
25South African Journal of Science  
http://www.sajs.co.za

Volume 113 | Number 1/2 
January/February 2017

© 2017. The Author(s). 
Published under a Creative 
Commons Attribution Licence.

Speech recognition for under-resourced languages: 
Data sharing in hidden Markov model systemsAUTHORS: 

Febe de Wet1

Neil Kleynhans2

Dirk van Compernolle3 

Reza Sahraeian3

AFFILIATIONS: 
1Human Language Technologies 
Research Group, Council 
for Scientific and Industrial 
Research, Pretoria, South Africa 
2Multilingual Speech 
Technologies, North-West 
University, Vanderbijlpark, 
South Africa
3Center for Processing Speech 
and Images, Department of 
Electrical Engineering, University 
of Leuven, Leuven, Belgium

CORRESPONDENCE TO: 
Febe de Wet

EMAIL: 
fdwet@csir.co.za 

DATES: 
Received: 04 Feb. 2016

Revised: 31 May 2016

Accepted: 24 Aug. 2016

KEYWORDS: 
acoustic modelling; Afrikaans; 
Flemish; automatic speech 
recognition

HOW TO CITE: 
De Wet F, Kleynhans N, 
Van Compernolle D, Sahraeian R. 
Speech recognition for 
under-resourced languages: 
Data sharing in hidden 
Markov model systems. 
S Afr J Sci. 2017;113(1/2), 
Art. #2016-0038, 9 pages. 
http://dx.doi.org/10.17159/
sajs.2017/20160038 

ARTICLE INCLUDES: 
 Supplementary material 

× Data set 

FUNDING: 
Fund for Scientific Research 
of Flanders; National Research 
Foundation (South Africa); 
South African Department of 
Arts and Culture: Programme of 
Collaboration on HLT.

For purposes of automated speech recognition in under-resourced environments, techniques used to 
share acoustic data between closely related or similar languages become important. Donor languages 
with abundant resources can potentially be used to increase the recognition accuracy of speech 
systems developed in the resource poor target language. The assumption is that adding more data will 
increase the robustness of the statistical estimations captured by the acoustic models. In this study 
we investigated data sharing between Afrikaans and Flemish – an under-resourced and well-resourced 
language, respectively. Our approach was focused on the exploration of model adaptation and refinement 
techniques associated with hidden Markov model based speech recognition systems to improve the 
benefit of sharing data. Specifically, we focused on the use of currently available techniques, some 
possible combinations and the exact utilisation of the techniques during the acoustic model development 
process. Our findings show that simply using normal approaches to adaptation and refinement does 
not result in any benefits when adding Flemish data to the Afrikaans training pool. The only observed 
improvement was achieved when developing acoustic models on all available data but estimating model 
refinements and adaptations on the target data only.

Significance:
• Acoustic modelling for under-resourced languages

• Automatic speech recognition for Afrikaans

• Data sharing between Flemish and Afrikaans to improve acoustic modelling for Afrikaans

Introduction
Speech interfaces to different types of technology are becoming increasingly more common. Users can use their 
voice to search the Internet, control the volume of their car radio or dictate. However, this possibility is only 
available to users if the required technology exists in the language they speak. Automatic speech recognition 
(ASR) technology already exists and is regularly used by speakers of American English, British English, German, 
Japanese, etc. The development of ASR systems requires substantial amounts of speech and text data. While 
such resources are readily available for a number of languages, the majority of the languages that are spoken 
in the world can be classified as under-resourced, i.e. the resources required to create technologies like ASR do 
not exist or exist only to a limited degree. Researchers in the field of speech technology development for under-
resourced languages are investigating various possibilities to address this challenge and to establish resources and 
technologies in as many languages as possible.

One of the strategies that has been explored is to fast-track progress in under-resourced languages by borrowing as 
much as possible – in terms of both data and technology – from well-resourced languages. Here we report on an 
investigation on data sharing between Afrikaans – an under-resourced language – and Flemish – a well-resourced 
language. The approach was focused on the exploration of model adaptation and refinement techniques associated 
with hidden Markov model (HMM) based speech recognition systems to improve the benefit of sharing data. The 
focus was specifically on the use of currently available techniques, some possible combinations and the exact 
utilisation of the techniques during the acoustic model development process. 

Most of the techniques that are used in language and speech technologies are based on statistical methods. These 
methods require substantial amounts of data for a reliable estimation of the statistical parameters that are used to 
model the language, either in its written or spoken form. The required amounts often exceed what is available for 
resource-scarce languages.1 The restricted resources that are available for these languages can be supplemented 
with resources from other languages, especially from those for which extensive resources are available. We 
investigated different possibilities to improve acoustic modelling in an under-resourced language, Afrikaans, by 
using data from a well-resourced language, Flemish. The techniques that were investigated include bootstrapping 
Afrikaans models using Flemish data as well as individual and combined model adaptation techniques.

Specifically, our aim throughout was to improve the performance of Afrikaans acoustic models by adding the 
Flemish data using various model adaptation and refinement approaches. As we focused on the model level, we 
utilised maximum likelihood linear regression (MLLR) and maximum a posteriori (MAP) adaptation as well as 
a combination of these adaptation techniques. In addition, heteroscedastic linear discriminant analysis (HLDA) 
and speaker adaptive training (SAT) acoustic model refinements were investigated in terms of sharing acoustic 
data. The purpose of investigating these techniques – described in later sections – is to determine whether these 
methods are sufficient in our data sharing scenario. 

Background
Some of the approaches to data combination that have been reported on in the literature include cross-language 
transfer2, cross-language adaptation3, data pooling2,4 as well as bootstrapping5. However, results as well as 
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conclusions vary between studies and seem to be highly dependent on the 
amount of data that is used and the specific modelling task investigated. 
Some studies report small gains under very specific conditions. 

In a study by Adda-Decker et al.6 in which no acoustic data were available 
for the target language (Luxembourgish), English, French and German 
data sets were used to train a multilingual as well as three monolingual 
ASR systems. Baseline models for Luxembourgish were subsequently 
obtained by using the International Phonetic Alphabet associations 
between the Luxembourgish phone inventory and the English, French and 
German phone sets. (A phone is the smallest discrete segment of sound 
in a stream of speech). Results showed that the language identity of the 
acoustic models has a strong influence on system performance with the 
German models yielding much better performance than the French or 
English ones. The acoustic data that were available for Luxembourgish 
were not enough to train a baseline system. It was therefore not possible 
to compare the performance of the German models with models trained 
on the target language.

Positive results were reported for multilingual acoustic modelling when 
only a small amount of training data was available for Dari, Farsi and 
Pashto.7 MAP adaptation of the multilingual models to the individual 
target languages yielded a 3% relative improvement in word error rate 
compared to the corresponding monolingual models. However, as 
more data were added during training for the individual languages, the 
monolingual models overtook their multilingual counterpart very quickly 
in terms of recognition performance – given equal amounts of training 
data and the same number of model parameters.

Van Heerden et al.4 found that simply pooling data for closely related 
languages resulted in improvements in ASR phone accuracies. They 
grouped languages according to expert knowledge of language families 
– Nguni and Sotho. The generally observed trend was that adding one 
to two languages gave slight improvements in accuracy – however, this 
trend was not observed for Sepedi. In addition, for the majority of cases, 
adding a third language to the training pool resulted in a decrease in 
accuracy (except for isiZulu). On average, each language contained 
about 7 h of audio training data, thus 14 h and 21 h of training data 
indicated improvement. 

Niesler8 investigated the possibility of combining speech data from 
different languages spoken in a multilingual environment to improve the 
performance of ASR systems for the individual languages. The systems 
were all HMM based. The recognition performances of language-specific 
systems for Afrikaans, South African English, isiXhosa and isiZulu were 
compared with that of a multilingual system based on data pooling as 
well as data sharing by means of decision-tree clustering. The clustering 
process was modified to allow for language-specific questions. Data 
from different languages could therefore be shared at HMM state level. 
The results of the study showed that the multilingual acoustic models 
obtained using this data sharing strategy achieved a small but consistent 
improvement over the systems that were developed for the languages 
individually or by just pooling the data.

Kamper et al.9 performed several data sharing experiments on accented 
English audio data collected in South Africa. They specifically considered 
the accents of South African English defined in the literature: Afrikaans 
English, Black South African English, Cape Flats English, White South 
African English and Indian South African English. Overall they found that 
their multi-accent modelling approach outperformed accent-specific 
and accent-independent acoustic models. To create the multi-accent 
acoustic models, a modified decision-tree state cluster approach was 
used when accent-specific questions could be asked, which allowed the 
sharing of data across accents at the HMM state level. This approach 
is similar to that of Niesler8 except accent questions were used instead 
of language-specific questions. Of interest, was the analysis of the 
proportions of data shared at the state level. It was found that the optimal 
phone and word operating points were different and that the amount of 
data shared at these points also differed – 33% and 44%, respectively.

A current popular trend for data sharing is to make use of deep neural 
networks (DNNs) for robust feature extraction, for which gains have 
been observed even for unrelated languages. Approaches mainly focus 

on bottleneck features with different network architectures and opti-
mi sations. Some examples of the bottleneck feature approach are 
described in Veselý et al.10 (language-independent bottleneck features), 
Zhang et al.11 (multilingual stacked bottleneck features), Nguyen et al.12 
(multilingual shifting deep bottleneck features) and Vu et al.13 (multilingual 
DNNs cross-language transfer). Once the features are extracted they are 
fed through to a Gaussian mixture model (GMM)/HMM or Kullback–
Leibler divergence based HMM (KL-HMM) system, where normal ASR 
techniques are applied. It is difficult to interpret how exactly the DNNs are 
combining the different data and what effective operation is being applied 
to the data, but it does seem that the DNNs are applying a necessary 
feature normalisation.14 In line with this feature processing, there is great 
scope for improvement at the feature level as shown in intrinsic spectral 
analysis combination investigation.15

Monolingual acoustic modelling for Afrikaans has been investigated 
previously using a conventional Mel frequency cepstral coefficient 
(MFCC) based HMM system and broadcast news data16 as well as using 
intrinsic spectral analysis in combination with a broadband, monolingual 
Afrikaans corpus15.

In a study on resource and technology transfer between closely related 
languages, a case study was conducted for Dutch and Afrikaans. The distance 
between Afrikaans and other West Germanic languages and dialects was 
quantified in terms of acoustically weighted Levenshtein distances.17 The 
results identified Dutch and Flemish as well-resourced, donor languages 
for the development of language and speech technology in Afrikaans, 
especially in terms of supplying background data for acoustic modelling 
(cf. Box 1). These results were confirmed by a series of experiments that 
investigated the possibility of improving acoustic modelling for Afrikaans 
by using Dutch, Swiss German and British English as background data in 
Tandem and KL-HMM ASR systems. The best results were obtained when 
Dutch was used as out-of-language background data.18

In the context of statistical modelling ‘closeness’ is defined in terms of the 
acoustic distances between the languages. Phonetic and lexical overlap can 
also be taken into consideration to determine ‘closeness’. Historical and 
linguistic considerations may be related to but are not always reflected in 
objective measures such as acoustic distance.

Box 1: Closeness

We report on an attempt to improve acoustic modelling for Afrikaans 
(as an example of a resource-scarce language) by borrowing data from 
Flemish (as an example of a well-resourced language). Flemish was 
chosen as the donor language because we had access to previously 
developed ASR systems for Flemish as well as the relevant data. It was 
also decided to start with Flemish rather than a combination of Flemish 
and Dutch as previous studies have shown that the two languages have 
distinctive acoustic properties and that better recognition results are 
obtained if they are first modelled separately and then combined.19

A previous study on this topic investigated the use of multilayer percep-
trons, KL-HMMs and subspace Gaussian mixture models (SGMMs) 
and used Dutch as a donor language.20 The systems based on SGMMs 
achieved the best monolingual as well as multi-lingual performance. 
When the models were trained on Dutch data and adapted using the 
Afrikaans data, the SGMM systems also yielded the best results. Overall, 
the results showed that Dutch/Afrikaans multilingual systems yield a 
12% relative improvement in comparison with a conventional HMM/
GMM system trained only on Afrikaans.

The literature review sketches a domain in which many approaches 
have been explored to enable speech recognition performance gains 
for under-resourced languages through data sharing, but the results are 
quite varied. In summary, our research reported here investigates the 
possibility of combining Flemish and Afrikaans data at the model level 
using model adaptation (MLLR and MAP) and refinement (HLDA and 
SAT) techniques as well as combinations thereof. Although the DNN and 
intrinsic spectral analysis feature approaches have yielded success, this 
investigation will not focus on these. 
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Data
In this study, Flemish was used as an example of a well-resourced 
language and Afrikaans as an example of a closely related but under-
resourced language. The Flemish and Afrikaans speech data and pro-
nun ciation dictionaries are described in this section.

The data sets that were used in this study were designed to include the 
standard varieties of the relevant languages. For most languages it is difficult 
– sometimes to the point of being controversial – to define exactly what a 
‘standard variety’ is. The Flemish data correspond to radio news bulletins. 
Extreme varieties of a language are usually not used for news broadcasts, 
although we did not confirm this supposition in terms of internationally 
accepted news broadcasting standards. The National Centre for Human 
Language Technology Afrikaans data set has a 70:30 ratio of urban versus 
rural accents. The ‘less standard’ varieties of the language are usually 
spoken in rural rather than urban areas. Although ‘less standard’ varieties 
could therefore be present in the data, their properties are bound to be 
dominated by those of the more standard variety which constitutes the 
majority of the data.

Box 2: Standard and ‘less standard’ varieties

Flemish resources
The Spoken Dutch Corpus – Corpus Gesproken Nederlands (CGN)21 
– is a standard Dutch database (cf. Box 2) that includes speech data 
collected from adults in the Netherlands and Flanders. The corpus 
consists of 13 components that correspond to different socio-situational 
settings. In this study only Flemish data from component ‘O’ were 
used. This component of the database contains phonetically aligned 
read speech. These data were chosen for the development of the 
Flemish acoustic models because read speech is carefully articulated 
and the corresponding phone models present a ‘best case scenario’ 
of the acoustics in the language. For instance, words and phones are 
not affected by the co-articulation effects that typically occur in more 
spontaneous speech. Component ‘O’ includes about 38 h of speech data 
recorded at 16 KHz and produced by 150 speakers. 

For the purposes of the current investigation the data set was divided 
into training and test sets as follows: 8 (4 male, 4 female) speakers 
were randomly chosen for the evaluation set, corresponding to about 
2 h of audio data. From the remaining 36 h, 10 h of training data were 
randomly selected. The training set was selected to match the size 
of the set of unique Afrikaans prompts described in the next section. 
Matching training sets were used to avoid CGN data from dominating 
the acoustic models.

The CGN dictionary uses 48 phones, including silence. In the cross-
lingual experiments, the set was reduced to 38 phonemes using 
knowledge-based phonetic mapping. The mapping that was used is 
provided in Appendix 1 of the supplementary material. Nomenclature is 
given in Appendix 2 of the supplementary material.

Afrikaans resources
The Afrikaans speech data that were used in this study were taken 
from the National Centre for Human Language Technology (NCHLT) 
speech corpus.22 The development of the corpus was funded by the 
South African Department of Arts and Culture with the aim of collecting 
50–60 h of transcribed speech for each of the 11 official South African 
languages. The Afrikaans set contains data collected from 210 
(103 male, 107 female) speakers. The set includes about 52 h of training 
data and a predefined test set of almost 3 h.

During data selection for this study, an analysis was made of the type 
(i.e. the unique set of words) and token (i.e. the set of words) counts 
in the Afrikaans data set. The values for the training and test sets are 
summarised in the first row of Table 1. These values indicate that only 
20% of the recorded utterances in the training set are unique. This figure 
relates to about 10 h of unique training data and 2.2 h of unique evaluation 

data. The unique data subset statistics are shown in the second row of 
Table 1 (Type frequency 1).

If each unique token is allowed to occur a maximum of five times, the 
training set size increases to 37.1 h and the evaluation set to 2.7 h. 
Row 3 in Table 1 (Type frequency 5) shows the data subset statistics for 
this data selection criterion.

Table 1: Summary of the National Centre for Human Language Tech-
nology Afrikaans data 

Training set Test set

Types Tokens Duration Types Tokens Duration

All data 12 274 61 413 52.2 h 2513 3002 2.7 h

Type frequency 1 12 274 12 274 10.6 h 2513 2513 2.2 h

Type frequency 5 12 274 44 538 37.1 h 2513 3002 2.7 h

From Table 1, we observed quite a large drop in training data amount 
when limiting the data by uniqueness or frequency of occurrence. 
Subsequently, the effect on ASR performance was investigated given the 
various training data subsets. The ASR systems were set up according 
to a standard configuration – MFCCs, first- and second-order derivatives, 
tristate left-to-right triphone models – and were built using the hidden 
Markov toolkit (HTK).23 Cepstral mean and variance normalisation was 
applied at the speaker level.

The ASR systems were evaluated using the predefined NCHLT evaluation 
set as well as two additional Afrikaans corpora. The first corpus was a 
text-to-speech data set while the second was a broadcast news-style 
data set created by recording radio news broadcasts from Radio Sonder 
Grense, a local Afrikaans radio station.16 System performance was 
measured in terms of phone recognition accuracy, defined as:

Accuracy = 100 - S+D+I
N

 x 100  %, Equation 1

where S is the number of substitutions, D is the number of deletions, I is the 
number of insertions and N is the total number of phones in the reference.

The results of the various evaluations are summarised in Table 2. As 
expected, the ASR performance drops as less data are used to develop 
the acoustic models. Based on the NCHLT and radio broadcast data, 
even though there is about a 10% absolute drop in accuracy (on average) 
between the unique and all data sets, the ASR performance is still quite 
high for the unique data set given that only 20% of the training data 
were used. This result probably means that the full and unique data sets 
represent more or less the same data properties.

The text-to-speech results show very little variation for the three different 
sets of acoustic models. This result may be because of the nature of the 
corpus: it contains speech from a single speaker and the sentences are 
phonetically balanced. As a consequence, the data do not contain as much 
variation as a multi-speaker corpus such as the radio broadcast data. The 
specific set of training data does not seem to influence the match between 
the acoustic models and the single speaker in the text-to-speech corpus.

Table 2: Phone accuracy results for different sets of training data

NCHLT Text to speech Radio

All data 86.24 75.39 65.81

Type frequency 1 75.04 75.19 57.87

Type frequency 5 85.21 75.28 61.04

NCHLT, National Centre for Human Language Technology
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Method
Several techniques related to model adaptation and refinement and the 
application to data sharing were used: MLLR, MAP, SAT and HLDA. The 
application of the techniques is discussed in terms of data sharing.

Maximum likelihood linear regression
Maximum likelihood linear regression (MLLR), proposed by Leggetter 
and Woodland24 for speaker adaptation, provides a means to update 
acoustic models without having to retrain the parameters directly. The 
technique estimates a set of linear-regression matrix transforms that are 
applied to the mean vectors of the acoustic models. Their initial speaker 
adaptation implementation performed mean-only adaptation.

Gales and Woodland25 extended the framework to include variance 
adaptation. Generally, a cascaded approach is used, in which mean 
adaptation is applied first and then the variance transformation is applied. 
Another form of the MLLR transformation is the constrained MLLR 
transformation (CMLLR). In this approach, a joint transform is estimated 
in which the aim is to transform the mean and variance simultaneously. 
To do so, the transform is applied directly to the data vectors and not to 
the means and variances.

The MLLR adaptation technique utilises a regression class tree to ensure 
robust transformation parameter estimation. The regression class 
tree defines a set of classes that contain similar acoustic models that 
allow data to be shared amongst similar acoustic classes. The tree is 
developed by using a centroid splitting algorithm23 that can be used to 
automatically create the user-specified number of classes, but in this 
study only a single class or phone-specific classes were defined. This 
limitation was introduced by the HTK HLDA implementation that makes 
use of a single class. In terms of data sharing, the adaptation process 
can be used to adapt acoustic models to better fit a specific language. 
Here we view the languages as different speakers or channels. In this 
scenario, we could pool the data to increase the training data amount 
and then utilise MLLR to adapt these models to statistically fit the target 
language better.

Maximum a posteriori
Gauvain and Lee26 proposed the use of a MAP measure to perform 
parameter smoothing and model adaptation. The MAP technique differs 
from maximum likelihood estimation by including an informative prior 
to aid in HMM parameter adaptation. The results for speaker adaptation 
showed that MAP successfully adapted speaker-independent models with 
relatively small amounts of adaptation data compared to the maximum 
likelihood estimation techniques. However, as more adaptation data 
became available, MAP and maximum likelihood estimation yielded the 
same performance. In this adaptation scenario, the speaker-independent 
models served as the informative priors, whereas in the experiments 
conducted in this study, the donor language will serve as the informative 
prior. Similar to the MLLR data sharing scenario, MAP can be used to 
adapt the acoustic models to a target language. The acoustic models 
trained on the pooled data serve as the prior.

Acoustic model adaptation
Under certain circumstances, as shown in Van Heerden et al.4, simply 
pooling speech data (combining language resources such as data and 
dictionaries) into a larger training set can lead to an improvement in the 
results. There is no guarantee, however, that an improvement in the 
system accuracies will be observed and if the data amounts for the target 
language are small, then the donor language could possibly dominate 
the acoustic space. Therefore, in a resource-constrained environment, a 
better approach may be to adapt, using a relatively small amount of data.

MAP and MLLR are commonly used to perform speaker and environment 
adaptation and it is fairly simple to make use of these to perform language 
or dialect adaptation. It has been shown previously that simply applying 
MLLR and MAP to data sharing does not yield improvements.20 However, 
there are many points in the acoustic model development pipeline at 
which these techniques can be inserted and they can be used either in 
isolation or in certain combinations. Thus one focus of the experimental 

investigation is to establish which combination of adaptation techniques 
could produce an improvement in overall ASR accuracy and at what 
point during the acoustic model development it should be applied.

Acoustic model refinement
Most current ASR systems make use of HLDA and SAT to improve the 
overall accuracies, which in the HTK-style development cycle are applied 
during the last stage of model refinement. HLDA estimates a transform 
that reduces the dimension of the feature vectors while trying to improve 
class separation. The main purpose of SAT is to produce a canonical 
acoustic model set by using transforms to absorb speaker differences 
and thus create a better speaker independent model.

As these techniques are applied as last stage refinements, there are a 
few possibilities that can be investigated with respect to data sharing. 
In terms of HLDA, a donor language can be used to develop acoustic 
models and the target language data used to estimate the feature 
dimension reduction transform. For SAT, as the transforms are absorbing 
speaker differences, and the language or dialect used creates acoustic 
differences, this approach could help create an acoustic model set better 
suited for the target language.

Experimental set-up
For all experiments we used 10 h of randomly selected CGN data and 
10 h of NCHLT data for acoustic model development and transformation 
estimation. The NCHLT data correspond to the set of unique utterances 
described above. The developed ASR systems are evaluated on the 
corresponding 2.2-h subset of the NCHLT evaluation data (see Tables 1 
and 2). Our aim throughout was to improve the performance of NCHLT 
acoustic models by adding the CGN data using various model adaptation 
and refinement approaches.

Baseline speech recognition system 
The baseline speech recognition system was developed using a standard 
HTK recipe. The audio files were parameterised into 39 dimensional 
MFCC features – 13 static, 13 delta and 13 delta-delta. These include 
the MFCC 0th coefficient. Cepstral mean normalisation was applied. 
The acoustic models were systematically developed, starting from 
mono phone models, expanding the mono phone models to context-
dependent triphone models and finally consolidating this model set to 
tied-state triphone models. A three state left-to-right HMM topology was 
used for each acoustic model set. A phone-based question state-tying 
scheme was employed to develop the tied-state models. Lastly, a mixture 
incrementing phase was performed to better model the state distributions 
– eight mixture Gaussian mixture models were used for each HMM state. 

Acoustic model adaptation 
The first set of experiments focused on MLLR and MAP adaptation. Block 
diagrams illustrating the different experimental set-ups are provided in 
Figures 1 to 5. The following experiments were performed: 

• Baseline NCHLT: Baseline NCHLT acoustic models were developed 
on the 10-h Afrikaans NCHLT data. No adaptations were applied.

• Language CMLLR transforms: Starting from the baseline NCHLT 
system, two language-based (Afrikaans on NCHLT and Flemish 
on CGN) CMLLR transforms were estimated using the baseline 
acoustic models and the separate 10-h NCHLT and 10-h CGN 
data. Phone-specific transforms were estimated using the phone-
defined regression class tree. Once the corpus-specific transforms 
were estimated, the baseline acoustic models were updated using 
two iterations of maximum likelihood training. Both 10-h training 
sets were used for this update but the specific language CMLLRs 
were applied to the corresponding training set. The NCHLT CMLLR 
was applied during evaluation.

• Retrain using language CMLLR transforms: The language CMLLR 
transform generated by the ‘Language CMLLR transforms’ 
experiment was used to develop a new acoustic model set using 
both the 10-h NCHLT and 10-h CGN. The normal baseline training 
procedure was modified to incorporate the CMLLR transforms 
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which were used throughout the training cycle. This meant that, 
at each model estimation iteration, the language-specific CMLLRs 
were applied when updating with the corresponding training data 
set. During evaluation, the estimated NCHLT CMLLR transform 
was applied.

• Retrain using language CMLLR transforms with MAP: Starting 
with the system developed in the ‘Retrain using CMLLR transforms’ 
experiment, one final step was added to the acoustic model 
development cycle: two iterations of MAP adaptation were performed 
using the 10-h NCHLT data only. The NCHLT CMLLR transform was 
applied during evaluation.

• AutoDac training approach: For this approach, acoustic models 
were developed using the best method described in Kleynhans 
et al.27 Initially, only the 10-h NCHLT data were used to develop 
the acoustic models until the state-tying phase. Then, for the last 
phase, mixture incrementing, the 10-h CGN data were added to the 
training data pool and the Gaussian densities were estimated on 
all the data. No CMLLR transforms or MAP adaptation were used. 

Acoustic model refinement 
In this experimental set-up, two additional steps were added to the 
acoustic model development training cycle: HLDA and SAT. Both the 

HLDA and SAT use a global regression tree (all states pooled into a 
single node). Note that no language-dependent MAP or MLLR adaptation 
was applied. The HLDA ASR systems appended 13 delta-delta-
delta coefficients to the baseline MFCCs, which increased the feature 
dimension to 52. An HLDA transform was estimated using a global 
transform, which was then used to transform the 52-dimensional feature 
vectors to 39 dimensions. For SAT, a global CMLLR transform was used 
to model each speaker’s characteristics. The following acoustic model 
refinement experiments were defined:

• NCHLT HLDA-SAT: Baseline acoustic models were developed using 
the 10-h NCHLT, followed by HLDA and SAT model refinements.

• NCHLT+CGN HLDA-SAT: Baseline acoustic models were 
developed using both the 10-h NCHLT and 10-h CGN data sets, 
and then applying the HLDA and SAT model refinements using all 
the training data.

• NCHLT+CGN+NCHLT HLDA-SAT: For this training set-up, baseline 
acoustic models were developed on both the 10-h NCHLT and 10-h 
CGN training data sets. The HLDA and SAT transformations were 
estimated using the 10-h NCHLT training data only.

Figure 1: Baseline National Centre for Human Language Technology (NCHLT) training scheme.

NCHLT, National Centre for Human Language Technology; CGN, Corpus Gesproken Nederlands

Figure 2: Language constrained maximum likelihood linear regression (CMLLR) training scheme.
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NCHLT, National Centre for Human Language Technology; CGN, Corpus Gesproken Nederlands

Figure 3: Retrain using language constrained maximum likelihood linear regression transform training scheme.

NCHLT, National Centre for Human Language Technology; CGN, Corpus Gesproken Nederlands

Figure 4: Retrain using language constrained maximum likelihood linear regression transforms with maximum a posteriori (MAP) training scheme.

NCHLT, National Centre for Human Language Technology; CGN, Corpus Gesproken Nederlands

Figure 5: AutoDac training scheme.
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Metrics
The ability of the different system configurations to model the training 
data accurately was measured in terms of the accuracy with which the 
test data could be decoded. Phone recognition accuracy was calculated 
according to Equation 1 and correctness values were derived as follows:

Correctness = C
N

 x 100  %, Equation 2

where C is the number of correctly recognised phones and N is the total 
number of phones in the reference.

Results
Experimental results are presented for CMLLR and MAP adaptation as 
well as HLDA plus SAT combinations. System performance is quantified 
in terms of phone recognition accuracy and correctness.

Acoustic model adaptation
Table 3 provides an overview of the results that were obtained using 
different data sets and model adaptation combinations. The first row in 
the table represents the performance of the baseline system without any 
data sharing or model adaptation.

Table 3: Correctness and accuracy results for various automatic speech 
recognition data sharing set-ups

Correctness 
(%)

Accuracy 
(%)

Baseline NCHLT 78.77 71.17

Language CMLLR transforms 75.81 68.83

Retrain using language CMLLR transforms 78.02 71.82

Retrain using language CMLLR transforms with MAP 78.87 71.31

AutoDac training approach 75.69 68.41

NCHLT, National Centre for Human Language Technology; CMLLR; constrained maxi-
mum likelihood linear regression; MAP, maximum a posteriori

Unfortunately, the results in Table 3 show that none of the adaptation 
and training schemes provide an improvement in ASR performance, 
when adding CGN data to the NCHLT training data. This is in line with 
the results reported by Imseng et al.20 for a similar experiment using a 
smaller corpus of telephone data. It would seem that both CMLLR and 
MAP provide insufficient mechanisms to effectively combine data from 
different sources in the context of cross-language data sharing.

Acoustic model refinement
The performance of the systems in which the models were refined by 
applying HLDA and SAT is captured in Table 4. Comparing the first row in 
Table 4 with the corresponding row in Table 3 shows that the application 
of HLDA and SAT results in a substantial improvement in both phone 
accuracy and correctness. When the CGN data are added to the training 
data, the performance decreases. However, the best result is obtained 
when the acoustic model set is developed on the combined data but 
the HLDA and SAT are estimated on the 10-h NCHLT data only. This 
finding may suggest that these transforms are sensitive to language-
specific data. The HLDA in effect estimates a projection from a higher 
dimensional space to a lower one. Thus, a better projection, in terms 
of class separation, might be estimated on the target data only – in this 
case, the NCHLT data. For SAT, the single global CMLLR transforms may 
be insufficient to fully absorb the speaker and channel characteristics; 
therefore the acoustic model set is not in the best canonical form. Further 
tests on HTK are not possible as this is a software limitation.

Table 4: Correctness and accuracy results for heteroscedastic linear 
discriminant analysis (HLDA)- and speaker adaptive training 
(SAT)-based data sharing automatic speech recognition 
set-ups

Correctness (%) Accuracy (%)

NCHLT HLDA-SAT 85.71 79.66

NCHLT+CGN HLDA-SAT 84.37 78.33

NCHLT+CGN+NCHLT HLDA-SAT 86.89 81.07

NCHLT, National Centre for Human Language Technology; CGN, Corpus Gesproken 
Nederlands

Discussion
To investigate why only a single improvement was observed over the 
different experiments, the state-tying process was analysed as this 
process determines the manner in which acoustic data are shared. HTK 
makes use of the question-based tying scheme described by Young 
et al.28: initially all acoustic states are grouped into a single root class and 
then a process to split the nodes is run by ‘asking’ left and right context 
questions – all triphones that have the same left or right phone are 
removed from the pool and the change in pool log-likelihood is captured. 
The question that results in the greatest change in score is selected and 
a new node is created that contains all the triphones described by the 
question. The pre-split node contains all other triphones. The process is 
continued until a user-defined stopping criterion is met.

Tracking which question is used to split the data pools (create nodes) 
can give an indication of when the data between the two languages are 
shared: if language-specific questions are used to split the nodes early 
on in the state-tying process then no real cross-language data sharing 
is occurring. To perform the state-tying tracking, a modified, but similar, 
version of the HTK implementation was developed in which language-
specific questions could be used to split the acoustic data pools. Table 5 
shows the level at which a language question was used to split the data.

Table 5: The percentage of phones for which the language question was 
used to split the data during state tying

State 2 State 3 State 4

First question 69.44 91.67 63.89

First or second question 86.11 91.67 77.78

The values in Table 5 show that, for the majority of cases, the best 
reduction in overall data pool log-likelihood can be achieved by splitting 
the data into language-dependent paths. The central context makes 
use of the language split question to partition the data, in over 91% of 
the cases for the very first question. This finding is significant as the 
central context state generally consumes the majority of the speech 
frames when compared to the start and end states. This result shows 
that minimal data sharing would occur if the system had a choice and 
may point to a data artefact – such as channel or environment – which 
prevents data sharing between the CGN and NCHLT corpora. Further 
investigation is needed to establish the mechanisms that are inhibiting 
data sharing and their relative contributions. Possible sharing prevention 
mechanisms could be: grammar, channel and environment. As positive 
pooling results were reported by Van Heerden et al.4 and all experiments 
were conducted on the same corpus, channel may be a strong candidate. 
In this instance ‘channel’ refers to all the factors that could influence the 
acoustic properties of the speech signals, e.g. the acoustic environment 
in which the data were recorded and the recording equipment.

Table 5 shows that cross-language data sharing is clearly not 
taking place to the same extent as reported by Mandal et al.7 The 
low data sharing rates are also in contrast to the results presented 
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by Kamper et al.9, in which 33% and 44% sharing was seen across 
accents for phone and word optimal results, respectively, and by 
Niesler8 where 20% sharing was measured across language at optimal 
system performance. For these investigations, data sharing resulted in 
improved system performance but it is not clear if a positive correlation 
exists between the percentage of data shared among clusters and the 
eventual ASR performance.

It could be argued that the acoustic differences between Afrikaans and 
Flemish are bigger than those observed between the various English 
accents investigated in the Kamper et al.9 study. However, the majority of 
the sounds could be expected to differ to at least the same extent as the 
languages studied by Niesler because they are from the same language 
families, as are Afrikaans and Flemish. They are also similar from an 
acoustic point of view, as are the languages that were investigated in 
this study. It should be kept in mind that both Kamper et al.9 and Niesler 
conducted experiments within the same corpus. Acoustic factors – other 
than those caused by differences between accents and languages, such 
as channel and environment effects – could therefore not have influenced 
their results. This strengthens the possibility that the lack of data sharing 
in the present study could probably be a result of cross-corpus rather 
than cross-language artefacts.

Imseng et al.18 showed that a systematic improvement in phone per-
formances was observed for in-domain phones that had relatively small 
data amounts. Thus, it would seem that we should rather target states that 
may need out-of-language data to improve the distribution modelling.

Conclusion
While the idea of data sharing makes sense intuitively – increase the 
amount of training data for robust density estimation – realising a per-
formance gain in ASR accuracy is difficult to achieve within the context 
of HMM-based ASR. From the experimental results obtained in this 
study, using standard MAP and MLLR techniques to enable data sharing 
did not provide phonetic recognition performance gains. These MAP 
and MLLR results are in line with those presented by Imseng et al.20 In 
addition, the various alternative training strategies also failed. Thus, the 
standard MAP, MLLR and our various training strategies are not sufficient 
for data sharing when simply pooling the data.

Surprisingly, the NCHLT+CGN+NCHLT HLDA-SAT experiment managed 
to achieve a better phone error rate; however, the baseline NCHLT+CGN 
HLDA-SAT did not yield a gain. The improved result may imply that the 
combined data are useful but the Afrikaans-specific HLDA projection 
and SAT acoustic model adjustment are required. This has similarities to 
some DNN data sharing approaches in which pre-training is performed 
on many languages but final network parameter optimisations are 
performed on the target language only.

Recent results from SGMM and DNN experiments show much more 
potential for data sharing between languages and should be pursued 
rather than MAP and MLLR. One possible line of research would be to 
use SGMM for data sharing but rather than pooling all the data, only 
include data for low occurrence phones, as suggested by results 
reported in Imseng et al.18
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