviour had to be improved. After all the requirements were met, a
bitstream was generated and loaded onto the FPGA. The processisillustrated in Figure 96 [123].

. . Evaluation of . "
Functional Adding of Placing and Downloading
Entering of X . . nthesis of Design Siz N nerating of .
te "g o P Simulation of » Design p| Synt esis 0 » esign Size P Routing of » GeAe ating of P of Bitstream
Design . R Design and . Bitstream .
Design Constraints Design to Device
Performance

T

Figure 96: Flow Diagram of development of Firmware

Data was transferred between Matlab and the FPGA using User Datagram Protocol (UDP) Internet
Protocol (IP). Feature extraction was performed on the data received by the FPGA. The feature
values were sent back to Matlab and were used for evaluation or classification by the decision tree
discussedin4.2.2.6.
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The extraction of the featuresin hardware was designed according to the specifications of a front-
end processor provided by the Council for Scientificand Industrial Research (CSIR)!. It was designed
with the prospect of future integration with the provided front-end processor. The analysis of some
front-end processor components as well as interaction with the front-end processor is first
discussed. The transfer of data between Matlab and the FPGA is also explained. The design and
implementation of feature extraction is then shown and described.

4.3.1.1 Interaction with front-end processor

The front-end processor provided by the CSIR is similar to the front-end processor described in
Chapter3, with additional features and improved performance. The front-end processoris however
designed for high, agile bandwidth signals and operates at a sample frequency of 4GHz. A great
amount of memory is used to generate signals for the front-end processor at the full bandwidth,
whereafter a filter and decimation significantly reduces the data rate. This method of testing is
prohibitive and a better simulation approach was thus required. The effect of the front end
processing within the frequency band of interest was therefore analysed instead to determine
whether it is negligible. 1&Q samples were then generated accordingly in Matlab. These samples,
calculated from signals with the same signal parameters mentioned insection 4.1 were thenused as
input for the feature extraction block within the hardware. The signal parameters were kept the
same in order to compare the feature values calculated in hardware with the feature values
calculatedinsoftware.

4.3.1.1.1 Hilbert Filter

The effect of the Hilbert filteron asignal was analysed in Matlab simulation. The frequency response
of the filter was investigated with the aim of deciding whetherto neglectthe effects of the filter or
not.

A linear time-invariant (LTl) system can be fully characterised by its impulse response h[n]in the
time domain. Given an input x[n], the output y[n] is given by the convolution sum [115]:

[oe]

yln] = 2 x[k]h[n — k] (53)

k=—o0
The frequency response H(ej“’) is directly related to the impulse response through the Fourier
transform. The Fourier transform of an outputis given by:

Y(e/®) = H(e/®)x(e/®) (54)

Where Y(e/?) and X(e/®) are the Fourier transforms of y[n] and x[n] respectively. In the polar
form, the Fouriertransform of the output is given by:

()] = () (o) 59
2Y(e/®) = 2H(e/®) + 2X(e/®) (56)

I The front-end processor was developed by the Radar and Electronic Warfare Competency Area in the
Defence, Peace, Safety and Security (DPSS) unit.
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Where |H(ef“’)| is the gain or magnitude response of the LTI system and LH(ef“’) the phase shift
or phase response. The effects of the magnitude and phase on a signal are known as magnitude - and
phase distortions. The group delay 7(w) is the derivative of the phase responseandis given by:

1(w) = grd[H(e/®)] = —%}{LH(ef‘*’)} (57)

The group delayis usedto describe the linearity of the phase. Noting thata delayintime is related
to phase thatis linear with frequency, the effect of delay can be characterised. A wideband signal
can be seen as the superposition of narrowband signals with different centre frequencies. If the
group delay of a wideband signal is constant with frequency, the delay for all of the narrowband
signalswill be identical. If the group delay is however not constant with frequency, the narrowband
signals at different frequencies willundergo different delays which willresultintime dispersion of
the energy of the outputsignal. Phase nonlinearity thus causes time dispersion.

Ifthe impulse response of anideal delay systemis given by:

h[n] = 8[n —ny] (58)
where n,isthe time delay. The frequency response is given by:
H(e/®) = e~jwna (59)
such that
|H(e/®)| =1 (60)
¢H(e/?) = —wny (61)

Figure 97 shows the frequency responses of an ideal delay system with a time delay of n; = 16.
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Figure 97: Frequency Response of an Ideal Delay System at n; = 16

A Parks McClellan Hilbert FIR filter of order M equal to 30 is used for I&Q demodulationinthe front-
end processor. The coefficients of the filter were generated in Matlab. Because the filter hasan even
orderand odd symmetry of coefficients, the filteris classified as a Type 3 FIR filter.
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For a generalised linear-phase system, the frequency response is given by:

H(ejw) = A(ejw)e_j“w"'jﬂ (62)
such that the group delay is:
T(w)=«a (63)
and the linear phaseis:
(64)

tH(e/®) = B — wa
where a and f8 are constantsand 0 < w < m. For a Type 3 FIR filter, the frequency response has the

form:

H(ei®) = Ao(efw)e—fw% (65)

For the analysis of the Hilbertfilter, a Diracdeltafunction was applied to the filter. Figure 98 shows
the frequency response of the Dirac delta function at time delay n; = 0. Figure 99 shows the
frequency response of the filterattime ng = 0 and Figure 100 shows the frequency response after

the effect of filter delayforng; = 0 had been removed.
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Figure 98: Frequency response of Dirac delta function at n; =0
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For M = 30, it can be seen that the filter satisfies equation (65). With the delay removed, the
magnitude- and phase response effects are negligibly small. By comparing Figure 98 and Figure 99 it
can be seenthatthe filtershows desired resultsin the passband, f,1 < f < f,2. Thegroup delay is
also constantand the filter has a linear phase with no effect of time dispersion. Itcan therefore be
assumedthatall narrowband signalsin the given bandwidth will undergo identical delay. Itcan also
be concluded that the magnitude- and phase response effects can be neglected, due tothe fact that
these effects are negligibly small compared to other signal effects such as noise and quantisation
which dominate these errors.

4.3.1.1.2 Quantisation
The operation of quantisation can be represented by [126]:

2[n] = Q (x[n]) (66)

Where x[n] is the input sample and £[n] the quantised sample. A (B + 1)-bit quantiser generally
has 2B*1 quantised levels. The most significant bit is considered as the sign bit in a two’s-
complement system. The remaining bitsin the code word representthe value. The parameter, X,
determinesthe full scale levelof an ADC. The stepsize of the quantisedlevels dependson X,,, and is
given by:

2Xm  Xm (67)

A="F =38

The quantisation erroris given by:

e[n] = 2[n] — x[n] (68)

The quantisation error samples are uniformly distributed random variables and can be seen as

additive white-noise. If sample values are rounded by quantisers to the nearest quantisation level,
the quantisation noise samples are inthe range

—A/2 <e[n] <A/2 (69)

Thisis only true if

(=Xm—A/2) < x[n] < (X, —A/2) (70)

If x[n] is outside this range the values are clipped and the errors may be larger.

With X;,, = 1 anda 10-bit ADC from (67):

1 - 71
A= 5 =1.953 x 1072 (71)
and from (69):
—9.766 x 10~* < e[n] < 9.766 x 10~ (72)
The signal-to-quantisation noise ratio (SNR) of a (B + 1)-bituniform quantiserisgiven by:
O'x2 Xm (73)
O Ox
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where g, isthe RMS value of the amplitude of asignal and 0,2 is the noise variance ornoise power

given by:
: A2 272By 2 74
Pee(e]w)zo_ezzﬁz 12m , lolsmn ) (74
If a cosine wave with amplitude of 1is considered with X,,, = 1, then g, = N and
SNR,=6.02(9) + 10.8 — 20! ( ! )

SNR, = 6197 dB
giventhatthe amplitude doesn’texceed X,,,. Fromequation (72) and (75), it was concluded that the
guantisation noise is much smaller than the signal to noise ratio of the investigated signals, and is
thus negligible.

4.3.1.1.3 Instantaneous Amplitude, Phase and Frequency

The CSIR implemented front-end processor also supplies the instantaneous amplitude, phase and
frequency of the signal withinits band. It was therefore only necessary toimplement the calculation
of the features based onthe instantaneous information. The conversion of the I&Q ssignal samples to
polar form of the front-end processor was analysed and the instantaneous amplitude, phase and
frequency samples were generated accordingly.

4.3.1.2 Data Transfer between Matlab and FPGA

The Matlab function and FPGA process to transferthe datawere provided and were not developed.
The data thus only had to be converted to the correct form to be transferred. The instantaneous
amplitude, phase and frequency samples of a signal were first converted from double-precision
floating pointvalues toscaled 16 bitintegers. The samples were scaled accordingtothe values that
would have been obtained by using the front-end processor. Each instantaneous amplitude, phase
or frequency sample consisted of 16 bits and was type casted to two 8-bit unsigned integers as thisis
the data size required fortransferto the hardware system.

The converted instantaneous amplitude, phase and frequency samples were sent in UDP packets to
the FPGA and were writteninto three different memory blocks respectively. UDP packets contained
16 words where each word consisted of 512 bits, or equivalently, 64 unsigned bytes. A word thus
contained 32 samples. After all the data was sent, a final packet, containing one 32 bit word, was
sentto the FPGA as a notification that all data had been sent. This notificationwasuse d to initiate
the calculations of the features. After the notification was received, the samples were read from
memory. In normal operation of the front-end processor, the data is parallelised by a factor of 32
between the ADC and the FPGA, so each clock cycle contains 32 signal samples when processed.
Thirty two samples were thus read each clock cycle and used for the calculations. Once the
calculations were done, the feature values were stored in aregister and sent back to Matlab. Figure
101 shows a flow diagram of the transfer of data.
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Figure 101: Flow Diagram of Data Transfer betneen Matlab and FPGA

4.3.1.3 Behavioural Design Considerations

A Virtex7 VX690TFFG1930-2 FPGA was used for the implementation. DSP slices in an FPGA can be
used for multiple parallel math operations such as multiplications, accumulate, add, etc. The Virtex7
VX690TFFG1930-2 FPGA contains 3600 DSP48E1 Slices. A block diagram of a DSP48E1 Slice can be
seeninFigure 102. The math portion of the DSP slice includes a 25-bit by 18-bit, two’s compliment
multiplier and a 48-bit accumulator. The result of the multiplier is a 43-bit output that is sign-
extendedto 48-bits. An adder/subtracter can have three 48-bitinputs and resultsin a 48-bit output
[125]. If the inputs are greater than the specified widths, one or more DSP slices are cascaded for the
math operation. It is thus desirable to keep the inputs within the specified widths to avoid the
unnecessary overutilisation of limited device resources.
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Figure 102: DSP48EL Slice [125]

For a DSP slice to operate at full speed (600 MHz), pipelinestages must be implemented by means of
registers. Fora multiply operation, three-stage pipeliningis suggested. For non-multiply operations,
two-stage pipeliningissuggested. There isthus atrade-off between increased clock frequency and
data latency [125].
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4.3.1.4 Calculation of the features

The feature calculations were performed in cascade to improve calculation speed. The feature
extraction entity was designed to use thirty two cascaded paths, since 32 sampleswill be received
each clock cycle fromthe front-end processor. Shortersignals consumeless hardware resources, and
reduce calculation time. Since transmitters in a non-cooperative environment can change their
modulation type quickly, it is desirable to classify modulation types using the fewest samples
possible for quicker classification turnaround. The calculation of the featuresis also asubsystemthat
will from part of a greater system. The utilisation of device resources should thus also be kept to a
minimum. From the results obtained in section 4.2.2.5, it can be seen that most feature values
remain separable forthe number of samples greaterthan 1920. Anumber of samples greater than
1920 will thus be adequate. 2048 samples were chosen, sinceitisapowerof 2 and simplifies many
calculations.

If the feature values are calculated over 2048 samples, at least 64 clock cycles are needed by each
math operation to process all 2048 samples. Independent operations, such asthe calculations of the
features based onthe instantaneous amplitude, phase and frequency respectively, were performed
in parallel. The dependent operations, such as the calculations to obtain the individual features,
were performed sequentially. Many of the features consisted of intermediary calculation steps that
were identical and calculated values could thus be re-used. Pipelining stages were implemented to
ensure that the timing constraints were met. Some general operations include the multiplication,
division, the calculation of the average, summation, the square root and squared power. These
operations are explainedin detail below:

e For multiplication

o Firstthe bit width of a value was checked to determine whetheritexceededthe bit
width of a multiplier. The bit width was determined by finding the position of the
mostsignificant bit.

o Ifthe bitwidth of the values exceeded the bit width of the inputto a multiplier, the
value was shifted right by the number of positions exceeding the bit width of the
input. This was equivalentto dividing the value by a power of two where the power
isequal to the number of positions it was shifted. Thiswasdoneinorder to reduce
the number of multipliers used for asingle multiplication operation.

o After the multiplication was performed, the result is shifted left by the number of
positions the two input values were shifted right.

o It can be noted that there will be a decrease in accuracy. There is thus a trade-off
between device resources and precision.

e Fordivision, the denominatorwasinverted and multiplication was performed.
e Thesummation of thirty two values was performed by using an addertree:

o Thedepthof the treeisequal to the log, of the numberofinputs.

o Thetree starts with the numberof branches equal to the numberof inputsand ends
with one branch.

o Values are added together in pairs of two each clock cycle until only one value
remains.

o The numberof branchesisthus halved each clock cycle.
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e Theaverage was calculated asfollows:

o Theaverage of the 32 valuesreceivedin each clock cycle is calculated by adding the
valuestogetherand dividingitby 32. The calculationisreferredtoasParallel Mean
in Figure 103 to Figure 106. An adder tree was used to add the values. The division
was executed by right shifting the sum 5 positions right which is equivalent to
division of 32.

o The calculations in the latter step were performed 64 times which resulted in 64
averages over 64 clock cycles. The average of the 64 values was calculated by
accumulating the values each clock cycle and dividing the answer by 64 when 64
clock cycles had passed. For this second average operation, right shifting was not
used. If the number of samples utilised for the calculation of the features would
change and would not be divisible by apower of two, the operation would not work.
A counterwas usedinstead to determine the value by which the accumulated value
should be divided by. The calculation is referred to as Serial Mean in Figure 103 to
Figure 106.

e An|Pcomponentwas usedto calculate the square root.

The adder-tree, average and divider were already developed generic entities and were not
developed for the implementation of the feature extraction. The calculations of the normalised-
centred amplitude, phase and frequency are shown in Figure 103. The values were shifted left (or
multiplied) whenever division was performed. This was done in order to retain precision of the
values. Itcan be noted that the frequency samples were not normalised by the samplingfrequency
to preventloss of precision.
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Figure 103: Flow Diagram for normalising and centring the Instantaneous Amplitude, Phase and
Frequency in Firmware
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For the features based onthe instantaneous amplitude, phase and frequency, the variance needed
to be calculated for various features. Generic blocks were thus created to calculate averages of
squared values as well as the squared values of averages. These blocks were then implemented
where required forthe different features.

For the calculation of the ;122 and yf:z, which will be described in the following diagrams, the
squared valuesresultedin 32 bits. When these values have to be squared again, they exceed the bit
width of a multiplier. The method discussed for multiplication was applied here. Since a value is
multiplied by itself, the maximum bit width of the value cannot exceed the maximum bit width of
the smallestinputtoa multiplier, whichis 18 bits. The values were thus scaled to 18 bits, multiplied
and scaled back to their original size. After the fourth powers of the values were calculated, their
average was calculated. As mentioned earlier, the calculation of the average requires the summation
of the thirty twovalues. Since values of different sizes were added, each value could not be scaled
individually accordingtothe input width of an adder. The bits of the values were however divided
intotwo partsin orderto calculate the average of the 64 averages since a multiplier was required to
calculate the average. The calculation of the average was designed to restrict the inputin order to
ensure the utilisation of asingle multiplier for an operation. The average of the most significant bits
and least significant bits were calculated separately. The answer of the most significant bits were
thenshifted and added to the answer of the least significant bits. It can again be noted that there is
alossin accuracy and also a trade-off between device resources and precision.
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Figure 104: Flow Diagram for Instantaneous Amplitude Based Feature Extraction in Firmware
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The flow diagramin Figure 104 illustrates the following calculations to extractfeatures Apean, Gaa
ogand ug,:

e Foreachclock cycle the absolute values of 32 normalised-centred instantaneous amplitude
samples were first obtained.

e Theaverage of the absolute values received in each clock cycle was calculated andresulted
in Amean:

e Thesquaredvalues of the average of both direct and absolute amplitude were calculated.

o Theaverage of the squared values of the amplitude was calculated. Either the direct value or
the absolute value could be used for calculations since the square of the values were used.

e The averages of squared values from both the absolute and direct values were subtracted
fromthe squared values averaged individually. The two answersresultedinthe variance of
the directand absolute valuesrespectively.

e Thesquareroot of each was calculated to give g,, and a,,.

e Thefourth powerof eitherthe direct orabsolute value calculated by computing the squared
value twice.

e Theaverage of the fourth powervalues was calculated.

e Theaverage of the fourth powervalues were divided by the squared value of the average of
the squared valuestogive u$,.

Parallel 32x16bits‘ ' Serial 16bity/ o 32bity/
Mean Mean > Square 7
; 32x16bits, Absolute 32x16bits, 32x32bits, Parallel 32x32bits, Serial
NL|I Square ¢ <
value Mean Mean

Square root %bltib Oap

Square root %0@

Parallel 32x16bits, i | i
aralle .+ Serial 16b\t¥ » Square 32b|t/§/
Mean Mean

Figure 105: Flow Diagram for Instantaneous Phase Based Feature Extraction in Firmware

The flow diagram in Figure 105 explains the following calculations to extract features a,;, and o gy:

e For each clock cycle the absolute values of 32 non-linear centred instantaneous phase
samples were first obtained.

e Thesquaredvalues of the average of both direct and absol ute phase were calculated.

e Theaverage of the squared values of the phase was calculated. Eitherthe direct value orthe
absolute value could be used for calculations since the square of the values were used.

e The averages of squared values from both the absolute and direct values were subtracted
fromthe squared values averagedindividually. The two answersresulted inthe variance of
the directand absolute values respectively.

e Thesquareroot of each was calculated togive g,y and ag,.
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Figure 106: Flow Diagram for Instantaneous Frequency Based Feature Extraction in Firmware
The flow diagram in Figure 106 explains the following calculations to extract features o, 5 and ,uj:Z:

e In each clock cycle the absolute values of 32 normalised-centred instantaneous frequency
samples were first obtained.

e Thesquaredvalues of the average of both direct and absolute frequency were calculated.

e Theaverage of the squared values of the frequency was calculated. Eitherthe direct value or
the absolute value could be used for calculations since the square of the values were used.

e Theaverages of squared values from the absolute were subtracted from the squared values
averaged individually. The answerresulted in the variance of the absolute values.

e Thesquareroot was calculated to give g,.

e Thefourth powerof eitherthe direct or absolute value calculated by computing the squared
value twice.

e Theaverage of the fourth powervalues was calculated.

e Theaverage of the fourth powervalues were divided by the squared value of the average of

the squaredvaluestogive “3;2'

It can be seen that many of the operations have redundant bits and that there is room for
improvement of the design. Full functionality of the hardware implementation was however
demonstrated.

4.3.2 Results

4.3.2.1 Comparison between simulation and hardwareresults

The instantaneous information of the signals in section 4.2.2.4 was used for testing in which 2048
samples were used for feature calculation. Figure 107 to Figure 122 show the results of the feature
values underflatfading conditions forboth 10 dB and 30 dB SNR. The results from simulation (using
144 000 samples) and hardware implementation (using 2048 samples) are presented next to each
otherfor easierone toone comparisonin AppendixA.2.
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e At 30 dB 2ASK hadslightly smallervaluesthanthe values obtained in the software results. It
can be seenin Figure 69 that the values of 2ASK decreased as the signal length decreased.
The values of the other modulation types were very similar to the values obtained in

software.

e At 10 dB the values of 2ASK were also slightly smaller than the values obtained in the
software results. 4ASK also showed small variations from values in the software results.
Figure 70 shows the decrease inthe values of MASK with decrease insignal length.ltcan be
seen that 2ASK decreased more rapidly than 4ASK and therefore the values of 2ASK vary
more than 4ASKin the hardware results from the software results. The valuesof MPSK and
MFSK were very similarto the values obtained in software.
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For ogq:

e At 30 dB SNR MASK had larger values in the hardware results than the values calculated in
software. The values of 4ASK differ only by a small amount while 2ASK had increased
significantly. In Figure 71it can be seen that the minimum values of 2ASK increased as the
number of samples decreased. The variance of the hardware and software results did
however decrease forfadingratios above 0.2. The values of 2PSK alsovary from the values
obtained in software at fading ratios above 0.1. The values of 2FSK also show variations at
fadingratios from 0.03 to 0.2.

e At 10 dB SNRthe values of all the modulationtypes were slightly higherthan the values of
the software results. Figure 72 shows howeverthat the decrease in signal length was not the
reason for the decrease inthe feature values.

For o,

e At 30 dBSNRthe valuesof 2ASK was smallerthanthe values obtainedin software. The other
modulation types had very similar results than the results obtained in software. From Figure
73 it can be seenthanthe values of 2ASK decreased as the signal length decreased.

e At 10 dB SNR the values of 2ASK were again smaller than the values obtained in software.
The values of 4ASK were also slightly smaller. In Figure 74 it can be seen that the values of
2ASK decreased notably as the signal length decreased and 4ASK also decreased slightly as
the signal length decreased. The values of MPSK and MFSK were almost identical to the
values obtainedin software.

For ug,

e At 30 dB SNR the values of MPSK and MFSK were notably smaller at lower fading ratios,
while the values of MFSK were almost identical to the values obtained in software. The
decrease inthe values of 2PSKis unexpected giventhatits valuesincreased as signal length
decreased as observedin Figure 75. The trade-off between calculation accuracyand device
resources can thus be seen here.

e At 10 dB SNR the values of MFSK and MASK were also higher than the values obtained in
software. In Figure 76 it can be seen that the values of MASK increased as the signal length
decreased.

For gy

e At 30 dBSNRthe value of 4PSKis slightly smallerthanthe values obtainedinsoftware. The
values of 2PSK and MASK were howeversignificantly larger than the software resultsforthe
lowerfadingratios. The variance inthe values decreased at largerfadingratios. In Figure 77
it can be seen that the values of 4PSK decreased as the signal length decreased and the
minimum values of 2PSKincreased as the signal length decreased. Itishoweverinteresting
to see that the values of MASK remained almost constant as the signal length decreased, but
differences were observed between hardware and software results. Although the
modulation types remain separable the increase and decrease in values might lead to
misclassification when values obtained from hardware are used.
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e At 10 dBSNRthe valuesof both 4PSKand 2PSK were smallerthan the software results while
the values of MFSK and MASK almost remained constant. The values of 2ASK were however
smallerthan the results obtained in software. In Figure 78 it can be seenthatthe values of
4PSK decreased asthe signal length decreased while the minimum values of 2PSKincreased
as the signal length decreased. The values of 2ASK also decreased as the as the signal length
decreased.

Foragy,

e At 30 dB SNR the values of MPSK and MFSK were smaller than the values obtained in
software, whilethe values of MASK were slightly largerthan the software results. In Figure
79 it can be seen that the values of MPSK decreased as the signal length decreased, while
and the maximum values of MASK increased slightly as the signal length decreased. It is
howeverinterestingto see that the values of MFSK were smallerforthe hardware results,
while the values remained almost constant as the signal length decreased.

e At 10 dB SNR the values of MSPK were smaller while MASK and MFSK were very similar to
the results obtained in software. In Figure 80 it can be seen that the values of MSPK
decreasedsignificantly as the signal length decreased.

For ogy

e At 30 dB SNR the values of 2FSK were significantly smaller than the values obtained in
software. The other modulation types had almostidentical results than the software results.
In Figure 81 it can be seen that the minimum values of 2FSK increased significantly as the
signal length decreased. Although the values of 4FSK decreased as the signal length
decreased, the value remained almost constant for the number of samples equal to or
higherthan 2048 samples.

e At 10 dB SNR the values of all the modulation types were slightly smaller, except for the
values of 4FSK which were notably smaller. In Figure 82 it can be seen that the values of
4FSK decreased as the signal length decreased.

For Hyp

e At 30 dBSNRitcan be seenthat MASK have very differentresults from the resultsobtained
in software, while the values of MPSK and MFSK were very similar. In Figure 83 it can be
seen that the values of 4ASK decreased significantly for the first decrease in signal length.
The great differenceinthe values of MASK however re quires furtherinvestigation.

e At 10 dBSNRthe valuesof all the modulationtype werevery similarto the results obtained
in software, except for MASK from a fading ratio of 0.3. In Figure 84 it can be seen that the
values of MASK varied with the decrease in signal length.

In summary, the results show that the values correspond to the values obtained in 4.2.2.4 and are
very similar for most features. The calculation of the feature values in hardware showed to be
feasible. By comparingthe figures of the signal length analysis with that of the results obtained in
this section, it can be seen that most differences were due to the number of samples used for
calculation. Very similarresults were obtained for modulation types that were not affected by the
number of signals used for calculation of the feature values. For the calculation of u§, and u{z much
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bigger differences were observed. It can thus be seen that measures taken to improve device
resource utilisation and computational complexity influenced featurevalues. The differences in the
values of MASK for ,uj:z required furtherinvestigation. For direct comparisonthe simulations were
repeated atthe same signal length as that used for hardware, namely 2048 samples. These feature
valuescanbe seeninAppendix A.3.Similarresults were obtained than forthe hardware results for
uf;z, although the values of MASK from hardware were slightly smaller. Itisthus confirmedthat the
major factor contributing to the big difference in featurevalues were due to the numberofsamples
used.

4.3.2.2 Comparison between simulation and firmwareresults of decision tree

From the observationsin the results of the previous section, itwas notexpectedthat the decision
trees constructed in section 4.2.2.6 would work as well for classification when 2048 samples are
used to calculate the feature values. The performance of these decision trees was however
investigated by using the feature values calculated in hardware. The same set of signals investigated
in software simulation for the testing of the decision tree was used forthe hardware investigation.
Table 15 and Table 16 show the classification accuracy achieved by the decision tree using the
hardware results.

Table 15: Classification accuracy (%) of decision trees with decreasing training sets over varying Rps at
30 dB SNR using Feature Values obtained in Hardware

Training Rps

vectors 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4

Testl | 400 | 71.5 73.6 75.5 76.5 80.17 80.00 75.5 68.17 68.33

Test2 | 300 | 71.67 74.17 75.83 75.67 79.83 80.5 76.00 68.83 68.83

Test3 | 200 | 72.33 77.33 77.67 76.83 79.17 79.00 76.17 67.33 68.33

Test4 | 100 | 70.5 74.00 75.00 75.67 78.50 78.33 74.50 69.00 65.00

Test5| 50 | 70.17 76.00 76.00 77.33 81.17 78.5 76.50 71.00 66.83

Table 16: Classification accuracy (%) of decision trees with decreasing training sets ower varying Rps at
10 dB SNR using Feature Values obtained in Hardware

Training Rps

vectors 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4

Testl | 400 | 71.17 64.33 65.17 64.5 64.17 64.33 61.50 59.50 60.50

Test2 | 300 | 72.17 64.33 65.83 63.83 64.00 63.50 61.83 61.33 62.17

Test3 | 200 | 71.67 66.17 66.83 65.00 64.17 65.33 62.67 61.83 60.17

Test4 | 100 | 75.33 67.33 65.67 64.67 64.50 63.33 64.83 61.83 60.50

Test5 | 50 | 73.67 66.00 64.50 64.33 64.83 64.17 64.17 61.17 61.5

From Table 15 and Table 16 it can be seenthat that classification accuracy decreased onaverage by
22.89% and 29.24% for the biggest dataset at an SNR of 30 dB and 10 dB respectively. The
classification accuracies are however still much better than random chance (100/6). For 30 dB and
10 dB SNR, the highest and the lowest classification accuracy were 80.5% and 65.00%, and 75.33 and
59.5% respectively. It is however interesting to see that there was not a significant decrease in
classification errors when smaller datasets were used. It can also be seen that the classification
accuracy increased as the fading conditions deteriorated until afading ratio of 0.2 for 30 dB SNR. The
reason for this behaviouris still unknown and is subject to furtherinvestigation.
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From the confusion matrices in Appendix B.2, it can be seen that most misclassifications occurred
between different orders within modulations of the same type. More specifically, the higher order
modulation types weretypically misclassified as the lowerorder modulationtypes. It can be seen
that 4PSK was the most effected by the number of samples utilised for the calculation of the
features. Forpoorfading conditions, 4PSK was almost completely misclassified. The misclassification
of 4PSK became worse for 10 dB SNR. The results showed that 4PSK put a limitationonthe number
of samples required for accurate classification. Future work may include finding features that are
more distinguishable on 4PSK.

The decision tree thus had limited performance when a test dataset obtained in hardware with a
different signal length was used. It was thus required to construct a decision tree using feature
values calculated from 2048 samples for direct comparison with the hardware. Another tree was
therefore constructed in Matlab using feature values calculated from 2048 samples, matching the
signal lengths used for hardware instead of 144000 samples used in the original tree construction.
Because the datasets obtained in hardware did not have full representation of all SNR conditions,
only 10 dB and 30 dB SNR, it was necessary to construct a new tree in Matlab with full
representation of all the channel conditions. The goal was to determine whether the hardware
implementation was feasible for calculating feature values from signals under combined SNR and flat
fading conditions. A dataset containing feature values calculated from signals only under SNR
conditions was thereforenot generated in hardware. Table 17 shows the results of the construction
of the trees using sizes of training datasets as discussed in section 4.2.2.6.

Table 17: Results of the construction of the decision trees using 2048 samples

Before Pruning After Pruning
Test | Training | Tree Re- Cross Tree Re- Cross Estimated
vectors | depth | substitution | Validation | depth substitution | Validation | Classification
(levels) | Error (%) Error (%) (levels) | Error (%) Error (%) Error (%)
1 60000 | 154 3.56 14.00 63 10.25 14.14 12.40
2 45000 | 126 3.81 14.29 63 10.38 14.39 12.78
3 30000 | 110 3.77 14.22 38 11.59 14.68 13.04
4 15000 | 73 4.10 15.07 35 10.93 15.21 14.00
5 7500 47 4.15 16.27 26 10.25 16.01 15.47

It can be seenthatthe estimated classification errors increased notably compared tothe estimated
classification errors of the tree constructed insection 4.2.2.6. There isalsoan increased in the depth,
thusthe complexity, of the trees.

The tables below show the results of the decision tree forvarying flat fading conditionsat 30 dB and
10 dB SNR respectively. The top value in each cell is the classification accuracy achieved for feature
values obtained from software, indicated with S, and the bottom values in each cell is the
classification accuracy achieved for feature values obtained from hardware, indicated with H.
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Table 18: Classification accuracy (%) of decision trees with decreasing training sets over varying Rps at
30 dB SNR using Feature Values obtained from 2048 samples

Training | S/H Rps
vectors 0 0.001 | 0.004 | 0.03 0.06 0.1 0.2 0.3 0.4
S 9783 |97.00 |[96.50 |[95.67 |96.00 |93.00 |87.33 |80.83 |74.17
400 H 96.00 |[94.33 |93.17 |93.00 |93.83 | 92.17 | 86.50 | 80.67 | 74.50
S 97.67 | 96.83 | 96.00 |94.67 |96.00 | 92.67 | 87.83 | 79.00 | 74.83
300 H 98.83 |93.83 |[93.5 92.67 |93.67 | 915 85.67 | 79.33 | 73.83
S 96.17 | 96.67 | 95.33 | 93.5 94.67 | 91.83 | 87.17 | 78.17 | 74.67
200 H 94.83 |93.83 | 94.00 |91.00 |91.67 | 90.5 85.17 | 77.33 | 74.83
S 95.33 | 95.33 | 95.7 94.00 |94.33 | 92.67 | 87.50 | 77.00 | 74.83
100 H 95.33 [ 95.00 |94.67 |91.00 | 91.50 | 89.50 | 85.17 | 76.83 74.17
S 93.50 | 95.00 |92.67 |91.17 |92.83 | 89.83 | 83.67 | 75.33 | 74.67
>0 H 93.00 |94.50 |92.00 (91.17 |91.67 | 87.83 | 83.33 |73.83 | 73.50

Table 19: Classification accuracy (%) of decision trees with decreasing training sets ower varying Rps at
10 dB SNR using Feature Values obtained from 2048 samples

Training | S/H Rps
vectors 0 0.001 0.004 0.03 0.06 0.1 0.2 0.3 0.4
400 S 92.33 | 77.00 | 79.83 78.00 | 78.83 | 73.83 76.17 | 72.00 | 69.17
H 84.50 | 72.00 72.4 70.83 73.17 71.83 69.33 68.33 65.17
300 S 92.5 77.50 79.33 79.50 79.17 73.5 75.00 | 73.50 67.33
H 83.00 | 71.33 72.32 [69.32 | 7450 | 70.50 | 68.33 | 68.17 | 63.67
200 S 91.33 | 77.17 78.33 77.50 78.67 73.50 73.67 | 72.00 67.5
H 84.00 | 70.67 72.33 70.67 75.50 70.33 69.67 | 67.33 62.50
100 S 90.50 | 75.17 77.00 76.50 78.33 73.17 70.00 | 73.33 65.50
H 86.67 | 73.00 | 75.17 | 74.33 | 75.67 | 70.33 68.17 | 69.83 64.50
50 S 90.00 | 73.50 76.67 76.83 76.00 70.00 71.50 | 69.00 61.83

H 89.33 | 7200 |7217 |7633 (7517 | 7133 | 69.33 | 66.00 | 57.17

For 30 dB SNR the results from software and hardware were very similar. At 10 dB SNR the
classification accuracies for the hardware results however decreased notablyforlowerfading ratios.
At higherfadingratios the classification accuracies from hardware were closertothe classification
accuracies from the software results. Classification accuracy higherthan 73% and 57% was achieved
for all training datasetsfor30 dB and 10 dB SNR respectively. Forafull training datas et, classification
accuracy higherthan 74% and 65% was achieved for30 dB and 10 dB SNRrespectively. Classification
accuracy higher than 83% was achieved for all training datasets up to a fading ratio of 0.2 for 30 dB
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SNR. For 10 dB SNR, classification accuracy higherthan 70% was achieved foral training datasets up

to a fading ratio of 0.1. It can be seen that the classification accuracy decreased notably for fading
ratiosabove 0.3.

The followingfigures and Appendix B.3 show the results of the decision tree of the hardware results

for varying flat fading conditions at 30 dB and 10 dB SNR respectively. The decision tree was
constructed with a full training dataset.

Outcome of Test 1 at 30 dB SNR for Outcome of Test 1 at 10 dB SNR for
Hardware Implementation Hardware Implementation
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Figure 123: Classification Error for 400 training Figure 124: Classification Error for 400 training
vectors under varying flat fading conditions at wvectors under varying flat fading conditions at
30 dB SNR for Hardware Implementation 10 dB SNR for Hardware Implementation

It can be seen that the misclassification of 2PSK was the biggest contributor to the classification
error for 30 dB SNR and the misclassification of 4ASK for 10 dB SNR. It can also be seen that the
classification errorfor10 dB increased only alittle as the fadingratioincreased. Forboth 10 dB and

30 dB SNR it can again be seen that 4PSK is the most robust for classification in these channel
conditions.

It can be concluded thatthe numberof samples utilised for calculation of the feature values play a
significantrole in the classification performance of the decision tree. Potential remedies to this are
discussedinthe future work section 5.1.

4.4 Modulation Change Tracking

44.1 Implementation

The tracking was performed by logging the modulation output of the decisiontree inaregisterto be
utilised by external processes that may follow. The modulation output was recorded and evaluated
aftereach classification. If the modulation type remained the same as the previous classification, no
change was recorded. If the modulation type was different from the previous classification, a flag
was setto indicate achange in modulation type and the status of the flag was recorded. The tracking
processisillustratedin Figure 125.
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Figure 125: Flow Diagram for Tracking Changes in Modulation Types

44.2 Results

The logging of the modulation type sufficiently addressed the tracking from one modulationtype to
another. For deeper investigation into the tracking behaviour, the effect of modulation type
transitions was investigated.

4.4.2.1 Modulation Transition Effects

In section 4.3.2.2 the classification of modulation types was performed overawindow consisting of
2048 samples. Up to this pointit was assumed that one type of modulationfilled the whole window.
The transition from one modulation type to another may however have an effect on the
classification performance since varying signal lengths from the two different modulation types is
contained within asingle classification window. The next experiment was performedtoinvestigate
the effect of modulation transition withinawindow. The signals were investigated at an SNR of 30
dB. Two assumptions were made forthis experiment. The firstassumptionisthatdata throughput
wants to be maintained and a modulation type will therefore only change to another type of
modulation with the same order. The second assumption is that there is no period during the
transition from one modulation type to anotherin which asignal is not present. Inotherwords, the
modulation change is instantaneous. Practically there may be signal effects due to handover, and
negotiation elements within the communication protocols. The experiment was performed by
replacing samples of amodulation type incrementally with samples of another modulation type until
the initial modulation type is absent and only the new modulation type was present. For each
increment 10% of the initial modulation type is replaced with the other modulation type. For the
hardware implementation 2048 samples were used for calculation of feature values, which is
discussed in section 4.3.1. For this experiment 2050 samples where used to aid in the analysis
process, since 2050 is divisible by 10while 2048 is not. The difference in classification performance
between 2048 and 2050 is assumed negligible. Foreachincrement500 iterations were performed.
Since the features extracted from the signals are not sensitive to the time order in which they
appear, inversing the order of modulation type switching would produce the same results. The
decision tree constructed for 2048 samples in section 4.3.2.2 was used for this experiment. The
outcome of the experimentis shownin Figure 126 to Figure 131.
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From the results it can be seen that misclassifications occurred between different orders within
modulations of the same type as both modulation types become equally present in the window.
More specifically, the higher order modulation types were usually misclassified as the lower order
modulation types. This misclassification was also evidentin section 4.3.2.2. For modulation order of
2, 2FSK was the most affected and misclassified as 4FSK. While 2PSK was the least affected when
dominantly present, 2ASK was the least affected when both modulation types were equally present
and when least presentinthe window. For modulation order of 4, 4FSK was the least affected. 4ASK
was the most affected, especially where 4ASK was less than 90% pre sent. Although misclassifications
of modulation orders of the same type occurred, it can be seen that very few misclassifications of
other modulation types occurred.

4.5 Parameter Assumption Validity

For this study, the carrier frequency and signal bandwidth was assumed to be known, asisstandard
practice in literature to date [113], [110], [123], [69], [128]. However, when the carrier frequency
and bandwidth is estimated in practice, uncertainties are introduced that could introduce offsets
between the estimated values and the true values. These offsets could negatively affect the feature
valueswhichinturn could negatively affect classification accuracy.

The authors of [110] presented three methods to estimate the carrier frequency, although a
preselected carrier frequency with zero estimation error was used in their work. Three methods
were tested in simulation by the authors, in order to obtain the most accurate method for
estimation of the carrierfrequency. The tests were performed foran SNRof 5 dB, 10 dB, 15 dB and
20 dB. The results from [110] showed that their third method, modified zero-crossings, had 100%
accurate estimation for an SNR above 10dB. For both 5 dB and 10 dB only 2FSK and 4FSK had an
offset of 149.5+5.0 kHz and 149.1+2.7 kHz respectively. It can thus be seen the estimation of the
carrier frequency becomes less accurate at lower SNR and may have an effect on feature values. This
effect and the true performance of carrier frequency estimation techniques in hardware require
further investigation in future work before conclusions can be drawn on the performance of the
feature based classification method in practice.

In literature signals are matched to their bandwidth. This bandwidth varies for ASK, FSKand PSK (as
can be seen in Table 1. This is knowledge that has to be estimated in a non-cooperative
environment, or for which a design decision (i.e. fixed bandwidth) has to be made. Non-cooperative
receivers normally have abandwidth thatis suited forvarious types of signalsandis therefore wider
to accommodate all the intended signals as opposed to cooperative receivers where the received
signal parameters are known and filters can be matched exactly to those parameters. Since the
amount of noise increases with the increase of afilter bandwidth, signals with narrower bandwidths
will have more noise when filtered overa wider bandwidth. Features that are sensitive to noise may
thus be affected and impactthe feature values.

To investigate whether this wider noise filter and thus increased noise in the system impacts the
feature values, noise with different bandwidths was simulated. The feature values of signals with
noise filter bandwidths matched to the modulated signal, as described insection 4.1and [110], was
compared to signals with afixed noise filter bandwidth. The bandwidth for the noise waschosen as
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1.2 times the bandwidth selected for MFSK, which had the widest bandwidth of all the modulation

types considered. Two features, o, s and ufzz, showed notably different values. The differencesin the

feature valuescanbe seenin Figure 132 to Figure 135.
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The differences thus required furtherinvestigation and the feature values were calculated only for
the bandlimited noise thereafter. The featurevaluesforthe bandlimited noise generated according
to the related modulated signals are shownin AppendixA.4. The plots were scaledtothe values of
the plotsfor signalsinan AWGN channel, Figure 45 to Figure 52, to aid in comparison.

From the results in Appendix A.4 it can be seen that the features based on the instantaneous
frequency were affected by the amount of noise due to the size of the bandwidth. The values of
both features were different for different bandwidths. These features are thus sensitive to the
bandwidth choice. Furtherinvestigationis required;itis however beyondthe scope of this study. It
isnevertheless worth noting that the feature values affected by the noise could potentially be used

to derive valuable information such as the amount of noise in a system when o, and u{z are

observed. The SNR could possibly also be determined if the modulation type is known.
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4.6 Conclusion

The design of the of the feature extraction, classification and tracking modules were implemented in
this chapter. The design was first implemented in software by simulating an algorithm in Matlab.
Several experiments were then performed to guide the design of the system and evaluate the
performance of the design. The calculated instantaneous amplitude, phaseand frequency were first
compared to the theoretical instantaneous amplitude, phase and frequency fromliterature. It was
determined that the instantaneous amplitude of MPSK contained weak intervals where symbol
transitions occur. The transition effects influenced the values of the features and thus needed to be
compensated for. Fluctuationsin the instantaneous frequency of MPSK were alsoobserved where
symbol transitions occur. The calculation of the derivative of the phase to obtain the frequency
caused unwanted fluctuations that were not observed inthe theoretical representationin literature.
These fluctuations were also compensated for by evaluating the values against a threshold and
replacing any value that exceeded the threshold with a constant value.

The calculated feature values were compared to values obtained in [110] thereafter, since the signal
parameters and features were adopted from their work. It was found that although the values
differed from the values obtained in [110], there was a large degree of similarity inthe values. The
modulation types that have information in the instantaneous amplitude, phase and frequency had
corresponding values for the associated features. The results thus still gave promising results to
separate the different modulation types.

The feature values were analysed undervarying SNR conditions. The SNRranged from 0 dB to 30 dB
inincrements of 5 dB. A,,0qn and o, had very similarresults although the values differed. It was also
observedthatthere isa relation between A ¢, and g, and uy,. The phase based features, Oqp and
Oaps of MFSK and 4PSK were the most robust against noise conditions. 4ASK was more robust
against noise when considering the amplitude based features. Similarly, 4FSK was more robust
against noise when consideringthe frequency based features. Fromthese resultsitwas concluded
that all modulation types were distinguishable from each other when the features were used in
combination.

The featuresvalues were analysed under combinations of varying SNR and flat fading conditions. A
static flat fading channel with three multi paths were simulated for the experiment. The features
were tested against 9different fading values thatranged from0to 0.4. A,04, and 0, againshowed
very similarresults although the values differed. It could also be observed that there wasa relation
between A;;0qnand o, and uf,. 04y and o4y, of MFSK and 4PSK were more robust against flat fading
conditions. The amplitude based features of MASK were also more robust against flatfadingas well
as the frequency based features of 4FSK. It was also concluded that all modulation types were
distinguishable from each other within the SNR and fading condition ranges, given the set of
features evaluated.

Nextthe sensitivity of the algorithm to varying signal lengths was investigated. Signals with SNR and
fading effects were used for the experiment. The minimum and maximum values among all the
fading conditions were plotted forboth 10 dB and 30 dB SNR. From the resultsitcouldalso be seen
that the values of different modulation types overlapped for some featuresand thusunambiguous
results cannot be obtained with signals of differentlengths. The results of this experiment were also
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used to determine whetherthe number of samplesto use for hardware implementation was enough
for accurate results.

A decision tree was constructed next to perform the classification of signal modulation types. The
feature values obtained from the previously discussed experiments were used totrain and test the
decisiontree. The classification accuracy of the tree was determined by using test vectors from the
varying SNR dataset, the varying fading at 30 dB SNR dataset and the varying fading at 10 dB SNR
dataset. The tree was also tested for decreasing training datasets. For the varying SNR the
classification accuracy was very high and 100% classification accuracy was achieved for most tests of
SNR greater than 0 dB. None of the tests achieved 100% classification accuracy for an SNR of 0 dB.
Classification accuracy greater than 93% was however achieved for all the tests and a decrease in
accuracy of 3% is observed between the biggest and smallest training dataset utilised. For varying
fading at 30 dB SNR classification accuracies higher than 91% were achieved for all tests up to a
fading ratio of 0.3 and higher than 87% for a fading ratio of 0.4. The largest decrease in accuracy
between the biggest and smallest training dataset utilised, was smaller than 2% and occurred at a
fading ratio of 0.4. For varying fading at 10 dB SNR classification accuracies higher than 79% were
achieved for all tests under all the flat fading conditions. The largest decrease in classification
accuracy between the biggest and smallest training dataset utilised, was smaller than 6% and
occurred at a fading ratio of 0.06. It can be concluded that the constructed decision tree had good
performance for various datasets containing feature values from signals experiencing different
channel effects.

Afterthese experiments were performed for the software simulation of the algorithm, a firmware
design was implemented to an FPGA. A front-end processorwas provided by the CSIR and was not
implemented for this study. The effects of the processing performed by the front-end processor was
however analysed to determine whether the effects of this processing could be considered
negligible. It was found thatthe effect of the Hilbert filter and the effect of quantisation noise were
negligibly small in comparison to the SNR of the signals tested, and was therefore ignored. The
provided front-end processor also supplies the instantaneous amplitude, phase and frequency
samples. Itwastherefore only necessary toimplement the calculation of the featuresbased on the
instantaneousinformation on the hardware platform. The conversion of the I&Q signal samples to
polar form of the front-end processor was analysed and the instantaneous amplitude, phase and
frequency samples were generated accordingly using the same signals generated for the software
simulation experiments. 2048 samples were used for the calculation of the feature values in
hardware. It was found that the mostfeature values were similarto the results obtained in software,
howeverthe differences of some featurevalues can be ascribed to the difference inthe number of
samples used for calculations.

The feature values calculated in hardware were used to determinethe classification accuracy of the
decisiontree when using the hardware results. It wasfound that the decisiontree trainedonlonger
signal lengths in software did not translate to the same level of accuracy for the shorter signal
lengths. A new decision tree constructed from feature values calculated from 2048 samples was
trained instead. The classification performance of the new tree was, as expected, lower than the
tree constructed usinglongersignals. Classification accuracy higherthan 73% and 57% was achieved
for all training datasetsfor30 dB and 10 dB SNR respectively. Forafull training dataset, classification
accuracy higherthan 74% and 65% was achieved for30 dB and 10 dB SNRrespectively. Classification
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accuracy higher than 83% was achieved for all training datasets up to a fading ratio of 0.2 for 30 dB
SNR. For 10 dB SNR, classification accuracy higherthan 70% was achieved foral training datasets up
to a fading ratio of 0.1. It can be seen that the classification accuracy decreased notably for fading
ratiosabove 0.3.

It can be concluded that although the decision tree is adequate for signals experiencing various
channel effects, the tree showed significantly reduced classification performance for signals with
different signal lengths to what the tree was trained on. and that another tree had to be
constructed. It was also concluded that 4PSK puts a limitation on the minimum number of samples
required for accurate classification. An analysis should be performed to determine the optimal
classification accuracy against the number of samples, which may vary from one application to
another.

The modulation class output of the decision tree was used to track changes between modulation
types by logging the modulation type over time. The effect of modulation transition within a
classification windowwas investigated and it was found that that most misclassifications occurred
between different orders of modulation types from the same family as 2 modulation types become
equally presentinthe window. Although misclassifications between modulations of different orders
of the same family occurred, very few misclassifications of other modulation types occurred. The
modulation type that was most presentin this window was most often correctly classified. It can be
concluded that modulation types can at least be correctly classified as from the same family, when
two modulation types are equally presentin aclassification window for most occurrences. Further
research is required to study the full effect of modulation transitions on follow on processes that
utilise this information, as well as to determine if a modulation transition can be detected and
flagged within a single window, instead of using the difference of modulation type between two
subsequent windows.

The similarity in the results of A;;eqn and o, and also the relation between A0, and o, and pg,
raise the concernthat there may be too many and thusirrelevantamplitude basedfeatures. More
features may be needed thatare not based on the instantaneous amplitude and rather based on the
instantaneous phase or frequency might be needed.
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5 CONCLUSION

5.1 Summary of Work

Automaticmodulation classification is a challenging taskinanon-cooperativeenvironment where
channel state information and signal parameters are not always available. Non-cooperative
transmissions in military environments may be hampering or threatening to a user’s own goals. In
thisenvironmentsignals can use neverbeforeseen modulation types oreven modulation types that
are specifically designed to avoid interception, detection and classification. Modulation is in effect
used here as another layer of encryption. Modulation types thus have to be classified blindly, that s,
without the use of a priori signal and channel state information. Adaptive modulation techniques
complicate the task of classifying adversaries’ signals even more, because the signal modulation
changes quickly with time. It is desirable to be able to track the changes in an adversary emitter’s
modulation type. When the change from one modulation type to another modulation type in the
signals from a transmitter can be tracked, the transmitter may be identified ortheirmessages may
be recovered, whichisacritical aid in supporting battlefield decision making.

This study investigated the development of methods to classify transmitter modulation types, to aid
intracking changesinthese modulation typesin non-cooperative environments where adversaries
use adaptive modulation techniques.

A complete capability required to track changesin transmitter modulation typesincludes the ability
to receive and digitise signals of interest, spectrum sensing functionality to detect signals of interest,
signal parameter estimation, classification of signal modulation, and the abilityto track changes in
that modulation. This study however only focused on the latter two steps, namely on developing an
algorithm capable of tracking changes in modulation types through classification of signal
modulation without the use of a priori signal information. Communication signals with modulation
types Amplitude Shifts Keying (ASK) of ordertwo and four, Phase Shift Keying (PSK) of ordertwo and
four, and Frequency Shift Keying (FSK) of order two and four were considered. The channel effects
that were considered were AWGN noise and flat fadingin a static multipath Rayleigh fading channel.

From literature it was found that there are two main approaches to classify and track modulation
typesina non-cooperativeenvironment. The first approachis Likelihood based classification, which
formulates the classification as a composite hypothesis- testing problem. For this approach, each
modulation type is assigned to the incoming signal under a hypothesis. The likelihood function is
then used to find the correct modulation type of the signal. The second approach is feature based
classification which entails 2 steps, feature extraction and decision making. Several features are
extracted from the incomingsignal and adecision is made based on the feature values.

From the literature study in Chapter 2 it was found that likelihood based classifiers are more
accurate than feature based classifiers at the expense of computational complexity. The
computations are repeated for each modulation hypothesis and each sample. Perfect channel
knowledge is furthermore needed. For some LB methods one or two channel parameters can be
unknown. The Expectation maximisation—maximum likelihood classifier is suitable in a non-
cooperative environment, butis not cost effective interms of computational complexity.
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The main focus was to operate ina non-cooperative environment where many signal- and channel
parameters may be unknown. A classifier that needs perfect channel knowledge becomes
inoperable here. Secondly, the classification algorithm should be feasible for hardware
implementation and the system should operate as quickly as possible with good classification
accuracy. A classifierthatis costly in terms of time and computational resourcesis thus undesirable.
Computational complexity may also impose limitations for hardware implementation. Furthermore,
in order to accurately track changes in modulation type of a signal in a non-cooperative
environment, aclassifierthatis able to classify awide variety of modulation typesis needed.

Because operationin non-cooperative environment and computational cost took precedence inthis
study, feature based classifiers were considered. Feature based classification methods include the
extraction of features based on the instantaneous amplitude, phase and frequency, features based
on the wavelet transform and features based on higher order moments and cumulants of a signal.
Features based on the instantaneous amplitude, phase and frequency were selected, because
features can be extracted quickly without high computational complexity and is feasible for
hardware implementation. Additionally, this method is able to operate in a non-cooperative
environment and has the ability to classify awide variety of modulation types.

For classification, severalmachine learning techniques were alsoinvestigated. Fromthe three types
of learning categories,namely supervised learning, unsupervised learning and reinforcement learning,
supervised learning was selected sincethe objective is to classify,and datawith labels were available.
The most used machine learning techniques for feature basedclassificationinclude Decision trees,
Artificial Neural Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbour (KNN)
[91], [92].

Decision trees were chosen over ANN and SVM because they are fast to learn and predict. Their
robustness against outliers and ability to select features in the training process are also great
advantagesoverthe other machine learningtechniques. If necessary, decision treescan be used in
ensemblethrough techniques such asrandom forestand randomtreesto improve performance by
addressing the local optimum and high variance problems.

Based on the information gathered through the literature study, a conceptual design was completed.
To perform tracking of modulation type changes, asystem requires three main processes. The first
stepisto receive RF signals from the environment. The second stepis to perform pre-processing on
the receivedsignals. Afterthe necessary steps were taken to obtain the signal of interest and get it
inits correct form, the classification of the modulation type and tracking of changes can take place,
whichisthe third and final step. This study's main focus was on this last step, within the context of
the firsttwo. An understanding of the previous steps was howeverrequiredinorder to design the
third step correctly. A conceptual design encapsulating all three steps was performed.

From literature, eight general features were identified. During this investigation, afeature with high
computational complexity was exchanged with asimilaryetless computationally expensiveone. The
design of the feature extraction, classification and tracking was first modelled in the software
modelling tool Matlab, whereafter a part of the design was translated to hardware using Xilinx’s
Vivado 2016.2 environment. Several experiments were performed to evaluate the performance of
the design. It was found that symbol transitions of MPSK had effects on the calculation of the
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instantaneous amplitude and frequency. These effects had to be compensated for by means of a
threshold method, to ensure that the feature values calculated were not adversely affected.

The feature values were analysed undervarying SNR and flat fading channel conditions. For varying
SNRthe phase based features, g4, and g4, showed the most robust behaviour when calculated on
signals consisting of modulation types of MFSK and 4PSK. 4ASK was also more robustagainst noise
when only considering the amplitude based features. Similarly, 4FSK was more robust against noise
when considering only the frequency based features. For varying SNR and fading conditions, astatic
flatfading channel with three multi paths at 30 dB and 10 dB SNRwas considered. Features g,;, and
04p sShowed the most robust behaviour when calculated on signals consisting of modulation types of
MFSK and 4PSK. Amplitude based features when calculated on MASK, and frequency based features
when calculated on 4FSK was also more robust than the rest of the modulation types when
calculatedinthe presence of flat fading.

An important variable in this study was the signal length. Shorter signals consume less hardware
resources and reduce calculation time. Additionally, since transmitters in a non-cooperative
environment can change their modulation type quickly, itis also desirable to classify modulation
typesusingthe fewest samples possible for quicker classification turnaroundtime. An analysis on
the selected set of features overthe entirerange of SNRand fading conditions considered for this
study showed that feature values of different modulation types overlapped. However, mostfeature
valuesremained separableforsignals with more than 1920 samples.

A decision tree was constructed to perform the classification of signal modulation types. A dataset of
simulated random signals modulated by the 6 chosen modulation types were generated both with
bandlimited white noise only, and bandlimited white noise with flatfading. The dataset contained
signals with an SNR from 0 dB to 30 dB as well as flat fading ratios from 0 to 0.4. This dataset was
used to train and test the decision tree. Results showed that the classification performance was
insensitiveto SNR, and achieved perfect prediction performancefor SNRvaluesgreater than 5 dB.
None of the tests achieved 100% classification accuracy for an SNR of 0 dB. Classification accuracy
higherthan 93% was howeverachieved forall the tests,and adecrease of 3% isobserved between
the utilisation of the biggest training datasetand the smallest training dataset. At 10 dB SNR under
varying fading conditions classification accuracies higher than 91% were achieved forall testsupto a
fading ratio of 0.3 and higher than 87% for a fading ratio of 0.4. The largest decrease in accuracy
between the biggestand the smallest training dataset utilised was smallerthan 2% and occurred at a
fading ratio of 0.4. For varying fading at 10 dB SNR classification accuracies higher than 79% were
achieved for all tests under all the flat fading conditions. The largest decrease in classification
accuracy between the biggest and the smallest training dataset utilised was smaller than 6% and
occurred at a fading ratio of 0.06. Thus the decision tree can be trained on a small amount of data,
howeverthis warrants furtherinvestigation.

For the hardware implementation, the feature extraction step wasimplemented onthe FPGAonthe
hardware platform, as subsequent steps are better suited to DSPs or CPUs , that do not form part of
the hardware platform at this time. A front-end processor was provided which supplies the
instantaneous amplitude, phase and frequency samples. The front-end processorwas however not
used for the lab based hardware tests, since this platform is designed for high, agile bandwidth
signals and operates at a sample frequency of 4GHz. A great amount of memory is required to
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generate signals for the front-end processor at the full bandwidth, whereafter a filter and
decimation significantly reduces the data rate. This method for testing is prohibitive and a better
simulation approach was thus required. The effect of the front end processing withinthe frequency
band of interest was therefore analysed instead to determine whether it introduces significant
effects that should be takeninto consideration. No significant effects were foundand 1&Q samples
where generated accordingly in Matlab. The feature extraction block was designed to match the
interface specifications of the front-end processor with the aim of future integration. A sample
length of 2048 was used for the calculation of the feature valuesin hardware. It was found that the
most feature values were similar to the results obtained in software, however some differences
were observed thatis attributed to the difference in the sample lengths used.

The feature values calculated in hardware were used to determinethe classification accuracy of the
decision tree when using the hardware results. It was found that although the decision tree was
adequate for signals experiencing various channel effects, the tree showed significantly reduced
classification performance for signals with different signal lengths to what the tree was trained on.
To overcome this limitation, a new tree had to be constructed. The classification performance of the
new tree was, as expected, lower than the tree constructed using longer signals, performing 7.9%
and 21.2% worse on average for the biggest dataset at an SNR of 30 dB and 10 dB respectively,
which were 14.99% and 8.04% more than the initial tree.

The modulation class output of the decision tree was used to track changes between modulation
types by logging the modulation type over time. The effect of modulation transition within a
classification windowwas investigated and it was found that that most misclassifications occurred
between different orders of modulation types from the same family as 2 modulation types become
equally present in the window. For modulation order of 2, 2FSK was the most affected and
misclassified as 4FSK. For modulation order of 4, 4FSK was the least affected. 4ASK was the most
affected, and misclassified as 2ASK. Although misclassifications between modulations of different
orders of the same family occurred, very few misclassifications of other modulation types occurred.
The modulation type that was most presentin this window was most often correctly classified.

Considering the results obtained in this study, many valuable conclusions can be drawn. It was
shown in literature that the classification accuracy by using features based on the instantaneous
amplitude, phase and frequency forvarying SNR conditions is high in the context of the assumptions
[69], [103], [113], which was confirmed in this study. The classification accuracy on these features in
varying fading conditions has received littleinvestigation in literature up tothis point. The results
obtained in this study have shown that these features can be used in flat fading channels under
varying SNR conditions, with only aslight reduction in performance of 2.74% and 6.85% on average
for an SNR of 30 dB and 10 dB respectively. The calculation of these features in hardware was
published once before [129]. In our study it was shown that these features are feasiblefor hardware
implementation and thatthe results can be used for classification by means of adecisiontree. When
two different modulation types were presentin aclassification window, it was shown that the signal
was classified asthe same modulation type as the signal thatis most presentinthe window in most
cases. Misclassifications between modulation types from the same family with different orders did
however occur. It was shown that further investigation is required to determine the number of
samples required for feature calculation to achiever high classification accuracy, and the
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assumptions of known signal centre frequency and accurate noise filter bandwidth has to be
challenged as these could have serious consequences forimplementation.

5.2 Outcome of Study

The objective of this study was to classify and track changes of modulation types from a
communications transmitterin a non-cooperative environment without channel stateinformation.
The secondary objective was to develop the methodin such a way that the digital signal processing
components thereof can be implemented on ahardware platform provided by the CSIR.

Duringthis study, feature based classification was used to successfully classify modulation types of
signals from a single communications transmitter without the use of channel state information. This
was achieved by using features based on the instantaneous amplitude, phase and frequency of a
signal for feature extraction and a decision tree for classification. The method was tested under
varying SNR conditions from 0 dB to 30 dB and performed well, achieving classification accuracy
higherthan 96 % for the worst SNR condition. The change from one modulation type to anotherwas
successfully performed by logging the modulation type, and any changes, over time for use by
external processes. The secondary objective was successfully achieved by implementing the feature
extraction process on a hardware demonstrator provided by the CSIR. The feature values obtained in
hardware reflected the results obtained in software. The feature values obtainedin hardware was
also successfully used to classify the proposed modulation types. The study thus successfully
addressed all of the research objectives.

Additionally to the objectives of the study, many othergoals were achieved. The classification was
successfully performed under varying flat fading ratios from Oto 0.4 in a static multipath Rayleigh
fading channel at an SNR of 30 dB and 10 dB. Classification accuracy higher than 89% and 84% were
achieved for the worst fading condition at 30 dB and 10 dB SNR respectively. In addition to the
investigation under varying fading conditions, the effect of signal length and training dataset size
were also investigated. Furthermore, a tree was reconstructed to improve the classification
performance forfeature values obtained from hardware. Lastly the effect of modulation transitions
within a classification window was also investigated, which was beyond the scope of this study.

Many valuable discoveries were also made during the investigation of the additional work. It was
found that signal length has asignificant effect on the classification performance. It was found that
some of the feature values had correspondence intheirresults and there maybe alarge degree of
duplicate information between the features. This discovery led to the exploring of a new feature
which yielded promising results. The new feature gave insight and raised many questions on how
new, lesscomplex features can be utilised without reducing classification accuracy while reducing
computational load.

5.3 Future work

Some challenges wereidentified during this study. The similarity in the results of Ay,0qn and o, and
also the relation between A,q, and g, and g, raised the concern that there may be a large
degree of duplicate information between the amplitude features, that could simply increase
processing load and not yield significant classification accuracy gains. Additionally, more unique
features which are not based on the instantaneous amplitude and rather based on the
instantaneous phase orfrequency might be needed. It was beyond the scope of thisstudyto derive
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and investigatethe utilisation of new features. The utilisation of the standard deviation of the direct
value of the phase, Oqf, Was howeverinvestigated, since the standard deviation of the direct value
of both the phase and amplitude were already calculated and the information was thus readily
available to use for calculation of the feature with minimal additional effort. This feature was not
found in literature and from Figure 136 to Figure 145, it can be seen that this new feature shows
promise, subjectto furtherinvestigation.

With this new feature, 2FSK and 4FSK remain separable from the other modulation typesfor all the
proposed channel conditions. When comparing g, based on the directvalue withits absolute value
counterpart o, which is used in literature, itis seen that o4 provides additional separability for
2FSK where g, ¢ did not.
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The results of a5 raise many questions. Since o and Apeqnare verysimilar, willag, and o4 also
be similar to the mean of the absolute value of the phase and frequency respectively? The
calculation of the kurtosis occupies much more device resources, is it possible to replace the kurtosis
with anotherfeature without reducing the classification accuracy? Can more modulation types be
classified with new features? Can one simply or create other, less complex features that do not
reduce classification accuracy while reducing computational load.

Although a wide range of modulation types can be classified using features based on the
instantaneous amplitude, phase and frequency, this study was limited to six digital modulation
types. The decision tree was trained to classify these six modulation types exclusively. An obvious
extension of this workis to include more modulation types, possibly guided by a study that shows
the prevalence of modulation typesin modern use. The combination of featurestoclassify a wider
range of modulation types such as a combination of higher order statistics to classify higher order
modulation typesaswell, can be considered. An example of combining features to classify a wide
range of modulation typescanbe foundin [100].

In Chapter 1, unknown signals that might be specifically designed to avoid sensing, detection and
classification were identified as one of the challenges in anon-cooperative environment. Although a
wide variety of modulation types can be classified and more features can be added in order to
enlarge the modulation pool, these unknown signals might still be able to avoid classification.
Unsupervised learningis amethod capable of finding patternsin dataand grouping data with similar
characteristics together. Such methods can be used in collaboration with the current algorithm to
identify these signals. The results of the unsupervised learning algorithms can be used as feedback
to the current algorithm and these signals can then potentially be classified or characterised in this
manner.

The sample frequency, 1200 kHz, of the signals from which features were calculated was much
higherthan required to preventaliasingto occur. This sample frequency was howeverusedinorder
to compare with the results in [110]. It is expected that different sample frequencies will have an
effectonthe feature values andthatthere will be atrade-off between the samplefrequency and the
degree of separability that could be achieved with the features. Aninvestigationisthusrequired to
determine the effect of the sample frequency on the feature values.
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For this study features were only investigated in a static flat fading channel. Further research is
requiredtodeterminewhetherthe use of athreshold to find the weak intervalsin the instantaneous
amplitude and the fluctuations in the instantaneous frequency due to the symbol transitions of
MPSK will be adequate in channels where signals might experience other fading effects than flat
fading. Future work alsoincludes determining how well the system works when tested against real
world data.

The decision tree constructed with the feature values extracted in software was adequate for
classifying signals experiencing various channel effects, however classification performance suffered
when the signal length was varied. Most differences in feature values between software and
hardware results were due to the utilisation of different signal lengths. Further research is thus
requiredto determinethe classification performance of decision trees when utilising different signal
lengths and to determine the optimal number of samples needed to construct a tree that still
exhibits good classification performance while minimising signal length. Further research is also
required to determine how fast a transmitter could change its modulation type in order to
determine if enough signal samples can be obtained for accurate classification as the minimum
signal lengthisan obviouslimitationin this scenario.

The modulation class output of the decision tree was used to track changes between modulation
types by logging the modulation type over time and the effect of modulation transition within a
window was investigated. Further research is required to study the full effect of modulation
transitions on follow on processes that utilise this information, as well as to determine if a
modulation transition can be detected and flagged within a single window, instead of using the
difference of modulation type between two subsequent windows.
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Tap with Standard Deviations in
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A.2. Matlab results (left) vs. Hardware results (right)
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%a in Multipath Rayleigh Fading Channel at 10 dB SNR
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%ap in Multipath Rayleigh Fading Channel at 10 dB SNR

Ratio of Delay Spread to Symbol Time

1 : T T T T T T T T
T —&—2PSK
™ —+—4PsK
N —— S 4 ]
iggase= - — = 2A8K
—&—4ASK
L ——2FSK
0.8 4FsK
0.7 1
a
&
06 1
05 1
2
0.4 1
03 . I I . I I . . . .
0 0001 0004 003 006 01 02 03 04
Ratio of Delay Spread to Symbol Time
Tdp in Multipath Rayleigh Fading Channel at 30 dB SNR
2 : T T T T T T T T T
P . i i | | —e—2pPsk
18 =L ; ———— e TN
o9 2ASK
160——ee—o—6—o—0 —A— AASK
——2FSK
147 4FsK |
121 J
o
T 1t J
08 1
0.6 [ 1
04t g 1
A
L A 4
0.2 ; ——
X A S S SN SR S SR S
0 0001 0004 003 006 01 02 03 04
Ratio of Delay Spread to Symbol Time
Tdp in Multipath Rayleigh Fading Channel at 10 dB SNR
2 : T T T T T T T T T
—&—2PSK
—+—aPSK
2ASK
—&—4ASK
——2FSK
AFSK
15
o
L
s J
2
05 . I I . I I . . . .
0 0001 0004 003 006 01 02 03 04

dp

%ap in Multipath Rayleigh Fading Channel at 10 dB SNR

1 T T T T T T T T T
—&5—2PSK
| | —+—4PSK
g 2ASK
—&—4ASK
——2FSK
4FSK
0.8 -
| —
) o
T
071 e
A
0.6.%
_ Ny
- -
05 T 4
D4£ i i i i i i i L i L
0 0001 0004 003 006 01 02 03 04
Ratio of Delay Spread to Symbol Time
Tap in Multipath Rayleigh Fading Channel at 30 dB SNR
1.8 T T T T T T T T T T
i — 8 — e o opsK
L e
16 i —1 4PSK
e —e— o 2ASK
14F —&—4ASK
——2FSK
4FSK
121
1k
0.8 T
0.6
0.4 1
0.2r
. . . . . . . I . I
0 0001 0004 003 006 01 02 03 04
Ratio of Delay Spread to Symbol Time
Tap in Multipath Rayleigh Fading Channel at 10 dB SNR
1.8 T T T T T T T T T T
—a e e | 55— 2PSK
,_+__+__47_|_44——|— e | ——4PS8K
— H——0—0
———e—8 o 2ASK
—&—4ASK
L ——2FSK
14 4FsK
121
1k
—a A - A\ﬂ_r__,_..é_ A
0.8
0.6
P
04 . . . . . . . I . I
0 0001 0004 003 006 01 02 03 04

Ratio of Delay Spread to Symbol Time

122



0.012

- in Multipath Rayleigh Fading Channel at 30 dB SNR

0.01
0.008 -

T
=" 0.006 [

0.002

A A—E

e |e—2Psk
I —+—aPSK

248K |
—&—4ASK
——2F8K
4FSK

b

0 . L
0 0001 0004 003 0068 01 02 0.3 0.4

Ratio of Delay Spread to Symbol Time

10'3"&! in Multipath Rayleigh Fading Channel at 10 dB SNR.
12— . . . . . ; . . .
—&—2PSK
L — ——apPsk| |
11 : e SASK
—&—4ASK
i | TRk
IR A R AFSK
al J
.
m
=1
gl J
7F — _— . e — ——h 4
e

S ——

5 . L
0 0001 0004 003 0068 01 02 0.3 0.4

£
42

Ratio of Delay Spread to Symbol Time

in Multipath Rayleigh Fading Channel at 30 dB SNR

y +—+4 — S

~ —5—2PSK
—+—4PsK| |

2ASK
—&— 43K

——2FSK

4FSK

L
0 0001 0004 003 0068 01 02 03 0.4

Ratio of Delay Spread to Symbal Time

- in Multipath Rayleigh Fading Channel at 30 dB SNR

0.012 T T T T T T ! ! !
—&—2PSK
- e s y L |—t—4pPsK

0.01 h 2A8K | 4
—&—4ASK
———2F8K

0.008 AFSK]

"
<" 0.006
0.004T

B
0.002

0 . . I
0 0001 0004 003 0068 01 02 03 04
Ratio of Delay Spread to Symbol Time

19'3"af in Multipath Rayleigh Fading Channel at 10 dB SNR
1M . . . . . . , . ,
o . [—o—2PsK
L —+—apsK| |
10 L e e 2ASK
—&—4ASK
L ——2FSK | |
? 4FSK
8 ]
-
o
=]
7L 1
/ct -
st 1
/Q\e"'{_ &
54 ]

4 . . I
0 0001 0004 003 0068 01 02 03 04
Ratio of Delay Spread to Symbol Time

;;:2 in Multipath Rayleigh Fading Channel at 30 dB SNR
60 T T

—&—2PS8K
A —+H—4PSK
2ASK| 4
—&—4ASK
——2F8K
= 4FSK

0
o 0001 0004 003 006 04 02 03 04
Ratio of Delay Spread to Symbol Time

123



8

t
Hag

in Multipath Rayleigh Fading Channel at 10 dB SNR

.

™~ A
. N - -
T — -~

e

-~

—5—2PSK
A —+—4PsK

248K
—&—4ASK
——2F8K
4FSK

1 .
0 0001 0004 003 0068 01

L
02 0.3 0.4

Ratio of Delay Spread to Symbol Time

0dB SNR

}‘:z in Multipath Rayleigh Fading Channel at 1
9 T T T T T T T T

—&—2PSK
——4PSK

2A8K
—&—4ASK
———2F8K
4FSK

1 L L .
0 0001 0004 003 006 041 02 03 04

Ratio of Delay Spread to Symbol Time

124



A.3. Results using 2048 samples in Matlab
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“iz in Multipath Rayleigh Fading Channel at 30 dB SNR }‘:z in Multipath Rayleigh Fading Channel at 10 dB SNR
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- in Multipath Rayleigh Fading Channel at 30 dB SNR
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A.4. The effect of noise filter bandwidth

Bandlimited noise with assumption (left) and bandlimited noise without assumption (right)
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Figure 141: A,... calculated for bandlimited
noise with assumption
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Figure 145: a,, calculated for bandlimited noise
with assumption
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Figure 146: a4, calculated for bandlimited noise
with assumption
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O values for bandlimited noise
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Figure 147: g, calculated for bandlimited noise

with assumption

f
Hag

values for bandlimited noise

40 v - v v - -
—o—2PsK
3 —+—apsK| 1
2A8K
—&—aasK
30 - ——2FSK| T
4FSK
25 .
o
Sl i
B
51 .
10 8
st i
& & & & &
0 | | | | | | |
0 5 10 15 20 25 30
SNR (dB)

Figure 148: uﬁz calculated for bandlimited noise

with assumption
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APPENDIX B

B.1. Confusion Matrices of Software Results
400 realisations (SNR):

0dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 20dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
2ASK | 98 2 0 0 0 0 2ASK 100 0 0 0 0 0
4ASK | 2 98 0 0 0 0 4ASK 0 100 0 0 0 0
2PSK 0 0 100 0 0 0 2PSK 0 0 100 0 0 0
4PSK 0 0 0 100 0 0 4PSK 0 0 0 100 0 0
2FSK | O 0 0 0 90 10 2FSK | O 0 0 0 100 0
4FSK | O 0 0 0 9 91 4FSK | O 0 0 0 0 100
Classification error=3.83 Classification error=0

5dB 2ASK | 4ASK | 2PSK | 4PSK [ 2FSK | 4FSK 25dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
2ASK 100 0 0 0 0 0 2ASK 100 0 0 0 0 0
4ASK [ O 100 0 0 0 0 4ASK | O 100 0 0 0 0
2PSK 0 0 100 0 0 0 2PSK 0 0 100 0 0 0
4PSK 0 0 0 100 0 0 4PSK 0 0 0 100 0 0
2FSK 0 0 0 0 98 2 2FSK 0 0 0 0 100 0
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 0 100
Classification error=0.33% Classification error=0%

10dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30dB | 2ASK | 4ASK | 2PSK [ 4PSK | 2FSK | 4FSK
2ASK 100 0 0 0 0 0 2ASK 100 0 0 0 0 0
4ASK 0 100 0 0 0 0 4ASK 0 100 0 0 0 0
2PSK 0 0 100 0 0 0 2PSK 0 0 100 0 0 0
4PSK 0 0 0 100 0 0 4PSK 0 0 0 100 0 0
2FSK 0 0 0 0 100 2FSK 0 0 0 0 100 0
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 0 100
Classification error =0% Classification error=0%

15dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

2ASK 100 0 0 0 0 0

4ASK 0 100 0 0 0 0

2PSK 0 0 100 0 0 0

4PSK 0 0 0 100 0 0

2FSK 0 0 0 0 100 0

4FSK 0 0 0 0 0 100

Classification error =0%
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400 realisations (fading at 30 dB SNR):

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 100 0 0 0 0 0 2ASK 99 0 1 0 0 0
4ASK 0 100 0 0 0 0 4ASK 2 98 0 0 0 0
2PSK 0 0 100 | O 0 0 2PSK 0 1 98 1 0 0
4PSK 0 0 0 100 | O 0 4PSK 0 0 1 99 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 100 0
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 1 99
Classification error=0 Classification error=1.17

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 100 0 0 0 0 0 2ASK 100 0 0 0 0 0
4ASK 0 100 0 0 0 0 4ASK 6 91 2 1 0 0
2PSK 0 0 99 1 0 0 2PSK 0 0 98 2 0 0
4PSK 0 1 0 99 0 0 4PSK 0 0 1 99 0 0
2FSK 0 0 0 0 100 | O 2FSK 0 0 0 0 98 2
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 2 98
Classification error=0.33 Classification error=2.67

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 100 0 0 0 0 0 2ASK 86 11 2 1 0 0
4ASK 1 99 0 0 0 0 4ASK 7 93 0 0 0 0
2PSK 0 0 99 1 0 0 2PSK 3 4 86 7 0 0
4PSK 0 0 1 99 0 0 4PSK 1 0 1 98 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 96 4
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 7 93
Classification error=0.5 Classification error=8.00

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 100 0 0 0 0 0 2ASK 80 17 2 1 0 0
4ASK 0 100 0 0 0 0 4ASK 7 91 2 0 0 0
2PSK 0 0 100 0 0 0 2PSK 1 1 85 13 0 0
4PSK 0 0 0 98 0 0 4PSK 0 0 2 98 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 92 7
4FSK 0 0 0 0 1 99 4FSK 0 0 0 0 10 90
Classification error=0.5 Classification error=10.67

30dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 100 0 0 0 0 0

4ASK 2 98 0 0 0 0

2PSK 0 0 99 1 0 0

4PSK 0 0 1 99 0 0

2FSK 0 0 0 0 100 0

4FSK 0 0 0 0 1 99

Classification error=0.83

131




400 realisations (fading at 10 dB SNR):

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 100 0 0 0 0 0 2ASK 90 8 1 1 0 0
4ASK 0 100 0 0 0 0 4ASK 7 89 3 1 0 0
2PSK 0 0 100 0 0 0 2PSK 0 0 97 3 0 0
4PSK 0 0 0 100 0 0 4PSK 0 0 1 99 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 90 10
4FSK 0 0 0 0 0 100 4FSK 0 0 0 0 15 85
Classification error =0% Classification error=8.33%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 91 8 1 0 0 0 2ASK 94 5 0 0 0 0
4ASK 4 95 1 0 0 0 4ASK 14 85 1 0 0 0
2PSK 0 0 97 3 0 0 2PSK 1 0 94 5 0 0
4PSK 0 0 0 100 (O 0 4PSK 1 0 0 99 0 0
2FSK 0 0 0 0 91 9 2FSK 0 0 0 0 94 6
4FSK 0 0 0 0 2 98 4FSK 0 0 0 0 17 83
Classification error=4.67% Classification error=8.5%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 96 4 0 0 0 0 2ASK 80 19 1 0 0 0
4ASK 5 93 2 0 0 0 4ASK 18 79 3 0 0 0
2PSK 0 0 99 1 0 0 2PSK 3 4 83 10 0 0
4PSK 0 0 1 99 0 0 4PSK 2 1 3 94 0 0
2FSK 0 0 0 0 97 3 2FSK 0 0 0 0 95 5
4FSK 0 0 0 0 1 99 4FSK 0 0 0 0 14 86
Classification error=2.83% Classification error=13.83%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 90 9 0 1 0 0 2ASK 62 36 2 0 0 0
4ASK 3 97 0 0 0 0 4ASK 14 83 3 0 0 0
2PSK 0 0 94 5 1 0 2PSK 4 4 82 10 0 0
4PSK 0 0 1 100 0 0 4PSK 0 0 3 97 0 0
2FSK 0 0 0 0 92 8 2FSK 0 0 1 1 96 2
4FSK 0 0 0 0 6 94 4FSK 0 0 0 0 11 89
Classification error =5.5% Classification error=15.17%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 97 3 0 0 0 0

4ASK 1 99 0 0 0 0

2PSK 0 0 99 1 0 0

4PSK 0 0 1 99 0 0

2FSK 0 0 0 0 92 8

4FSK 0 0 0 0 3 97

Classification error=2.83%
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B.2 Confusion Matrices of Hardware Results
400 realisations (fading at 30 dB SNR):

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 89 0 0 0 0 0 2ASK 91 7 1 0 1 0
4ASK 40 60 0 0 0 0 4ASK 22 77 0 0 1 0
2PSK 0 0 100 | O 0 0 2PSK 4 5 89 2 0 0
4PSK 0 9 68 23 0 0 4PSK 0 8 42 50 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 97 3
4FSK 0 0 0 0 43 57 4FSK 0 0 1 0 23 76
Classification error =28.50 Classification error=20.00

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 88 11 0 0 0 0 2ASK 87 13 0 0 0 0
4ASK 30 69 0 0 0 0 4ASK 14 86 2 1 0 0
2PSK 0 3 96 1 0 0 2PSK 1 8 88 3 0 0
4PSK 0 17 40 43 0 0 4PSK 0 14 51 35 0 0
2FSK 0 0 1 0 97 2 2FSK 0 0 0 1 95 4
4FSK 0 0 0 0 51 49 4FSK 0 0 0 1 37 62
Classification error=26.33 Classification error =24.50

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 90 8 0 0 2 0 2ASK 66 32 1 1 0 0
4ASK 29 69 0 0 2 0 4ASK 16 84 0 0 0 0
2PSK 0 5 95 1 0 0 2PSK 8 14 75 3 0 0
4PSK 0 15 41 44 0 0 4PSK 4 20 49 27 0 0
2FSK 0 0 2 1 95 2 2FSK 0 0 3 1 94 2
4FSK 0 0 0 0 40 60 4FSK 0 0 2 2 33 63
Classification error=24.5 Classification error=31.83

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 95 5 0 0 0 0 2ASK 69 30 1 0 0 0
4ASK 40 60 0 0 0 0 4ASK 10 89 1 0 0 0
2PSK 0 1 99 0 0 0 2PSK 11 7 71 11 0 0
4PSK 0 19 36 45 0 0 4PSK 6 18 49 27 0 0
2FSK 0 0 1 0 97 2 2FSK 0 0 4 1 91 4
4FSK 0 0 0 0 37 63 4FSK 0 0 2 1 34 63
Classification error=23.5 Classification error=31.67

30dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 95 0 0 0 0 0

4ASK 28 72 0 0 0 0

2PSK 0 1 99 0 0 0

4PSK 0 17 29 54 0 0

2FSK 0 0 1 0 99 0

4FSK 0 0 0 38 62

Classification error =19.83
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400 realisations (fading at 10 dB SNR):

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 91 9 0 0 0 0 2ASK 81 15 4 0 0 0
4ASK 50 50 0 0 0 0 4ASK 38 54 8 0 0 0
2PSK 0 8 92 0 0 0 2PSK 2 8 87 3 0 0
4PSK 0 22 59 19 0 0 4PSK 5 23 47 25 0 0
2FSK 0 0 0 0 88 12 2FSK 0 0 1 1 68 30
4FSK 0 0 0 1 12 87 4FSK 0 0 1 0 28 71
Classification error=28.83% Classification error=35.67%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 83 10 6 1 0 0 2ASK 74 21 4 1 0 0
4ASK 49 95 1 1 0 0 4ASK 47 46 7 0 0 0
2PSK 0 13 83 3 1 0 2PSK 3 11 79 5 1 1
4PSK 1 14 56 26 2 1 4PSK 4 16 52 28 0 0
2FSK 0 0 0 0 73 27 2FSK 0 0 0 0 71 29
4FSK 0 0 0 1 23 76 4FSK 0 0 0 0 29 71
Classification error =35.67% Classification error=38.5%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 81 14 4 1 0 0 2ASK 71 24 5 0 0 0
4ASK 39 55 6 0 0 0 4ASK 46 51 3 0 0 0
2PSK 0 12 86 2 0 0 2PSK 10 10 75 5 0 0
4PSK 3 23 54 20 0 0 4PSK 5 19 57 19 0 0
2FSK 0 0 1 0 70 29 2FSK 0 1 4 2 78 15
4FSK 0 0 0 0 21 79 4FSK 0 1 3 1 32 63
Classification error=34.83% Classification error =40.50%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 84 10 6 0 0 0 2ASK 68 30 2 0 0 0
4ASK 50 46 4 0 0 0 4ASK 35 59 5 1 0 0
2PSK 0 10 84 1 3 2 2PSK 17 11 69 3 0 0
4PSK 1 13 59 22 3 2 4PSK 12 17 51 20 0 0
2FSK 0 0 0 1 72 27 2FSK 0 0 2 1 77 20
4FSK 0 0 0 0 21 79 4FSK 0 0 1 0 29 70
Classification error=35.5% Classification error=39.50%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 87 12 0 0 0

4ASK 46 50 1 0 0

2PSK 0 11 86 2 0 1

4PSK 2 18 58 20 2 0

2FSK 0 0 3 1 72 24

4FSK 0 0 2 0 28 70

Classification error=35.83%
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B.3 Confusion Matrices of Hardware Results (2048 samples)
400 realisations (fading at 30 dB SNR):

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 87 13 0 0 0 0 2ASK 92 3 0 1 1 0
4ASK 1 98 1 0 0 0 4ASK 16 82 2 0 0 0
2PSK 0 0 100 | O 0 0 2PSK 1 0 94 5 0 0
4PSK 0 0 8 92 0 0 4PSK 0 0 3 97 0 0
2FSK 0 0 0 0 100 0 2FSK 0 0 0 0 98 2
4FSK 0 0 0 0 1 99 4FSK 0 0 0 1 9 90
Classification error = 4.00% Classification error=7.83%

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 88 10 2 0 0 0 2ASK 86 12 2 0 0 0
4ASK 5 92 2 0 0 1 4ASK 15 85 0 0 0 0
2PSK 0 0 98 2 0 0 2PSK 2 1 78 19 0 0
4PSK 0 0 4 96 0 0 4PSK 0 0 8 92 0 0
2FSK 0 0 0 0 98 2 2FSK 0 0 0 1 92 7
4FSK 0 0 0 0 6 94 4FSK 0 0 0 0 14 86
Classification error=5.67% Classification error=13.50%

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 87 11 2 0 0 0 2ASK 72 23 4 1 0 0
4ASK 16 81 1 1 0 1 4ASK 15 85 0 0 0 0
2PSK 0 0 99 1 0 0 2PSK 2 0 70 28 0 0
4PSK 0 0 0 100 0 0 4PSK 6 0 4 90 0 0
2FSK 0 0 0 1 96 3 2FSK 0 0 1 1 89 9
4FSK 0 0 0 0 4 96 4FSK 0 0 1 2 19 78
Classification error = 6.83% Classification error=19.33%

30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 30 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 96 4 0 0 0 0 2ASK 64 31 4 1 0 0
4ASK 17 83 0 0 0 0 4ASK 18 79 3 0 0 0
2PSK 0 0 96 4 0 0 2PSK 3 1 57 39 0 0
4PSK 0 0 5 95 0 0 4PSK 5 0 9 86 0 0
2FSK 0 0 0 0 99 1 2FSK 0 0 3 1 88 8
4FSK 0 0 0 0 11 89 4FSK 0 0 3 1 23 73
Classification error =7.00% Classification error=25.50%

30dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 93 3 1 0 0 0

4ASK 14 86 0 0 0 0

2PSK 0 0 98 2 0 0

4PSK 0 0 5 95 0 0

2FSK 0 0 0 0 99 1

4FSK 0 0 0 0 11 89

Classification error=6.17%
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400 realisations (fading at 10dB SNR):

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.00 Rps=0.1

2ASK 91 9 0 0 0 0 2ASK 83 11 3 3 0 0
4ASK 54 46 0 0 0 0 4ASK 39 48 8 5 0 0
2PSK 0 0 100 0 0 0 2PSK 2 0 78 19 1 0
4PSK 0 0 11 89 0 0 4PSK 7 0 8 85 0 0
2FSK 0 0 0 0 87 13 2FSK 0 0 0 1 67 32
4FSK 0 0 0 0 6 94 4FSK 0 0 3 0 27 70
Classification error = 15.50% Classification error=28.17%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.001 Rps=02

2ASK 82 12 2 4 0 0 2ASK 76 15 3 6 0 0
4ASK 54 37 6 3 0 0 4ASK 42 50 5 3 0 0
2PSK 4 0 80 14 2 0 2PSK 1 1 66 30 2 0
4PSK 2 0 8 87 2 1 4PSK 2 0 10 88 0 0
2FSK 0 0 0 0 67 33 2FSK 0 0 0 2 60 38
4FSK 0 0 0 1 20 79 4FSK 0 0 0 1 23 76
Classification error = 28.00% Classification error=30.67%

10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rp5=0.004 Rps=0.3

2ASK 85 12 1 2 0 0 2ASK 71 21 3 5 0 0
4ASK 45 46 5 4 0 0 4ASK 44 50 2 4 0 0
2PSK 2 0 79 19 0 0 2PSK 4 0 72 24 0 0
4PSK 2 1 13 84 0 0 4PSK 1 1 16 82 0 0
2FSK 0 0 0 0 66 34 2FSK 0 0 0 7 67 26
4FSK 0 0 0 0 25 75 4FSK 0 0 4 2 26 68
Classification error=27.50% Classification error=31.67%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK 10 dB | 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK
Rps=0.03 Rps=0.4

2ASK 78 10 6 6 0 0 2ASK 67 27 2 4 0 0
4ASK 50 44 5 1 0 0 4ASK 39 51 4 6 0 0
2PSK 1 0 78 19 1 1 2PSK 16 0 53 31 0 0
4PSK 1 1 10 86 2 0 4PSK 9 1 11 78 1 0
2FSK 0 0 0 2 66 32 2FSK 0 0 4 2 75 19
4FSK 0 0 0 0 27 73 4FSK 0 0 2 2 29 67
Classification error=29.17% Classification error=34.83%

10dB 2ASK | 4ASK | 2PSK | 4PSK | 2FSK | 4FSK

Rps=0.06

2ASK 86 9 2 3 0 0

4ASK 47 45 5 3 0 0

2PSK 2 0 79 18 1 0

4PSK 1 0 12 86 1 0

2FSK 0 0 0 3 67 30

4FSK 0 0 2 1 21 76

Classification error =26.83%
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