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SUB-MANIFOLD AND TRAVELING WAVE
SOLUTIONS OF ITO’S 5TH-ORDER MKDV

EQUATION∗
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Abstract In this paper, we study Ito’s 5th-order mKdV equation with the aid
of symbolic computation system and by qualitative analysis of planar dynami-
cal systems. We show that the corresponding higher-order ordinary differential
equation of Ito’s 5th-order mKdV equation, for some particular values of the
parameter, possesses some sub-manifolds defined by planar dynamical system-
s. Some solitary wave solutions, kink and periodic wave solutions of the Ito’s
5th-order mKdV equation for these particular values of the parameter are ob-
tained by studying the bifurcation and solutions of the corresponding planar
dynamical systems.

Keywords Ito’s 5th-order mKdV equation, traveling wave solutions, sube-
quations, planar dynamical systems.
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1. Introduction

In recent decades, with the availability of computer algebra packages (for exam-
ple, Maple, Matlab), various methods have been proposed to seek exact solutions
of nonlinear partial differential equations (NLPDEs), especially for those higher-
order NLPDEs arising from fluid mechanics, elasticity, mathematical biology, or
other real applications. Also, some valuable methods have been developed to con-
struct exact traveling wave solutions for nonlinear wave equations, for example, the
inverse scattering method, Bäcklund transformation method, Darboux transforma-
tion method, Hirota bilinear method, tanh-function method, invariant subspace
method etc. Some special functions such as Jacobi elliptic functions, hyperbolic
functions and so on or integrable ordinary differential equations (ODEs) like linear
ODEs, Riccati equation, etc., have been used to study the solutions of nonlinear
wave equations [7,9,10,12–14,16,19,20]. The tanh-function [7,13] and exp-function
methods [9] and some generalized forms of these methods have been developed and
applied to search for solitary wave solutions. The Jacobi elliptic function expansion
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method [14, 16] was proposed to find periodic wave solutions of NLPDEs. Some
qualitative analysis methods or numerical simulation methods have been applied to
study the solutions of some NLPDEs [1,2,4–6,11,15,17,18,21,22]. The solitary wave
solutions, periodic wave solutions, wave front solutions and even certain singular
traveling wave solutions, such as compacton, peakon or cuspon, are always of phys-
ical significance. Therefore, it is vital to find exact expressions or even prove the
existence of such solutions for a better understanding of some physical phenomena
in wave transmission.

In the present paper, with the aid of symbolic computation and qualitative
analysis of planar dynamical system we study the subequations and exact traveling
wave solutions of Ito’s 5th-order mKdV equation which was proposed in [10] and is
given by

ut + (6u5 + 10α(u2uxx + uu2
x) + u4x)x = 0, (1.1)

where α is a real constant.
Some solitary wave solutions of (1.1) were obtained in [13] and some periodic

wave solutions were presented in [14] by using the Jacobi elliptic-function method.
The modified Jacobi elliptic function expand method was applied to re-investigate
Ito’s 5th-order mKdV equation (1.1) with α = −1 in [16]. To investigate the
traveling wave solutions of (1.1), we introduce a new variable ξ = x − ct and
afterward integrate the derived ODE once with respect to ξ, and then we have

u(4) + 10α(u2u′′ + uu′2)− cu+ 6u5 = g, (1.2)

where g is the constant of integration and ′ represents the derivative with respective
to ξ. Clearly, u(x, t) = u(x−ct) is a traveling wave solution with wave speed c if and
only if u(ξ) satisfies the ODE (1.2) for an arbitrary constant g. Therefore, one has to
study the exact solutions of the ODE (1.2) to obtain the traveling wave solutions of
(1.1). Note that (1.2) is a 4th-order ODE which corresponds to a dynamical system
in four-dimensional space. However, we know that it is very difficult to study the
phase portraits of four-dimensional dynamical system. Therefore, it might be an
effective way to seek exact solutions by studying the invariant sets of this system in
a lower-dimensional space, which has been successfully applied to study the higher-
order ODEs [21,22].

The outline of the paper is as follows. In Section 2, we show that equation (1.2)
admits an invariant set determined by a first-order ODE of the form u′2 = P4(u)
which is named as subequation of (1.2), where P4(u) is a quartic polynomial in u.
In Section 3, we derive the traveling wave solutions of the Ito’s 5th-order mKdV
equation (1.1) by studying the bifurcation and exact solutions of its subequation
obtained in Section 2. Some discussions and conclusions are presented in Section 4.

2. Subequations of euqation (1.2)

Suppose that Pm(u) is a polynomial of degree m in u. If u(ξ) is a solution of the
solvable first-order ODE

u′2 = Pm(u), (2.1)

then it satisfies

u′′ =
1

2
P ′m(u) (2.2)
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and

u(4) =
1

2
P ′′′m (u)Pm(u) +

1

4
P ′m(u)P ′′m(u). (2.3)

Note that ODE (1.2) is of the form

F (u, u′2, u′′, u(4)) = 0, (2.4)

where F is polynomial function. Substituting (2.1)-(2.3) into (2.4) gives the equa-
tion

F (u, Pm(u),
1

2
P ′m(u),

1

2
P ′′′m (u)Pm(u) +

1

4
P ′m(u)P ′′m(u)) = 0, (2.5)

from which one concludes that (2.5) is an identical equation in u if u(ξ) satisfies
(2.4) provided that it is a solution of (2.1). Note that the left-hand side of (2.5) is
a polynomial in u. Collecting the coefficients of the same powers of u and equating
them to 0, gives a system of algebraic equations in the coefficients of the undeter-
mined polynomial Pm(u). By solving these algebraic equations, one can determine
the polynomial Pm(u) and then the solvable first-order ODE (2.1), from which cer-
tain solutions of the higher-order equation (2.4) can be obtained. As in [21,22], we
call (2.1) a subequation of (2.4) which determines a sub-manifold of equation (2.4).

Clearly, m = 4 for (1.2), which can be seen by balancing the highest degree of
u in (2.5), that is to say, we choose(

du

dξ

)2

= a4u
4 + a3u

3 + a2u
2 + a1u+ a0 (2.6)

as the potential subequation with a4 6= 0. Then we know that u(ξ) satisfies (1.2)
provided that it is a solution of (2.6) if a0, · · · , a4 satisfy the following algebraic
equations:

4a2
4 + 5αa4 + 1 = 0,

(5α+ 6a4)a3 = 0,

3a2
3 + 8a2a4 + 8αa2 = 0,

a2a3 + 2a1a4 + 2αa1 = 0,

24a0a4 + 9a1a3 − 2c+ 20αa0 + 2a2
2 = 0,

a1a2 + 6a0a3 − 2g = 0.

(2.7)

Thus, solving system (2.7) with Maple, one can find the possible subequations
of (1.2) in the form (2.6). We now present the result in the following theorem.

Theorem 2.1. Equation (1.2) has a sub-manifold determined by a first-order ODE
(2.6) if ai, i = 0, ..., 4, c and g satisfy one of the following assumptions:

(A1) for α = −1, a4 = 1, a3 = 0, c = 2a0 + a2
2 g = 1

2a1a2, a0, a1 and a2

arbitrary;
(A2) for α = 1, a4 = −1, a3 = 0, c = a2

2 − 2a0 g = − 1
2a1a2, a0, a1 and a2

arbitrary;

(A3) for α = 3
√

2
5 , a4 = −

√
2

2 , a2 = − 15
√

2
8 a2

3, a1 = 75
8 a

3
3, c = 1575

32 a4
3, g =

3a0a3 − 1125
√

2
128 a5

3, a0 and a3 arbitrary;

(A4) for α = − 3
√

2
5 , a4 =

√
2

2 , a2 = 15
√

2
8 a2

3, a1 = 75
8 a

3
3, c = 1575

32 a4
3, g =

3a0a3 + 1125
√

2
128 a5

3, a0 and a3 arbitrary;

(A5) for arbitrary α ≥ 4
5 or α ≤ − 4

5 , a4 = −5
8 α ±

√
25α2−16

8 , a3 = a2 = a1 =

0, c = 1
2 (5α+ 3

√
25α2 − 16)a0, g = 0, a0 arbitrary.
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The above theorem tells one that a function u(ξ) satisfies (1.2) provided that it
is a solution of (2.6) if one of the previously mentioned assumptions (A1)–(A5) is
satisfied. Therefore the traveling wave solutions of Ito’s 5th-order mKdV equation
with α ≥ 4

5 or α ≤ − 4
5 might be derived by investigating the sub-manifold of the

fourth-order ODE (1.2).

3. Traveling wave solutions of Ito’s 5th-order mKd-
V equation

Clearly, if a function u(ξ) satisfies equation (2.6), then it satisfies the following
planar dynamical system:u′ = v,

v′ = 2a4u
3 +

3

2
a3u

2 + a2u+
1

2
a1,

(3.1)

which is a Hamiltonian system with Hamiltonian

H(u, v) =
1

2

[
v2 −

(
a4u

4 + a3u
3 + a2u

2 + a1u
)]
. (3.2)

The solution of (2.6) is fully determined by the energy curve h = 1
2a0, i.e., H(u, v) =

1
2a0.

According to dynamical system theorems [3], one knows that only bounded
orbits of system (3.1) correspond to its bounded solutions. Due to the fact that
the bounded orbits of an analytic Hamiltonian system could only be periodic orbits
surrounding center, heteroclinic orbits or homoclinic orbits, we only need to study
the case when the dynamical system has at least one center if we only focus on the
bounded nontrivial solutions of system (3.1).

In order to investigate the bounded exact traveling wave solutions of Ito’s 5th-
order mKdV equation (1.1), we study the bounded orbits determined by H(u, v) =
1
2a0 and α, a0, · · · , a4 and g satisfy one of the conditions of Theorem 2.1.

3.1. Traveling wave solutions of Ito’s 5th-order mKdV equa-
tion with α = −1

In this subsection we study the traveling wave solutions of Ito’s 5th-order mKdV
equation with α = −1.

Theorem 3.1. Assume that α = −1. Then the following statements hold for Ito’s
5th-order mKdV equation.

(1) For arbitrary u0,

u(ξ) = u0

(
1 + 3a− 12q2eu0qξ

9e2u0qξ + 24(1 + 3a)eu0qξ + 8(2 + 3a)

)
(3.3)

with a > 0 and

u(ξ) = u0

(
1 + 3a+

12q2eu0qξ

9e2u0qξ − 24(1 + 3a)eu0qξ + 8(2 + 3a)

)
(3.4)
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with − 2
3 < a < − 1

2 are two families of solitary wave solutions of (1.1). Here

ξ = x− ct, q = 3
√

2a(1 + 2a) and c = 6u4
0(81a4 + 126a3 + 84a2 + 30a+ 5).

(2) For arbitrary u0 and 0 < a < 2,

u(ξ) = u0

(
1− 12a2eau0ξ

9e2au0ξ + 24eau0ξ + 16− 4a2

)
(3.5)

are a family of solitary wave solutions of (1.1), where ξ = x − ct and c = u4
0(a4 −

10a2 + 30).
(3) For arbitrary u0,

u(x, t) = ±u0 tanh
(
u0(x− 6u4

0t)
)

(3.6)

are a family of kink and a family of anti-kink wave solutions of (1.1).
(4) Suppose e± = 1

2

(
−1±

√
1− 4b

)
for b < 1

4 . For arbitrary u0 and Q0

u(ξ) = u0

(
1 + 3Q1 +

3(Q2 −Q1)(Q0 −Q1)

Q0 −Q1 − (Q0 −Q2)sn2(u0Ωξ, q)

)
, (3.7)

are a family of periodic traveling wave solutions of (1.1), where Q0 ∈ (e−, 0) when
b < 0, Q0 ∈ (e+, 0) when 0 < b ≤ 2

9 and Q0 ∈ (e−, e+) when 2
9 < b < 1

4 . Here

Q1 < Q2 < Q3 are three roots of equation Q3 + ( 4
3 +Q0)Q2 + (2b+Q0

2 + 4
3Q0)Q+

2bQ0 + 4
3Q0

2 + Q0
3 = 0, Ω = 3

2

√
(Q3 −Q2) (Q0 −Q1), q =

√
(Q3−Q1)(Q0−Q2)
(Q3−Q2)(Q0−Q1) ,

ξ = x− ct and c = 6u4
0(−54Q4

0 − 72Q3
0 − 108bQ2

0 + 54b2 − 30b+ 5).

Proof. According to Theorem 2.1, we see that (1.2) with α = −1 admits the
subequation in the form (2.6) if a0, ..., a4, c and g satisfy (A1) a4 = 1, a3 = 0, c =
2a0 + a2

2, g = 1
2a1a2, a0, a1 and a2 arbitrary. Now we firstly study the bounded

orbits determined by H(u, v) = 1
2a0 of system (3.1) with a4 = 1 and a3 = 0, i.e.,u′ = v,

v′ = 2u3 + a2u+
1

2
a1

(3.8)

for arbitrary a1 and a2.
Suppose f(u0) = 2u3

0+a2u0+ 1
2a1 = 0, that is to say that (u0, 0) is an equilibrium

point of system (3.8). For (3.8) with a1 = 0 and a2 ≥ 0, it is easy to check that
(u0, 0) = (0, 0) is the unique equilibrium point which is a saddle and thus there is
no bounded solution can be derived. However, for (3.8) with a1 = 0 and a2 < 0 or

with a1 6= 0, we can choose u0 6= 0, then the rescaling ū = 1
3u0

(u− u0), v̄ =
√

2
18u2

0
v

and η = 3
√

2u0ξ transforms (3.8) into the system{
˙̄u = v̄,

˙̄v = ū3 + ū2 + bū,
(3.9)

where b =
6u2

0+a2
18u2

0
and ˙ represents the derivative with respect to the new variable

η. We now study the bounded orbits of system (3.9) determined by

H1(ū, v̄) =
1

2

[
v̄2 −

(
1

2
ū4 +

2

3
ū3 + bū2

)]
=
a0 − a2u0

2 − 3u0
4

324u0
4 . (3.10)
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The bifurcation points of system (3.9) are b = 1
4 , b = 2

9 and b = 0. When
b > 1

4 , system (3.9) has only one equilibrium point which is a saddle and thus
it has no bounded orbits. It has one saddle and one cusp if b = 1

4 or b = 0. So

system (3.9) has no bounded solutions if b ≥ 1
4 or b = 0. Let e± = 1

2 (−1±
√

1− 4b).
Then system (3.9) has three equilibrium points, viz., (0, 0), (e+, 0) and (e−, 0) when
b < 1

4 and b 6= 0. The point (0, 0) is a center but (e+, 0) and (e−, 0) are saddle and
H1(0, 0) < H1(e+, 0) < H1(e−, 0) when b < 0. Hence, there is a homoclinic orbit
connecting (e+, 0), which is the boundary of a family of closed orbits surrounding
the center (0, 0) if b < 0. The point (e+, 0) is a center whereas (0, 0) and (e−, 0) are
saddle when 0 < b < 1

4 . For b = 2
9 , H1(e+, 0) < H1(0, 0) = H1(e−, 0), so there are

two heteroclinic orbits connecting (0, 0) and (e−, 0), which are the boundary of a
family of closed orbits surrounding the center (e+, 0). For 0 < b < 2

9 , H1(e+, 0) <
H1(0, 0) < H1(e−, 0), so there is a homoclinic orbit connecting (0, 0), which is the
boundary of a family of closed orbits surrounding the center (e+, 0). For 2

9 < b < 1
4 ,

H1(e+, 0) < H1(e−, 0) < H1(0, 0), so there is a homoclinic orbit connecting (e−, 0),
which is the boundary of a family of closed orbits surrounding the center (e+, 0).

Case (1) b < 0.
From the above analysis, we see that the corresponding Hamiltonian of the

homoclinic orbit is determined by h = H1(e+, 0). Note that in this case e+ =
1
2 (−1 +

√
1− 4b) > 0. By substituting h = H1(e+, 0) in (3.10), one derives

dū

dη
= ±(ū− e+)

√
1

2
(ū− r+)(ū− r−) , (3.11)

where r± = − 1
6 −

1
2

√
1− 4b± 1

3

√
1 + 3

√
1− 4b.

Solving equation (3.11)(refer to the formula in [8]) yields the bounded solution

ū(η) = e+ −
72q2

+e
qη

9e2q+η + 24(1 + 3e+)eq+η + 8(2 + 3e+)
, (3.12)

where q+ =
√
e+(1 + 2e+). From (3.10) solving h = H1(e+, 0) for a0 and recalling

that c = 2a0 + a2
2, one has c = 6u4

0(81e4
+ + 126e3

+ + 84e2
+ + 30e+ + 5). For simplicity

we denote e+ by a. Therefore, we obtain (3.3).
Case (2) 0 < b < 2

9 .
The bounded solution of (3.9) corresponding to h = H1(0, 0) is

ū(η) =
−72be

√
bη

9e2
√
bη + 24e

√
bη + 16− 72b

. (3.13)

Denote 3
√

2b by a, then 0 < a < 2 and thus we obtain (3.5) and prove statement
(2).

Case (3) b = 2
9 .

The heteroclinic orbits are determined by h = H1(0, 0). The bounded solutions
of (3.9) corresponding to h = H1(0, 0) are

ū(η) = ±1

3
tanh

(√
2

6
η

)
− 1

3
(3.14)

from which we obtain (3.6) and prove statement (3).
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Case (4) 2
9 < b < 1

4 .
The homoclinic orbit is determined by h = H1(e−, 0). Note that − 2

3 < e− < − 1
2

when 2
9 < b < 1

4 . The bounded solution of (3.9) corresponding to h = H1(e−, 0) is

ū(η) = e− +
72q2
−e

q−η

9e2q−η − 24(1 + 3e−)eq−η + 8(2 + 3e−)
, (3.15)

where q− =
√
e−(1 + 2e−). From (3.10) solving h = H1(e−, 0) for a0 and substi-

tuting in c = 2a0 +a2
2 gives c = 6u4

0(81e4
−+126e3

−+84e2
−+30e−+5). For simplicity

denote e− by a and then we obtain (3.4) and prove statement (1).
For arbitrary Q0 ∈ (e−, 0) when b < 0, Q0 ∈ (e+, 0) when 0 < b ≤ 2

9 and
Q0 ∈ (e−, e+) when 2

9 < b < 1
4 , H1(ū, v̄) = h with h = H1(Q0, 0) determines the

periodic orbit of (3.9). Suppose that Q1 < Q2 < Q3 are three roots of equation
Q3 + (4

3 + Q0)Q2 + ( 4
3Q0 + Q0

2 + 2a1)Q + 2a1Q0 + 4
3Q0

2 + Q0
3 = 0, then from

H1(ū, v̄) = H1(Q0, 0), we have

dū

dη
= ±

√
1

2
(ū−Q0)(ū−Q1)(ū−Q2)(ū−Q3) . (3.16)

From (3.16), we get the following periodic solutions of (3.9):

ū(η) = Q1 +
(Q2 −Q1)(Q0 −Q1)

Q0 −Q1− (Q0 −Q2)(sn(Ωη, q))2
, (3.17)

where Ω=
√

2
4

√
(Q3 −Q2)(Q0 −Q1) and q=

√
(Q3−Q1)(Q0−Q2)
(Q3−Q2)(Q0−Q1) . SolvingH1(Q0, 0)=

a0−3u0
4−a2 u0

2

324u0
4 for a0 and substituting in c = 2a0+a2

2 yields c = 6u4
0(−54Q4

0−72Q3
0−

108bQ2
0 + 54b2 − 30b + 5). Then we obtain (3.7) from (3.17) and the conclusion is

proven. This completes the proof of the theorem.

3.2. Traveling wave solutions of Ito’s 5th-order mKdV equa-
tion with α = 1

In this subsection we study the traveling wave solutions of Ito’s 5th-order mKdV
equation with α = 1.

Theorem 3.2. Assume that α = 1. Then the following conclusion holds for Ito’s
5th-order mKdV equation.

(1) For arbitrary u0,

u(x, t) = u0

(
2

1 + u2
0(x− 15

8 u
4
0t)

2
− 1

2

)
(3.18)

and

u(x, t) = u0

(
1− 4

1 + 4u2
0(x− 30u4

0t)
2

)
(3.19)

are two families of solitary wave solutions of (1.1).
(2) For arbitrary u0 and − 1

2 < a < 0,

u(ξ) = u0

(
1 + 3a+

12q2equ0ξ

8(2 + 3a) + 24(1 + 3a)equ0ξ + 9e2qu0ξ

)
(3.20)
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and

u(ξ) = u0

(
1 + 3a− 12q2equ0ξ

8(2 + 3a)− 24(1 + 3a)equ0ξ + 9e2qu0ξ

)
(3.21)

are two families of solitary wave solutions of (1.1), where ξ=x−ct,q=−3
√
−2a(1+2a)

and c = 6u4
0(81a4 + 126a3 + 84a2 + 30a+ 5).

(3) For arbitrary u0 and a < 0,

u(ξ) = u0

(
1 +

12a2eau0ξ

4(4 + a2) + 24eau0ξ + 9e2au0ξ

)
(3.22)

and

u(ξ) = u0

(
1− 12a2eau0ξ

4(4 + a2)− 24eau0ξ + 9e2au0ξ

)
(3.23)

are two families of solitary wave solutions of (1.1), where ξ = x − ct and c =
u4

0(a4 + 10a2 + 30).
(4) For arbitrary u0, Q0 and b < − 1

4 or arbitrary Q0 /∈ {− 1
2 ,

1
6} and b = − 1

4 ,

u(ξ) = u0

(
1 + 3Q1 +

3q(Q0 −Q1)

q + p (ns(Ωξ, k) + cs(Ωξ, k))
2

)
(3.24)

are a family of periodic traveling wave solutions of (1.1). Here Q1 is the real root
of the equation

Q3
1 + (Q0 +

4

3
)Q2

1 + (Q2
0 +

4

3
Q0 − 2b)Q1 + (Q3

0 +
4

3
Q2

0 − 2bQ0) = 0, (3.25)

p = 1
3

√
9Q2

1 +Q1(18Q0 + 12) + 27Q2
0 + 24Q0 − 18b, k = 1

2

√
(Q0−Q1)2−(p−q)2

pq , Ω =

−3u0
√
pq q = 1

3

√
27Q2

1 +Q1(18Q0 + 24) + 9Q2
0 + 12Q0 − 18b, ξ = x − ct and c =

6u4
0(−54Q4

0 − 72Q3
0 + 108bQ2

0 + 54b2 + 30b+ 5).
(5) For arbitrary u0, b > − 1

4 and 1
2 (−1−

√
1 + 4b) < Q3 <

1
2 (−1 +

√
1 + 4b),

u(ξ) = u0

(
1 + 3Q3 −

3(Q3 −Q1)(Q3 −Q2)

(Q1 −Q2)sn2(Ωξ, k) + (Q3 −Q1)

)
(3.26)

and

u(ξ) = u0

(
1 + 3Q4 −

3(Q4 −Q2)(Q4 −Q1)

(Q2 −Q1)sn2(Ωξ, k) + (Q4 −Q2)

)
(3.27)

are two families of periodic wave solutions of (1.1). Here ξ = x − ct and c =
6u4

0(−54Q4
3 − 72Q3

3 + 108bQ2
3 + 54b2 + 30b+ 5), Ω = − 3

2u0

√
(Q1 −Q3)(Q2 −Q4),

k =
√

(Q1−Q2)(Q3−Q4)
(Q1−Q3)(Q2−Q4) , Q1, Q2 and Q4 are three roots of the equation

Q3 + (
4

3
+Q3)Q2 + (Q2

3 +
4

3
Q3 − 2b)Q+Q3

3 +
4

3
Q2

3 − 2bQ3 = 0, (3.28)

where Q1 < Q2 < Q4.
(6) For arbitrary ω and 1 > k > 0,

u(ξ) = ωk

(
−1 +

2

1 + (ns(ωξ, k) + cs(ωξ, k))2

)
(3.29)

are a family of periodic wave solutions of (1.1), where ξ = x− (6k4 − 6k2 + 1)ω4t.
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Proof. The proof is similar to the proof of Theorem 3.1. We first note that (1.2)
with α = 1 admits the subequation in the form (2.6) if a0, . . . , a4 and g satisfy
(A2) a4 = −1, a3 = 0, c = a2

2 − 2a0 g = − 1
2a1a2, a0, a1 and a2 arbitrary. Now

we study the bounded orbits determined by H(u, v) = 1
2a0 of system (3.1) with

a4 = −1, a3 = 0, i.e., u′ = v,

v′ = −2u3 + a2u+
a1

2
,

(3.30)

for arbitrary a1 and a2.
Similarly, we assume that (u0, 0) is an equilibrium point of system (3.15), i.e.,

−2u3
0 + a2u0 + a1

2 = 0. Obviously, u0 6= 0 if a1 6= 0. We also can choose u0 6= 0

if a1 = 0 and a2 > 0, then the rescaling ū = 1
3u0

(u − u0), v̄ = −
√

2
18u2

0
v and

η = −3
√

2u0ξ transforms (3.30) into the system{
˙̄u = v̄,

˙̄v = −ū3 − ū2 + bū,
(3.31)

where b =
a2−6u2

0

18u2
0

and ˙ denotes the derivative with respect to the new variable η.

We study the bounded orbits of system (3.31) determined by

H2(ū, v̄) =
1

2

[
v̄2 −

(
−1

2
ū4 − 2

3
ū3 + bū2

)]
=

6u4
0 − 2a2u0

2 + a2
2 − c

648u0
4 . (3.32)

Clearly, it has only one equilibrium point (0, 0), which is a center if b < − 1
4 . Thus

if b < − 1
4 all the orbits of system (3.31) are closed curves which correspond to

the periodic solutions of this system. It has a cusp and a center if b = 0 or b =
− 1

4 and thus all the closed orbits not passing through the cusp correspond to the
periodic solutions and the orbits passing through the cusp correspond to solitary
wave solutions. For b > − 1

4 and b 6= 0, system (3.31) has three equilibrium points

(0, 0) and (ē1±, 0), where ē1± = 1
2 (−1 ±

√
1 + 4b). These are two center points

and a saddle. There are two homoclinic orbits connecting the saddle which are the
boundary curves of the two families of closed orbits surrounding the two centers.

Case (1) b = − 1
4 .

The phase orbits of system are all periodic orbits except the one passing through
the singular point (− 1

2 , 0). The orbit connecting the singular point (− 1
2 , 0) is given

by

ū(η) =
12

18 + η2
− 1

2
. (3.33)

From (3.32), we see that H2(− 1
2 , 0) = 1

192 =
6u4

0−2a2u0
2+a22−c

648u0
4 . Thus, c = 15

8 u
4
0 and

from (3.33), we obtain (3.18).
Case (2) b = 0.
The phase orbits of system are all periodic orbits except the one passing through

the singular point (0, 0). The orbit connecting the singular point (0, 0) is given by

ū(η) = − 12

9 + 2η2
. (3.34)

From (3.32), we obtain H2(0, 0) = 0 =
6u4

0−2a2u0
2+a22−c

648u0
4 . Thus we have c = 30u4

0.
From (3.34), we obtain (3.19) and statement (1) is proved.
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Case (3) − 1
4 < b < 0.

The homoclinic orbits are determined by h2 = H2(ē1+, 0). The bounded solu-
tions of (3.31) corresponding to these two homoclinic orbits are given by

ū(η) = ē1+ +
72Ω2

1e
Ω1η

8(2 + 3ē+) + 24(1 + 3ē1+)eΩ1η + 9e2Ω1η
(3.35)

and

ū(η) = ē1+ −
36Ω2

1e
Ω1η

8(2 + 3ē+)− 24(1 + 3ē1+)eΩ1η + 9e2Ω1η
, (3.36)

where Ω1 =
√
−ē1+(1 + 2ē1+). Note that − 1

2 < ē1+ < 0 when − 1
4 < b < 0. Denote

ē1+ by a and from above results, we obtain (3.20) and (3.21), then conclusion (2)
is proved.

Case (4) b > 0.
The homoclinic orbits are determined by h = H2(0, 0). The bounded solutions

of (3.31) corresponding to these two orbits are

ū(η) =
72be

√
bη

16 + 72b+ 24e
√
bη + 9e2

√
bη

(3.37)

and

ū(η) =
−72be

√
bη

16 + 72b− 24e
√
bη + 9e2

√
bη
. (3.38)

Let −3
√

2b = a, then a < 0, so we obtain (3.22) and (3.23) and conclusion (3) is
proved.

However, we also know that equation (1.2) with α = 1 admits the subequation
in the form (2.6) with a4 = −1, a3 = a1 = 0, c = a2

2 − 2a0 and g = 0 for arbitrary
a0 and a2, i.e., (

du

dξ

)2

= −u4 + a2u
2 + a0. (3.39)

Let a2 = (2k2 − 1)ω2 and a0 = k2ω4(1 − k2) for arbitrary ω and 1 > k > 0, then
(3.39) can be rewritten as

du

dξ
= ±

√
(kω − u)(u− kω)(u2 + (1− k2)ω2). (3.40)

Solving (3.40) yields (3.29) which is a family of periodic wave solutions of (1.1).
This completes the proof of the theorem.

3.3. Traveling wave solutions of Ito’s 5th-order mKdV equa-

tion with α = 3
√

2
5

In this subsection we show that Ito’s 5th-order mKdV equation with α = 3
√

2
5 has

a family of periodic wave solutions determined by a sub-manifold of its associated
higher-order ODE.

According to Theorem 2.1, we know that (1.2) with α = 3
√

2
5 admits the sube-

quation in the form (2.6) if and only if a0, . . . , a4, g and c satisfy condition (A3),
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i.e., a4 = −
√

2
2 , a2 = − 15

√
2

8 a2
3, a1 = 75

8 a
3
3, g = −3a0a3 + 1125

√
2

128 a5
3, c = 1575

32 a4
3, a0

and a3 arbitrary. System (3.1) with coefficients satisfying (A3) is written as
u′ = v,

v′ = −
√

2u3 +
3

2
a3u

2 − 15
√

2

8
a2

3u+
75

16
a3

3,
(3.41)

for arbitrary a3. Let e0 = λa3, where λ satisfies the cubic algebraic equation

−
√

2λ3 +
3

2
λ2 − 15

√
2

8
λ+

75

16
= 0, (3.42)

then (e0, 0) is the unique equilibrium point of system (3.38) which is a center. In
fact, it is easy to check that (3.42) has a unique root and the characteristic values
of (3.41) at (e0, 0) are two conjugate imaginary numbers, which implies that system
(3.41) has a unique center for arbitrary a3. Consequently, for arbitrary a0 and a3,
H(u, v) = 1

2a0 defines a family of periodic orbits around the center (e0, 0), where
H(u, v) is determined by (3.2). Under this condition (A5) for arbitrary u0 < e0,
the right hand of the first-order ODE (2.6) can be rewritten as

a4u
4 + a3u

3 + a2u
2 + a1u+ a0 =

√
2

2
(u1 − u)(u− u0)((u−m)2 + n2), (3.43)

where u1 is the real root of the equation

u3 + (u0 −
√

2a3)u2 + (u0
2 −
√

2a3u0 +
15

4
a3

2)u

+
75

8

√
2a3

3u0
3 −
√

2a3u0
2 +

15

4
a3

2u0 = 0 (3.44)

and u0 < e0 < u1, m = 1
2 (u0 +u1−

√
2a3) and n2 = 1

4 (13a2
3− 5u2

0− 14u0u1− 5u2
1 +

6
√

2a3(u0 + u1)).
Thus, from (2.6) we have

du√
(u1 − u)(u− u0)((u−m)2 + n2)

=

√√
2

2
dξ. (3.45)

Solving (3.45) for u(ξ) yields

u(ξ) = u0 +
q(u1 − u0)

q + p(ns(Ωξ, k) + cs(Ωξ, k))2
, (3.46)

where ξ = x− 1575
32 a4

3t, p = 1
2

√
15a2

3 + 4
√

2a3(2u0 + u1)− 4u2
0 − 16u0u1 − 4u2

1, q =

1
2

√
15a2

3+4
√

2a3(u0+2u1)−4u2
0−16u0u1−4u2

1, Ω=

√√
2

2 pq and k= 1
2

√
(u1−u0)2−(p−q)2

pq .

Theorem 3.3. For arbitrary u0, Ito’s 5th-order mKdV equation with α = 3
√

2
5 has

a family of periodic wave solutions defined as (3.46).

Remark 3.1. For the case when α = − 3
√

2
5 , even though we know that (1.2) admits

the subequation in the form (2.6) if and only if a0, . . . , a4, g and c satisfy condition
(A4). However, system (3.1) with coefficients satisfying condition (A4) has only one
equilibrium point which is a saddle, therefore it has no bounded nontrivial solutions.
Therefore, no bounded nontrivial traveling wave solutions could be found here.
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3.4. Traveling wave solutions of Ito’s 5th-order mKdV equa-
tion with α ≥ 4

5

For equation (1.1) with α ≥ 4
5 or α ≤ − 4

5 , according to Theorem 2.1, we know that
(1.2) admits the subequation in the form (2.6) if a0, . . . , a4, c and g satisfy condition

(A5) a4 = − 5α
8 ±

√
25α2−16

8 , a3 = a2 = a1 = 0, c = 1
2 (5α ± 3

√
25α2 − 16)a0, and

g = 0 for arbitrary a0. Obviously, system{
u′ = v,

v′ = 2a4u
3

(3.47)

has only one equilibrium point (0, 0) which is a center when a4 < 0 and is a saddle

when a4 > 0. It is easy to check that − 5α
8 ±

√
25α2−16

8 > 0 when α ≤ − 4
5 and

− 5α
8 ±

√
25α2−16

8 < 0 when α ≥ 4
5 . So we know that (3.47) with a4 = − 5α

8 ±
√

25α2−16
8

has no bounded nontrivial solutions if α ≤ − 4
5 and has a family of periodic solutions

if α ≥ 4
5 . By careful computations, the following explicit periodic traveling wave

solutions of Ito’s 5th-order mKdV equation with α ≥ 4
5 can be obtained.

Theorem 3.4. For α ≥ 4
5 and arbitrary u0 > 0,

u(ξ) = u0

(
−1 +

2

1 + (ns(Ωξ,
√

2
2 ) + cs(Ωξ,

√
2

2 ))2

)
(3.48)

is a family of periodic wave solutions of (1.1). Here Ω = 1
2u0

√
5α±

√
25α2 − 16

and ξ = x− 1
4 (5α∓ 3

√
25α2 − 16)Ω2u2

0 t.

4. Conclusion and Discussion

In this paper we obtained traveling wave solutions of the Ito’s 5th-order mKdV
equation with α = −1 or α ≥ 4

5 . By using the traveling wave variable we trans-
formed this equation into a 4th-order nonlinear ordinary differential equation which
is associated with a dynamical system in 4-dimensional space. Generally speaking,
it is very difficult to study dynamical systems in higher dimensional space. Howev-
er, with the aid of symbolic computation system, we obtained sub-manifolds which
are determined by some planar dynamical systems of the corresponding dynamical
system of Ito’s 5th-order mKdV equation with α ≥ 4

5 or α = −1. By using bi-
furcation and dynamical system theorem [3], all possible bounded real solutions of
the involving planar dynamical systems were studied and then some exact solitary
wave solutions, kink and anti-kink wave solutions and some periodic wave solutions
were obtained. The known results on the real bounded traveling wave solutions
of Ito’s 5th-order mKdV equation in the literature [13, 14, 16] were also recovered.
It is worth pointing out that the method proposed in this paper, which combines
the symbolic computation system and qualitative analysis, might be applied to s-
tudy the traveling wave solutions of other higher-order nonlinear partial differential
equations.
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