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Abstract

This research work focuses on the estimation of barrier and lookback option prices us-

ing finite difference numerical methods. Here, we aim at approximating the fair prices

of the zero rebate up-and-out and down-and-out knock out barrier options, as well as

the fixed strike lookback options. Simulation and finite difference techniques will be

used to approximate these prices. The Monte-Carlo simulation, the antithetic Monte-

Carlo simulations and the Crank-Nicolson approach will be specifically employed on

the barrier options. Other finite difference methods like the implicit and the explicit

method will be discussed but the Crank-Nicolson method will be employed in the

numerical valuations owing to its accuracy in comparison to others. Next, the fixed

strike lookback option prices will be estimated using the Monte-Carlo and the anti-

thetic Monte-Carlo simulation methods. An extended version of the Black-Scholes

model will be used in the valuation of their exact prices owing to their exotic nature.

The Monte-Carlo and the antithetic Monte-Carlo methods are next employed to sim-

ulate the values of these option prices. The resulting prices will be compared to the

exact fair prices and this will be followed by some error analysis.

From the findings, the antithetic method gave the best option price estimate in com-

parison to the ordinary Monte-Carlo method when the simulation approach was used.

It will also be observed that the Monte-Carlo simulation had a slow rate of conver-

gence as a result of higher variances of the estimate from the true solution. Hence,

such inefficiency was curbed by the introduction of antithetic Monte-Carlo simulation

which had smaller variances of the estimate, and this in turn gave a better estimate.

Furthermore, it will also be observed that the Crank-Nicolson method converged

faster with increase in the discretisation steps of the underlying asset and the time.

Keywords: Black-Scholes model, Lookback options, Barrier options, Finite differ-

ence methods, Monte-Carlo simulation, Antithetic Monte-Carlo simulation.
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1. Introduction

1.1 Background

A financial agreement which gives the option holder the right to trade a specific

underlying in the future at a specified price (known as the strike price) on or before

the expiration of the contract is referred to as an Option. The option writer sells the

contract and he is obligated to perform the transaction to the option holder. The

option holder buys the contract and decides whether or not to exercise it. This is

one of the features that distinguish options trading from futures or forwards trading,

where the holder must exercise the contract. Options are generally classified into

plain vanilla options and exotic options. The plain vanilla options are the American

options and the European options. American options give the holder the right to

exercise the contract on or before its expiration, whereas the European options are

exercised at the end of the contract. The plain vanilla options are by far the most

traded options in the financial market. The exotic options are options that cannot

be classified as plain vanilla, owing to the additional features they possess. With

respect to the classification according to their rights of exercise, we have the call and

the put options. A call option is the right to purchase a particular underlying for

an agreeable amount at a specified time in the future, whereas the put option deals

with the right to sell a particular underlying at a fixed amount in the future. A call

(put) option is classified as in-the-money (ITM) if the underlying price is greater

(lesser) than the strike price; out-of-the-money (OTM) if the underlying price is

lesser (greater) than the strike price and at-the-money (ATM) if the underlying

price is equal to the strike price.

According to Snyder (1969), exotic options had been in existence prior to the estab-

lishment of the Chicago Board of Exchange in 1973. Later around late 1980 and early

1990, with the evolution of certain features which the plain vanilla lack, the pricing

1
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of exotic options came to limelight. Zhang (1998) further explained that investors

sought ways to price non-standardized option contract and as a result, such quest

favoured the introduction of exotic options in the market. Any option that have

complex features compared to the plain vanilla counterpart, in terms of its valuation

is referred to as the exotic option. They are characterized by their unusual payoffs

and their path-dependency which give rise to their complex nature of pricing. Ex-

otic options when compared to the plain vanilla options in terms of their valuations

are not straight-forward. There are many types of exotic options according to their

classifications.

Path-dependent exotic options: The payoffs of path-dependent exotic options consist

of functions of the continuous paths which the underlying follows during the life of

the contract. They include:

• Asian option: The payoff of this option depends on the average value of the

underlying over the lifetime of the contract.

• Lookback option: The payoff of the lookback option depends on the optimal

value of the asset price path.

• Barrier option: The option’s payoff is dependent on whether the price of the

underlying breaches a certain barrier on or before the contract’s expiration.

Exotic options with unusual payoffs include:

• Binary options: The payoffs of binary options are discontinuous in nature and

are dependent on the terminal underlying price. They either pay a fixed amount

or nothing at all, if and only if some conditions stipulated initially are met.

• Chooser options: These options allow the option holder to choose at a specific

point in time before the contract’s expiration, whether the option should be a

put or a call.
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• Basket options: These are option contracts which involves two or more risky

underlying assets.

Some other examples include compound options which are options whose values are

options (Geske 1978), forward-start options which are paid for at present but come

into existence at some time in the future (Musiela & Rutkowski 2006) and the spread

options which are based on differences between two indices, rates or prices.

In the valuation of exotic options, it is very pertinent to know where the associated

risks lies. In other words, what point of the option’s contract does the option value

have the highest greek?. With regards to the hedging of exotic options using their

specific underlying, some of them are easier to hedge whereas others are difficult. The

barrier options are difficult to hedge because once the barrier level is breached, the

delta of the option tends to be discontinuous. The Asian option on the other hand is

easier to hedge because the averaging of the prices of the underlying posses a greater

advantage and as the option gets to its expiration, the payoff becomes more certain.

Wilmott (2006) explained that in pricing and hedging exotic options, these six features

are very important: path-dependence, time-dependence, order, dimensionality, cash

flows, embedded decisions.

1.2 Problem Statement

Option pricing presents a significant role in risk management as financial investors

apply its concept in hedging and speculation. In the theory of option pricing, prior

knowledge of the current price of the asset, the inherent volatility, the dividend yield,

the time to expiration, the risk-free interest rate, as well as the strike price are very

essential in order to determine the fair price of an option. My recent research work

in option pricing considered the American call options which allow the flexibility of

early exercise from the option holder (see Umeorah (2015)). The finite difference
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method was employed to numerically approximate the Black-Scholes partial differen-

tial equation (PDE) which describes the linear complementary problem of American

call options.

In this research, we try to extend numerical methods to more complicated class of op-

tions, namely the exotic options. Exotic options are options which are traded mainly

over the counter and they possess complex features when compared to the plain vanilla

options. Exotic options are preferred to the vanilla options when considering options

which are duly characterized by their unusual payoffs, path-dependency formats and

other structures which are designed and tailored to meet the specific needs of their

investors. Some research has been done on exotic option pricing. Hongbin (2009)

applied the concept of Monte-Carlo simulation to value arithmetic Asian options.

Numerical PDE approach using higher order finite difference method was conducted

by Kumar, Waikos & Chakrabarty (2011), where the value of average strike Asian

call option was obtained. Numerical implementation of barrier option can also be

found in Goldman, Sosin & Gatto (1979), Reiner & Rubinstein (1991) and Merton

(1973). Explicit formula for obtaining the knock-out discount for barrier options can

be found in Musiela & Rutkowski (2006). They also developed the arbitrage prices for

the floating strike lookback options, together with their pricing method. More recent

works on double barrier option pricing were done by Farnoosh, Sobhani, Rezazadeh

& Beheshti (2015) and Chen, Xu & Zhu (2015). In this research, special interest

would be channelled to zero rebate knock-out option with barrier features and the

fixed strike lookback options. For the knock-out barrier options, when the barrier

level is reached by the underlying price, whether from below or above, the option

is extinguished or knocked out. Thus, the option becomes worthless. The barrier

option holder might receive a rebate (positive discount) when the option is being

knocked-out before expiry and thus in this work, we consider a situation where there

is no such rebate. These price options were chosen based on the fact that relatively,

not much work has been done on their numerical computation. Hence, this research

seeks to address the existing gap, thereby implementing the Monte-Carlo simulations
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and the finite difference methods to exotic option pricing.

1.3 Motivation

In the field of mathematical finance, the advantages of option pricing can never be

underestimated. Option pricing serves as a tool for investors in determining how to

invest their wealth, as it offers them higher potential returns and less risk depending

on the usage. Having worked on the vanilla option pricing, this research serves to

consider the applications of numerical methods and approximations to exotic option

pricing. The motive of this work is to algebraically compute the numerical values of

the prices of some exotic options, and hence compare them to their exact prices, with

the intention of improving the existing work done on the exotic-type of options.

1.4 Aim of the Study

To price zero rebate knock-out barrier options and the fixed strike lookback options

using finite difference numerical methods and the simulation methods.

1.5 Objectives of the Study

The specific objectives of this research include:

• To investigate the concept of Black-Scholes model, as well as its extension in

the pricing of exotic options.
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• To solve the corresponding Black-Scholes PDE using the finite difference ap-

proximations and hence obtain the option values.

• To employ the Monte-Carlo and the antithetic Monte-Carlo simulations in the

estimation of the option prices.

1.6 Method of Investigation:

With regards to the designs and methodology, this research seeks to:

• Consider the mathematical framework. This consists of introducing the con-

cept of Black-Scholes pricing model which has significant applications in the

theory of derivative pricing. The pricing model would be extended to the exotic

option since most of the options classified as exotic are priced using the same

assumptions and the risk-neutrality concept of the Black-Scholes model.

• Computationally analyze the solution of option pricing PDE using some nec-

essary boundary and terminal value conditions. Here, we would introduce the

concept of finite difference methods (FDM) which consists of the Implicit, Ex-

plicit and Crank-Nicolson method. The Crank-Nicolson, out of all the FDM

would be applied computationally. Also, possible asset price movements based

on the Monte-Carlo simulations would be modelled using some computer pro-

grams.

• Convert the PDEs into a set of difference equations, apply their boundary con-

ditions and solve their equations using backward iteration.

• Implement the scheme numerically. Here, the research would consider some

computing methods where IPython notebook or Matlab programming lan-

guage would be used in the quantitative analysis of the problem.
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1.7 Dissertation Overview

Chapter 1: Provides an introduction to the research. It explains the problem state-

ment in detail and states the motivation for carrying out the research. It highlights

the aims and objectives. The chapter further mentions the methodologies employed

in the research and it finally provides an overview of the study.

Chapter 2: Introduces some financial and mathematical preliminaries where some

theorems, definitions, corollaries and lemmas used in the work will be stated. Fur-

thermore, this chapter will describe the concept of the geometric Brownian motion

and its relation to option pricing. Finally, the Black-Scholes model will be explained

in detail. Here, the derivation of its PDE, the solution and its applicability to option

pricing will be analyzed.

Chapter 3: Explains some detailed overview of different types of exotic options, like

the Asian options, lookback options, barrier options and the binary options. Their

payoff structures and valuations will also be considered.

Chapter 4 & 5: Investigates how the fixed strike lookback and the zero-rebate

knock-out barrier options (down-and-out and up-and-out) can be valuated numer-

ically. Their mathematical background will be analyzed in detail. Furthermore,

Chapter 5 would discuss the concept of valuating the options using the FDM and

the Monte-Carlo simulations. The implicit, the explicit and the Crank-Nicolson finite

difference methods will be discussed in detail.

Chapter 6: Compares different results obtained from estimating the options using

the methods explained in Chapter 5. This would be followed by computational anal-

ysis of the results. Furthermore, inference would be made on which method provides

the fair approximated value when compared to the exact Black-Scholes price.

Chapter 7: Concludes the study and makes some recommendations.



2. Technical Preliminaries

In this chapter, we consider some mathematical definitions, lemmas and some financial

definitions. Financial background of the study, which includes the Black-Scholes

model, its PDE, as well as the solution will be discussed.

2.1 Mathematical and Financial Preliminaries

In this section, we consider some mathematical and financial definitions so as to

reduce possible ambiguity and hence familiarize the reader with the concept.

2.1.1 Definition. σ−algebra

LetX be a non-empty set. F which consists of collection of subsets ofX is a σ−algebra

on X, provided the following conditions are satisfied: (Shreve 2004).

• ∅ ∈ F .

• If λ ∈ F, then λ{ ∈ F (That is, closed under complementation).

• If λ1, λ2, · · · is a sequence of elements in F, then ∪∞n=1λn ∈ F .

2.1.2 Definition. Probability space

A probability space is a set consisting of the triplet (X,F,P), where X is the set of all

outcomes, F is a σ−algebra on X and P is the given probability measure, also known

as the real-world probability measure (Shreve 2004).

2.1.3 Definition. Filtered Probability space

A filtered probability space is a set consisting of (X,F,P,Ft), where Ft is a filtration

which refers to the collection of information for all times up to and including t.

8
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Mathematically, Ft refers to an increasing sequence of σ−algebras which is defined

on a given measurable space (X,F). Thus, we have: (Shreve 2004).

Fs ⊂ Ft ⊂ FT ⊂ F , for all 0 < s < t < T .

2.1.4 Definition. Stopping time

A random variable τ with values on the interval [0,∞] defined on a given probability

space with filtration (Ft : t ≥ 0) is called a stopping time with respect to the filtration

if for all t ≥ 0, we have {τ ≤ t} ∈ Ft (Mörters & Peres 2010).

2.1.5 Definition. Adapted stochastic process

A stochastic process is a collection of random variables {X(t), t ∈ T} defined on

a given filtered probability space. We consider a continuous time process, hence

T = R+ = [0,∞). A collection of X(t) is said to be an adapted process if the random

variable X(t) is Ft-measurable. Hence, the value of the random variable X(t) can be

completely observed by the information at time t (Buchen 2012).

2.1.6 Definition. Brownian motion

A Brownian motion B(t) is a collection of random processes indexed for all times t ≥
0, defined on a state space S = R, having the following properties (Wiersema 2008):

• The process has continuous sample paths.

• At the initial time t = 0, the process is at rest. That is, B(0) = 0.

• The process has independent increments over non-overlapping time intervals.

That is, B(t)−B(s) in independent of {B(k) : k ≤ s}, whenever s < t.

• The increment B(t) − B(s), where s < t, has normal probability distribution

with zero mean and variance, the length of the increment. That is, B(t)−B(s) ∼
N(0, t− s) .
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2.1.7 Definition. Stochastic differential equation

Let S(t) be a stochastic process. A stochastic differential equation (SDE) is an

equation which consists of combination of deterministic term and a stochastic term

(white noise). The equation of the form describes it: (Buchen 2012)

dS(t) = µ(t, S(t)) dt+ σ(t, S(t))dB(t) , (2.1.1)

where µ(t, S(t)) and σ(t, S(t)) are adapted processes. Also, let B(t) denote the Brow-

nian motion defined in the real world probability measure. In integral form, it is

represented as

S(t) = S(0) +

∫ t

0

µ(s,X(s))ds +

∫ t

0

σ(s,X(s))dB(s) .

2.1.8 Lemma. Ito’s Lemma (one dimension process)

Let S(t) be a stochastic process which follows an Ito process defined in equation

(2.1.1). Suppose there exists a function f ∈ C1,2 and define the process Z by Z(t) =

f(t, S(t)), µ(t, S(t)) = µ and σ(t, S(t)) = σ. Then Z follows the stochastic differential

equation given by: (Björk 2009).

df(t, S(t)) =

(
∂f

∂t
+
∂f

∂S
µ+

1

2

∂2f

∂S2
σ2

)
dt+

∂f

∂S
σ dB(t) .

2.1.9 Lemma. Ito’s Lemma (N−dimension process)

Let an N -dimensional process S have dynamics given in equation (2.1.1) and let

f ∈ C1,2. Then the process f(t, S(t)) satisfy a stochastic differential equation given

by: (Björk 2009).

df(t, S(t)) =
∂f

∂t
dt+

n∑
i=1

∂f

∂si
dSi +

1

2

n∑
i,j=1

∂2f

∂si∂sj
dSidSj ,
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with the following box calculus properties:

(dt)2 = 0 ,

dt.dB = 0 ,

(dB(i))2 = dt , for i = 1, · · · , d

dB(i).dB(j) = 0 , for i 6= j .

2.1.10 Definition. Normal distribution

Y is a normal random variable defined by N(µ, σ2) if the probability density function

of Y is given by: (Björk 2009).

f(Y ) =
1

σ
√

2π
e
−(Y−µ)2

2σ2 , for Y ∈ (−∞,∞) .

The cumulative density function of a standard normal random variable Y defined by

N(0, 1) is given by

N(Y ) =
1

σ
√

2π

∫ Y

−∞
e
−z2
2 dz .

2.1.11 Definition. Log-Normal distribution

Let Y be a normal distribution with mean µ and variance σ2. A random variable

X = eY is said to be lognormal variate with parameters (µ, σ) if the probability

density function of X is given by: (Björk 2009).

f(X;µ, σ2) =
1

Xσ
√

2π
e
−(lnX−µ)2

2σ2 .

2.2 Geometric Brownian Motion

This is a model that measures the change in the random process (dS(t)) with respect

to the current underlying value (S(t)). It is an exponentiated form of the Brownian
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motion. The SDE below defines the motion:

dS(t) = S(t){µdt+ σdB(t)} ,

where µ, σ ∈ R .

The SDE is composed of a deterministic and the stochastic part. To solve the SDE,

we apply the concept of Ito’s lemma. Consider the function f ∈ C1,2 defined by

f(t, S(t)) = logS(t) .

The Taylor expansion of the function f is

df(t, S(t)) =
∂f

∂t
dt+

∂f

∂S(t)
dS(t) +

1

2

∂2f

∂S2(t)
dS2(t) .

Substituting for the first and second partial derivatives with respect to S(t), we have

df(t, S(t)) =
1

S(t)
dS(t)− 1

2

1

S2(t)
dS2(t) .

Further application of Ito’s lemma results to

df(t, S(t)) = µdt+ σdB(t)− σ2

2
dt ,

which becomes

dlogS(t) =

(
µ− σ2

2

)
dt+ σdB(t) .
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Taking the integrals of both sides from 0 to t, the following results∫ t

0

logS(s) =

∫ t

0

(
µ− σ2

2

)
ds+ σ

∫ t

0

dB(s)

logS(t) = logS(0) +

(
µ− σ2

2

)
t+ σB(t)

Finally, we have the solution to be

S(t) = S(0)e

(
µ−σ

2

2

)
t+σB(t)

. (2.2.1)

Properties of geometric Brownian motion

The first and second moment of S(t) which follows a log-normal distribution is given

by

1. E[S(t)] = S(0)eµt .

2. Var[S(t)] = (S(0))2e2µt(eσ
2t − 1) .

3. The probability density function of S(t) is given by

f(S : µ, σ, t) =
1

Sσ
√

2πt
exp

−(logS − logS(0)−
(
µ− σ2

2

)
t)2

2σ2t

 .

Figure 2.1 below depicts a computer simulation of an underlying asset price which is

defined based on geometric Brownian motion.
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Figure 2.1: Geometric Brownian motion simulation

Figure 2.1 was obtained using the parameters: S(0) = 50, r = 0.2, σ1 = 0.02, σ2 = 0.7

and T = 1.

The smooth line denotes the graph of the expected value of the underlying. The asset

path remains close to the expected value provided that the value of σ remains small.

A larger value of the standard deviation forces the trajectory to move away from the

expected value function. This results to large random variations.

2.3 The Black-Scholes Pricing Model for Options

Fisher Black and Myron Scholes in 1973 propounded a mathematical model that has

been used for many years in the field of option pricing. The model is also referred to

as Black-Scholes-Merton model because of the contribution of Robert Merton in the

latter part of the work. Below are the assumptions that led to the model (Black &
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Scholes 1973):

(i) The underlying price follows a log-normal random walk in a continuous time

framework with constant drift and constant volatility.

(ii) The interest rate is constant and its value is known.

(iii) The stock pays no dividend throughout its history.

(iv) There exist a frictionless market, meaning that transactions incur no costs.

(v) Short selling is permitted.

(vi) Assets are divisible, as one can borrow any fraction of the share price at a

short-term interest rate.

(vii) The European option is considered and can be exercised only at the expiry.

The assumptions above were used to formulate a mathematical model that computes

the price of European options and the value obtained is very close to the observed

market value.

Notations Used

• S(t)− the current price of the stock at time, t.

• σ− the volatility or the standard deviation of the underlying’s return.

• K− the strike price.

• r− the risk-free interest rate which is continuously compounded.

• T− the time to expiry.
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• µ− the drift term on the stock.

• Π− the value of the portfolio.

• v(t, S)− the option value.

• τ− the remaining time to expiry and is denoted by τ = T − t. At expiry, τ = 0.

• N()− the cumulative distribution function of a standard normal distribution

and it is defined as

N(x) =
1√
2π

∫ x

−∞
e
−z2
2 dz .

• N ′(x)− refers to the standard normal probability density function and it is

defined as

N ′(x) =
e
−x2
2

√
2π

.

• B(t) is a standard Brownian motion defined on a real world filtered probability

space.

2.3.1 Derivation of the Black Scholes pricing PDE

One of the Black-Scholes assumptions is that underlying prices follow a geometric

Brownian motion with constant drift and constant volatility. Precisely, we consider

underlying asset prices as stochastic processes which satisfy the stochastic differential

equation:

dS(t) = S(t)(µdt+ σdB(t)) . (2.3.1)

The solution to equation (2.3.1) can also be written as

lnS(t)− lnS(0) =

(
µ− σ2

2

)
t+ σB(t) .
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Thus, we can have that

lnS(T )− lnS(0) ∼ N

[(
µ− σ2

2

)
T, σ2T

]
.

It is observed that lnS(T ) has a normal distribution and hence S(T ) is log-normally

distributed. Thus, we have

lnS(T ) ∼ N

[
lnS(0) +

(
µ− σ2

2

)
T, σ2T

]
.

Let v(t, S) be the value of non-dividend paying European call option, then the deriva-

tive of the function is

dv(t, S) =
∂v(t, S)

∂t
dt+

∂v(t, S)

∂S
dS +

1

2

∂2v(t, S)

∂S2
dS2

=
∂v(t, S)

∂t
dt+

∂v(t, S)

∂S
S(µdt+ σdB(t)) +

1

2

∂2v(t, S)

∂S2
(S2σ2dt) ,

Since from Ito’s calculus, we have dS2 = S2(µdt+σdB)2 = S2(µ2 dt2︸︷︷︸
=0

+2µσ dtdB︸ ︷︷ ︸
=0

+σ2 dB2︸︷︷︸
=dt

) .

Thus, we have

dv(t, S) =

(
∂v(t, S)

∂t
+
∂v(t, S)

∂S
µS +

S2σ2

2

∂2v(t, S)

∂S2

)
dt+ σS

∂v(t, S)

∂S
dB(t) .

Next, a risk-less self-financing portfolio is constructed which consists of short one

derivative and long ∆ shares of the underlying asset. Hence, we have

Π = −v(t, S) + ∆S .
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At any time interval dt, the change in the portfolio value is given as

dΠ = −dv(t, S) + ∆dS .

Substituting for the value of dv(t, S) and choosing ∆ = ∂v(t,S)
∂S

, the random component

is eliminated and this gives rise to a risk-less portfolio. That is,

dΠ =

(
−∂v(t, S)

∂t
− S2σ2

2

∂2v(t, S)

∂S2

)
dt .

The change in the portfolio value must be the same as the rate of return on any other

riskless variables and thus to avoid arbitrage, we have the expression

dΠ = rΠdt ,

so that (
−∂v(t, S)

∂t
− S2σ2

2

∂2v(t, S)

∂S2

)
dt = r

(
−v(t, S) +

∂v(t, S)

∂S
S

)
dt .

Hence, the Black-Scholes PDE is given by

∂v(t, S)

∂t
+ rS

∂v(t, S)

∂S
+
S2σ2

2

∂2v(t, S)

∂S2
= rv(t, S) (2.3.2)

The Black-Scholes PDE is a parabolic PDE which can be solved backwards to obtain

the present value of the option 1. The value of the option at expiry is known upfront

and thus, the PDE can be solved either analytically or numerically using the terminal

1See Appendix A for the solution of the Black-Scholes PDE.



Section 2.3. The Black-Scholes Pricing Model for Options Page 19

and the boundary conditions given below:

v(T, S) = max{S(T )−K, 0} ,

v(t, 0) = 0 ,

v(t,∞) ∼ S .

The above conditions hold for call options. For put options, we have the following

v(T, S) = max{K − S(T ), 0} ,

v(t, 0) = Ke−r(T−t) ,

v(t,∞) ∼ 0 .

2.3.2 Hedging and Greeks

Hedging is the act of using financial instruments to eliminate the risks that can be

encountered as a result of adverse movements of the underlying prices. Hedging can

be referred to as insurance, as investors use options to hedge against possible risks. A

simple way to hedge is delta-hedging which ensures that the portfolio is delta-neutral.

An example can be seen in the derivation of the Black-Scholes PDE which resulted

in the elimination of the random component of the portfolio. Greeks are referred to

as risk or hedge parameters. Examples which appeared in the Black-Scholes PDE are

given below:

• Delta: This measures the sensitivity of the option value with respect to the

underlying price. Delta-neutral ensures setting the delta to be equal to zero,

that is, ∆ = 0. They are positive for calls and negative for puts. Delta measures

the amount of shares needed to ensure delta-neutral, as well as, the chances of

the option to expire in the money. It can be derived as follows: The value of a
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non-dividend paying European call option is

C = SN(d1)−Ke−r(T−t)N(d2) .

∂v

∂S
= ∆C =N(d1) + SN ′(d1)

∂d1

∂S
−Ke−r(T−t)N ′(d2)

∂d2

∂S

=N(d1) +
N ′(d1)

σ
√
T − t

−Ke−r(T−t) N ′(d2)

Sσ
√
T − t

=N(d1) +
1

σ
√
T − t

e−
d21
2

√
2π
− Ke−r(T−t)

Sσ
√
T − t

e−
d22
2

√
2π

=N(d1) +
e−

d21
2

σ
√

2π(T − t)
− Ke−r(T−t)

Sσ
√

2π(T − t)
e−

1
2

(d1−σ
√
T−t)2

=N(d1) +
e−

d21
2

σ
√

2π(T − t)
− S

Sσ
√

2π(T − t)
e−

d21
2

=N(d1) .

The put can also be obtained in a similar way, as well as all the greeks. Thus,

the delta of non-dividend paying European call and put options are given re-

spectively as,

∆C = N(d1) and ∆P = N(d1)− 1 ≡ −N(−d1) .

• Gamma: They are second order Greeks, as they measure the rate of change of

delta with respect to the underlying price. Gammas are positive for long options
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and negative for short options. They are the same for both calls and puts. For

non-dividend paying European options, they are denoted mathematically by

ΓC = ΓP =
1

Sσ
√
T − t

N ′(d1) .

If the option is at the money, gamma becomes very high and it progressively

lowers when the option becomes out of the money or in the money. High gamma

implies high variation in delta and the function becomes more convex.

• Theta: Theta also known as time decay, measures the sensitivity of option price

with respect to time. The theta of a non-dividend paying European option is:

Θ =
−Sσ

2
√
T − t

N ′(d1)− λrKe−r(T−t)N(λd2) ,

where λ = 1, for call option and λ = −1, for put option.

When the option is at the money, the value of theta becomes large and negative.

For the call option, when the underlying price assumes the largest value, theta

approaches −rKe−r(T−t) and theta approaches zero, as the stock price goes to

zero.

Thus, the Black-Scholes PDE can be written in their greek term as

Θ + rS∆ +
S2σ2

2
Γ− rv = 0 .



3. The Concept of Exotic Options

3.1 Asian Options

Asian options are options whose payoffs are dependent on the average price of the

underlying over a specified time interval. This is in contrast to the plain vanilla op-

tions whose payoffs are dependent on the price of the underlying at maturity time.

Asian options are path-dependent since their payoffs depend on the path taken by

the underlying. Zhang (1998) described Asian options as ‘the natural development of

vanilla options to capture path-dependence’. Asian options were first priced success-

fully in 1987 by David Spaughton and Mark Standish of the Banker’s Trust. They

developed the pricing formula in an attempt to deducing the average price of crude oil

(Wilmott 2006). According to Kemna & Vorst (1990), such options are important for

thinly-traded asset like crude oil, since price manipulations are avoided and volatility

inherent in such options are totally reduced. Buchen (2012) also explained that Asian

option was introduced to discourage market manipulation.

Consider a European call option which is currently in the money, the option holder is

optimistic that the option ends in the money, so that the option would be exercised

with a view to profit making. At expiry, the underlying price crashes, leaving the

option out of the money and the option holder is left with the choice of not exercising

the option. But Asian options consider some sort of averaging of the underlying value

and hence, the effect of price movements of the underlying near the expiration of the

contract is totally reduced. Asian options are not traded on standardized exchange

but over the counter and very interesting for familiarity due to the fact that they

are highly economical and can be used for hedging cash flows. Asian options are

cheaper to price, and in fact their values are always less than or equal to the standard

European options (Kemna & Vorst 1990).

22
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A lot of research has been carried out on Asian options. Kemna & Vorst (1990) priced

options on average asset values using Monte Carlo simulation with variance reduc-

tion elements. Shi & Yang (2014) used numerical methods to price arithmetic Asian

options in a stochastic volatility with jumps. German & Yor (1993) used stochastic

analysis and the Bessel process for the Laplace transform in time to obtain analytic

solution of arithmetic Asian options. Cruz-Báez & González-Rodriguez (2008) ex-

tended the work of German & Yor without using any previous results obtained from

the Bessel process.

3.1.1 Types of averaging in Asian options

With regards to the styles of averaging, Asian options are classified into arithmetic

average and geometric average. The arithmetic average deals with the mean of the

underlying, whereas the geometric average considers the exponential form of the mean

of the underlying price, using its logarithmic form. Consider the following:

Let A be the average and S(t) be the price of the underlying at time t. In the

continuous monitoring process, the arithmetic average and the geometric average can

be expressed respectively as

A =
1

T

∫ T

0

S(t)dt and A = exp

[
1

T

∫ T

0

ln(S(t))dt

]
.

In discrete form, for dates t1, t2, · · · , tN , the arithmetic and the geometric average are

written respectively as

A =
1

N

N∑
i=1

S(ti) and A =

[
N∏
i=1

S(ti)

] 1
N

.
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3.1.2 Asian options based on their payoff

The payoffs for the Asian options are classified into fixed strike or average rate and

floating strike or average strike Asian options. Hence, we have:

(1) Floating strike Asian options: The payoffs for the call and put are denoted re-

spectively as

max{S(T )− A, 0} and max{A− S(T ), 0} .

(2) Fixed strike Asian options: The payoffs for the call and put are denoted respec-

tively as

max{A−K, 0} and max{K − A, 0} .

We observe that the payoffs of both options are similar to the payoffs of the European

calls and puts. The difference being that for floating strike, the strike price K is

replaced with the average of the underlying (be it arithmetic or geometric); whereas

in the fixed strike, the strike price K is fixed but the underlying price is replaced by

the average of the underlying price. Floating Asian options guarantee that for call

options, the final price of an underlying asset is not less than the average price of an

underlying which is paid at a specific time interval. Furthermore, when the put option

is considered, the final price of an underlying asset is always less than the average

amount of the underlying asset which is received over the given period of time.

3.1.3 Valuation of Asian options

In obtaining the analytic solution of Asian option, Buchen (2012) explained that a

closed form solution in the Black-Scholes model exists for the geometric average but
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this is not true for the arithmetic average. He pointed out that when the underlying

price is log-normal for the geometric average, the geometric mean (either discrete

or continuous) is log-normal but when it is arithmetic, it would not be log-normal.

Hence, the Black-Scholes model is applicable for pricing the geometric Asian op-

tions. Closed form solutions for the European-style Asian options with fixed strike

prices based on the discrete and the continuous geometric average prices are known

(Zhang 1998). For the arithmetic Asian options, numerical approximation are used.

Mudzimbabwe, Patidar & Witbooi (2012) used the explicit and the implicit finite dif-

ference approach to numerically price the arithmetic Asian options. Also, the pricing

of arithmetic Asian options under hybrid stochastic and local volatility was done by

Lee, Kim & Jang (2014).

The value of Asian option is a function of three independent variables, written as

V (t, S, I) and this is in contrast to the vanilla option which depends only on S and t.

The term I is the historical integral of the underlying (the averaging). The first closed

form solution for the approximation of geometric Asian option prices was given by

Kemna & Vorst (1990). According to their work, the analytic closed form solution for

the geometric averaging of the Asian option is similar to that obtained by Black and

Scholes. The exceptions are that the volatility is replaced by σ√
3

and the dividend yield

by 1
2

(
r + σ2

2

)
. Hence, in valuing Asian option either arithmetically or geometrically,

the PDE obtained is similar to the Black-Scholes PDE but with an additional term

(see equations (3.1.4) and (3.1.8) respectively).

Consider the fixed strike arithmetic Asian option on a continuous state space. The

path-dependent parameter I can be denoted by

I =

∫ T

0

S(t)dt . (3.1.1)

For the call option, the payoff is given by V (T ) = (A−K)+. The pair (S, I) constitutes

a Markov process and hence under the risk neutral pricing measure, there must be a
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function v(t, S, I) that computes the option value at time t ∈ [0, T ] which is denoted

by

v(t, S, I) = V (t) = EQ[e−r(T−t)V (T )|Ft] .

The Black-Scholes PDE for pricing Asian options

From the path-dependent quality defined in equation (3.1.1) above, the stochastic

differential for I is given by dI = S(t)dt . We assume that the underlying price S(t)

follows a geometric Brownian motion in a continuous state space, defined in the real

world probability measure. Thus, the SDE given below is satisfied:

dS = S(µdt+ σdB) . (3.1.2)

Consider the fixed strike arithmetic Asian option whose value is v(t, S, I) and by Ito’s

lemma, we have:

dv =
∂v

∂t
dt+

∂v

∂S
dS +

∂v

∂I
dI +

1

2

∂2v

∂S2
dS2

=
∂v

∂t
dt+

∂v

∂S
S(µdt+ σdB) +

∂v

∂I
dI +

1

2

∂2v

∂S2
(S2σ2dt) .

Next, we set up a riskless portfolio Π, at each time step which consists of long an

Asian option and short ∆ underlying units. We have Π = v − ∆S. Thus, the pure

investment acquired over the time interval [t, t + dt] becomes dΠ = dv −∆dS. This

becomes,

dΠ =

(
∂v

∂t
+ µS

∂v

∂S
+ S

∂v

∂I
+
S2σ2

2

∂2v

∂S2

)
dt+ Sσ

∂v

∂S
dB −∆(µSdt+ σSdB) .

(3.1.3)
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To eliminate the random part of the process, we choose ∆ = ∂v
∂S

and 3.1.3 reduces to

dΠ =

(
∂v

∂t
+ S

∂v

∂I
+
S2σ2

2

∂2v

∂S2

)
dt .

The no-arbitrage principle implies that dΠ = rΠdt. Thus, we have

(
∂v

∂t
+ S

∂v

∂I
+
S2σ2

2

∂2v

∂S2

)
dt = r

(
v − S ∂v

∂S

)
dt .

Finally, the function v(t, S, I) satisfies the Black-Scholes PDE below:

∂v(t, S, I)

∂t
+rS

∂v(t, S, I)

∂S
+S

∂v(t, S, I)

∂I
+
σ2

2
S2∂

2v(t, S, I)

∂S2
−rv(t, S, I) = 0 , (3.1.4)

with terminal and boundary conditions below. For I ∈ R, S ≥ 0, t ∈ [0, T ),

v(T, S, I) = (A−K)+ ; (3.1.5)

lim
I→−∞

v(t, S, I) = 0 ; (3.1.6)

v(t, 0, I) = e−r(T−t)V (T ) . (3.1.7)

Similarly, the geometric Asian average PDE for continuous time is given by

∂v(t, S, I)

∂t
+ rS

∂v(t, S, I)

∂S
+ logS

∂v(t, S, I)

∂I
+
σ2

2
S2∂

2v(t, S, I)

∂S2
− rv(t, S, I) = 0 ,

(3.1.8)

where

I =

∫ T

0

logS(t)dt .

The terminal and the boundary conditions of the geometric Asian average PDE, as

well as, its solution are found in Kemna & Vorst (1990). There is no explicit form for

the arithmetic Asian average based on the concept of risk-neutrality and the lognormal

nature of the asset price, its solution is computed numerically. Also, approximation

of arithmetic Asian options using the corresponding geometric Asian options can be
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obtained (See (Zhang 1998)). Thus, the value of the non-dividend geometric Asian

call option defined under the Black-Scholes framework, is given by

Cgeo = Se
−
(
r+σ2

6

)
1
2

(T−t)
N(d1)−Ke−r(T−t)N(d2) , (3.1.9)

where

d1 =
log
(
S
K

)
+ 1

2

(
r + σ2

6

)
(T − t)

σ
√

1
3
(T − t)

and d2 = d1 − σ
√

1

3
(T − t) .

Figure 3.1 below shows the non-dividend Asian option values with geometric call

features. We consider the parameters: K = 75, r = 0.05, T = 1.0 and σ = 0.2.

Figure 3.1: Geometric Asian call with zero dividend

We observe that the values of the Asian call option are lesser than that of the standard

vanilla call as depicted in Figure 3.1 above. With regards to the delta, it is observed

that delta is bounded between 0 and 1 for the call option. When the option is OTM,
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the delta of the geometric Asian call becomes very small but increases exponentially

with an upper bound of 1, when the option is deep ITM.

3.2 Lookback Options

Lookback options are path-dependent exotic options whose payoffs depend on the

extremum of the underlying asset over the duration of the contract. It considers the

history of the behaviour of the underlying prices which spans the contract’s lifetime.

The term ‘lookback’ is used by the option holder to actually look back hindsight

to determine the payoff of the contract (Bouzoubaa & Osseiran 2010, p.227). This

type of option contract tends to be expensive because the option can be tailored in

such a way that it minimizes the chance of expiring OTM. The holder of the option

can make maximum profit which comes in the form of buying at a cheapest rate

and selling at the highest rate. They help investors to minimize regrets and provide

them with essential information on stock’s behaviour over time, with the exception

of the information on terminal stock (See Goldman et al. (1979) and Buchen (2012)).

Despite the fact that lookback option provides a great advantage to its investors, the

“no-free-lunch” principle still applies to it and this is why it is expensive in nature.

Thus, most investors are saddened by this disadvantage.

3.2.1 Types of lookback options

Lookback options are characterized with regards to the nature of their strike prices,

just like the Asian options. They include:

(1) Standard lookback or floating lookback options: Here, the strike price is yet to

be determined during the life of the contract, but at maturity, the strike price

is obtained. This is in contrast to the standard European call option where the
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strike price had been fixed at the onset of the contract. For convenience, let

Smax be the maximum value the underlying price had attained to, Smin be the

minimum value and S(T ) be the value of the underlying at the maturity time T .

Then, the payoffs for the call and put options are respectively given by:

max{S(T )− Smin, 0} ≡ S(T )− Smin and max{Smax − ST , 0} ≡ Smax − S(T ) .

The standard lookback option payoffs are always non-negative and can never be

left to expiry without being exercised. This is because the option provides the

holder with the right to purchase an underlying asset at the expiry using the

lowest value the asset had attained to (call).

At time t = 0 and using the geometric Brownian features, the analytic solution

for the standard lookback options is given as the discounted expectation value

of the payoff defined under the risk-neutral measure Q. Thus, the values for the

standard lookback calls and puts are respectively:

e−rTEQ[S(T )− Smin|Ft] and e−rTEQ[Smax − S(T )|Ft] .

(2) Fixed strike lookback options: Similar to the standard European options, the

strike price is fixed. The payoffs for the fixed strike lookback call option and put

option are respectively given by

max{Smax −K, 0} and max{K − Smin, 0} .

(3) Another type of lookback option is the partial lookback options. This was dis-

covered to curb the expensive nature of the standard lookback options, while

maintaining similar characteristics exhibited by the standard lookback options.

Here, the features are restricted to the early parts or the latter parts of the op-

tion’s life. As such, it considers only a sub-interval of [0, T ] in the calculation of

its extremum. A partial lookback call gives the holder the right “to buy at some
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percentage over the minimum” (Conze 1991). The payoffs for the call and put

options are respectively given by

max{S(T )− λSmin, 0} and max{λSmax − S(T ), 0} ,

where λ is the degree of partiality with λ > 1 for calls and 0 < λ < 1 for puts.

Also, if λ = 1, the partial lookback option becomes standard lookback option.

3.2.2 Put-Call Parity

The put-call parity explains the relationship between the fixed strike lookback options

and the floating strike lookback options. For convenience, let Cfl, Cfix,Pfl, and Pfix

represent the values of the floating lookback call, fixed lookback call, floating lookback

put and the fixed lookback put options respectively. Consider the non-dividend paying

option and let the real maximum of the underlying price Smax be denoted by S ′max,

which is defined as

S ′max = max{Smax, K} .

Then, we can have

Cfix = P ′fl + S(0)−Ke−rT ,

provided that the time to expiration of Cfix and Pfl are the same. Similarly, for the

fixed lookback put and the floating lookback call defined under

S ′min = min{Smin, K} .

Then, we can have

Pfix = C ′fl +Ke−rT − S(0) .

Observe that P ′fl has a payoff of max{S ′max − S(T ), 0} and C ′fl has a payoff of

max{S(T )− S ′min}.
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3.2.3 The valuation of lookback options

One of the earliest works on lookback options was found in Goldman et al. (1979)

when they obtained the closed form solution of the standard lookback options with

European features priced under the Black-Scholes framework. They further explained

that a put (call) option on the maximum (minimum) value of an asset can be perfectly

hedged. Conze (1991) computed the explicit formulas for different European look-

back options and also introduced the concept of probabilisitic tools (Snell envelope)

to obtain results for their American counterparts. The value of the floating strike

lookback options were valued using Monte Carlo method, as shown in Kyprianou,

Schoutens & Wilmott (2006). For the American lookback types, Zhang, Zhang &

Zhu (2009) used the finite difference approximation to value the options and Lai &

Lim (2004) established methods that compute the American fixed lookback options.

Musiela & Rutkowski (2006) developed the arbitrage prices for the floating strike

lookback options, together with their pricing method.

Under the Black-Scholes model, Zhang (1998) generalized the values of the floating

and the fixed strike lookback options. He used density function for the maximum

and the minimum values of the underlying prices during the lifetime of the contract

to determine the values for the puts and the calls respectively.

Consider the standard lookback option. Let Smax = maxt∈[0,T ] S(t) and Smin =

mint∈[0,T ] S(t) be denoted by x and y respectively. The pair (S(t), x) and (S(t), y) are

both Markov processes. According to Shreve (2004, p.309), there must be a function

v(t, S, x) which calculates the value of a standard lookback put option defined by

v(t, S, x) = EQ[e−r(T−t)(x− S(T ))|Ft] .

The PDE for pricing the lookback options can be obtained the same way as the Asian

options. This involves setting up a risk-less, self financing portfolio that consists of

long position in one lookback option and short position in ∆ units of the underlying.
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Based on the no-arbitrage principle and applying the Ito’s lemma, the stochastic part

is eliminated. This gives rise to a function v which satisfies the PDE below:

∂v(t, S, x)

∂t
+ rS

∂v(t, S, x)

∂S
+
σ2

2
S2∂

2v(t, S, x)

∂S2
− rv(t, S, x) = 0 , (3.2.1)

in the region {(t, S, x) : t ∈ [0, T ), 0 ≤ S ≤ x} . The boundary and the terminal

conditions for the PDE in equation (3.2.1) are given below:

vx(t, S, x) = 0, where S = x, t ∈ [0, T ), x > 0 (3.2.2)

v(t, 0, x) = xe−r(T−t), where t ∈ [0, T ), x > 0 (3.2.3)

v(T, S, x) = x− S(T ), where 0 ≤ S < x . (3.2.4)

In equation (3.2.2), when the asset price is maximum, the option price becomes

insensitive to any changes with respect to the maximum. This is because the current

maximum of the asset assuming the maximum at expiry has zero probability. Thus,

max{Smax − S(T ), 0} = max{Smax − Smax} = 0. Hence, any small change in the

option price is insignificant. Equation (3.2.3) occurs when the underlying price is 0,

the option value becomes the discounted value of maximum underlying asset price.

For the call, we consider the situation when the underlying price is very large. Thus

the boundary condition for the call becomes v(t, S, y) ≈ S. Finally, equation (3.2.4)

gives the payoff for the put. For the call, the payoff becomes v(t, S, y) = S − y.

Equation (3.2.1), with conditions (3.2.2),(3.2.3) and (3.2.4) is of 3-dimension and its

solution would be complex and numerically ambiguous. Hence, it suffices to transform

it into a 2-dimensional problem which encompasses the use of similarity reduction

where the linearity scaling property of v(t, S, x) would be introduced. The function

v(t, S, x) can be written as v(t, βS, βx) = βv(t, S, x), for β > 0 (Shreve 2004).

Let u(t,m) = v(t,m, 1), then

v(t, S, x) = xv

(
t,
S

x
, 1

)
= xu

(
t,
S

x

)
, (3.2.5)
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where t ∈ [0, T ], m ∈ [0, 1], 0 ≤ S ≤ x and x > 0.

Taking the partial derivatives and substituting into (3.2.1), the following ensues:

∂v

∂t
=

∂

∂t

[
xu

(
t,
S

x

)]
= xut

(
t,
S

x

)
; (3.2.6)

∂v

∂S
=

∂

∂S

[
xu

(
t,
S

x

)]
= xum

(
t,
S

x

)
.
∂

∂S

(
S

x

)
= um

(
t,
S

x

)
; (3.2.7)

∂2v

∂S2
=

∂

∂S

[
um

(
t,
S

x

)]
= umm

(
t,
S

x

)
.
∂

∂S

(
S

x

)
=

1

x
umm

(
t,
S

x

)
; (3.2.8)

∂v

∂x
=

∂

∂x

[
xu

(
t,
S

x

)]
= xum

(
t,
S

x

)
.
∂

∂x

(
S

x

)
+ u

(
t,
S

x

)

= u

(
t,
S

x

)
− S

x
um

(
t,
S

x

)
. (3.2.9)

Substitute equations (3.2.5), (3.2.6), (3.2.7) and (3.2.8) into equation (3.2.1) to have

xut

(
t,
S

x

)
+ rSum

(
t,
S

x

)
+
σ2S2

2
.
1

x
umm

(
t,
S

x

)
− rxu

(
t,
S

x

)
= 0 .

Factorizing x out, we have

x

[
ut

(
t,
S

x

)
+ r

S

x
um

(
t,
S

x

)
+
σ2S2

2
.

1

x2
umm

(
t,
S

x

)
− ru

(
t,
S

x

)]
= 0 . (3.2.10)

From the condition x > 0, we see that x 6= 0 and thus the equation (3.2.10) becomes

ut(t,m) + rmum(t,m) +
σ2

2
m2umm(t,m)− ru(t,m) = 0 , (3.2.11)
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where m = S
x
, for t ∈ [0, T ] and m ∈ [0, 1].

We obtain the terminal and the boundary conditions:

(1) Recall that v(t, S, x) = xu
(
t, S

x

)
. But from equation (3.2.3),

v(t, 0, x) = xe−r(T−t). Thus, we have u(t, 0) = e−r(T−t).

(2) From equation (3.2.9), we have vx(t, S, x) = u(t,m)−mum(t,m) and from equa-

tion (3.2.2),

we have vx(t, S, x) = 0 for S = x. This shows that m = S
x

= 1 and thus, we have

0 = u(t, 1)− um(t, 1) =⇒ u(t, 1) = um(t, 1).

(3) From equation (3.2.4), we have v(T, S, x) = x−S(T ) =⇒ x−S(T ) = xu
(
T, S

x

)
and thus, u(T,m) = 1− S(T )

x
.

For m ∈ [0, 1] and 0 ≤ t ≤ T , the 3-dimensional PDE has been reduced to its

2-dimensional form with the boundary and terminal conditions given below as:

ut(t,m) + rmum(t,m) +
σ2

2
m2umm(t,m)− ru(t,m) = 0 and

u(t, 0) = e−r(T−t) ,

u(t, 1) = um(t, 1) ,

u(T,m) = 1− S(T )

x
.

According to Musiela & Rutkowski (2006), the price of standard European lookback
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call option is given by

C1 =SN

(
ln
(
S
m

)
+ r1τ

σ
√
τ

)
−me−rτN

(
ln
(
S
m

)
+ r2τ

σ
√
τ

)
− Sσ2

2r
N

(
ln
(
m
S

)
− r1τ

σ
√
τ

)

+ e−rτ
Sσ2

2r

(m
S

) 2r
σ2

N

(
ln
(
m
S

)
+ r2τ

σ
√
τ

)
,

(3.2.12)

where m = minS(t), ∀ t ∈ [0, T ], τ = T − t and r1,2 = r ± σ2

2
.

The Put equivalent is given also by

P1 =− SN

(
−

ln
(
S
M

)
+ r1τ

σ
√
τ

)
+Me−rτN

(
−

ln
(
S
M

)
+ r2τ

σ
√
τ

)
+
Sσ2

2r
N

(
ln
(
S
M

)
+ r1τ

σ
√
τ

)

− e−rτ Sσ
2

2r

(
M

S

) 2r
σ2

N

(
ln
(
S
M

)
− r2τ

σ
√
τ

)
,

(3.2.13)

where M = maxS(t), ∀ t ∈ [0, T ], τ = T − t and r1,2 = r ± σ2

2
.

3.2.4 Option values with lookback features

Figure 3.2: Lookback call & Vanilla call Figure 3.3: Lookback put & Vanilla put
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Figure 3.2 above compares the standard lookback call to the plain vanilla call option

and Figure 3.3 above compares the standard lookback put to the plain vanilla put

option. Here, we consider the parameters: K = 75, T = 1, r = 0.05 and σ = 0.20 for

both figures. We observe that the values of the floating lookback call option always

exceed that of the plain vanilla call option and thus, they are never out of money.

This is because the strike price for the put option is the maximum value that the

stock achieved before its expiration and the call is the minimum value of the asset.

3.3 Barrier Options

Barrier options are example of path-dependent exotic options that are traded both on

the standardized exchange and at over-the-counter market. According to Luenberger

& Luenberger (1999), cited by Ilhan & Sircar (2006), barrier option trading accounts

for “50% of the volume of all exotic options and 10% volume of all traded securities”.

The payoffs of barrier options depend on the barrier level that the underlying price

attains to during the life of the contract. There is a presence of rebate (positive

discount, often a small percentage of the option value) on the option holder and this

increases the value of the barrier option, even though it has no effect on its payoff.

According to Zhang (1998), barrier options are classified into vanilla barrier and exotic

barrier options. Barrier options considered in this research work are of the vanilla

class.

3.3.1 Classification of vanilla barrier options

Generally, vanilla barrier options are classified into knock-in (Lightable) and knock-

out (Extinguishable) options. A barrier option is referred to as up (down) option if

the barrier level is positioned above (below) the underlying’s initial price. Let B be

the barrier level, SM = max0≤t≤T S(t) and Sm = min0≤t≤T S(t). Thus, we have the
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following classes:

(1) Knock-in barrier options: These are options that come into existence or lighted

once the underlying price reaches the barrier level. Hence, they possess the Euro-

pean features with lower premium once they are activated. Prior to its hitting the

level, the payoff equals zero but if this level is not breached before the contract

expires, then the holder may enjoy a rebate. Examples are down-and-in options

and up-and-in options.

(i) Down-and-in barrier options (DIBO): Here, the barrier level is situated be-

low the current price of the underlying. Thus, the option comes alive only

if the underlying falls below the barrier during the contract’s lifetime. The

payoff for the DIBO (call) is given by

v(S(T ), T ) =

0 if Sm > B, ∀ 0 ≤ t ≤ T

S(T )−K if Sm ≤ B, for at least one t ≤ T

(ii) Up-and-in barrier options (UIBO): The option is valuable if the underlying

price reaches the barrier from below before the contract expires. The payoff

for the UIBO (call) is given by

v(S(T ), T ) =

0 if SM < B, ∀ 0 ≤ t ≤ T

S(T )−K if SM ≥ B, for at least one t ≤ T

(2) Knock-out barrier options: These options are extinguished or knocked out once

the barrier level is reached by the price of the underlying. They expire worthlessly

if this barrier is breached and the holder enjoys a rebate once it occurs before the

contract expires. Even if the price of the underlying should move back within this

barrier level before the expiration of the contract, the option is already knocked-

out. Barrier options are highly sensitive with regards to the position of the

barrier. The knock-out for example has an expected payoff of near-zero value
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when the asset price becomes very close to the barrier and it outputs the value of

the standard vanilla options as the asset price move increasingly away from the

barrier (see Table 3.2). Examples of knock-out barrier options are down-and-out

options and up-and-out options.

(i) Down-and-out barrier options (DOBO): This type of option creates a lim-

ited profit potential for the option holder since the holder is permitted to

make profit provided the underlying price does not reach the specified level.

Nevertheless, a down-and-out call can be purchased by an investor who

expects an exponential increase in the underlying asset price and as such,

unlimited profit just like the standard call can be made. The barrier level

is positioned below the current price of the underlying. Thus, if the under-

lying price falls below the level, the option expires worthlessly. The payoff

for the DOBO (call) is given by

v(S(T ), T ) =

S(T )−K if Sm > B, ∀ 0 ≤ t ≤ T

0 if Sm ≤ B, for at least one t ≤ T

(ii) Up-and-out barrier options (UOBO): The barrier level is positioned above

the current price of the underlying asset. The option expires worthlessly if

the barrier is breached from below by the price of the underlying before the

expiration of the contract. The payoff for the UOBO (call) option is given

by

v(S(T ), T ) =

S(T )−K if SM < B, ∀ 0 ≥ t ≤ T

0 if SM ≥ B, for at least one t ≤ T

Barrier options are summarized in Table 3.1 below. Let P be the payoff, CT and PT ,

the values of the plain vanilla calls and puts respectively:
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Table 3.1: A summary of the barrier options

Option

Rights

Types Barrier level position Effect on payoff P (S, T )

Call DOBO B < S B = S =⇒ P = 0, B 6= S =⇒ P = CT

UOBO B > S B = S =⇒ P = 0, B 6= S =⇒ P = CT

DIBO B < S B = S =⇒ P = CT , B 6= S =⇒ P = 0

UIBO B > S B = S =⇒ P = CT , B 6= S =⇒ P = 0

Put DOBO B < S B = S =⇒ P = 0, B 6= S =⇒ P = PT

UOBO B > S B = S =⇒ P = 0, B 6= S =⇒ P = PT

DIBO B < S B = S =⇒ P = PT , B 6= S =⇒ P = 0

UIBO B > S B = S =⇒ P = PT , B 6= S =⇒ P = 0

3.3.2 Input-parity

This is the combination of an ‘in’ and ‘out’ barrier option to yield a plain vanilla

option, provided that both options possess the same expiration time and strike price.

It is most suitable for European option without rebate. This explains better why

barrier options are less expensive compared to the plain vanilla options. Table 3.2

below verifies that the input-parity of barrier options holds. For the up options, we

choose a range for the underlying asset, S = 100, 110, 120, 130, 140, 150 respectively,

B = 150, K = 110, r = 5%, σ = 45% and T = 2. Next, we position the barrier above

each of the underlying asset prices. As the underlying price increases, the values of

the UOBO reduce and knocks out as soon as the barrier level is reached. This in turn

makes the UIBO to be increasingly ITM. Also for the vanilla option, increase in the

underlying price results in a linear increase in the value of the vanilla call option.

For the down options, we choose range for the asset, S = 160, 150, 140, 130, 125, 120

respectively, B = 120, K = 125, r = 6%, σ = 50% and T = 2. We position the barrier

below each of the underlying prices. Decrease in the underlying prices reduce the
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values of the vanilla call. As the underlying price tends towards the barrier, the

DOBO reduces and becomes worthless, whereas the DIBO increases without bound.

Table 3.2: Up and Down barrier call options

UIBO UOBO Vanilla

24.6494 0.4933 25.1427

31.2819 0.4197 31.7016

38.4438 0.3265 38.7703

46.0517 0.2213 46.2730

54.0330 0.1108 54.1438

62.3262 0.0000 62.3262

DIBO DOBO Vanilla

21.4425 45.2082 66.6507

24.3851 34.3070 58.6921

27.8270 23.1841 51.0111

31.8732 11.7765 43.6497

34.1629 5.9407 40.1036

36.6560 0.0000 36.6560

3.3.3 Valuation of barrier options

The path-dependent nature of barrier options are of the weak form, since the values

depend not just on the path taken by the underlying but on the breaching of the spec-

ified barrier level. This is in contrast to the Asian options whose path-dependency

are strong. One of the earliest research on barrier option pricing can be found in Sny-

der (1969). He described the down-and-out options as limited risk special options, in

which the holder agrees (with a favorable price in return) to limit the risk experienced

by the writer by making the option void supposing “the price of the stock declines

during the life of the contract to a specific point below the striking price called the

expiration price”. Furthermore, Merton (1973) priced the down-and-out barrier call

options using the PDE approach. Boyle & Tian (1998) applied the concept of modi-

fied explicit finite difference approach to obtain the price of barrier options. Pricing
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discrete barrier options are also found in Kou (2003) and Broadie, Glasserman & Kou

(1997). Furthermore, Zvan, Vetzal & Forsyth (2000) presented an implicit method

for solving PDE models in relation to barrier options. Guardasoni & Sanfelici (2006)

applied the concept of boundary element method on barrier options. Explicit formula

for obtaining the knock-out discount for barrier options can be found in Musiela &

Rutkowski (2006). Recent works on double barrier option pricing can be found in

Farnoosh et al. (2015) and Chen et al. (2015).

The call and put values of the dividend paying European options at time t = 0 are

C = S0e
−qTN(d1)−Ke−rTN(d2) and P = Ke−rTN(−d2)− S0e

−qTN(−d1)

respectively, where

d1 =
ln
(
S0

K

)
+
(
r − q + σ2

2

)
T

σ
√
T

and d2 = d1 − σ
√
T .

The following closed form formulas for barrier call options which are monitored con-

tinuously are obtained using the extended Black-Scholes formula and can be found in

Hull (2006, p.579-581) and Bouzoubaa & Osseiran (2010, p.153). 1

The value of the DIBO when the barrier level B ≤ K is

Cdi = S0e
−qT

(
B

S0

)2λ

N(y)−Ke−rT
(
B

S0

)2λ−2

N(y − σ
√
T ) , (3.3.1)

where

λ =
r − q + σ2

2

σ2
and y =

ln
(

B2

S0K

)
σ
√
T

+ λσ
√
T .

The value for the corresponding DOBO is obtained using the input-parity. That is,

1The call values follow the assumption that the underlying prices are lognormal, pay dividend q
and are considered at time t = 0. The puts are obtained similarly. See Hull (2006).
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Cdo = C − Cdi and thus, we have:

Cdo = S0e
−qTN(d1)−Ke−rTN(d2)−

[
S0e

−qT
(
B

S0

)2λ

N(y)

−Ke−rT
(
B

S0

)2λ−2

N(y − σ
√
T )

]
. (3.3.2)

Consider also the situation where B > K, we have the value of the DOBO to be

Cdo = S0e
−qTN(x1)−Ke−rTN(x1 − σ

√
T )− S0e

−qT
(
B

S0

)2λ

N(y1)

+Ke−rT
(
B

S0

)2λ−2

N(y1 − σ
√
T ) , (3.3.3)

where

x1 =
ln
(
S0

B

)
σ
√
T

+ λσ
√
T and y1 =

ln
(
B
S0

)
σ
√
T

+ λσ
√
T .

The value for the corresponding DIBO is obtained using the input-parity. Thus,

Cdi = S0e
−qTN(d1)−Ke−rTN(d2)−

[
S0e

−qTN(x1)−Ke−rTN(x1 − σ
√
T )

−S0e
−qT

(
B

S0

)2λ

N(y1) +Ke−rT
(
B

S0

)2λ−2

N(y1 − σ
√
T )

]
. (3.3.4)

For B > K, the value of the UIBO is given by

Cui =S0e
−qTN(x1)−Ke−rTN(x1 − σ

√
T )− S0e

−qT
(
B

S0

)2λ

[N(−y)−N(−y1)]

+Ke−rT
(
B

S0

)2λ−2

[N(−y + σ
√
T )−N(−y1 + σ

√
T )] . (3.3.5)
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The corresponding value of the UOBO is obtained by

Cuo = C − Cui . (3.3.6)

For the value of the UOBO when B ≤ K, the call option becomes Cuo = 0. The

corresponding UIBO is given by

Cui = C − 0 = S0e
−qTN(d1)−Ke−rTN(d2) . (3.3.7)

3.3.4 Non-dividend option values with barrier call features

Figures 3.4 & 3.5 describe the ‘down’ options in comparison to the vanilla call values.

Figure 3.4: DOBO call & Vanilla call Figure 3.5: DIBO call & Vanilla call

In Figure 3.4, the barrier is at B = 100, K = 90, σ = 0.4, r = 0.06 and T = 1.0.

We observe that decreasing the underlying prices reduce the values of the DOBO call

and the option pays nothing once the barrier is reached. Figure 3.5 sets the barrier

level at B = 80, r = 0.05, K = 100, T = 1.0 and σ = 0.2. We observe that prior to

the barrier being breached, the option pays nothing. The option becomes active as

the barrier is triggered and its values start to increase.
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Figure 3.6: UOBO call & Vanilla call Figure 3.7: UIBO call & Vanilla call

In Figure 3.6, the barrier is at B = 175, K = 100, σ = 0.2, r = 0.05 and T = 2.0. The

value for the up-and-out barrier call option is always less than the difference between

the barrier level and the strike price, and hence it has limited up-side potential. It

was also observed that increasing the underlying prices resulted to an increase in the

option values. But the values reduced as the chances of the option being knocked out

increased. Figure 3.7 sets the barrier level at B = 150, r = 0.05, K = 100, T = 2.0

and σ = 0.2. We observed that the value of the UIBO increased once it is ATM

and rose sharply when the barrier is triggered, resulting to a deep ITM knock-in call

value. Also, it was observed that at the barrier, the UIBO and the plain vanilla call

intersected.

3.4 Binary Options

These are classes of exotic options whose payoffs are discontinuous. They are also

known as bet options or digital options. The options are binary in nature because the

two outcomes are dependent on their payoffs, that is, either a fixed amount is paid or

nothing at all. According to Wilmott (2006), an investor can choose to long a position
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in binary call options if a less dramatic increment in the prices of the underlying over

the strike price is expected. But if a more spontaneous increase is expected in the

underlying price, then a plain vanilla call option is advisable. This is due to the fact

that a binary option cannot pay more than the specified amount initiated at the onset

of the contract but a plain vanilla possesses the best upside potential.

3.4.1 Types of binary options

Binary options are generally classified into gap options, asset-or-nothing and cash-or-

nothing options.

(1) Gap options: The payoff depends on the difference between the underlying price

and a specific price (different from the strike price), which is also known as the

‘gap parameter’. Plain vanilla options are obtained from the gap options if the

gap parameter equals the strike price (Zhang 1998). The payoff is given below 2

P (S, T ) =

λ(St −X), if λS > λK

0 otherwise
.

(2) Asset-or-nothing options (AON): This type of option gives the holder the right

but not the obligation to own a particular underlying if the option expires in-the-

money. When the gap parameter is zero, we have the AON. The payoff for the

dividend paying AON options is given by

P (S, T ) =

Se−q(T−t)N(λd1), if λS > λK

0 otherwise

where d1 follows from the Black-Scholes formula.

2Note that λ = ±1 for calls or puts respectively.
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The Figures (3.8 & 3.9) below explain the payoff structure when the strike price

is K = 50. Also, consider when the AON binary option pays a fixed amount,

say R = 30 if the option is ITM and nothing when the option is both ATM and

OTM.

Figure 3.8: AON call & Vanilla call Figure 3.9: AON put & Vanilla put

(3) Cash-or-nothing (CON): Whenever the underlying price ends above the strike

price, a specific amount is paid for the option. But the option has zero payoff

if the strike price exceeds the underlying price at the end of the contract. The

payoff for the dividend paying CON options is given by

P (S, T ) =

e−r(T−t)N(λd2), if λS > λK

0 otherwise

An example of a binary option is the European call option on a long forward con-

tract. The sum of the binary call and a binary put gives the discount factor e−r(T−t).

Generally, the Black-Scholes pricing formula is decomposed into the CON and the

AON binary options. For a dividend paying call option,

Black-Scholes Value = Se−q(T−t)N(d1)︸ ︷︷ ︸
CON

−K e−r(T−t)N(d2)︸ ︷︷ ︸
AON

.



4. Valuation of Fixed Strike

Lookback Options and Zero-Rebate

Knock-Out Barrier Options

In this chapter, we shall consider the mathematical formulations of these exotic option

prices. For the fixed strike lookback options, we shall employ the concept of reflection

principle and joint probability distribution in deriving the pricing formula for the call

and put options. Next, we employ the concept of method of images and reduction to

heat equation to obtain the pricing formula for the barrier options.

4.1 Fixed Strike Lookback Options

Suppose an investor makes a speculation that the price of an underlying asset would

rise tremendously within a period of T years, then he decides to buy a plain vanilla

European call option with expiration time T . After purchasing the contract, the

underlying price rose as expected but due to some circumstances, the price fell down

to the point that it gets below the agreed strike price. The investor will now be forced

to terminate the contract with the loss of premium paid upfront. Thus, the investor

will receive a lesser payoff than when the underlying price was significantly high.

Hence, the introduction of fixed strike lookback call option limits such hindrance. In

this contract, the investor would rather use the maximum value that the underlying

had achieved before the expiration of the contract instead of the final asset value

as used by the plain vanilla options. Thus, the fixed strike lookback call option

promises a non-negative payoff (to the option holder) which measures the excess of

the maximum asset price over the strike price. Fixed strike put on the other hand,

measures the excess of the strike price over the minimum asset price.

48
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4.1.1 Definition. Fixed-Strike lookback options

Fixed strike call option grants the option holder the right but not the obligation to

purchase an underlying asset for a fixed amount K in the future and to sell at the

maximum price the underlying achieved before the expiration of the contract. For

the put option, the holder buys at the minimum price and sells at a fixed strike, K.

For the fixed strike lookback call option, we assume that the asset dynamics is based

on geometric Brownian motion with constant variance σ2 and drift
(
r − σ2

2

)
. Let T

be the expiration of the option contract and the interval [0, T ] be the duration of the

lookback period. Define the stochastic variables under the risk neutral measure as

Uλ = ln
Sλ
S

= lnSλ − lnS, for λ ∈ [t, T ] ,

YT = ln
MT

t

S
= max{Uλ : λ ∈ [t, T ]} ,

XT = ln
mT
t

S
= min{Uλ : λ ∈ [t, T ]} ,

where MT
t and mT

t refer to the maximum and the minimum value of the underlying

from time t to T respectively.

Before proceeding, we derive the joint probability density law for the maximum value

over the interval [0, T ] and over the terminal value of the Brownian motion Bµ
T with

drift µ. This will be done by applying the reflection principle on the Brownian motion.

4.1.2 Lemma. Reflection principle

Let B(t) be a Brownian motion and {Ft : t ≥ 0} be the usual filtration. For a fixed

α > 0, let the stopping time of the process be

τα = Inf{t ≥ 0 : B(t) = α} ,
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and define the process {B̃(t) : t ≥ 0} by

B̃(t) =

B(t) t < τα

2α−B(t) t ≥ τα
.

Then {B̃(t) : t ≥ 0} is a Brownian motion. (Yue-Kuen 1998). The reflection principle

asserts that for ω ≤ α,

P[τα ≤ t, B(t) ≤ ω] = P[B(t) ≥ 2α− ω] .

Consider a zero drift Brownian motion B0
t starting at time zero with volatility σ.

Let m denote a downstream barrier. We aim at obtaining the probability P[mT
0 <

m,Bµ
T > x], where m ≤ x and m ≤ 0. Assuming that mT

0 < m for the process B0
t ,

then there exist a specific time point λ where

λ = Inf{λ ∈ [0, T ] : B0
λ = m} .

Also since the Brownian motion consists of continuous sample paths, there must exist

times when B0
t < m. Thus, we can say that the zero drift Brownian motion B0

t reduces

to at least below the point m and equally increases up or above another point x at

the terminal point T . Let B̃0
t be the mirror reflection of the process B0

t , and from the

reflection principle above, we can have the reflected random process as

B̃0
t =

B0
t t < λ

2m−B0
t t ∈ [λ, T ]

.

Also, suppose that the process B0
T stops at a value which is higher than x, then the

reflection path has a value which is lower than 2m−x at time T . Thus, we have that

B0
T > x = B̃0

T < 2m− x and the reflection principle further assert that

B̃0
λ+u − B̃0

λ ≡ −(B0
λ+u −B0

λ) for u > 0 . (4.1.1)
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We can infer that the two Brownian increments above have the same distribution

parameters, i.e, N(0, σ2u) following the Markov property of Brownian motion.

4.1.3 Theorem. Strong Markov Property

Let {Bu : u ≥ 0} be a Brownian motion started at x ∈ Rd and define a bounded

measurable function f : C([0,∞],Rd)→ R. Let λ be the stopping time of the process

where λ > 0 and Fλ be the filtration, then the process {Bλ+u − Bλ : λ ≥ 0} is a

Brownian motion started in the origin and it is independent of the process {Bu : 0 ≤
λ ≤ u}. (Mörters & Peres 2010). Alternatively,

Ex[f(Bλ+u)|Fλ] = E[f(Bλ)|Bλ] .

Note: The function C(J) refers to the topological space which defines all continuous

functions on K ⊂ Rd and has the norm property ||f || = supx∈J |f(x)|.

IfB0
T > x, thenB0

T < 2m−x and together with the extension of the reflection principle

at equation (4.1.1), the joint probability distribution function can be defined as

P[B0
T > x,mT

0 < m] = P[B̃0
T < 2m− x]

= P[B0
T < 2m− x]

= N

(
2m− x
σ
√
T

)
for m ≤ min(x, 0) .

The last value follows from the definition of the cumulative standard normal distri-

bution 1. The joint distribution above is for Brownian motion with zero drift. Next,

1Recall from the definition of cumulative standard normal distribution, if Z is a random variable
with parameters N(µ, σ2), then

P[Z ≤ z] = N

(
z − µ
σ

)
.

Thus, we see that z = 2m− x, µ = 0 and σ = σ
√
T .
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using the Girsanov change of measure, we upgrade it to have the non-zero drift, i.e(
r − σ2

2

)
. Under the measure Q, assume Bµ

t to be a Brownian motion with constant

drift µ. We aim at transforming the process Bµ
t to have a zero drift under the new

measure Q̃, where Bµ
t becomes a Brownian motion.

4.1.4 Theorem. Girsanov Transform: one-dim Integral problem

Let Bt, t ∈ [0, T ] be a Brownian motion with probability measure Q and let {Ft, t ∈
[0, T ]} be the usual filtration of this Brownian motion. Define Z(t) as the Radon-

Nikodým derivative of the new measure Q̃ with respect to Q as: (Shreve 2004).

Z(t) = exp

{
−
∫ t

0

φudBu −
1

2

∫ t

0

φ2
udu

}
and

B̃t = Bt +

∫ t

0

φudu ,

where φu is an adapted process. Then under the measure Q̃, the process B̃t is a

Brownian motion.

Considering the probability distribution and applying the Girsanov transform, the

following holds:

P[Bµ
T > x,mT

0 < m] = EQ[I{BµT>x}I{m0
T<m}]

= EQ

[
I{BµT>x}I{m0

T<m}.
dQ̃
dQ

]

= EQ̃

[
I{BµT>x}I{m0

T<m}.exp

(
µBµ

T

σ2
− µ2T

2σ2

)]
.
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The indicator or step function I{BµT>x} is defined as

I{BµT>x} =

1 if Bµ
T > x

0 if otherwise

Furthermore, applying Theorem 4.1.4 transforms the process Bµ
T from a zero drift

process under Q to a zero drift process under Q̃2. By reflection principle, we have

P[Bµ
T > x,mT

0 < m] = EQ̃

[
I{2m−BµT>x}.exp

(
µ(2m−Bµ

T )

σ2
− µ2T

2σ2

)]

= exp

[
2µm

σ2

]
EQ̃

[
I{2m−BµT>x}.exp

(
−µBµ

T

σ2
− µ2T

2σ2

)]

= exp

[
2µm

σ2

]
EQ̃

[
I{BµT<2m−x}.exp

(
−µBµ

T

σ2
− µ2T

2σ2

)]
.

Introducing the normal probability density function, consider q ∼ N(0, σ2), we have

P[Bµ
T > x,mT

0 < m] = exp

[
2µm

σ2

] ∫ 2m−x

−∞

1√
2πσ2T

exp

[
−q2

2σ2T

]
.exp

(
−µq
σ2
− µ2T

2σ2

)
dq

= exp

[
2µm

σ2

] ∫ 2m−x

−∞

1√
2πσ2T

exp

[
−1

2σ2T
(q2 + 2µqT + µ2T 2)

]
dq

= exp

[
2µm

σ2

] ∫ 2m−x

−∞

1√
2πσ2T

exp

[
−1

2σ2T
(q + µT )2

]
dq .

2More details on the value of the Radon-Nikodým derivative denoted by dQ̃
dQ can be found in

Yue-Kuen (1998, p.205) and Baz & Chacko (2004, p.74).
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This becomes

P[Bµ
T > x,mT

0 < m] = exp

[
2µm

σ2

]
N

(
2m− x+ µT

σ
√
T

)
m ≤ min(x, 0) .

Introducing the concept of total probability law, we have

P[Bµ
T > x,mT

0 = 0] = P[Bµ
T > x,mT

0 > m] + P[Bµ
T > x,mT

0 < m] .

Suppose we seek for the situation where mT
0 > m together with Bµ

T > x, we have

P[Bµ
T > x,mT

0 > m] = P[Bµ
T > x,mT

0 = 0]− P[Bµ
T > x,mT

0 < m] (4.1.2)

= N

(
−x+ µT

σ
√
T

)
− e

2µm

σ2 N

(
2m− x+ µT

σ
√
T

)
. (4.1.3)

The fixed strike lookback put option can be priced using the distribution in (4.1.3)

above where mT
0 is the minimum value the underlying attained to over the period

[0, T ], with m as the downstream barrier. Furthermore, for x = m, the distribution

becomes

P[Bµ
T > m,mT

0 > m] = N

(
−m+ µT

σ
√
T

)
− e

2µm

σ2 N

(
m+ µT

σ
√
T

)
. (4.1.4)

In valuing the fixed strike call option, we use MT
0 which is the maximum price of the

underlying for the time period [0, T ]. The joint PDF can be obtained the same way

as that of the put above. Thus, we have that

P[Bµ
T > x,MT

0 < M ] = N

(
M − µT
σ
√
T

)
− e

2µM

σ2 N

(
−M − µT
σ
√
T

)
, (4.1.5)

where M is an upstream barrier.

The payoff structure for the call option is given by max{MT
0 −N, 0}, where N is the
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strike price and set M = M t
0. Applying the risk neutral pricing measure, the value of

the option is given by:

v(t, S,M) = e−rτEQ[max{{max(M t
0,M

T
t )−N}, 0}] .

Two conditions exist for the payoff structure:

(a) M ≤ N : The payoff becomes max{MT
t −N, 0} .

(b) M > N : The payoff becomes (M −N) + max{MT
t −M, 0} .

Define a function f by

f(t, S;K) = e−rτ max{MT
t −K, 0} , for K ∈ R+ . (4.1.6)

Thus, the call option value becomes

v(t, S,M) =


f(t, S;N) M ≤ N

e−rτ (M −N) + f(t, S;M) M > N

(4.1.7)

From the function in (4.1.7) above, we observe that whenever M ≤ N , the payoff

does not depend on the value of M . Moreover if M > N , the payoff assumes the floor

value of M −N . When this value is deducted from the call option price, we are left

with f(t, S;M) and this has a strike price which had been increased from K to M .

Thus

f(t, S;M) = e−rτ max{MT
t −K, 0}

= e−rτ
∫ ∞

0

P[MT
t −K ≥ b]db (since the payoffs are non-negative values) .
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Introducing log and the change of variables v = K + b, the above becomes

f(t, S;M) = e−rτ
∫ ∞
K

P
[
log

MT
t

S
≥ log

v

S

]
dv

= e−rτ
∫ ∞

log K
S

P [YT ≥ y]Seydy . (4.1.8)

The last result follows from y = log v
S
⇒ dv = Seydy and log

MT
t

S
= YT .

From equation (4.1.5), we consider some change in variables. Let M = y, x =

u, UT = Bµ
T , YT = MT

0 and τ = T − t, then the joint distribution of the non-zero

drift probability function in the presence of a downstream barrier for the period [t, T ]

is

P[UT ≥ u, YT < y] = N

(
y − µτ
σ
√
τ

)
− e

2µy

σ2 N

(
−y − µτ
σ
√
τ

)
. (4.1.9)

This is equivalent to

P[UT ≥ u, YT ≥ y] = N

(
−y + µτ

σ
√
τ

)
+ e

2µy

σ2 N

(
−y − µτ
σ
√
τ

)
. (4.1.10)

Thus, equation (4.1.8) can be written as:

f(t, S;M) = e−rτ
∫ ∞

log K
S

Sey
[
N

(
−y + µτ

σ
√
τ

)
+ e

2µy

σ2 N

(
−y − µτ
σ
√
τ

)]
dy .

Integrating yields the value of the fixed strike call option with M ≤ K (see Yue-Kuen

(1998)). Let the value f(t, S;K) = C and we have the value:

C = SN(d1)−Ke−rτN(d2) + e−rτ
Sσ2

2r

(
erτN(d1)−

(
S

K

)−2r

σ2

N

(
d1 −

2r
√
τ

σ

))
,

(4.1.11)



Section 4.1. Fixed Strike Lookback Options Page 57

where

d1 =
ln
(
S
K

)
+ r1τ

σ
√
τ

, d2 =
ln
(
S
K

)
+ r2τ

σ
√
τ

, (4.1.12)

τ = T − t and r1,2 = r ± σ2

2
.

Similarly, the value for the condition when K < M is given as

C = e−rτ (M(1−N(d2))−K) + e−rτ
Sσ2

2r

(
erτN(d1)−

(
S

M

)−2r

σ2

N

(
d1 −

2r
√
τ

σ

))
,

(4.1.13)

where d1 and d2 are the same with equations (4.1.12) but with K = M .

In equation (4.1.11), we observe that the value of the call option with fixed strike

lookback features consists of the value of the plain vanilla call option with an extra

feature. This extra feature gives the extra price incurred for exercising the option at

the maximum asset price. Hence, the price of the lookback option always exceed that

of the plain vanilla option.

Put: The payoff for the fixed strike put with European feature is given by

max{X −mT
0 , 0} ,

where mT
0 is the minimum of all asset prices for the time interval [0, T ]. Set mt

0 = m.

Using the same notion as from the valuation of the call options, the price of the fixed

strike lookback put option is

P = Ke−rτN(−d2)− SN(−d1) + e−rτ
Sσ2

2r

(
−erτN(−d1) +

(
S

K

)−2r

σ2

N

(
−d1 +

2r
√
τ

σ

))
,

(4.1.14)

where d1 and d2 are the same with equations (4.1.12), τ = T − t and r1,2 = r ± σ2

2
.
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Equation (4.1.14) occurs when K ≤m. For K > m, we have the value to be

P = e−rτ (K + m(N(−d2)− 1)))− SN(−d1) + e−rτ
Sσ2

2r
(erτN(−d1)

+

(
S

m

)−2r

σ2

N

(
−d1 +

2r
√
τ

σ

))
, (4.1.15)

where d1 and d2 are the same with equations (4.1.12) but with K = m.

4.1.5 Example. Consider a fixed strike ATM lookback option defined on a non-

dividend paying underlying asset with volatility 40% per annum. The initial asset

price is 100 and the option lasts for 3 months at a risk-free rate of 20% per annum.

Here, at t = 0, the option just originated and thus M = S(0) = 100 for call and

m = S(0) = 100 for put. The other parameters are K = 100, r = 0.2, σ = 0.4 and

T = 0.25. The prices of the fixed strike call using equation (4.1.11) and the put using

equation (4.1.14) are C = 19.1676 and P = 12.3398 respectively.

4.1.6 Example. Suppose the example above holds for the floating strike lookback

options. Ignoring the strike price K, we have the values of the call using equation

(3.2.12) and put using equation (3.2.13) as C1 = 17.2168 and P1 = 14.2906 respec-

tively.

4.1.7 Example. Consider parity condition given in Section 3.2.2. We observe that

C = P1 + S0 −Ke−rT

19.1676 = 14.2906 + 100− 100e−0.2×0.25

P = C1 − S0 +Ke−rT

12.3398 = 17.2168− 100 + 100e−0.2×0.25
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4.2 Down-and-Out Barrier Options

In this section, we consider the non-dividend down-and-out barrier options with Eu-

ropean features. Recall that this option becomes worthless whenever the underlying

price S reaches the barrier level B, but pays the value of the vanilla option if the bar-

rier is not breached. Though this option is cheaper than the vanilla counterpart, its

major disadvantage is that the option does not protect the holder once the underlying

price falls below the barrier and rises drastically before the contract’s expiration.

We consider the zero-rebate situation where the option holder receives nothing if the

barrier is breached before expiry. Suppose that the barrier is not breached at an

infinitesimal time step and that B < S at time t, then it can be shown that the value

of the down-and-out call option vdo(t, S) satisfies the Black-Scholes PDE:

∂vdo(t, S)

∂t
+ rS

∂vdo(t, S)

∂S
+
S2σ2

2

∂2vdo(t, S)

∂S2
= rvdo(t, S) . (4.2.1)

Thus, we recall that at B > S, the option does not exist and hence, we consider the

situation where B < S <∞. The boundary conditions for the call are given by:

vdo(T, S) = max{S −K, 0} ; (4.2.2)

vdo(t, B) = 0 ; (4.2.3)

vdo(t,∞) ∼ S −Ke−r(T−t) . (4.2.4)

Equation (4.2.2) gives the payoff and (4.2.3) occurs when the barrier level is breached.

Equation (4.2.4) occurs when the underlying price is sufficiently large and thus the

probability of the option being knocked out is highly reduced. Also, observe that in

case of a non-zero rebate option, equation (4.2.3) becomes

vdo(t, B) = R ,

where R is the rebate value defined in the domain (0,∞) .
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The PDE in equation (4.2.1) can be solved using the hedging analysis of Black and

Scholes. The equation is converted to heat equation in which the valuations of vanilla

options can be related to the flow of heat in an infinite bar. This is solved by method

of images where a mirror is positioned at the logarithm of the barrier (Buchen 2012).

4.2.1 Corollary. Let Lv(t, S) denote the Black-Scholes PDE and f(T, S) be the

payoff function. Suppose there exists a terminal boundary value problem defined as:

(Buchen 2012).

Lv(t, S) = 0 , for

v(T, S) = f(T, S) ,

v(t, B) = 0 ,

then the method of images can be used to solve this problem in relation to the

standard European options.

4.2.2 Corollary. Let v(t, S) be the value of a European option, then the image of

the function v(t, S) with respect to S = B and the Black-Scholes differential operator

is given by: (Buchen 2012).

v∗(t, S) =

(
B

S

)α
v

(
t,
B2

S

)
,

where α = 2r
σ2 − 1.

4.2.3 Theorem. Let v(t, S) be the solution of the terminal value problem described

as: (Buchen 2012).

Lv(t, S) = 0 ,

v(T, S) = f(T, S)I(S > B) ,

in the domain {S > 0, t < T}. Then vdo = v(t, S) − v∗(t, S) solves the terminal

boundary value problem for the down and out barrier option in the domain {S >
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B, t < T}.

Thus, we can have that

vdo = SN(d1)−Ke−r(T−t)N(d2)−
(
B

S

)α [
B2

S
N(y)−Ke−r(T−t)N(y − σ

√
T − t)

]
,

(4.2.5)

where d1, d2 follows from Appendix A in equations (A.0.11) and (A.0.12) respectively,

and also where

y =
log
(
B2

SK

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

. (4.2.6)

4.2.4 Valuation of down-and-out barrier options

In pricing the down-and-out barrier call options, the corresponding Black-Scholes

equation (4.2.1) is reduced to heat equation, with the additional feature of the option

being knocked out if the barrier is triggered. To reduce to heat equation, we consider

some change of variables.

Let

S = Bex =⇒ x = ln

(
S

B

)
and τ =

(T − t)σ2

2
.

Taking the derivatives, we have,

∂vdo
∂t

=
∂vdo
∂τ

∂τ

∂t
=
−σ2

2

∂vdo
∂τ

∂vdo
∂x

=
∂vdo
∂S

∂S

∂x
= S

∂vdo
∂S
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∂2vdo
∂x2

=
∂

∂x

(
∂vdo
∂x

)
= S2∂

2vdo
∂S2

+ S
∂vdo
∂S

.

Re-arranging and substituting into the PDE in equation (4.2.1), we have

−σ2

2

∂vdo
∂τ

+

(
r − σ2

2

)
∂vdo
∂x

+
σ2

2

∂2vdo
∂x2

= rvdo , (4.2.7)

with the corresponding boundary conditions in equations (4.2.2) and (4.2.3) to be

vdo(0, x) = max{Bex −K, 0} (4.2.8)

vdo(τ, 0) = 0 . (4.2.9)

Also, let

vdo(τ, x) = Beαx+βτu(τ, x) . (4.2.10)

Taking derivatives, we have,

∂vdo
∂τ

=Beαx+βτ

[
∂u

∂τ
+ βu

]

∂vdo
∂x

=Beαx+βτ

[
∂u

∂x
+ αu

]

∂v2
do

∂x2
=Beαx+βτ

[
∂2u

∂x2
+ 2α

∂u

∂x
+ α2u

]
.

Re-arranging and substituting into the PDE at equation (4.2.7), we have

−σ2

2

∂u

∂τ
+

[
r − σ2

2
+ ασ2

]
∂u

∂x
+
σ2

2

∂2u

∂x2
+

[
σ2

2

(
α2 − α− β

)
+ r(α− 1)

]
u = 0 .

(4.2.11)

We seek to eliminate the u and the ∂u
∂x

term and thus we equate their coefficients to
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zero. We have the following values for α and β,

α =
1

2
− r

σ2
and β =

−r
σ2
− r2

σ4
− 1

4
.

The resulting PDE reduces to a heat equation which describes the problem of heat

flow in an infinite bar. Thus, we have

∂u

∂τ
=
∂2u

∂x2
, for x ∈ (0,∞), τ > 0 (4.2.12)

and the boundary conditions 3

u(0, x) = max{ex−αx − K

B
e−αx, 0}

u(τ, 0) = 0 .

Solving the above problem involves not only solving for the positive real parts but

for all x. This was adopted owing to the invariant nature of the heat equation under

reflection and thus the solution involves u(τ, x) and u(τ,−x). Hence, we have

u(0, x) =


max{ex−αx − K

B
e−αx, 0} x > 0

−max{eαx−x − K
B

eαx, 0} x < 0

.

We now proceed to obtaining the price of the zero rebate knock-out barrier options,

specifically the call value of DOBO. Assume that v(t, S) is the price of the vanilla

European call options with the same strike price and expiry time, without barrier.

Also, assume that U(τ, x) is the solution to the heat equation defined in equation

(4.2.12). Consider also the following:

If S < K, then v(T, S) = 0. This is due to the fact that the option is OTM.

3Boundary conditions deduced from equation (4.2.10)
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Also U(τ, x) = 0 since S = Bex when x < ln
(
K
B

)
. We equally have that ln

(
K
B

)
> 0

since the strike price K is higher than the barrier. Else, the option is knocked out.

Suppose for x < 0, we let u(0, x) = 0. Then we consider the function u(0, x) for all x

and it is observed that u(0, x) = U(τ, x). Thus we have,

u(0, x) = U(τ, x)− U(τ,−x) ,

and for all x,

u(τ, x) = U(τ, x)− U(τ,−x) .

Then the value of the plain vanilla European call can be written as

v(t, S) = v(t(τ), Bex) = Beαx+βτU(τ, x) . (4.2.13)

From equation (4.2.13), we can deduce that

U(τ, x) =
e−αx−βτv(t(τ), Bex)

B
and

U(τ,−x) =
eαx−βτv(t(τ), Be−x)

B
.

Recall the option value is given in equation (4.2.10) as

vdo(t, S) = Beαx+βτu(τ, x)

= Beαx+βτ [U(τ, x)− U(τ,−x)]

= Beαx+βτ .e−αx−βτ
[

1

B

(
v(t(τ), Bex)− e2αxv(t(τ), Be−x)

)]

= v(t(τ), Bex)− e2αxv(t(τ), Be−x)
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vdo(t, S) = v(t, S)−
(
S

B

)2α

v

(
t,
B2

S

)
.

This is consistent with the value found in Theorem 4.2.3. The DIBO counterpart for

the call can be obtained using the input-parity found in Subsection 3.3.2.

4.3 Up-and-Out Barrier Options

For the call feature of the DOBO, the risk neutral valuation is given as

vdo = e−rτEQ[(S(T )−K)I{K<S(T )<B}I{mT0 >B}] .

This can be re-written as

vdo = e−rτ
∫ ∞

ln K
S

(Sex −K)fd(x,B, τ)dx , (4.3.1)

where fd(x,m, τ) refers to the joint probability density function of the Brownian

motion Bµ
T (non-zero drift process). The Brownian process has a downstream barrier

m such that m ≤ min(x, 0).

Define mT
0 = min S(u), where u ∈ [0, t], then we have the function:

fd(x,m, τ)dx = P(Bµ
T ∈ dx,mT

0 > m) .

The probability density function is obtained by taking the derivative of the equation

(4.1.3) with respect to x. This gives the density function of the log-normal return on

the underlying asset provided that the barrier level is not triggered. Thus, we have

fd(x,m, τ) =
1

σ
√
τ

[
N

(
x− µτ
σ
√
τ

)
− e

2µm

σ2 N

(
x− 2m− µτ

σ
√
τ

)]
.
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Evaluating the integral in equation (4.3.1), the value for the down-and-out call for

B < K is written as follows:

vdo = e−rτ
∫ ∞

ln K
S

(Sex −K)fd(x,B, T )dx = v(t, S;K)−
(
B

S

)2α

v

(
t,
B2

S
;K

)
,

(4.3.2)

where v is the price of the plain vanilla call option and α = 1
2
− r

σ2 .

Let vuo denote the price of the up-and-out barrier call defined in the domain below:

D = {(t, S) : 0 ≤ S ≤ B, t ∈ [0, T ]} .

The boundary conditions exist:

vuo(T, S) = v(T, S) = max{S(T )−K, 0} (4.3.3)

vuo(t, B) = 0 (4.3.4)

vuo(t,∞) = 0 (4.3.5)

We observe that the strike price is normally positioned below the barrier. But suppose

that it is fixed above the barrier level, the option becomes worthless by the time it hits

the barrier. Also, the maximum value of the underlying asset can attain is assumed

to be below the barrier, B. Thus, the chances of the option expiring in-the-money

become negligible.

Using the risk-neutral valuation, the value of the zero rebate up-and-out call option

is given as

vuo = e−rτEQ[(S(T )−K)I{K<S(T )<B}I{MT
0 <B}] ,

which can be written as

vuo = e−rτ
∫ ln B

S

ln K
S

(Sey −K)fu(y,M, τ)dy , (4.3.6)
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where fu(y,M, τ) refers to the joint probability density function of the Brownian

motion Bµ
T (non-zero drift process) defined with an upstream barrier M , for M >

max(y, 0). Define MT
0 = max S(u), for u ∈ [0, t], then we have the function

fu(y,M, τ)dy = P(Bµ
T ∈ dy,MT

0 < M) .

The analytical form of fu is the same as fd and it is given as

fu(y,M, τ) =
1

σ
√
τ

[
N

(
y − µτ
σ
√
τ

)
− e

2µM

σ2 N

(
y − 2M − µτ

σ
√
τ

)]
.

From equation (4.3.6), we have that the price of an up-and-out call is

vuo =e−rτ
∫ ln B

S

ln K
S

(Sey −K)fu(y,M, τ)dy

=e−rτ

[∫ ∞
ln K

S

(Sey −K)fu(y,B, τ)dy −
∫ ∞

ln B
S

(Sey −K)fu(y,B, τ)dy

]
.

According to Yue-Kuen (1998), we have that since the functions fd and fu have the

same analytical function, then the following result holds:

vuo = e−rτ

[∫ ∞
ln K

S

(Sex −K)fd(x,B, τ)dx−
∫ ∞

ln B
S

(Sex −K)fu(x,B, τ)dx

]
.

Thus, we have from equation (4.3.2) that

vuo = v(t, S;K)−
(
B

S

)2α

v

(
t,
B2

S
;K

)
−

[
v(t, S;B)−

(
B

S

)2α

v

(
t,
B2

S
;B

)]
,

(4.3.7)

where v is the value of the plain vanilla call options and α = 1
2
− r

σ2 .



5. Numerical Approximations

In pricing derivatives using numerical methods, the PDE approach (finite difference

method), the binomial or the trinomial approach and the Monte-Carlo simulation are

basically employed (Brandimarte 2013). This chapter considers the finite difference

approximations and the Monte-Carlo simulations. For the finite difference approxi-

mations, we discuss the explicit, the implicit and the Crank-Nicolson method. But

in the numerical valuation of the options, we implement only the Crank-Nicolson

method, owing to the fact that it is more accurate when compared to the other two

(see Appendix B).

5.1 Finite Difference Methods

The finite difference methods (FDM) for solving the Black-Scholes PDE which de-

scribe the exotic option pricing involves solving the associated PDE on a discrete

space-time grid. The computational domain is [0, Smax] × [0, T ] and this domain is

discretized by the uniform asset and time mesh with steps ∆S and ∆T .

Consider Figure 5.1 below:

68
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Underlying asset price, S

Time, t0

0

∆T 2∆T T

∆S

2∆S

Smax

Figure 5.1: Asset-time discretization

The payoff at time T is known and hence the solution involves applying the concept

of backward iteration on the square or rectangular grid up till time t = 0. With

regards to the Black-Scholes formula, the option price is a function of the underlying

price and time.

Consider also the discretizations below

S = 0,∆S, 2∆S, · · · , (m− 1)∆S,m∆S = Smax and

T = 0,∆T,∆T, · · · , (n− 1)∆T, n∆T = T

The option price v(T, S) can be denoted in grid form by vi,k = v(i∆t, k∆S), where k =

0, 1, 2, · · · ,m and i = 0, 1, · · · , n. Let Smax be the largest value that the underlying

can possibly have. The corresponding terminal and boundary conditions of the PDE

which give the values of the option prices at time t = T , S = 0 and S = Smax are

known. Thus, it suffices to use the known values at the extreme end of the nodes to
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calculate the values for the other interior nodes.

Terminal and Boundary conditions

Zero-rebate knock out barrier options: The terminal and boundary conditions of the

down-and-out barrier call options represented in equations (4.2.2), (4.2.3) and (4.2.4)

can be written in discrete form as follows:

vn,k = max{k∆S −K, 0} , (5.1.1)

vi,0 = 0 , (5.1.2)

vi,m∆S = m∆S −Ke−r(n−i)∆T . (5.1.3)

The following finite difference methods can be employed in the approximation of the

option pricing PDE:

(i) Forward difference: In time and in the underlying are given respectively as:

∂v

∂t
=
vi+1,k − vi,k

∆T
and

∂v

∂S
=
vi,k+1 − vi,k

∆S
.

(ii) Backward difference: In time and in the underlying are given respectively as:

∂v

∂t
=
vi,k − vi−1,k

∆T
and

∂v

∂S
=
vi,k − vi,k−1

∆S
.

(iii) Central difference: In time and in the underlying are given respectively as:

∂v

∂t
=
vi+1,k − vi−1,k

2∆T
and

∂v

∂S
=
vi,k+1 − vi,k−1

2∆S
.

(iv) Second derivative with respect to the underlying:

∂2v

∂S2
=
vi,k+1 − 2vi,k + vi,k−1

∆S2
.
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5.1.1 Implicit FDM

Consider again the Black-Scholes PDE defined below:

∂v

∂t
+ rS

∂v

∂S
+
S2σ2

2

∂2v

∂S2
= rv . (5.1.4)

The implicit FDM considers forward difference in time. For the first derivative with

respect to the underlying, it considers the central difference approximation. For the

second derivative with respect to the underlying, it considers the standard approxi-

mation. Hence, we have the following numerical approximations:

∂v

∂t
=
vi+1,k − vi,k

∆T

∂v

∂S
=
vi,k+1 − vi,k−1

2∆S

∂2v

∂S2
=
vi,k+1 − 2vi,k + vi,k−1

∆S2
.

Substitute into equation (5.1.4), we have

vi+1,k − vi,k
∆T

+ rk∆S

[
vi,k+1 − vi,k−1

2∆S

]
+

(σk∆S)2

2

[
vi,k+1 − 2vi,k + vi,k−1

∆S2

]
= rvi,k .

(5.1.5)

Rearranging the above gives

vi+1,k = vi,k−1

[
rk∆T

2
− σ2k2∆T

2

]
+vi,k

[
1 + ∆T (r + σ2k2)

]
+vi,k+1

[
−rk∆T

2
− σ2k2∆T

2

]
.

vi+1,k = A∗kvi,k−1 +B∗kvi,k + C∗kvi,k+1 , (5.1.6)
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where

A∗k =
∆T

2
[rk − σ2k2], B∗k = [1 + ∆T (r + σ2k2)] and C∗k =

−∆T

2
[rk + σ2k2] ,

for i = n− 1, n− 2, · · · , 1, 0 and k = 1, 2, · · · ,m− 1.

Equation (5.1.6) when expanded yields

vi+1,1 = A∗1vi,0 +B∗1vi,1 + C∗1vi,2

vi+1,2 = A∗2vi,1 +B∗2vi,2 + C∗2vi,3

vi+1,3 = A∗3vi,2 +B∗3vi,3 + C∗3vi,4
...

vi+1,m−2 = A∗m−2vi,m−3 +B∗m−2vi,m−2 + C∗m−2vi,m−1

vi+1,m−1 = A∗m−1vi,m−2 +B∗m−1vi,m−1 + C∗m−1vi,m

It can be expressed further in form of matrix notation as

vi+1,1

vi+1,2

vi+1,3

vi+1,m−2

vi+1,m−1


=



B∗1 C∗1

A∗2 B∗2 C∗2

A∗3 B∗3 C∗3

A∗m−2 B∗m−2 C∗m−2

A∗m−1 B∗m−1





vi,1

vi,2

vi,3

vi,m−2

vi,m−1


+



A∗1vi,0

...

C∗m−1vi,m


In compact form, we can re-write the system of equations above as

vi+1,k = D∗vi,k + F ∗i,k . (5.1.7)

The values vi,k are implicitly immersed in equation (5.1.7), where D∗ is an m − 1

tridiagonal matrix. The inversion of D∗ is one possible method to solve the system
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above. The values at time t = i+1 = n∆T , together with the values at nodes i, 0 and

i,m are known from the boundary conditions (5.1.1, 5.1.2 and 5.1.3). The solution

is finally obtained using backward iteration. Figure 5.2 below describes the implicit

method (Hull 2006).

fi+1,k

fi,k+1

fi,k

fi,k−1

Figure 5.2: Implicit finite difference discretization

5.1.2 Explicit FDM

The explicit FDM considers the backward difference in time. For the first derivative

with respect to the underlying, it considers the central difference. For the second

derivatives with respect to the underlying, it considers the standard approximations.

The approximations of the underlying at node (i, k) and the node (i+1, k) are assumed

to be the same (Hull 2006). The numerical approximations using the explicit FDM

are given below:

∂v

∂t
=
vi+1,k − vi,k

∆T

∂v

∂S
=
vi+1,k+1 − vi+1,k−1

2∆S

∂2v

∂S2
=
vi+1,k+1 − 2vi+1,k + vi+1,k−1

∆S2
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Substitute into equation (5.1.4), we have

vi+1,k − vi,k
∆T

+rk∆S

[
vi+1,k+1 − vi+1,k−1

2∆S

]
+

(σk∆S)2

2

[
vi+1,k+1 − 2vi+1,k + vi+1,k−1

∆S2

]
= rvi,k .

(5.1.8)

Rearranging equation (5.1.8) above gives

vi,k =
1

1 + r∆T
[Akvi+1,k−1 +Bkvi+1,k + Ckvi+1,k+1] , (5.1.9)

where

Ak =
∆T

2(1 + r∆T )
[−rk + σ2k2], Bk =

1

1 + r∆T
[1− σ2k2∆T ] and Ck =

∆T

2(1 + r∆T )
[rk + σ2k2] ,

for i = n− 1, n− 2, · · · , 1, 0 and k = 1, 2, · · · ,m− 1.

After discretization, the next step is to apply the terminal and boundary conditions.

This is dependent on the class of options being considered. Expanding equation

(5.1.9) further yields:

vi,1 = A1vi+1,0 +B1vi+1,1 + C1vi+1,2

vi,2 = A2vi+1,1 +B2vi+1,2 + C2vi+1,3

vi,3 = A3vi+1,2 +B3vi+1,3 + C3vi+1,4

...

vi,m−2 = Am−2vi+1,m−3 +Bm−2vi+1,m−2 + Cm−2vi+1,m−1

vi,m−1 = Am−1vi+1,m−2 +Bm−1vi+1,m−1 + Cm−1vi+1,m
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The above can be expressed in form of matrix notation as

vi,1

vi,2

vi,3

vi,m−2

vi,m−1


=



B1 C1

A2 B2 C2

A3 B3 C3

Am−2 Bm−2 Cm−2

Am−1 Bm−1





vi+1,1

vi+1,2

vi+1,3

vi+1,m−2

vi+1,m−1


+



A1vi+1,0

...

Cm−1vi+1,m



Thus for k = 1, 2, · · · ,m− 1, the option value vi,k is expressed explicitly as

vi,k = Dvi+1,k + Fi+1,k ,

where F is the column vector with values at nodes vi+1,m and vi+1,0 known from their

boundary conditions. The solution is obtained via backward iteration (using i =

n−1, n−2, · · · , 1, 0) to get the present value of the option value. The implementation

of the computer algorithm is straightforward and the stability is conditional but if

∆T

(∆S)2
≤ 1

2
,

then the solution converges. Also for accuracy, the step size of the time has to be

reduced by a factor of 4 (Wilmott, Howison & Dewynne 1995, p.145). Figure 5.3

below describes the explicit method (Hull 2006).
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fi,k

fi+1,k+1

fi+1,k

fi+1,k−1

Figure 5.3: Explicit Finite difference discretization

5.1.3 Crank-Nicolson FDM

The Crank-Nicolson method was introduced to curb the instability, as well as to

increase the efficiency and the accuracy of the implicit and the explicit method.

This is achieved by combining and averaging the implicit and the explicit method,

using the same boundary conditions. Consider Figure 5.4 below which describes the

discretization using the Crank-Nicolson method:

Vi,k+1

Vi,k

Vi,k−1

Vi+1,k+1

Vi+1,k

Vi+1,k−1

Vi+ 1
2
,k

Figure 5.4: Crank Nicolson discretization
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The implicit FDM can be written as

vi,k−vi−1,k+
rk∆T

2
[vi−1,k+1−vi−1,k−1]+

σ2k2∆T

2
[vi−1,k+1−2vi−1,k+vi−1,k−1] = r∆Tvi−1,k .

(5.1.10)

The explicit FDM can be written as

vi,k−vi−1,k+
rk∆T

2
[vi,k+1−vi,k−1]+

σ2k2∆T

2
[vi,k+1−2vi,k+vi,k−1] = r∆Tvi,k . (5.1.11)

Taking the average and re-arranging, we have

vi−1,k−1

[
−rk∆T

4
+
σ2k2∆T

4

]
+ vi−1,k

[
−1− ∆T

2
(σ2k2 + r)

]
+ vi−1,k+1

[
rk∆T

4
+
σ2k2∆T

4

]

=vi,k−1

[
rk∆T

4
− σ2k2∆T

4

]
+ vi,k

[
−1 +

∆T

2
(σ2k2 + r)

]
+ vi,k+1

[
−rk∆T

4
− σ2k2∆T

4

]
(5.1.12)

Equation (5.1.12) can be written as

−λkvi−1,k−1+(−1−βk)vi−1,k−ηkvi−1,k+1 = λkvi,k−1+(−1+βk)vi,k+ηkvi,k+1 (5.1.13)

for i = n− 1, n− 2, · · · , 1, 0 and k = 1, 2, · · · ,m− 1, where

λk =
∆T

4
[rk − σ2k2], βk =

∆T

2
(σ2k2 + r) and ηk =

−∆T

4
[rk + σ2k2] .
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Let ωk = 1 + βk and ζk = −1 + βk. Then equation (5.1.13) when expanded yields

−λ1vi−1,0 − ω1vi−1,1 − η1vi−1,2 = λ1vi,0 + ζ1vi,1 + η1vi,2

−λ2vi−1,1 − ω2vi−1,2 − η2vi−1,3 = λ2vi,1 + ζ2vi,2 + η2vi,3

−λ3vi−1,2 − ω3vi−1,3 − η3vi−1,4 = λ3vi,2 + ζ3vi,3 + η3vi,4
...

−λm−2vi−1,m−3 − ωm−2vi−1,m−2 − ηm−2vi−1,m−1 = λm−2vi,m−3 + ζm−2vi,m−2 + ηm−2vi,m−1

−λm−1vi−1,m−2 − ωm−1vi−1,m−1 − ηm−1vi−1,m = λm−1vi,m−2 + ζm−1vi,m−1 + ηm−1vi,m .

It can be expressed in matrix form as

−ω1 −η1

−λ2 −ω2 −η2

−λ3 −ω3 −η3

−λm−2 −ωm−2 −ηm−2

−λm−1 −ωm−1





vi−1,1

vi−1,2

vi−1,3

vi−1,m−2

vi−1,m−1


+



−λ1vi−1,0

...

−ηm−1vi−1,m



=



ζ1 η1

λ2 ζ2 η2

λ3 ζ3 η3

λm−2 ζm−2 ηm−2

λm−1 ζm−1





vi,1

vi,2

vi,3

vi,m−2

vi,m−1


+



λ1vi,0

...

ηm−1vi,m



Representing the matrix in a more compact form gives

Avi−1,k = Bvi,k + F ,
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where F = [λ1(vi,0 + vi−1,0), · · · , ηm−1(vi,m + vi−1,m)]T .

The Crank-Nicolson method of option pricing can be solved the same way as implicit

method. Both involve the inversion of the m− 1 diagonal matrix. The option values

are obtained via iteration. The Crank-Nicolson method provides the best approximate

value in comparison to other finite difference methods. (See Appendix B).

5.2 Monte-Carlo Simulations

Monte-Carlo simulation (MCS) is a statistical estimation method which is based

on the generation of random numbers. In this work, we use the computer program

(ipython notebook) which contains an in-built function that is capable of generating

normally distributed random numbers. Running the program severally results to

different values and this is due to the presence of the random terms there. However,

quite a large number of simulations are essential to obtaining fairly accurate, if not

accurate results and this is a major drawback in using the method. The attractiveness

of the MCS over other numerical methods owes to the fact that its implementation

is very flexible and easy.

5.2.1 Basics of Monte-Carlo simulations

Let P (X) be some arbitrary function and ω be a fixed parameter that needs to be

estimated. Define

ω = E[P (X)] .
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From the probability density function of P (X), we can generate n independent ran-

dom values P1, P2, · · · , Pn. The estimator of ω is then given by

ω̂ =
1

n

n∑
i=1

P (Xi) .

5.2.2 Theorem. Law of Large numbers

Let X1, X2, · · · , Xn be a sequence of independent and identically distributed random

variables (iidrv) with finite mean µ and finite variance σ2. Define X = 1
n
(X1 +X2 +

· · ·+Xn). Then for any ε > 0, we have: (Feller 1968).

P[|X − µ| ≥ ε] −→ 0 as n→∞ .

Equivalently,

P[|X − µ| < ε] −→ 1 as n→∞ .

5.2.3 Theorem. Central Limit Theorem

Let X1, X2, · · · , Xn be a sequence of iidrv with parameters µ− mean and σ− variance.

Then the central limit theorem states that: (Feller 1968).

sample mean:
1
n

∑n
i=1Xi − µ
σ/
√
n

−→ N (0, 1) as n→∞ ,

sample sum:

∑n
i=1(Xi − µ)

σ
√
n

−→ N (0, 1) as n→∞ .

Hence applying the law of large numbers, the following ensues:

ω → ω̂ or E[P (X)] → 1

n

n∑
i=1

P (Xi) as n→∞ .
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The sample variance is given by

σ2 =
1

n− 1

n∑
i=1

[P (Xi)− ω̂]2 .

The central limit theorem (CLT) equally ensure that

ω̂ − ω
σ/
√
n
→ N (0, 1) as n→∞ .

Also for large n, we have that

P
[
ω̂ − Z1−α

2

σ√
n
≤ ω ≤ ω̂ + Z1−α

2

σ√
n

]
≈ 1− α

where α is the significance or probability level.

5.2.4 Option pricing using Monte-Carlo methods

The MCS had proved to be a promising numerical method for pricing complex deriva-

tive structures, especially when dealing with multi-dimensional option pricing. Boyle,

Broadie & Glasserman (1997) first used MCS to price the European options under

the assumptions of Black and Scholes. In order to price options using the MCS,

we first convert the continuous time process of the extended Black-Scholes model

to discrete time step. The MCS of option pricing under the Black-Scholes frame-

work involves the generation of sample asset price movements and then estimating

the payoffs. These payoffs are averaged and then discounted at a risk-free interest

rate. Figure 5.5 below shows one of the simulations of asset price movement with

S0 = 150, µ = 0.05, σ = 0.3, T = 2 and 25 simulations.
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Figure 5.5: Asset price simulation

Thus, the following steps are essential for option price valuation using MCS method:

• Discretize the time period [0, T ] into subintervals such that Ti = i∆t. That is

∆t =
T

N
, for i = 0, 1, · · · , N .

• Under the risk-neutrality assumptions, perform random simulations on the asset

price movement based on the specific time interval. Choosing an M independent

paths and thus, calculate the future prices of the specific underlying asset.

• Obtain the payoffs for each of the potential asset paths exhibited by the under-

lying. Discount the payoffs at a risk-free interest rate.

• Repeat the above for a large number of simulated asset paths.

• Take the average of the discounted payoffs over the number of the sample paths

in order to get the value of the option.
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Consider the asset price dynamics described by the SDE in equation (2.3.1), where

the drift term µ = r, the risk-free interest rate. The solution using Ito’s lemma is:

S(t) = S(0)exp

((
r − σ2

2

)
t+ σB(t)

)
. (5.2.1)

In generating the sample paths, we re-write equation (5.2.1) as follows

S(t+ ∆t) = S(t)exp

((
r − σ2

2

)
∆t+ σ(

√
∆t)ε

)
, (5.2.2)

since B(t) ∼
√
tε =⇒ B(∆t) ∼

√
∆tε and ε ∼ N (0, 1).

The payoffs are introduced next and will be discounted at a risk-free interest rate and

this depends on the type of option being considered. For example, the discounted

payoff for the zero rebate down-and-out barrier call option which has not been knocked

out is given by

v+(t+ ∆t) = e−r∆t max{S+(t+ ∆t)−K, 0} . (5.2.3)

Finally, the option value is constructed by dividing the sum of the discounted payoff

by the number of simulations. Thus, the value of the Monte-Carlo simulated value is

given by:

VM =
1

M

M∑
i=1

v+(t+ ∆t) . (5.2.4)

The following pseudo-code explains how the down-and-out barrier call option can be

implemented numerically using the standard MCS:

for k=1,· · · ,M

for i=0,1,· · · ,N-1

generate a N (0, 1) sample ε
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set S(t+ ∆t) = S(t)exp
((
r − σ2

2

)
∆t+ σ(

√
∆t)ε

)
end

if max0≤i≤N{S(t+ ∆t)} > B then

vk = e−r∆tmax{S(T )−K, 0}

else vk = 0

end end set v = 1
M

∑M
k=1 vk

set σ2 = 1
M−1

∑M
k=1(vk − v)2

set ṽ =
[
v− 1.96σ√

M
,v + 1.96σ√

M

]
Implementing the algorithm above displays three outputs. First the option value v,

second the variance σ and finally, an approximate 95% CI.

5.2.5 Definition. 95% Confidence Interval

Suppose that ω is a parameter to be estimated. A 95% confidence interval on ω is

an interval [a, b] such that the probability P[a ≤ ω ≤ b] = 0.95, where a and b are

random endpoints.

From the definition above, if an experiment is to be repeated M times with 95%

confidence interval, then approximately 95% of the constructed intervals in each case

would have the true solution. Moreover, based on the law of large numbers, the

convergence of the average of these discounted payoffs to the actual option price is

made feasible. Also, the central limit theorem implies that the standard error obtained

from the simulation tends to zero, as the rate of convergence of 1√
n

increases. In order

to calibrate the degree of precision achieved, we calculate the standard deviation of

the discounted payoffs the same way the average is computed and this should be based

on a given number of trials. From the CLT, the statistical error obtained during the
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simulation is proportional to σ√
M

and its boundedness is given by

|E| ≤ εσ√
M

,

where ε is a positive constant related to the confidence interval. Also, the option

value v(T, S) can be defined in a confidence interval bound. This interval can be

reduced to get accurate price if the variance of the payoffs is reduced or if the number

of iterations are increased. In valuing knock-out barrier options, the whole asset

price is observed in order to determine if the option would be knocked out at some

point in time before the expiration of the contract. This observation can pose an

extreme intensive computation and this is quite a disadvantage. In other to improve

the efficiency of the MCS to option pricing, the introduction of the variance reduction

techniques which includes antithetic variables, control variates, etc (see Glasserman

(2003) and Boyle et al. (1997)) had proved helpful.

5.3 Antithetic Monte-Carlo Simulation

A major setback in using the MCS is the slow rate of convergence at which the esti-

mated values tend to the true solution. This can be explained by the large variances

obtained during the simulation. It is equally observed that the confidence interval

obtained using the MCS is greatly influenced by the ratio of the standard deviation

to the square root of the number of simulations. To further reduce the width of the

interval, the variance has to be reduced and this in turn gives a better estimate. The

antithetic Monte-Carlo simulation method (AMCS) was introduced in this research

to improve the flaws of the MCS. According to Glasserman (2003), AMCS focuses

on the symmetric properties of the normal distribution to reduce the variance of the

results being simulated. The aim was to introduce negatively correlated random vari-

ables. Let X be a random variable whose estimate is unknown. Also, let v and w be
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two negatively correlated variables with the same mean µ and variance σ2. Define

X =
1

2
(v + w) ,

then the mean is given by:

E[X] = E
[

1

2
(v + w)

]
=

1

2
(E[v] + E[w]) = µ .

Also, the variance,

var[X] = var

[
1

2
(v + w)

]
=

1

4
(var[v] + var[w] + 2cov[v, w])

=
1

2
(var[v] + cov[v, w]) .

Thus, we have that

var[X]


= σ2

2
if v and w are identically independent (cov=0)

< σ2

2
if cov[v, w] < 0

It is obvious that if the cov[v, w] < 0, then the variance is reduced. For the outputs

of the antithetic variates to be negatively correlated, it is essential that the inputs

are negatively correlated. The mapping between them should be monotone. Non-

monotonic functions result in a non-negative correlation and this could increase the

variance, instead of reducing as expected.

5.3.1 Definition. Monotone Functions.

Let A be a subset of R and define a function f : A→ R and x, y ∈ A. f is monotonic

if x < y implies f(x) ≤ f(y) or x < y implies f(x) ≥ f(y).

The following corollaries help in the generation of negatively correlated for uniformly
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and normally distributed random numbers .

5.3.2 Corollary. (Chan & Wong 2015). If f(X1, X2, · · · , Xn) is a monotone function

of each of its argument. Then the following holds for a set η1, · · · , ηm of independent

and identically distributed uniformly random numbers on (0, 1):

cov[f(η1, · · · , ηm), f(1− η1, 1− η2, · · · , 1− ηm)] ≤ 0 .

With respect to uniformly random numbers, let η1, · · · , ηm and β1 = 1−η1, · · · , βm =

1 − ηm be uniformly random numbers with the properties that the pair (η1, β1) are

negatively correlated. Define a monotone function f . If X1 = f(η1, · · · , ηm), then

X2 = f(β1, · · · , βm) must be defined with the same distribution as X1. Thus, from

Corollary 5.3.2, cov(X1, X2) ≤ 0 and hence, X1 and X2 are negatively correlated.

5.3.3 Corollary. (Chan & Wong 2015). If f(X1, X2, · · · , Xn) is a monotone function

of each of its argument. Then the following holds for a set η1, · · · , ηm of independent

and identically distributed normal random numbers on (0, 1):

cov[f(η1, · · · , ηm), f(−η1,−η2, · · · ,−ηm)] ≤ 0 .

Suppose that Xi ∼ N(µ, σ2) and Yi = 2µ − Xi. Then from the linearity condition

of the normal random variable, we see that Yi ∼ N(µ, σ2). Thus, Xi and Yi are

negatively correlated. This follows from the definition of covariance:

cov[Xi, (2µ−Xi)] = E[Xi(2µ−Xi)]− E[Xi]E[2µ−Xi]

= E[Xi](E[2µ−Xi]− E[2µ−Xi])

= 0 .
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5.3.4 Option pricing using AMCS method

Applying the concept of AMCS method to option pricing, the simulated asset prices

assume the random variable. Another set of normally distributed random variables

is equally simulated so that both would be negatively correlated. Taking an aver-

age, the final simulated asset price is obtained. Also, the generation of the pairs is

computationally cheaper because instead of N as employed by the MCS, the AMCS

generates N
2

pair of values.

Consider two discretized underlying asset processes defined by

S+(t+ ∆t) = S(t)exp

((
r − σ2

2

)
∆t+ σ(

√
∆t)ε

)
(5.3.1)

and

S−(t+ ∆t) = S(t)exp

((
r − σ2

2

)
∆t− σ(

√
∆t)ε

)
. (5.3.2)

Next, we employ the concept of discounted payoffs and this depends on the type of

option being considered. Hence the discounted payoffs for the zero rebate down-and-

out barrier call option for the two asset paths, which had not been knocked out are

given by

v+(t+ ∆t) = e−r∆t max{S+(t+ ∆t)−K, 0} and (5.3.3)

v−(t+ ∆t) = e−r∆t max{S−(t+ ∆t)−K, 0} . (5.3.4)

Finally, the mean estimator which is the required option value is constructed by

taking the average of the discounted payoffs. Hence, the pricing formula using the

AMCS is given by:

VA =
1

M

M∑
i=1

1

2
(v+(t+ ∆t) + v−(t+ ∆t)) . (5.3.5)



6. Computational Results and

Analysis

This chapter considers some of the findings observed during the implementation of

the methodologies found in Chapter 5. For the barrier options, we consider the

zero-rebate non-dividend knock-out call options. Next, we consider the fixed-strike

lookback options. In the numerical computation, we obtain our results using the

program ipython notebook and all the codes used can be found in Appendix C.

6.1 Results on Down-and-Out Barrier Options

We consider the results obtained for the down-and-out barrier options. The MCS

values are obtained using equation (5.2.4) and the AMCS values are valued using

equation (5.3.5).

6.1.1 Down-and-out barrier options with ATM features

(A) We consider both the MCS and the AMCS of the above named option using

the parameters: S = K = 150, B = 125, r = 0.05, σ = 0.25 and T = 0.5. The

extended Black-Scholes formula in equation (3.3.2) is used to obtain the exact

price. We also consider the time step to be ∆T = T
N

, where N = 100. Let

M denote the number of simulations. Table 6.1 below shows the results of the

simulated values in comparison to the exact values:

89
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Table 6.1: Simulated values for ATM down-and-out barrier options

Exact value M MCS value AMCS value

12.1861 101 15.5931 14.4021

12.1861 102 14.7494 12.7432

12.1861 103 13.0073 12.4896

12.1861 104 12.5972 12.4322

12.1861 105 12.4563 12.3939

12.1861 106 12.4241 12.3676

Table 6.1 compares the values obtained from the MCS and the AMCS. With

the discretization time step of N = 100, we observe that the rate of convergence

for both the MCS and the AMCS methods is slow. Furthermore, increasing the

number of simulation and the time step would make a significant impact on the

rate of convergence of the simulated values to the exact values. Also, as observed

in Table 6.1, the values from the AMCS have the tendency to converge faster to

the exact value in comparison to the ordinary MCS.

Next, we consider the variances. Table 6.2 shows the variances obtained from

the results in Table 6.1, as it compares the variances of the MCS and the AMCS

values from the exact values. The variances reduce with increase in the number

of simulations. A higher discrepancy of the simulated value from the true value

is obtained when the variance of the estimate is very large. The AMCS aims at

reducing the variance of the estimate and thus, this account for it having a better

estimate. Thus, the AMCS achieves its accuracy and high speed of convergence

by reducing the variances of the simulation. We equally observed that the use

of AMCS method reduce the variance of the MCS by two, or little above two.
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Table 6.2: Variances for ATM down-and-out barrier options

Exact value M Variance (MCS value) Variance (AMCS value)

12.1861 101 496.6263 243.3820

12.1861 102 454.2562 197.4071

12.1861 103 390.4154 179.8217

12.1861 104 362.5314 170.4178

12.1861 105 343.2436 169.4160

12.1861 106 339.4910 169.1509

(B) We next consider the relative and the standard errors obtained from the above

simulations. Let SD, EBS and SIV denote the values of the standard deviation,

the exact Black-Scholes values and the simulated values respectively. Also, let

M denote the number of simulations. Then, the standard error is calculated by

SE =
SD√
M

, (6.1.1)

whereas the relative error is calculated by

RE = 100%
|SIV− EBS|

EBS
. (6.1.2)

Table 6.3 shows the observed errors encountered by using the MCS and the

AMCS method to value the down-and-out call options with the ATM features.

Here, we observe the behaviour of both the standard and the relative error as

given explicitly by the formulas in equations (6.1.1) and (6.1.2). With the in-

crease in the number of simulations, both the relative and the standard error
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gradually converge to zero and this in turn, explains that the simulated values

would converge to the true solution. The errors from the AMCS are seen to be

lesser than that of the MCS method, hence providing more accurate result.

Table 6.3: Errors from the simulated values for ATM down-and-out barrier options

M MCS value (RE %) AMCS value (RE %) MCS value (SE) AMCS value (SE)

101 27.9581 18.1847 7.0472 4.9334

102 21.0346 4.5716 2.1313 1.4050

103 6.7388 2.4905 0.6248 0.4241

104 3.3735 2.0195 0.1904 0.1305

105 2.2173 1.7052 0.0586 0.0412

106 1.9531 1.4894 0.0184 0.0130

(C) Next, we output the computation time (CPU time) of the above simulations, as

well as, the observed 95% confidence interval (CI). Table 6.4 provides the output.

With regards to the 95% confidence interval of the estimate, we observe a wide

disparity when the number of simulations is very small. Thus, with increase in

the simulation numbers, the range or the interval of the estimate becomes smaller

as depicted in Table 6.4. It is also observed that the width of the interval for the

AMCS is small compared to that of the MCS. Furthermore, comparing the MCS

and the AMCS with respect to their computation time, the time for the AMCS

is close to twice or a bit more of the time used by the standard MCS. Tavella

(2003) explained that the computation time for the AMCS to output its results

would approximately double and this is one of the major drawbacks of using the

AMCS method.
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Table 6.4: CPU time and 95% CI for ATM down-and-out barrier options

M CPU time (MCS) CPU time (AMCS) CI (MCS) CI (AMCS)

101 0.0034 0.0049 (1.781, 29.405) (4.733, 24.071)

102 0.0035 0.0052 (10.572, 18.927) (9.990, 15.497)

103 0.0183 0.0324 (11.783, 14.232) (11.659, 13.321)

104 0.1470 0.2771 (12.224, 12.970) (12.176, 12.688)

105 1.3518 2.6824 (12.342, 12.571) (12.313, 12.475)

106 12.2476 24.4510 (12.388, 12.460) (12.342, 12.393)

6.1.2 Down-and-out barrier options with OTM features

(A) We consider the MCS method for the down-and-out barrier option with OTM

features. Here, the parameters to be considered are S = 80, K = 100, B =

60, r = 0.08, σ = 0.3 and T = 0.5. The extended Black-Scholes formula in

equation (3.3.2) is used to obtain the exact price. We also consider the time step

to be ∆T = T
N

, where N = 1000. Table 6.5 below shows the results obtained.



Section 6.1. Results on Down-and-Out Barrier Options Page 94

Table 6.5: MCS values for OTM down-and-out barrier options

Exact value M MCS value Variance RE (%) SE

1.9894 101 3.2034 73.2414 61.0234 2.7063

1.9894 102 2.7071 49.5335 36.0762 0.7038

1.9894 103 2.2711 46.2171 14.1601 0.2150

1.9894 104 2.0684 44.2774 3.9711 0.0665

1.9894 105 2.0189 40.3216 1.4829 0.0201

1.9894 106 1.9906 40.0428 0.0603 0.0063

(B) Consider the AMCS method on the down-and-out options with the OTM features

using the same parameters above. Table 6.6 gives the following results:

Table 6.6: AMCS values for OTM down-and-out barrier options

Exact value M AMCS value Variance RE (%) SE

1.9894 101 2.6194 28.1932 31.6678 1.6791

1.9894 102 2.4431 26.9841 22.8059 0.5195

1.9894 103 2.1808 21.2137 9.6210 0.1457

1.9894 104 2.0149 20.6777 1.2818 0.0455

1.9894 105 1.9991 20.3425 0.4876 0.0143

1.9894 106 1.9897 20.0641 0.0151 0.0045
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Tables 6.5 and 6.6 further display the outputs obtained by comparing the estimated

prices from the MCS and the AMCS methods. They highlight the fact that the AMCS

provides the best estimate compared to the MCS counterpart.

6.1.3 Finite difference methods on down-and-out call options

Using Crank-Nicolson FDM, we consider the results obtained for the non-dividend

zero-rebate down-and-out call option. Consider the parameters: S = 50, K = 40, B =

20, r = 0.04, σ = 0.3, T = 1.0 and Smax = 225. The exact value of the option using

the extended Black-Scholes pricing formula in equation (3.3.2) is 12.9360. Let N

be the discretization steps of the time and M denote the discretization steps for the

underlying asset. Also, let CNV be the Crank-Nicolson values obtained and thus, we

obtain the following results:

Table 6.7: Effect of increasing discretization steps on Crank-Nicolson values

N M CNV N M = 2N CNV

60 60 12.9439 60 120 12.9424

80 80 12.9447 80 160 12.9401

100 100 12.9437 100 200 12.9383

200 200 12.9383 200 400 12.9360

300 300 12.9363 300 600 12.9360

400 400 12.9360 400 800 12.9360

500 500 12.9360 500 1000 12.9360
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Table 6.7 depicts the effect of increasing the space-time discretization steps on the

values obtained using the Crank-Nicolson method. When the space and time steps

are the same, we observed that the rate of convergence is slow. But when the space

step is doubled with respect to the time step, the rate of convergence increased faster

as shown in the table.

In the FDM, the choice of Smax, (maximum underlying price) being an artificial limit

is yet to be known. Table 6.8 shows the behaviour of the Crank-Nicolson values for

different values of Smax, using the following parameters below: S = 80, K = 100, B =

60, r = 0.08, σ = 0.3 and T = 0.5. The exact value of the option using equation

(3.3.2) is 1.9894.

Table 6.8: Effect of different choices of Smax on the Crank-Nicolson values

N = M Crank-Nicolson values

Smax = 2S Smax = (2S + 50) Smax = (2S + 100) Smax = (2S + 150) Smax = (2S + 200)

100 1.8197 1.9927 1.9855 1.9833 2.0090

200 1.8211 1.9890 1.9884 1.9879 1.9945

300 1.8214 1.9875 1.9889 1.9887 1.9884

400 1.8215 1.9881 1.9891 1.9890 1.9906

500 1.8215 1.9880 1.9892 1.9891 1.9902

600 1.8215 1.9877 1.9893 1.9892 1.9891

From Table 6.8, we observe that the rate of convergence when the Smax is chosen to be

2S is very slow, though it would eventually converge at some point. Inconsistencies

of the option values are observed when Smax is chosen to be 2S + 50 and 2S + 200
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since, the values increased and decreased randomly. But when Smax is chosen to be

2S + 100 and 2S + 150, the option values maintain a regular pattern of increasing

towards the exact option value. The rate of convergence when Smax is 2S + 100 is

faster than that of 2S + 150. This is evident with the result obtained in Table 6.9.

Finally consider the parameters below: K = 70, B = 55, r = 0.05, σ = 0.4, T =

0.25, N = 250 and M = 500 for Table 6.9. The following outputs were obtained.

Table 6.9: Effect of different choices of Smax on the Crank-Nicolson values with in-
creasing underlying prices

S Exact Values CNV (Smax = 2S + 100) CNV (Smax = 2S + 150)

55 0.0000 0.0000 0.0000

60 1.5125 1.5125 1.5125

65 3.4193 3.4194 3.4195

70 5.9491 5.9495 5.9487

75 9.1306 9.1309 9.1310

80 12.8782 12.8783 12.8784

6.2 Results of the Up-and-Out Barrier Options

We consider the implementations of the MCS, AMCS and the FDM on the up-and-out

call options. The exact values for the up-and-out call is found in equation (3.3.6).
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6.2.1 Results using the MCS and the AMCS methods

Consider the up-and-out call option with parameters: S = 50, K = 60, B = 80, r =

0.05, σ = 0.45, T = 0.5. The exact value of the option using the extended Black-

Scholes pricing formula is 0.8657. The following results were obtained using points

N = 101, N = 102, N = 103 and N = 104 depicted below on Tables 6.10, 6.11, 6.12

and 6.13 respectively. As usual, MCS and AMCS denote the values obtained using

the Monte-Carlo and the antithetic Monte-Carlo simulations respectively.

Table 6.10: Simulation values for OTM up-and-out call option (∆T = 10−1)

M MCS values AMCS values MCS values (RE %) AMCS values (RE %)

101 2.2362 1.4039 158.3112 62.1693

102 1.3701 1.2645 58.2650 46.0668

103 1.2558 1.2205 45.0618 40.9842

104 1.2353 1.2079 42.6938 39.5056

105 1.2311 1.2011 42.2086 38.7432
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Table 6.11: Simulation values for OTM up-and-out call option (∆T = 10−2)

M MCS values AMCS values MCS values (RE %) AMCS values (RE %)

101 1.3424 1.2220 55.0653 41.1575

102 1.2393 1.0885 43.1558 25.7364

103 1.0505 1.0403 21.3469 20.1850

104 1.0401 1.0010 20.1456 15.6290

105 1.0038 0.9982 15.9524 15.3180

Table 6.12: Simulation values for OTM up-and-out call option (∆T = 10−3)

M MCS values AMCS values MCS values (RE %) AMCS values (RE %)

101 1.2592 1.0289 45.4546 18.8518

102 1.1698 0.9256 35.1276 6.9193

103 0.9864 0.9001 13.9425 3.9737

104 0.9426 0.8905 8.8830 2.8647

105 0.9295 0.8812 7.3698 1.7905
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Table 6.13: Simulation values for OTM up-and-out call option (∆T = 10−4)

M MCS values AMCS values MCS values (RE %) AMCS values (RE %)

101 1.0597 0.9634 22.4096 11.2857

102 0.9780 0.9011 12.9722 4.0892

103 0.9141 0.8845 5.5909 2.1717

104 0.8991 0.8670 3.8582 0.1502

105 0.8914 0.8657 2.9687 0.0000

It is obvious that the increase in the number of simulations would result to the high

rate of convergence for both the Monte-Carlo and the antithetic simulated values.

The relative errors from both simulations are reducing as well. Increasing the points

N makes the simulation to be computationally costly, as the CPU time increased.

The exact extended Black-Scholes price is obtained based on continuous monitoring

of the time interval. This price can be achieved when the time steps (∆T ) is reduced

drastically and this follows from the increment in the number of the discretization

pointsN . Hence, the discreet points max0≤j≤NS(j) < B tends towards the continuous

points max0≤t≤TS(t) < B. At M = 105, the AMCS value converged as depicted in

Table 6.13. We can thus conclude that the increasing the discretization time step

helps in obtaining a high rate of convergence.

6.2.2 Effect of increase in volatility on the up-and-out call

options

Table 6.14 shows the effect of increase in volatility on the ITM up-and-out call options.

We display the outputs of the plain vanilla European call values, the up-and-out call



Section 6.2. Results of the Up-and-Out Barrier Options Page 101

values and the antithetic Monte-Carlo simulations for the up-and-out call. Here,

all other pricing parameters are assumed to be constant but with varying volatility.

Choosing N = 100, S = 60, K = 50, B = 100, r = 0.04 and T = 0.5, the following

results were observed:

Table 6.14: Simulation values for ITM up-and-out call option with increasing volatility

Volatility (σ) Option values

Vanilla call (v) Up-and-out call AMCS value

0.05 10.9907 10.9907 11.1862

0.1 10.9924 10.9924 11.2166

0.2 11.2524 11.2331 11.5034

0.35 12.5471 10.7812 11.1981

0.5 14.3434 8.1668 8.8923

0.65 16.3261 5.5958 6.2948

0.8 18.3782 3.7655 4.4464

From Table 6.14 above, a linear increase is observed on the plain vanilla option, as

increasing the volatility led to increase in the option value with every other parameters

kept constant. However the up-and-out call resulted in a non-linear function, as the

option increased and declined at some points. The reduction in the option values

is often due to the fact that the volatility is sufficiently large and thus increases

the chances of the option being knocked out. This increased probability resulted in

the decline in the option value. The antithetic MCS depicted above shows similar

characteristics.
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6.2.3 Finite difference methods on up-and-out call options

For the first table, we consider the parameters below: S = 50, B = 80, K = 60, r =

0.02, σ = 0.5, T = 0.5 and Smax = 160. The second table places the strike price at

K = 45 using the same parameters as the first. Using the extended Black-Scholes

pricing formula, the exact values of the up-and-out OTM and the ITM call options

are 0.7360 and 6.6193 respectively. Below shows the outputs obtained:

Table 6.15: OTM and ITM for up-and-out call option valuations using Crank-Nicolson
FDM

N=M CNV M=2N CNV

100 0.7029 200 0.7357

200 0.7357 400 0.7359

300 0.7358 600 0.7360

400 0.7360 800 0.7360

500 0.7360 1000 0.7360

600 0.7360 1200 0.7360

N=M CNV M=2N CNV

100 6.4212 200 6.6189

200 6.6189 400 6.6190

300 6.6190 600 6.6193

400 6.6190 800 6.6193

500 6.6192 1000 6.6193

600 6.6193 1200 6.6193

The tables in 6.15 display similar characteristics. The simulated values in bold de-

note the values when the convergence started. It was observed that increasing the

discretization sizes for both the underlying asset and time resulted to a faster rate of

convergence. Consider the OTM up-and-out call for example, the convergence started

at N = M = 400 but when the asset steps are doubled, the convergence started at

N = 300,M = 600. Thus, we can say that if the discretization asset step is twice

the time steps, then there is higher convergence rate.
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6.3 Results on Fixed Strike Lookback Options

Table 6.16: Simulated values for the fixed strike call options with different maturities

T σ K Exact value MCS value AMCS value

0.25 0.5 100 36.87750 34.63185 34.86544

0.5 0.5 100 48.65638 46.66056 47.25615

0.75 0.5 100 57.50865 56.17422 56.52953

0.25 0.5 110 27.74725 25.31519 25.60858

0.5 0.5 110 41.76453 38.36640 38.69462

0.75 0.5 110 52.97611 48.75581 49.17202

0.25 0.5 120 19.58322 17.83340 17.94008

0.5 0.5 120 33.94013 30.27140 31.21146

0.75 0.5 120 45.66973 42.31194 42.86572

1.0 0.5 100 64.84088 64.36417 64.63686

1.0 0.5 110 62.49656 57.70139 58.45105

1.0 0.5 120 55.72884 51.15095 51.30543
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Table 6.16 above was obtained at time t = 0 when the option had just been initiated.

Here, we considered the combination of ITM, ATM and the OTM options using

the following parameters: S = 110, Smax = 110 and r = 0.35. Also, the number of

simulations using the MCS and the AMCS methods was M = 10000 and the time

step was N = 100.

We observed that increasing the strike price while keeping every other stochastic

variables of the option constant led to a decrease in the value of the fixed strike

lookback call price. Also, similar increase was observed when the time to expiry of the

option was being increased, with every other variables kept constant. Furthermore,

the antithetic Monte-Carlo price is significantly close to the exact observed price, as

compared to the standard Monte-Carlo price.

For the put counterpart, we considered the combination of ITM, ATM and the OTM

options using the following parameters: S = 110, Smin = 110 and r = 0.35. Also, the

number of simulations using the MCS and the AMCS methods is M = 10000 and the

time step N = 1000. The results are depicted in Table 6.17 below.

We observed that increasing the time step of the simulation resulted to a faster rate

of convergence, as simulated values obtained using a larger M (i.e M = 1000) were

closer to the exact price, than when M = 100. Also, increasing the value of the strike

price made the option to be increasingly in the money, as observed in Table 6.17

below. We equally observed that extending the time to expiry forward with every

other variables constant increased the value of the put option price.
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Table 6.17: Simulated values for the fixed strike put options with different maturities

T σ K Exact value MCS value AMCS value

0.25 0.5 90 3.2895 3.1672 3.2087

0.5 0.5 90 5.6786 5.5093 5.5282

0.75 0.5 90 6.9211 6.6095 6.8369

0.25 0.5 100 7.7582 7.4642 7.5485

0.5 0.5 100 10.6159 10.2342 10.2816

0.75 0.5 100 11.7991 11.3204 11.3909

0.25 0.5 110 15.2399 14.7219 14.8855

0.5 0.5 110 17.7978 17.2727 17.3601

0.75 0.5 110 18.5010 17.8741 17.9960

1.0 0.5 90 7.5298 7.2052 7.25705

1.0 0.5 100 12.1921 11.7672 11.8436

1.0 0.5 110 18.4107 17.8286 17.8518



7. Conclusion and

Recommendation

In this work, we have considered the numerical valuations of barrier options and

the lookback options. The research focused on the non-dividend zero-rebate knock-

out barrier options and the non-dividend fixed strike lookback options. We used

three main numerical methods to estimate the values of these options and they were

compared to their exact values which follow the assumptions of the Black-Scholes

pricing model. As for the fixed strike lookback options, we only employed the MCS

and the AMCS to estimate the price of the options and the obtained approximated

values were compared to their exact values. For the zero-rebate knock-out options,

we used the concept of Crank-Nicolson finite difference method, the MCS and the

AMCS methods to value the option. Further comparison were also done to measure

the error estimate observed in the simulations.

Using the simulation approach to value the options, It was observed that the MCS

method involved the generation of a sample of N independent paths which were used

to estimate their respective payoffs. This was dependent on the type of option being

considered. Next, the payoffs were averaged and discounted at a risk-free interest

rate, so as to obtain the present option value. It was also observed that increasing the

number of simulations made the approximated values to converge to the true solution

but their convergence rate were slow. The reason was attributed to the fact that there

were lots of uncertainties in the estimate, owing to the larger variances obtained.

The AMCS was introduced next, which is an improved version of the standard MCS

method. The aim of the AMCS was to generate smaller variances which in turn yield

a more favourable estimate. The AMCS achieved this by generating a sample of N
2

pair of independent underlying paths which were negatively correlated in contrast to

the N independent paths generated by the MCS methods. From the result section
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of this research work, we observed intently that the AMCS method provides the best

option estimate in contrast to the MCS method.

With regards to the Crank-Nicolson finite difference method, we observed that the

rate of convergence was dependent on the choice of Smax and increasing the discreti-

sation steps of the space and time resulted to a higher rate of convergence. The

options we considered had closed form formulas which were derived by extending the

Black-Scholes formulas for the plain vanilla options. This was based on the Black-

Scholes assumptions. Hence, this research aimed at implementing the numerical PDE

methods like the finite difference numerical method to value these options. To fur-

ther show the indispensable nature of these numerical methods, the estimated values

obtained were compared to the exact values and little discrepancies were observed.

Hence, numerical approaches can equally be used to approximate options whose close

form solution does not exist.

Furthermore, part of this research used the second order differential equation based

on the Euler scheme to approximate option prices. To ensure accuracy and a higher

convergence rate to the true solution, a higher order approach need to be used. Thus,

in the future work, a higher order differential approach would be applied in the

estimation of these exotic option prices.



Appendix A. Solution to the

Black-Scholes PDE

The Black-Scholes PDE in equation (2.3.2) is of the parabolic linear form with non-

constant coefficients. It can be converted to a constant coefficient PDE as:

∂v

∂t
= a

∂2v

∂x2
+ b

∂v

∂x
+ cv (A.0.1)

where v is a function of t and x; b, c ∈ R and a = 1. The parameters used to reduce

equation (2.3.2) to a dimensionless form as found in equation (A.0.1) are:

S = Kex =⇒ x = log

(
S

K

)
, v(t, S) = Km(n, x), n =

(T − t)σ2

2
.

The Black-Scholes equation arose as a result of diffusion problem which are con-

strained by time. It can be solved by reducing it to the heat equation whose solution

exists. First, we take the derivatives of v(t, S) with respect to t, S and S2, we have

∂v

∂t
= −σ

2K

2

∂m

∂n
,

∂v

∂S
=
K

S

∂m

∂x
,

∂2v

∂S2
=
−K
S2

∂m

∂x
+
K

S2

∂2m

∂x2
.

Substituting into equation (2.3.2), the equation reduces to

∂m

∂n
=
∂2m

∂x2
+ (ω − 1)

∂m

∂x
− ωm , where ω =

2r

σ2
. (A.0.2)
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The initial condition v(t, S) = max{S −K, 0} becomes m(0, x) = max{ex − 1, 0} at

t = 0. Consider yet another change of variable. Suppose

λ, η ∈ R and m(n, x) = eλx+ηnu(n, x) .

We seek for the derivatives of m(n, x) with respect to x, xx and n. We have

∂m

∂x
= eλx+ηn

[
∂u

∂x
+ λu

]
,

∂2m

∂x2
= eλx+ηn

[
∂2u

∂x2
+ 2λ

∂u

∂x
+ λ2u

]
,

∂m

∂n
= eλx+ηn

[
∂u

∂n
+ ηu

]
.

Substituting into equation (A.0.2), the equation reduces to

∂u

∂n
=
∂2u

∂x2
+ (2λ+ ω − 1)

∂u

∂x
+ [λ2 + (ω − 1)λ− ω − η]u . (A.0.3)

The aim is to reduce the whole equation to a heat equation and thus, we choose the

constants λ and η so that the coefficients of u and ∂u
∂x

equal zero. That is,

0 = λ2 + (ω − 1)λ− ω − η , (A.0.4)

0 = 2λ+ ω − 1 . (A.0.5)

Solving equations (A.0.4) and (A.0.5) simultaneously, we have

λ =
1

2
(1− ω) and η =

−1

4
(ω + 1)2 .
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Thus, the PDE in equation (A.0.3) reduces to

∂u

∂n
=
∂2u

∂x2
, (A.0.6)

where n > 0 and −∞ < x <∞. For the initial boundary condition. Recall that

m(n, x) = eλx+ηnu(n, x) ,

so that,

m(0, x) = eλxu(0, x) =⇒ u(0, x) = e−λxm(0, x) .

Substituting for λ and the value for m(0, x), we have

u(0, x) = e
−x
2

(1−ω)[max{ex − 1, 0}] (A.0.7)

= max{e
x
2

(ω+1) − e
x
2

(ω−1), 0} . (A.0.8)

According to Wilmott et al. (1995), The solution to the heat equation (A.0.6) is:

u(n, x) =
1

2
√
πn

∫ ∞
−∞

u0(S)e
−(x−S)2

4n dS ,

where u0(S) = u(0, S). Consider yet another change in variable

y =
S − x√

2n
, =⇒ S = x+ y

√
2n and dy =

dS√
2n

.

Thus,

u(n, x) =
1

2
√
πn

∫ ∞
−∞

u0(x+ y
√

2n)e
−y2
2

√
2n dy
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u(n, x) =
1√
2π

∫ ∞
−∞

u(0, x+ y
√

2n)e
−y2
2 dy .

Applying equation (A.0.8), we have

u(n, x) =
1√
2π

∫ ∞
−x√
2n

e
1
2

(ω+1)(x+y
√

2n)e
−y2
2 dy − 1√

2π

∫ ∞
−x√
2n

e
1
2

(ω−1)(x+y
√

2n)e
−y2
2 dy

=
e
x
2

(ω+1)

√
2π

∫ ∞
−x√
2n

e
1
2

(ω+1)(y
√

2n)− y
2

2 dy − e
x
2

(ω−1)

√
2π

∫ ∞
−x√
2n

e
1
2

(ω−1)(y
√

2n)− y
2

2 dy

=
e
x
2

(ω+1)

√
2π

∫ ∞
−x√
2n

e
−1
2

[y2−
√

2n(ω+1)y] dy − e
x
2

(ω−1)

√
2π

∫ ∞
−x√
2n

e
−1
2

[y2−
√

2n(ω−1)y] dy

=
e
x
2

(ω+1)

√
2π

∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω+1)
√

2n]2+n
4

(ω+1)2 dy − e
x
2

(ω−1)

√
2π

∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω−1)
√

2n]2+n
4

(ω−1)2 dy

=
e
x
2

(ω+1)+n
4

(ω+1)2

√
2π

∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω+1)
√

2n]2 dy − e
x
2

(ω−1)+n
4

(ω−1)2

√
2π

∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω−1)
√

2n]2 dy

=
1√
2π

[
e
x
2

(ω+1)+n
4

(ω+1)2
∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω+1)
√

2n]2 dy − e
x
2

(ω−1)+n
4

(ω−1)2
∫ ∞
−x√
2n

e
−1
2

[y− 1
2

(ω−1)
√

2n]2 dy

]
.

Applying the definition of normal probability distribution function, we have

u(n, x) = e
x
2

(ω+1)+n
4

(ω+1)2N

(
x√
2n

+
1

2
(ω + 1)

√
2n

)
−e

x
2

(ω−1)+n
4

(ω−1)2N

(
x√
2n

+
1

2
(ω − 1)

√
2n

)
.

(A.0.9)
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We observe that

e
x
2

(ω+1)+n
4

(ω+1)2 × e
−x
2

(ω−1)−n
4

(ω+1)2 = ex

e
x
2

(ω−1)+n
4

(ω−1)2 × e
−x
2

(ω−1)−n
4

(ω+1)2 = e−ωn .

Recall also that

m(n, x) = eλx+ηnu(x, n) ,

which implies that

m(n, x) = e
−x
2

(ω−1)−n
4

(ω+1)2u(x, n) .

Thus, we have that

m(n, x) = exN

(
x√
2n

+
1

2
(ω + 1)

√
2n

)
− e−ωnN

(
x√
2n

+
1

2
(ω − 1)

√
2n

)
.

(A.0.10)

Let

d1 =
x√
2n

+
1

2
(ω + 1)

√
2n and d2 =

x√
2n

+
1

2
(ω − 1)

√
2n .

But recall that

x = log

(
S

K

)
, n =

(T − t)σ2

2
and ω =

2r

σ2
.

Substituting and evaluating for x, n and ω into d1 and d2, we have

d1 =
log
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, (A.0.11)

d2 =
log
(
S
K

)
+
(
r + σ2

2

)
(T − t)− σ2(T − t)

σ
√
T − t

= d1 − σ
√
T − t . (A.0.12)
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From equation (A.0.10), we have that

m(n, x) = exN(d1)− e−ωnN(d2) .

Substituting also for x, n and ω, we have

m(n, x) =
S

K
N(d1)− e−r(T−t)KN(d2) .

Also, recall that the option value v(t, S) = Km(n, x).

Finally, substituting becomes

v(t, S) = SN(d1)−Ke−r(T−t)N(d2) , (A.0.13)

where d1 and d2 are given in equations (A.0.11) and (A.0.12). Equation (A.0.13)

gives the price of a non-dividend paying European call option. For the put options,

the derivation follows above and the value is given by

v(t, S) = Ke−r(T−t)N(−d2)− SN(−d1) . (A.0.14)



Appendix B. Truncation Errors

for the Finite Difference Methods

Let V (t, S) be represented in grid form by Vi,k. Then the following Taylor series

expansion holds:

V (t+ ∆t, S) = V (t, S) +
∂V (t, S)

∂t
∆t+

1

2

∂2V (t, S)

∂t2
∆t2 +O(∆t3) , (B.0.1)

V (t−∆t, S) = V (t, S)− ∂V (t, S)

∂t
∆t+

1

2

∂2V (t, S)

∂t2
∆t2 −O(∆t3) . (B.0.2)

B.1 Explicit FDM

TIME: The explicit method assumes backward approximation in time. Hence, we

use the Taylor series expansion,

V (t−∆t, S) = V (t, S)− ∂V (t, S)

∂t
∆t+

1

2

∂2V (t, S)

∂t2
∆t2 −O(∆t3) ,

V (t−∆t, S)

∆t
=
V (t, S)

∆t
− ∂V (t, S)

∂t
+O(∆t) ,

∂V (t, S)

∂t
=
V (t, S)− V (t−∆t, S)

∆t
+O(∆t) .

Let V (t, S) = Vi,k. Then we have

∂V (t, S)

∂t
≈ Vi,k − Vi−1,k

∆t
+O(∆t) .
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The explicit method assumes backward approximation in time and the truncation

error is up to O(∆t).

STOCK: For the central difference approximation of the stock, we take the difference

between the forward and the backward difference approximation with respect to the

stock. Hence, we would have

∂V (t, S)

∂S
=
V (t, S + ∆S)− V (t, S −∆S)

2∆S
+O(∆S2) ,

≈ Vi,k+1 − Vi,k−1

2∆S
.

For the standard approximation of the first derivative of the stock prices, we take the

sum of the the forward and the backward difference approximation with respect to

the stock. Hence, we have

V (t, S + ∆S) + V (t, S −∆S) = 2V (t, S) +
∂2V (t, S)

∂S2
∆S2 +O(∆S4) ,

∂2V (t, S)

∂S2
=
V (t, S + ∆S) + V (t, S −∆S)− 2V (t, S)

∆S2
+O(∆S2) ,

≈ Vi,k+1 − 2Vi,k + Vi,k−1

∂S2
+O(∆S2) .

The truncation error of the stock prices for the explicit method is up to the order

O(∆S2).
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B.2 Implicit FDM

TIME: The implicit method assumes forward approximation in time. Hence, we use

the Taylor series expansion,

V (t+ ∆t, S) = V (t, S) +
∂V (t, S)

∂t
∆t+

1

2

∂2V (t, S)

∂t2
∆t2 +O(∆t3) ,

V (t+ ∆t, S)

∆t
=
V (t, S)

∆t
+
∂V (t, S)

∂t
+O(∆t) ,

∂V (t, S)

∂t
=
V (t+ ∆t, S)− V (t, S)

∆t
+O(∆t) .

Let V (t, S) = Vi,k. Then we have

∂V (t, S)

∂t
≈ Vi+1,k − Vi,k

∆t
+O(∆t) .

The implicit method assumes forward approximation in time, and the truncation

error is up to O(∆t).

For the stock, the implicit and the explicit assumes the same truncation error, that

is O(∆S2).

B.3 Crank Nicolson Method

The Crank Nicolson averages the implicit and the explicit method. Fadugba & Nwozo

(2013) explained that the method makes use of the center difference approximation
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for Vi,k and the symmetric central difference at the Vi+ 1
2
,k term. This is given by

Vi,k ≈
Vi+1,k − Vi−1,k

2∆t
+O(∆t2) .

Expanding Vi+1,k and Vi,k at Vi+ 1
2
,k using Taylor series, we have

Vi+1,k = Vi+ 1
2
,k +

1

2

∂V

∂t
∆t+O(∆t2) ,

Vi,k = Vi+ 1
2
,k −

1

2

∂V

∂t
∆t+O(∆t2) .

Taking their average gives

Vi,j+ 1
2
≈ 1

2
(Vi,j+1 + Vi,j) +O(∆t2) .

Thus, we have that the Crank Nicolson method is correct up to the order of ∆t2 and

∆S2. The same explanation for obtaining ∆S2 for the Crank Nicolson is the same

with the explicit FDM.



Appendix C. Python Codes

C.1 Python Codes for the Graphs Used

Initializing all used variables:

S0 = Current underlying asset price

K = Strike price

r = Risk-free interest rate

sig = Volatility

T = Time to expiry

N = Time steps

dT = T/float(N) #time increment

n = Number of different simulations

Packages imported:

import matplotlib.pyplot as plt

import numpy as np

import math

### (1) PLOT FOR THE GEOMETRIC BROWNIAN MOTION SIMULATION WITH N=5000 POINTS ###

time = np.linspace(0, T, N)

W = np.random.standard_normal(size = N)

W = np.cumsum(W)*np.sqrt(dT) # for the standard brownian motion

V = (r-0.5*sig**2)*time + sig*W

S = S0*np.exp(V) # Calculates the asset simulation with smaller variance

V1 = (r-0.5*sig1**2)*time + sig*W

S1 = S0*np.exp(V1) # Calculates the asset simulation with larger variance
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def expectedvalue(S0, r, time):

mean = S0*np.exp(r*time)

return mean

#Next plot S, S1 and expectedvalue all against time #

### (2) PLOT FOR THE GEOMETRIC ASIAN CALL, ITS DELTA AND THE PLAIN VANILLA CALL ###

def phi(x):

return (1.0/2)*(1+math.erf(x/math.sqrt(2))) #CDF

def Asiancall(S,K,r,sig,T):

d = math.exp(-r*T)

Q1 = (np.log(S/float(K))+0.5*(r+ sig**2/6.0)*T)/float(sig*np.sqrt(T/3.0))

Q2 = Q1-sig*np.sqrt(T/3.0)

Call = S*math.exp(-(r+sig**2/6.0)*(0.5*T))*phi(Q1)-K*d*phi(Q2)

return Call

def BScall(S,K,r,sig,T): #vanilla call#

d1 = (np.log(S/float(K))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

d2 = (np.log(S/float(K))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Van_calloption = S*phi(d1)-K*math.exp(-r*T)*phi(d2)

return Van_calloption

def DeltAgeocall(S,K,r,sig,T):

Q1 = (np.log(S/float(K))+0.5*(r+ sig**2/6.0)*T)/float(sig*np.sqrt(T/3.0))

Q2 = Q1-sig*np.sqrt(T/3.0)

A = math.exp(-(r+sig**2/6.0)*(0.5*T))*phi(Q1)

B = 1/float(sig*np.sqrt(2*math.pi*T/3.0))

C = math.exp(-(0.5*r*T + T*sig**2/12.0 + 0.5*Q1**2 ))

Delta = A+B*(C-K/float(S)*math.exp(-(r*T+0.5*Q2**2)))

return Delta
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#Next plot the Asiancall, BScall & DeltAgeocall all against the interval S=[50,100] #

### (3) PLOT FOR THE STANDARD LOOKBACK CALL OPTION ###

def Lookbackcall(S,M,r,sig,T):

d = math.exp(-r*T)

Q1 = (np.log(S/float(M))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q2 = (np.log(S/float(M))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q3 = (np.log(M/float(S))-(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q4 = (np.log(M/float(S))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q5 = ((S*sig**2)/float(2*r))*(M/float(S))**(2*r/float(sig**2))

Call = S* phi(Q1)-M*d*phi(Q2)-(S*sig**2/float(2*r))*phi(Q3)+d*Q5*phi(Q4)

return Call

#Next plot BScall & Lookbackcall against the interval S=[50,100] with M= min(S)#

### (4) PLOT FOR THE STANDARD LOOKBACK PUT OPTION ###

def Lookbackput(S,M,r,sig,T):

d = math.exp(-r*T)

Q1 = (np.log(S/float(M))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q2 = (np.log(S/float(M))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Q5 = ((S*sig**2)/float(2*r))*(M/float(S))**(2*r/float(sig**2))

Q6 = (np.log(S/float(M))-(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Put = -S* phi(-Q1)+M*d*phi(-Q2)+(S*sig**2/float(2*r))*phi(Q1)-d*Q5*phi(Q6)

return Put

def BSput(S,K,r,sig,T):

d1 = (np.log(S/float(K))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

d2 = (np.log(S/float(K))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

Van_putoption = -S*phi(-d1)+K*math.exp(-r*T)*phi(-d2)

return Van_putoption

#Next plot BSput & Lookbackput against the interval S=[50,100] with M= max(S)#
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### (5) PLOT FOR THE DOWN-AND-OUT CALL OPTION ###

def DOcall(S,B,K,r,sig,T):

d = math.exp(-r*T)

alp = (2*r)/float(sig**2)-1

d1 = (np.log(S/float(K))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

d2 = (np.log(S/float(K))+(r-0.5*sig**2)*T)/float(sig*np.sqrt(T))

y = (np.log(B**2/float(S*K))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

x = y-sig*np.sqrt(T)

C = S*phi(d1)-K*d*phi(d2)

Call = C-(B/float(S))**alp*((B**2/float(S))*phi(y)-K*d*phi(x))

return Call

#Next plot BScall and DOcall against the interval S=[1,200] #

### (6) PLOT FOR THE DOWN-AND-IN CALL OPTION ###

def DIcall(S,B,K,r,sig,T):

d = math.exp(-r*T)

alp = (2*r)/float(sig**2)-1

y = (np.log(B**2/float(S*K))+(r+0.5*sig**2)*T)/float(sig*np.sqrt(T))

x = y-sig*np.sqrt(T)

Call = (B/float(S))**alp*((B**2/float(S))*phi(y)-K*d*phi(x))

return Call

#Next plot BScall and DIcall against the interval S=[1,200] #

### (7) PLOT FOR THE UP-AND-OUT CALL OPTION ###

def UOcall(S,B,K,r,sig,T):

lam = (r+0.5*sig**2)/float(sig**2)

x1 = (np.log(S/float(B))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)

x2 = x1-sig*np.sqrt(T)

y1 = (np.log(B/float(S))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)
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y = (np.log(B**2/float(S*K))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)

A = S*phi(x1)-K*math.exp(-r*T)*phi(x2)

X = (B/float(S))**(2*lam)*(phi(-y)-phi(-y1))

Y = K*math.exp(-r*T)*(B/float(S))**(2*lam-2)

Z = phi(-y+sig*np.sqrt(T))-phi(-y1+sig*np.sqrt(T))

if B <=K:

Call = 0

else:

Call = BScall(S,K,r,sig,T)-(A-S*X + Y*Z)

return Call

#Next plot BScall and UOcall against the interval S=[50,200] #

### (8) PLOT FOR THE UP-AND-IN CALL OPTION ###

def UIcall(S,B,K,r,sig,T):

lam = (r+0.5*sig**2)/float(sig**2)

x1 = (np.log(S/float(B))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)

x2 = x1-sig*np.sqrt(T)

y1 = (np.log(B/float(S))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)

y = (np.log(B**2/float(S*K))/float(sig*np.sqrt(T)) )+ lam*sig*np.sqrt(T)

A = S*phi(x1)-K*math.exp(-r*T)*phi(x2)

X = (B/float(S))**(2*lam)*(phi(-y)-phi(-y1))

Y = K*math.exp(-r*T)*(B/float(S))**(2*lam-2)

Z = phi(-y+sig*np.sqrt(T))-phi(-y1+sig*np.sqrt(T))

if B <=K:

Call = Van_calloption

else:

Call = A-S*X + Y*Z

return Call

#Next plot BScall and UIcall against the interval S=[1,160] #
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### (9) PLOT FOR THE ASSET ON NOTHING CALL OPTION ###

K=50

def aoncall(S,K):

if S<=K:

value= 0

else:

value = 30

return value

def Vancall(S,K):

V = max(S-K,0)

return V

#Next plot Vancall and aoncall against the interval S=[20,80] #

### (10) PLOT FOR THE ASSET ON NOTHING PUT OPTION ###

def aonput(S,K):

if S>=K:

value= 0

else:

value = 30

return value

def Vanput(S,K):

V = max(K-S,0)

return V

#Next plot Vanput and aonput against the interval S=[20,80] #

### (11) PLOT FOR THE ASSET PRICE SIMULATION WITH N=150 POINTS ###

S = np.zeros([n, N], dtype=float)

x = range(0, N, 1)
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for j in range(0, n,1):

S[j,0]= S0

for i in x[:-1]:

W=np.random.normal()

S[j,i+1]=S[j,i]+S[j,i]*(r-(sig**2)/2.0)*dT+sig*S[j,i]*np.sqrt(dT)*W;

plt.plot(x, S[j])

#Thus, the asset prices are plotted against the interval points [0,150] #

C.2 Python Codes for Results Displayed on Tables

Initializing all the variables used

R = Exact value of the option being valuated

S = Current underlying value

Smax = Maximum value of the underlying asset

B = Barrier level

K = Strike price

MM = Number of simulations

M = Number of asset steps

N = Number of time steps

T = Time to expiry

r = Risk-free interest rate

sig = Volatility

dS = (Smax-B)/float(M) #step size for the stock

dT = T/float(N) #step size for time

Packages imported

import time, math, from scipy import stats, import numpy as np, import

scipy.linalg as linalg, from scipy.interpolate import interp1d

start_time=time.time()
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### (1) MONTE-CARLO FOR DOWN-AND-OUT CALL ###

def sim_value(S,sig,r,T):

e = np.random.normal()

return S*np.exp((r-0.5*sig**2)*T+sig*e*np.sqrt(T))

def callpayoff(S_T,K):

return np.exp(-r*T)*max(S_T-K,0)

S = 200

B = 175

K = 150

r = 0.05

sig = 0.2

T = 0.5

MM = 1000

R = 18.8103

N = 100.

vi = []

for i in xrange(MM):

S_T = sim_value(S,sig,r,T)

if vi <= B and S==B:

S_T == 0

else:

vi.append(callpayoff(S_T,K))

price = 1/float(MM)*sum(vi)

Variance = 1/float(MM-1)*sum((vi-price)**2)

SE=np.sqrt(Variance/float(MM))

CI = stats.norm.interval(0.95, loc=price, scale= np.sqrt(Variance/float(MM)))
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### (2) ANTITHETIC MONTE-CARLO FOR DOWN-AND-OUT CALL ###

def Asset(S,sig,r,T):

e = np.random.normal()

return S*np.exp((r-0.5*sig**2)*T+sig*e*np.sqrt(T))

def Asset1(S,sig,r,T):

e = np.random.normal()

return S*np.exp((r-0.5*sig**2)*T-sig*e*np.sqrt(T))

def Payoff(S_T,K):

return np.exp(-r*T)*max(S_T-K,0)

def Payoff1(S_T1,K):

return np.exp(-r*T)*max(S_T1-K,0)

S = 200

B = 175

r = 0.05

sig = 0.20

T = 0.5

MM = 1000

R = 18.81033

N = 100.

vi = []

vj = []

for i in xrange(MM):

S_T = Asset(S,sig,r,T)

if vi <= B:

S_T == 0

else:

vi.append(Payoff(S_T,K))

for j in xrange(MM):

S_T1 = Asset1(S,sig,r,T)
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if vj <= B:

S_T1 == 0

else:

vj.append(Payoff1(S_T1,K))

A = [a+b for a, b in zip(vi,vj)]

BB = [0.5*c for c in A]

price = 1/float(MM)*sum(BB)

Variance = 1/float(MM-1)*sum((BB-price)**2)

SE=np.sqrt(Variance/float(MM))

CI = stats.norm.interval(0.95, loc=price, scale= np.sqrt(Variance/float(MM)))

### (3) CRANK-NICOLSON FDM FOR DOWN-AND-OUT CALL ###

def Price(S0,B,K,r,sig,T,Smax,M,N):

F = np.zeros((M+1,N+1)) #setting up the matrix

SS = np.linspace(B,Smax,M+1)

i=SS/float(dS)

j=np.arange(1,N+1,dtype=np.float)

#Terminal and boundary conditions

F[:,N] =[np.maximum(SS[p]-K,0) for p in xrange(M+1)]

F[0,:] = 0

F[M,:] =[Smax * np.exp(-r*( N - j)*dT) for j in xrange(N+1)]

F=np.matrix(np.array(F))

#the coefficient matrices

A = -0.25*dT*(sig**2*i**2-r*i)

BB = dT*0.5*(sig**2*i**2+r)

C = -0.25*dT*(sig**2*i**2+r*i)

#the two diagonal matrices

Y = -np.diag(A[2:M], k=-1)+np.diag(-1-BB[1:M])-np.diag(C[1:M-1], k=1)

Z = np.diag(A[2:M], k=-1)+np.diag(-1+BB[1:M])+np.diag(C[1:M-1], k=1)

#solving the linear system
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for j in range(N-1,-1,-1):

d=np.zeros((M-1,1)) #computes the matrix d

#inserts the first and the last element

d[0]=(0.25*sig**2*1**2*dT-0.25*r*1*dT)*(F[0,j]+F[0,j+1])

d[M-2]=(0.25*dT*(sig**2*(M-1)**2+r*(M-1)))*(F[M,j]+F[M,j+1])

LU = linalg.lu_factor(Y)

b = Z*(F[1:M,j+1]) + d

F[1:M,j]=linalg.lu_solve(LU,b)

price = interp1d(SS, F[:,0].squeeze())

return price(S0)

print Price(80,55,70,0.05,0.4,0.25,310,500,250)

print(’time: %.5f’ %(time.time()-start_time))

### (4) MONTE-CARLO FOR UP-AND-OUT CALL ###

def SMCupandout(S,K,B,r,sig,T,MM):

N=10.

f=np.zeros((MM,1))

for i in range(0,MM):

e = np.random.randn(N,1)

ST = S*np.cumprod(np.exp((r-0.5*sig**2)*dT+sig*np.sqrt(dT)*e))

Smax=max(ST)

if Smax>=B:

f[i] = 0

else:

f[i] = np.exp(-r*dT)*max(ST[N-1]-K,0)

price=np.mean(f)

return price

print (’Option price: %.5f’ % SMCupandout(60,50,100,0.35,0.25,0.5,10000))

print(’time: %.5f’ %(time.time()-start_time))
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### (5) ANTITHETIC MONTE-CARLO FOR UP-AND-OUT CALL ###

def AMCupandout(S,K,B,r,sig,T,MM):

N=100.

f=np.zeros((MM,1))

g=np.zeros((MM,1))

h=np.zeros((MM,1))

for i in range(MM):

e = np.random.randn(N,1)

ST1 = S*np.cumprod(np.exp((r-0.5*sig**2)*DT+sig*np.sqrt(DT)*e))

Smax=max(ST1)

if Smax>=B:

f[i] = 0

else:

f[i] = np.exp(-r*DT)*max(ST1[N-1]-K,0)

for i in range(MM):

d = np.random.randn(N,1)

ST2 = S*np.cumprod(np.exp((r-0.5*sig**2)*DT-sig*np.sqrt(DT)*d))

Smax2=max(ST2)

if Smax2>=B:

g[i] = 0

else:

g[i] = np.exp(-r*DT)*max(ST2[N-1]-K,0)

h[i]=0.5*(f[i]+g[i])

price=np.mean(h)

return price

print (’Option price: %.5f’ % AMCupandout(60,50,100,0.35,0.25,0.5,10000))

print(’time: %.5f’ %(time.time()-start_time))

### (6) CRANK-NICOLSON FDM FOR UP-AND-OUT CALL ###

def Price(S0,B,K,r,sig,T,Smax,M,N):
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F = np.zeros((M+1,N+1)) #set up a matrix

SS = np.linspace(0,B,M+1)

i=SS/float(dS)

j=np.arange(1,N+1,dtype=np.float)

#Terminal and boundary conditions

F[:,N] =[np.maximum(SS[p]-K,0) for p in xrange(M+1)]

F[B,:] = 0

if Smax>=B:

F[M,:]=0

else:

F[M,:] =[Smax * np.exp(-r*( N - j)*dT) for j in xrange(N+1)]

F=np.matrix(np.array(F))

#the coefficient matrix

A = -0.25*dT*(sig**2*i**2-r*i)

BB = dT*0.5*(sig**2*i**2+r)

C = -0.25*dT*(sig**2*i**2+r*i)

#the two matrices

M1 = -np.diag(A[2:M], k=-1)+np.diag(-1-BB[1:M])-np.diag(C[1:M-1], k=1)

M2 = np.diag(A[2:M], k=-1)+np.diag(-1+BB[1:M])+np.diag(C[1:M-1], k=1)

#solving the linear system

for j in range(N-1,-1,-1):

d=np.zeros((M-1,1)) #computes the matrix d

#inserts the first and the last element

d[0]=(0.25*sig**2*1**2*dT-0.25*r*1*dT)*(F[0,j]+F[0,j+1])

d[M-2]=(0.25*dT*(sig**2*(M-1)**2+r*(M-1)))*(F[M,j]+F[M,j+1])

LU = linalg.lu_factor(M1)

b = M2*(F[1:M,j+1]) + d

F[1:M,j]=linalg.lu_solve(LU,b)

price = interp1d(SS, F[:,0].squeeze())

return price(S0)
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print Price(50,80,45,0.06,0.35,0.25,160,800,400)

print(’time: %.5f’ %(time.time()-start_time))

### (5) MONTE-CARLO FOR FIXED STRIKE LOOKBACK CALL ###

def MCLookcall(S0,K,r,sig,T,MM):

V = []

for k in range(0,MM):

N=100

St = []

St.append(S0)

DT=T/float(N)

for i in range(1,N-1):

e = random.gauss(0,1)

St.append(St[i-1]*np.exp((r-0.5*sig**2)*DT+sig*np.sqrt(DT)*e))

Smax=max(St)

V.append(max(0, Smax-K)*np.exp(-r*T))

price = sum(V)/float(MM)

return price

print (’Option price: %.5f’ %MCLookcall(110,120,0.35,0.5,1,10000))

### (6) ANTITHETIC MONTE-CARLO FOR FIXED STRIKE LOOKBACK CALL ###

def AMCLookcall(S0,K,r,sig,T,MM):

V1 = []

V2 = []

for p in range(0,MM):

N=100

St1 = []

St2 = []

St1.append(S0)

St2.append(S0)
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DT=T/float(N)

for i in range(1,N-1):

e = random.gauss(0,1)

St1.append(St1[i-1]*np.exp((r-0.5*sig**2)*DT+sig*np.sqrt(DT)*e))

St2.append(St2[i-1]*np.exp((r-0.5*sig**2)*DT-sig*np.sqrt(DT)*e))

Smax1=max(St1)

Smax2=max(St2)

V1.append(max(0, Smax1-K)*np.exp(-r*T))

V2.append(max(0, Smax2-K)*np.exp(-r*T))

A=[a+b for a, b in zip(V1,V2)]

BB=[0.5*c for c in A]

price = sum(BB)/float(MM)

return price

print (’Option price: %.5f’ %AMCLookcall(110,120,0.35,0.5,1,100000))

### (7) MONTE-CARLO FOR FIXED STRIKE LOOKBACK PUT ###

def MCLookput(S0,K,r,sig,T,MM):

V = []

for k in range(0,MM):

N=1000

St = []

St.append(S0)

DT=T/float(N)

for i in range(1,N-1):

e = random.gauss(0,1)

St.append(St[i-1]*np.exp((r-0.5*sig**2)*DT+sig*np.sqrt(DT)*e))

Smin=min(St)

V.append(max(0, K-Smin)*np.exp(-r*T))

price = sum(V)/float(MM)

return price
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print (’Option price: %.5f’ %MCLookput(110,110,0.35,0.5,0.25,10000))

### (8) ANTITHETIC MONTE-CARLO FOR FIXED STRIKE LOOKBACK PUT ###

def AMCLookput(S0,K,r,sig,T,MM):

V1 = []

V2 = []

for p in range(0,MM):

N=1000

St1 = []

St2 = []

St1.append(S0)

St2.append(S0)

DT=T/float(N)

for i in range(1,N-1):

e = random.gauss(0,1)

St1.append(St1[i-1]*np.exp((r-0.5*sig**2)*DT+sig*np.sqrt(DT)*e))

St2.append(St2[i-1]*np.exp((r-0.5*sig**2)*DT-sig*np.sqrt(DT)*e))

Smin1=min(St1)

Smin2=min(St2)

V1.append(max(0, K-Smin1)*np.exp(-r*T))

V2.append(max(0, K-Smin2)*np.exp(-r*T))

A=[a+b for a, b in zip(V1,V2)]

BB=[0.5*c for c in A]

price = sum(BB)/float(MM)

return price

print (’Option price: %.5f’ %AMCLookput(110,90,0.35,0.5,1,10000))
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