Plasminogen activator inhibitor-1 in black South Africans: methodological and clinical considerations

SA Barnard
13024787

Thesis submitted for the degree Doctor Philosophiae in Dietetics at the Potchefstroom Campus of the North-West University

Promoter: Prof M Pieters
Co-Promoter: Dr C Nienaber-Rousseau
Co-Promoter: Dr Z De Lange

November 2016
ACKNOWLEDGEMENTS

All the honour and praise to our heavenly Father, because without Him nothing is possible.

I would like to thank the following people for their valuable contribution during this study:

Prof Marlien Pieters, my Promoter, who taught me so much about research and challenged me every step of the way. Thank you for your valuable inputs, guidance, motivation and patience.

Dr Corneliie Nienaber-Rousseau and Dr Zelda De Lange, my two Co-Promoters, for their continuous encouragement and inputs throughout this study.

Prof Salome Kruger, for her time, advice and support in writing up the Sarcopenic Obesity and Non-communicable Disease Risk in African Adults (SONDRAA) data.

Prof Dingeman Rijken, for his assistance in interpreting the plasminogen activator inhibitor-1 (PAI-1) assay data and for his valuable guidance in writing the article.

Prof Du Toit Loots, for his time and effort in assisting with the beta thromboglobulin (βTG) analysis and critical reading of the related paper.

Me Ellenor Rossouw, for her time and effort spent in analysing of the PAI-1 antigen (PAI-1ag) and βTG data.

Sister Chrissie Lessing, for her time and support in helping with the data collection of the sub-study.

Harman Myburgh for his help with collecting the data for the sub-study and for the Toinet Cronje, for her help in analysing the data.

Marike Cockeran, for assisting with the statistical analysis of the study's data.

Gerda Beukman, from the Potchefstroom Campus library, for her help in searching and obtaining the needed research articles.

Mary Hoffman and Dr Isabella Swart, for the language editing of this thesis.

National Research Foundation (NRF), for supporting this research project by awarding me with an Innovation Doctoral Scholarship (Grant UID 94213) in 2015 and 2016.

My husband and family, who I love dearly, thank you the continuous understanding, support and motivation.
ABSTRACT

Introduction and aim

Black South Africans are experiencing an increase in the prevalence of cardiovascular disease (CVD). Obesity and abnormal haemostasis are among the underlying risk factors associated with CVD development in the African populations. Fibrinolysis and, in particular, one of its main inhibitors, plasminogen activator inhibitor-1 (PAI-1), have been found to play an important regulating role in the development of abnormal haemostasis and consequently, increase the risk of CVD development. Most of the studies investigating PAI-1 provide data on individuals of European descent. Much less information is available regarding PAI-1 in other ethnicities. From these initial studies, two issues were identified that requires investigation in African participants and formed the aim of this thesis. The first is a methodological issue relating to the influence of platelets in plasma on PAI-1 and PAI-1 related assays as a possible explanation for inconsistencies in ethnic differences reported for PAI-1. The second is a clinical issue focusing on the relationship between PAI-1 and body fat distribution in Africans. Preliminary evidence suggests this relationship may differ from what has been observed in European populations. The specific objectives were to determine the effect of residual platelets in plasma on different plasma PAI-1 and PAI-1 related assays, to investigate the relationship of PAI-1 with body fat distribution patterns in Africans and also to review the literature reporting on the association between body fat distribution and plasma PAI-1 levels.

Participants and methods

Methodological issues were addressed in the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study that included 151 teachers. In addition, data was also used from a follow-up study where 20 academic staff members of a tertiary institution were recruited. As for the clinical issues, available data from the Sarcopenic Obesity and Non-communicable Disease Risk in African Adults (SONDRAA) study were used in which 246 African women were included. Fasting blood samples were collected from the participants’ antibrachial vein branches with a sterile winged infusion set before 10:00. Samples were centrifuged at different centrifugation speeds, as stipulated by the respective study protocols and stored at -82°C until further analysis. The following variables were analysed in the SABPA and follow-up study: PAI-1 activity (PAI-1_{act}), antigen (PAI-1_{ag}), tissue plasminogen activator (tPA)/PAI-1 complex, clot lysis time (CLT), beta thromboglobulin (βTG), and plasma platelet count and size. In the SONDRAA study, PAI-1_{act}, insulin, glucose, HIV status, high sensitivity C-reactive protein, urinary albumin and creatinine were analysed. In order to determine different body fat
distribution patterns in the SONDRAA study population, measurements of body weight, waist circumference, abdominal and supraspinal skinfolds, as well as body composition by means of dual-energy x-ray absorption were analysed. The identified clinical issues were also address by undertaking an overview of ex vivo and in vivo studies investigating the association between body fat distribution and plasma PAI-1 levels in order to contextualise apparent disparate findings.

Results

Results from the methodological issues that were addressed indicated that a marker of platelet α-granule release (plasma βTG) associated significantly with total PAI-1 content (PAI-1ag) levels and demonstrated weak associations only with active PAI-1 (PAI-1act) and the functional marker, clot lysis time (CLT). In the follow-up study it was indicated that plasma PAI-1ag was also strongly affected by platelet count in a concentrated-dependent manner, and that plasma PAI-1ag levels increased even further after complete platelet degradation. Regarding the association of PAI-1 with different body fat distribution patterns (clinical considerations), the research determined that the PAI-1act of sarcopenic obese women did not differ significantly from that of the non-sarcopenic obese women (p=0.8) in this study population. Body fat distribution patterns and degree of obesity influenced the relationship of PAI-1act with body fat percentage, insulin, triglycerides and appendicular skeletal mass (ASM). It was also established that PAI-1act was higher (1.65 vs 0.16 U/ml; p=0.001) in women with proportionally higher visceral adipose tissue (VAT), compared to women with proportionally higher abdominal subcutaneous adipose tissue (SCAT) in the total study population. This was, however, not the case in the centrally obese sub-group (1.72 vs 0.83 U/ml; p=0.5). By applying multiple regression models, it was established that body fat percentage as such, did not contribute markedly to the PAI-1act variance in women with increased fat mass, but that other factors associated with obesity such as inflammation and endothelial damage contributed to a larger extent. Additionally, in the overview of the literature, factors that influence the relationship between body fat distribution and plasma PAI-1 levels were identified, while the relative contribution of adipose tissue compared to other PAI-1 source tissue was also put into perspective.

Conclusion

With regard to methodological issues, it was concluded that residual platelets in plasma significantly influence plasma PAI-1ag levels mainly by increasing latent PAI-1 levels with limited effects on PAI-1act, tPA/PAI-1 complex or CLT and that this is done in a platelet concentration dependent manner. Platelet concentration should therefore be strictly monitored specifically
when measuring PAI-1$_{ag}$. In terms of the clinical data, it was found that patterns of fat distribution and the degree of obesity influenced the association of PAI-1$_{act}$ with insulin, triglycerides, ASM and body fat percentage in African women and that in conditions of extreme obesity, abdominal SCAT contributes equally to plasma PAI-1$_{act}$ than does VAT. It was furthermore established that the relationship between VAT and plasma PAI-1 levels is not fixed; it rather seems to be regulated by a number of other factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities. Lastly, it was also determined that body fat percentage *per se* contributes less to PAI-1$_{act}$ variance in African women than other obesity related derangements such as endothelial dysfunction and inflammation which should be taken into account when investigating the relationship between body composition and PAI-1.

Key terms: Plasminogen activator inhibitor-1; platelets; beta thromboglobulin; visceral adipose tissue; subcutaneous adipose tissue; body fat distribution
OPSOMMING

Inleiding en doel

Swart Suid-Afrikaners ervaar tans 'n toename in die voorkomsyfer van kardiovaskulêre siekte (KVS). Vetsug en abnormale hemostase is van die onderliggende faktore wat met KVS-ontwikkeling in die Afrika-bevolkingsgroep geassosieer word. Daar is bevind dat fibrinolise en veral een van sy hoofhinderders, plasminogeen aktiveerder inhibitor-1 (PAI-1) 'n belangrike regulerende rol speel in die ontwikkeling van abnormale hemostase en gevolglik die toename in die risiko van KVS-ontwikkeling. Die meeste van die studies wat PAI-1 ondersoek, voorsien data oor individue van Europese afkoms. Baie minder inligting is beskikbaar ten opsigte van PAI-1 in ander etnisiteite. Uit hierdie aanvanklike studies is twee sake geïdentifiseer wat ondersoek vereis onder Afrikane en wat die doel van hierdie tesis ten grondslag lê. Die eerste is 'n metodologiese kwessie wat verband hou met die invloed van plaatjies in plasma op PAI-1 en PAI-1-verwante-analises as 'n moontlike verduideliking vir die teenstrydighede in etniese verskille wat vir PAI-1 gerapporteer is. Die tweede is 'n kliniese kwessie wat fokus op die verhouding tussen PAI-1 en liggaamsvetverspreiding in Afrikane wat volgens voorlopige bewyse, mag verskil van wat in Europese bevolkings waargeneem is. Die spesifieke doelstelling was om die uitwerking van residuele plaatjies in plasma op verskillende plasma PAI-1 en PAI-1-verwante-analises te ondersoek; om die verhouding van PAI-1 met liggaamsvetverspreidingspatrone onder Afrikane te ondersoek en ook om 'n oorsig te doen van die literatuur wat verslag doen oor die verwantskap tussen liggaamsvetverspreiding en plasma PAI-1-vlakke.

Deelnemers en metodes

Metodologiese kwessies is aangespreek in die studie van die Simpatiese Aktiwiteit en Ambulente Bloeddruk in Afrikane (SABDA) wat 151 onderwysers ingesluit het. Daarby is data ook gebruik uit 'n opvolgstudie waarin 20 akademiese personeellede van 'n tersiêre instelling gewerf is. Wat betref die kliniese kwessies is data van die studie oor Sarkopeniese Vetsug- en Nie-oordraagbare Siekterisiko in Afrikaanvolwassenes (SVNORAV) gebruik waarin 246 Afrika-vroue ingesluit is. Vastende bloedmonsters is voor 10:00 uit deelnemers se antebragiale are versamel. Monsters is gesentrifugeer teen verskillende sentrifugeringsnelhede soos gestipuleer deur die onderskeie studieprotokolle en gestoor by -82°C tot verdere analise. Die volgende veranderlikes is in die SABDA en opvolgstudie geanaliseer: PAI-1-aktiwiteit (PAI-1_{act}), antigen (PAI-1_{ag}), weefsel plasminogeen aktiveerder (tPA)/PAI-1-kompleks, stol-lisetyd (SLT), beta tromboglobulien (βTG), en plasmaplaatjietelling en -groottes. In die SVNORAV-studie is PAI-1_{act}.
insulin, glucose, MIV-status, hoë sensitwiteit C-reaktiewe proteïne, urinêre albumien en kreatien gemee. Om verskillende liggaamsvetverspreidingspatrone te bepaal in die SVNORAV-studie, is mates van liggaamsgewig, middelomtrek, buik- en supraspinale velvoue, asook liggaamsamestelling deur middel van dubbel-energie x-straalabsorpsie geanaliseer. Die geïdentifiseerde kliniese kwessies is ook aangespreek deurdat 'n oorsig gedoen is van ex vivo en in vivo studies wat die verwantskap tussen liggaamsvetverspreiding en plasma PAI-1-vlakke ondersoek het om oënskynlik uiteenlopende bevindings te kontekstualiseer.

Resultate

Resultate van die metodologiese kwessies wat aangespreek is, het getoon dat 'n merker van plaatjies α-granulievrystelling (plasma βTG) betekenisvol geassosieer het met totale PAI-1-antigeen (PAI-1_ag) vlakke alleenlik en swak geassosieer het met die aktiewe vorm van PAI-1 (PAI-1_act) en die funksionele merker, SLT. In die opvolgstudie is daar getoon dat plasma PAI-1_ag ook sterk beïnvloed is deur plaatjietelling op 'n konsentrasie-afhanklike wyse en dat plasma PAI-1_ag vlakke nog meer toegeneem het na algehele plaatjie-abrekki. Wat betref die verwantskap van PAI-1 met verskillende liggaamsvetverspreidingspatrone (kliniese kwessies), het die navorsing vasgestel dat die PAI-1_act van sarkopenies-vetsugtige vroue nie aansienlik verskil het van dié van die nie-sarkopenies-vetsugtige vroue (p=0.8) in hierdie studie se bevolking nie. Liggaamsvetverspreidingspatrone en vetsuggraad het die verhouding van PAI-1_act met liggaamsvetpersentasie, insulien, trigliceriede en appendikulêre skeletmassa (ASM) beïnvloed. Daar is ook vasgestel dat PAI-1_act hoër was (1.65 vs 0.16 U/ml; p=0.001) in vroue met proporsioneel hoër visserale vetweefsel (VVW), vergeleke met vroue met proporsioneel hoër abdominale onderhuidse vetweefsel (OVW) in die totale studiebevolking. Dit was egter nie die geval met die sentraal-vetsugtige sub-groep (1.72 vs 0.83 U/ml; p=0.5) nie. Deur die toepassing van veelvoudige regressiemodelle is daar vasgestel dat liggaamsvetpersentasie as sodanig nie noemenswaardig bygedra het tot die PAI-1_act variansie in vroue met verhoogde vetmassa nie, maar dat ander faktore wat verbind word met vetsug, soos inflammasie en endoteelskade tot 'n groter mate bydra. Daarby is daar in die oorsig faktore geïdentifiseer wat die verhouding tussen liggaamsvetverspreiding en PAI-1-vlakke beïnvloed, terwyl die relatiewe bydra van vetweefsel vergeleke met ander PAI-1 bronweefsel ook in perspektief geplaas is.

Gevolgtrekking

Met betrekking tot metodologiese kwessies, is daar tot die gevolgtrekking gekom dat residuele plaatjies in plasma, plasma PAI-1_ag vlakke aansienlik beïnvloed deur hoofskaaklik latente PAI-1-
vlakke te verhoog met ’n kleiner effek op PAI-1\textsubscript{act}, tPA/PAI-1 kompleks of SLT en dat dit gedoen word op ’n plaatjiekonsentrasie-affhanklike manier. Plaatjiekonsentrasie moet derhalwe streng gemoniteer word, veral wanneer PAI-1\textsubscript{ag} gemeet word. Ten opsigte van die kliniese data is daar bevind dat patrone van vetverspreiding en die graad van vetsug die verhouding van PAI-1\textsubscript{act} met insulien, triglyceride, ASM en liggaamsvetpersentasie in Afrika-vroue beïnvloed het en dat in toestande van uiterste vetsug, abdominale OVW in gelyke mate tot plasma PAI-1\textsubscript{act} bydra as VVW. Daar is verder vasgestel dat die verhouding tussen VVW en plasma PAI-1-vlakke nie vas is nie; dit wil eerder voorkom dat dit gereguleer word deur ’n aantal ander faktore, soos die grootte van onderhuidse vetweefselstore, etnisiteit, moontlik genetika, asook ander vetsugverwante metaboliese abnormaliteite. Laastens is daar ook vasgestel dat liggaamsvetpersentasie per se minder bydra tot PAI-1\textsubscript{act} varianse in Afrika-vroue as ander vetsugverwante versteurhede, soos endoteeldisfunksie en inflammasie wat in ag geneem moet word wanneer die verhouding tussen liggaamsamestelling en PAI-1 ondersoek word.

Sleutelterme: Plasminogeen aktiveerder inhibitor-1; plaatjies; beta tromboglobulien; visserale vetweefsel; onderhuidse vetweefsel; liggaamsvetverspreiding
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Activated</td>
</tr>
<tr>
<td>A</td>
<td>alanine</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>analysis of co-variance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ASM</td>
<td>appendicular skeletal muscle mass</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>βTG</td>
<td>beta thromboglobulin</td>
</tr>
<tr>
<td>CA</td>
<td>cytosine-adenine</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>CLT</td>
<td>clot lysis time</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CTAD</td>
<td>citrate-theophylline, adenosine, dipyridamole</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DBP</td>
<td>diastolic blood pressure</td>
</tr>
<tr>
<td>DXA</td>
<td>dual-energy x-ray absorption</td>
</tr>
<tr>
<td>ECLIA</td>
<td>electrochemiluminescence immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EWGSOP</td>
<td>European working group on Sarcopenia in Older people</td>
</tr>
<tr>
<td>F</td>
<td>Factor</td>
</tr>
</tbody>
</table>
FNIH Foundation for the National Institutes of Health

g gravitational acceleration

G guanine

HDL-CHOL high-density lipoprotein-cholesterol

HIV human immunodeficiency virus

HREC Health Research Ethics Committee

HRT hormone replacement therapy

HOMA-IR homeostatic model assessment of insulin resistance

HUVEC human umbilical vein endothelial cells

IgG immunoglobulin G

IL-1 interleukin-1

IL-6 interleukin-6

Indel insertion/deletion

IR insulin resistance

ISAK International Society for the Advancement of Kinantropometry

kb Kilo bases

LD linkage disequilibrium

LDL-CHOL low-density lipoprotein-cholesterol

MetS metabolic syndrome

MI myocardial infarction

Min minutes

MPV mean platelet volume

mRNA messenger ribonucleic acid
NCDs non-communicable diseases
NWU North-West University
PA plasminogen activator
PAI-1 plasminogen activator inhibitor type-1
PAI-1_{act} plasminogen activator inhibitor type-1 activity
PAI-1_{ag} plasminogen activator inhibitor type-1 antigen
PF4 platelet factor 4
PPP platelet-poor plasma
PRP platelet-rich plasma
PURE Prospective Urban and Rural Epidemiology
RFLP restriction fragment length polymorphism
SABPA Sympathetic activity and Ambulatory blood pressure in Africans
SANHANES South African National Health and Nutrition Examination Survey
SBP systolic blood pressure
SCAT subcutaneous adipose tissue
SD standard deviation
SEM standard error of mean
Serpin serine proteinase inhibitor
SNP single-nucleotide polymorphism
SO sarcopenic obesity
SONDRAA Sarcopenic obesity and non-communicable disease risk in African adults
T-CHOL total cholesterol
TF tissue factor
TFPI tissue factor pathway inhibitor
TGF-β1 transforming growth factor-β1
THUSA transition and Health during Urbanisation
TNF-α tumour necrosis factor-α
tPA tissue plasminogen activator
TRAIN Trial of Angiotensin-Converting Enzyme Inhibition and Novel Cardiovascular Risk factors
uPA urokinase-type plasminogen activator
VAT visceral adipose tissue
VLDL very low-density lipoprotein
WC waist circumference
WHR waist-to-hip ratio
WHtR waist-to-height ratio
Yrs years
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... I

ABSTRACT ... II

OPSOMMING .. V

LIST OF ABBREVIATIONS .. VIII

CHAPTER 1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Aim and objectives ... 4

1.3 Structure of this thesis ... 4

1.4 Research team and contributions to articles presented as part of this thesis 6

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 Introduction .. 8

2.2 Physiology of PAI-1 ... 10

2.2.1 Blood clot formation: conversion of fibrinogen to fibrin ... 12

2.2.2 The fibrinolytic system .. 17

2.3 PAI-1 measurement .. 19

2.4 Factors influencing PAI-1 plasma levels ... 28

2.5 PAI-1 and obesity .. 40

2.5.1 *Ex vivo* and *in vivo* studies on *PAI-1* expression and synthesis in different fat depots (VAT and SCAT) ... 40

2.5.2 Possible mechanisms explaining the role of increased *PAI-1* expression and synthesis in adipose tissue ... 43
2.6 Sarcopenia and SO

- **2.6.1 Definition of sarcopenia and SO** ... 47
- **2.6.2 Pathogenesis and clinical implications of SO** .. 49
- **2.6.3 Sarcopenic obesity as a risk factor for the development of MetS and CVD and its association with PAI-1** ... 50

2.7 Conclusion .. 52

CHAPTER 3: THE EFFECTS OF RESIDUAL PLATELETS IN PLASMA ON PLASMINOGEN ACTIVATOR INHIBITOR-1 AND PLASMINOGEN ACTIVATOR INHIBITOR-1-RELATED ASSAYS ... 54

3.1 Instructions to authors – *PLOS ONE* .. 55

3.2 Proof that article has been accepted for publication in *PLOS ONE* 56

3.3 Accepted article submitted to *PLOS ONE* ... 57

- **3.3.1 Abstract** .. 59
- **3.3.2 Introduction** .. 61
- **3.3.3 Materials and Methods** .. 63
- **3.3.4 Results** .. 66
- **3.3.5 Discussion** ... 68
- **3.3.6 Acknowledgements** ... 71
- **3.3.7 Funding statement** .. 72
- **3.3.8 References** ... 73

CHAPTER 4: DEGREE OF OBESITY INFLUENCES THE RELATIONSHIP OF PAI-1 WITH BODY FAT DISTRIBUTION AND METABOLIC VARIABLES IN AFRICAN WOMEN .. 85

4.1 Instructions to authors – *Thrombosis Research* ... 86
4.2 Proof that article has been accepted for publication in *Thrombosis Research* ...105

4.3 Accepted article submitted to *Thrombosis Research*106

4.3.1 Abstract ..108

4.3.2 Introduction ...109

4.3.3 Methods and Methods ..110

4.3.4 Results ..114

4.3.5 Discussion ...116

4.3.6 Acknowledgements ...120

4.3.7 Reference ..122

CHAPTER 5 THE CONTRIBUTION OF DIFFERENT ADIPOSE TISSUE DEPOTS TO PLASMA PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) LEVELS137

5.1 Instructions to authors – *Blood Reviews* ...138

5.2 Proof that the article has been accepted for publication in *Blood Reviews* ..149

5.3 Accepted article submitted to *Blood Reviews* ..150

5.3.1 Abstract ..152

5.3.2 Introduction ...153

5.3.3 *Ex vivo* studies ..154

5.3.4 *In vivo* studies ...157

5.3.4.1 Gender ..158

5.3.4.2 Ethnicity ..160

5.3.4.3 Level or degree of obesity ...161

5.3.5 Weight-loss ..162
5.3.6 4G/5G PAI-1 polymorphism ...162
5.3.7 Other PAI-1 producing tissue in obesity ...164
5.3.8 Conclusion ...166
5.3.9 References ..168

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS185
6.1 Introduction ..185
6.2 The effect of residual platelets, present in plasma, on different plasma
PAI-1 assays (total PAI-1 content, active PAI-1 and tPA/PAI-1 complex) ..186
6.3 The relationship of PAI-1 with body fat in African women with special
focus on excessive obesity, sarcopenic obesity and body fat
distribution patterns ..188
6.4 The association between body fat distribution and plasma PAI-1
levels, potential factors influencing this relationship and the
contribution of body fat to plasma PAI-1 levels relative to that of other
PAI-1 producing tissue ...190
6.5 Recommendations for future research ...192

BIBLIOGRAPHY ..194

ANNEXURE A: SABPA INFORMED CONSENT FORM221

ANNEXURE B: FOLLOW-UP STUDY INFORMED CONSENT FORM231

ANNEXURE C: SONDRAA INFORMED CONSENT FORM239

ANNEXURE D: PUBLISHED ARTICLE - THE EFFECTS OF RESIDUAL PLATELETS
IN PLASMA ON PLASMINOGEN ACTIVATOR INHIBITOR-1 AND PLASMINOGEN
ACTIVATOR INHIBITOR-1-RELATED ASSAYS (CHAPTER 3)244
ANNEXURE E: PUBLISHED ARTICLE - DEGREE OF OBESITY INFLUENCES THE RELATIONSHIP OF PAI-1 WITH BODY FAT DISTRIBUTION AND METABOLIC VARIABLES IN AFRICAN WOMEN (CHAPTER 4) ..245

ANNEXURE F: PUBLISHED ARTICLE - THE CONTRIBUTION OF DIFFERENT ADIPOSE TISSUE DEPOTS TO PLASMA PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) LEVELS (CHAPTER 5) ..246
LIST OF TABLES

Table 1.1: List of members in the research team and their contributions to this study.6

Table 2.1: Comparison of plasma PAI-1\textsubscript{act} and PAI-1\textsubscript{ag} levels between black (African and African American) and white ethnic groups .. 22

Table 2.2: Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action ... 30

Table 3.1 Comparison of \(\beta\text{TG}\), PAI-1 assays and CLT according to centrifugation speed in SABPA study.. 78

Table 3.2: PAI-1\textsubscript{act}, PAI-1\textsubscript{ag}, tPA/PAI-1 complex and CLT according to \(\beta\text{TG}\) quartiles in SABPA study group. .. 79

Table 3.3: Spearman rank order correlations between \(\beta\text{TG}\), PAI-1 assays and CLT in SABPA study group. .. 80

Table 3.4: Descriptive statistics of the follow-up study group. ... 81

Table 3.5: Spearman rank order correlations of \(\beta\text{TG}\) and PAI-1\textsubscript{ag} with whole blood, CTAD and citrate plasma platelet count of the follow-up study. ... 82

Table 3.6: Spearman rank order correlations between \(\beta\text{TG}\) and PAI-1\textsubscript{ag} in the respective plasma preparations of the follow-up study ... 83

Table 4.1: Descriptive statistics of the different body fat distribution groups.. 130

Table 4.2: Associations of PAI-1\textsubscript{act} with body fat percentage, insulin, triglyceride and ASM in the sub-groups .. 132

Table 4.3: Difference in PAI-1\textsubscript{act}, insulin and HOMA-IR between the 1st and 3rd skinfold : WC ratio tertiles .. 133

Table 4.4: PAI-1\textsubscript{act}, insulin, triglyceride, CRP and skinfold : WC ratio according to body fat percentages quartiles .. 134

Table 4.5: Contribution of body fat percentage to PAI-1\textsubscript{act} variance: single and multiple regression ... 135
Table 5.1: Summary of studies investigating the association of PAI-1 production and mRNA levels in adipose tissue (VAT versus SCAT)
LIST OF FIGURES

Figure 2.1: Conventional model of coagulation adapted from Hoffman and Monroe (2001) and Davie and Ratnoff (1964). ... 13

Figure 2.2: Cell-based model of coagulation (Initiation, amplification and propagation) and the main components of the fibrinolytic system as adapted from Rijken and Sakharov (2001), Hoffman and Monroe (2001), and Colman et al. (2000)............ 15

Figure 2.3: Polymerisation of fibrinogen to form fibrin (Mosesson et al., 2001). 17

Figure 3.1: Design of follow-up study .. 84

Figure 5.1: The association between VAT and plasma PAI-1 levels and the factors modulating this association.. 184
CHAPTER 1 INTRODUCTION

1.1 Background

South Africa is a fast growing third world country in which the effects of urbanisation are evident, especially in the black African population. This process of rapid urbanisation has recently been associated with a double burden of disease with an accelerating shift from infectious to non-communicable diseases, specifically cardiovascular diseases (CVD) (Vorster, 2002; Kadiri, 2005). These findings are reflected in the mortality patterns recorded by Statistics South Africa from 2009 to 2011. Cerebrovascular diseases accounted for 5.1% of the total mortality (505 803) in 2011. It was also the most important cause of death after tuberculosis (10.7%), influenza and pneumonia (6.6%) (StatsSA, 2011). There also seems to be an increase in the mortality rates of South Africans above the age of 60 years, due to the rise in vascular diseases (stroke, ischaemic heart disease and hypertensive diseases) (Tollman et al., 2008). In addition, it would seem that the prevalence of obesity and associated lifestyle diseases, such as diabetes, are increasing in South Africa (Ng et al., 2014). South African women have a substantial prevalence of overweight and obesity (24.8% and 39.2%, respectively), which is significantly higher compared to men (20.1% and 10.6%, respectively) (Shisana, 2014).

Elevated plasminogen activator inhibitor-1 (PAI-1) is regarded as a risk factor for the development of CVD and metabolic syndrome (MetS), which is associated with dyslipidaemia, hypertension, glucose intolerance and increased abdominal fat distribution (Mutch et al., 2001; Mertens et al., 2006; Alessi & Juhan-Vague, 2008). This could in part be explained by the fact that PAI-1 is an important regulator (inhibitor) of fibrinolysis (Hoekstra et al., 2004), which refers to the fibrin clot lysis process. More specifically, PAI-1 inhibits the binding of tissue type plasminogen activator (tPA) to plasminogen by binding to and inactivating tPA. The binding of tPA to plasminogen is necessary for the formation of plasmin, which cleaves fibrin clots into soluble fibrin fragments. PAI-1, therefore, plays a regulating role in the development of abnormal haemostasis and consequently, increased CVD risk. PAI-1 is a glycoprotein with a relative molecular weight of 50 000 Dalton and is a member of the serine proteinase inhibitor (serpin) family (Pannekoek et al., 1986; Kruithof, 1988). Plasma PAI-1 exists either in an active or latent form, or in complex with tPA (Hekman & Loskutoff, 1985; Sprengers & Kluft, 1987; Gils & Declerck, 2004). PAI-1 is produced by various cells such as endothelial cells, hepatocytes, smooth muscle cells, adipocytes, and platelets (Sprengers & Kluft, 1987; Alessi et al., 1997). In platelets, PAI-1 is stored in the alpha granules and released during platelet activation and aggregation (Erickson et al., 1984; Sprengers & Kluft, 1987; Bastard & Pieroni, 1999).
Most of the studies investigating PAI-1 provide data on individuals of European descent. Much less information is available regarding PAI-1 in other ethnicities. Only a few publications exist investigating PAI-1 in Africans (Jerling et al., 1994; Greyling et al., 2007; Naran et al., 2008; Pieters et al., 2010; De Lange et al., 2013; Eksteen et al., 2015). From these initial studies, two issues were identified which will be addressed in this thesis. The first is a methodological issue relating to the influence of platelets in plasma on PAI-1 and PAI-1 related assays. The second is a clinical issue focusing on the relationship between PAI-1 and body fat distribution in Africans. Preliminary evidence suggests this relationship may differ from what has been observed in European populations. This will be discussed below.

Methodological: Previous research measuring PAI-1 levels in African and white ethnic groups has shown inconsistent ethnic differences (Jerling et al., 1994; Festa et al., 2003; Matthews et al., 2005; Lutsey et al., 2006; Greyling et al., 2007; Naran et al., 2008; Perry et al., 2008). This inconsistency may be related to the specific PAI-1 assays used in the different studies as well as differences in sample handling procedures and in particular centrifugation speed. Different centrifugation speeds will result in different platelet counts in the plasma, which may in turn influence plasma PAI-1 levels. While it is known that platelets produce PAI-1, it was traditionally believed that platelets store and release mostly latent PAI-1, since, only approximately 5-10% of PAI-1 antigen was shown to be active in lysed platelet-rich plasma (Declerck et al., 1988a). More recent studies, however, suggest that platelets also release a substantial amount of active PAI-1 (Nordenhem & Wiman, 1997; Brogren et al., 2004; Brogren et al., 2011). These observed differences could be the result of different approaches used to prepare the platelet lysates as well as other experimental conditions (Sancho et al., 1994; Brogren et al., 2011), and for now remains an issue of debate. As mentioned previously, PAI-1 exists in several forms in plasma and different assays exist to measure the different forms. Active PAI-1, for instance, is the PAI-1 that is functionally able to bind tPA and to form the tPA/PAI-1 complex and can be measured by functional assays recognising this active form only. Additionally, the tPA/PAI-1 complex itself can be measured separately and lastly the total PAI-1 content in plasma can be determined by assays measuring total PAI-1 antigen (this includes active PAI-1, the tPA/PAI-1 complex as well as the inactive, latent form). It is, however, not clear how the PAI-1, released from the alpha granules of residual platelets in plasma, affect the plasma levels of the different forms of PAI-1 (activity, antigen and tPA/PAI-1 complex) and whether such altered levels will result in functional effects by affecting the plasma fibrinolytic potential. This will be investigated in detail in this thesis in two studies which comprised of 151 participants who formed part of the Sympathetic...
activity and Ambulatory Blood Pressure in Africans (SABPA) study and a further 20 participants who were recruited in an additional follow-up study.

Clinical: It is known that PAI-1 is synthesised in, among others, the adipose cells. Several clinical studies have associated obesity with impaired fibrinolysis (Giltay et al., 1998; Bastard et al., 2000; Lindeman et al., 2007). Reviews on the association between obesity and PAI-1 (Mutch et al., 2001; Skurk & Hauner, 2004) report a difference in PAI-1 secretion by adipose tissue depending on the region of fat distribution. Visceral adipose tissue (VAT) is accepted to be the most important source of adipose derived PAI-1 (Bastard et al., 2000). However, contradictory results were reported by Eriksson et al. (2000) who found greater PAI-1 messenger ribonucleic acid (mRNA) expression in subcutaneous adipose tissue (SCAT) compared to VAT, while, Lindeman et al. (2007) found comparable PAI-1 mRNA expression between SCAT and VAT. In addition, Mavri et al. (2001) found abdominal SCAT to produce more PAI-1 than peripheral SCAT. Contradicting evidence furthermore also exists regarding the influence of the different fat depots on plasma PAI-1 levels, with limited information only in non-white ethnicities. Previous research has shown differences in the relationship of PAI-1 with body composition between ethnicities (Solano et al., 2003; Greyling et al., 2007). There are also differences in the body fat distribution patterns between different ethnic groups. African women seem to have significantly less VAT compared to white women, despite similar waist circumference (Micklesfield et al., 2010). It is thus not possible to simply extrapolate findings from studies investigating individuals of European descent, to African populations.

Furthermore, the relationship of PAI-1 with specific forms of obesity, such as sarcopenic obesity (SO) is not well defined (Cesari et al., 2005; Cesari et al., 2010). Sarcopenic obesity is considered to be an age-related increase in fat mass, associated with loss of skeletal muscle and fat infiltrating the muscle (Cruz-Jentoft et al., 2010; Kohara, 2014). As SO has been demonstrated to be associated with the development of MetS, insulin resistance and cardiovascular risk through the development of atherosclerosis (Kohara, 2014), it is possible that plasma PAI-1 levels will be higher in individuals with SO compared with non-sarcopenic obese individuals. It is, therefore, necessary to increase our understanding of the association between PAI-1 and body fat distribution, particularly in the understudied African population. This will be addressed in this thesis by providing experimental data on PAI-1 and different body fat distribution patterns in 246 urban dwelling African women who took part in the Sarcopenic Obesity and Non-communicable Disease Risk in African Adults (SONDRAA) study. In addition, the thesis includes a published review of the related literature. The purpose of this review is to
provide an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It furthermore identifies factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels.

1.2 Aim and objectives

The aim of this study is, therefore, to determine two unresolved methodological and clinical issues related to PAI-1, as identified in the black South African population.

In order to reach this aim the following objectives were identified:

1) To determine the effect of residual platelets, present in plasma, on different plasma PAI-1 assays (total PAI-1 content, active PAI-1 and tPA/PAI-1 complex) as well as a functional marker namely clot-lysis time (CLT);
2) to explore the relationship of PAI-1 with body fat in African women with special focus on excessive obesity, sarcopenic obesity and body fat distribution patterns; and
3) to review *ex vivo* and *in vivo* studies investigating the association between body fat distribution and plasma PAI-1 levels, in order to identify factors that may potentially influence the relationship and to determine the contribution of body fat to plasma PAI-1 levels relative to that of other PAI-1 producing tissue.

1.3 Structure of this thesis

This thesis will be presented in article format. Following this introduction, Chapter 2 will provide an overview of the literature relevant to this research topic focusing on: the haemostatic system and the regulation of PAI-1 in plasma; the various forms in which PAI-1 can be measured in the plasma; and lastly the relationship between PAI-1 and obesity as well as SO. Chapter 2 provides the background information that will be required to interpret the research papers presented in this thesis.

Chapter 3 is an article with the title: “*The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays*”. This article has been published in *PLOS ONE* (http://dx.doi.org/10.1371/journal.pone.0171271). This article addresses the controversial evidence with respect to the form of PAI-1 present in platelets, by relating the effects of residual platelets present in plasma (a potential pre-analytical variable) to various PAI-1 and PAI-1-related assays.
Chapter 4 is an article with the title: “Degree of obesity influences the relationship of PAI-1 with body fat distribution and metabolic variables in African women”. This article has already been published in Thrombosis Research (Volume 146 (2016) 95-102 p.). In this article the relationship of PAI-1 with body fat percentage and two different body fat distribution patterns (SO and visceral compared to subcutaneous abdominal obesity) in African women is investigated.

Chapter 5 is a review article with the title: The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels”. This article has already been published in Blood Reviews and is available in E-pub ahead of print format. This review provides an overview of studies investigating the relationship between body fat distribution and plasma PAI-1 level and factors that can influence this relationship.

Chapter 6 is the final chapter and provides the discussion of results and main conclusions that could be drawn from this study. Recommendations and research possibilities for future studies is also highlighted.

The references of Chapter 1, 2 and 6 are provided according to the mandatory Harvard referencing style of the North-West University at the end of the thesis. Whereas, the references of Chapter 3, 4 and 5 are provided at the end of each chapter, as specified by the authors instructions of each journal in which the article was / will be published.
1.4 Research team and contributions to articles presented as part of this thesis

The contributions of the researchers involved in the study presented in this thesis are given in the table below.

Table 1.1: List of members in the research team and their contributions to this study.

<table>
<thead>
<tr>
<th>Initial, surname and signature*</th>
<th>Affiliation</th>
<th>Role in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA Barnard (PhD candidate)</td>
<td>CEN, NWU, Potchefstroom campus, South Africa</td>
<td>Responsible for ethical application, literature review, statistical analysis, data interpretation and writing up of articles and thesis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof M Pieters (Promoter)</td>
<td>CEN, NWU, Potchefstroom campus, South Africa</td>
<td>Promoter of SA Barnard, analysis and interpretation of results and co-authored Chapters 3-6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr C Nienaber-Rousseau (Co-Promoter)</td>
<td>CEN, NWU, Potchefstroom campus, South Africa</td>
<td>Co-promoter of SA Barnard and co-authored Chapter 4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr Z De Lange (Co-Promoter)</td>
<td>CEN, NWU, Potchefstroom campus, South Africa</td>
<td>Co-promoter of SA Barnard and co-authored Chapter 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof S Kruger</td>
<td>CEN, NWU, Potchefstroom campus, South Africa</td>
<td>Principle investigator for the SONDRAA study and co-authored Chapter 4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof DT Loots</td>
<td>Centre of Human Metabolomics, NWU, Potchefstroom campus, South Africa</td>
<td>Assisted with the βTG analyses and co-authored Chapter 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.1 (continues): List of members in the research team and their contributions to this study

<table>
<thead>
<tr>
<th>Prof DC Rijken</th>
<th>Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assisted with data interpretation and co-authored Chapter 3.</td>
</tr>
</tbody>
</table>

with my signature I declare that I approved the above-mentioned articles, that my role in the study as indicated above, is representative of my actual contribution and that I hereby consent that it may be published as part of the PhD thesis of Mrs SA Barnard.

βTG, beta thromboglobulin; CEN, Centre of Excellence for Nutrition; NWU, North-West University; SONDRAA, Sarcopenic Obesity and Non-communicable Disease Risk in African Adults study.
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Globally, there is a growing awareness of the need to address the increasing prevalence of non-communicable diseases (NCDs). It is projected that the percentage of people dying from NCDs will increase from 59% in 2002 to 69% in 2030 (Mathers & Loncar, 2006). Cardiovascular disease (CVD), one of the major contributors of NCDs, has until recently been recorded and observed mostly in developed countries (Reddy, 2002). It is estimated that 2150 Americans die of CVD every day (Go et al., 2013). More recently, however, it has become clear that CVD is also affecting the mortality rates of developing countries such as South Africa (Mayosi et al., 2009).

Data from the South African Health and Demographic Survey, which included 52 health districts throughout South Africa, provided evidence on the distribution of CVD in South Africa (Kandala et al., 2014). Cardiovascular diseases such as hypertension and stroke were identified as being concentrated largely in the south-western parts of the country, whereas the northern parts were associated with coronary heart disease and hypercholesterolaemia (Kandala et al., 2014). Other researchers have previously reported that South Africa is experiencing a double burden of disease, with an accelerating shift from infectious diseases to NCDs, especially CVD (Vorster, 2002; Kadiri, 2005). Supported by the 2011 statistical release on the mortality and causes of death in South Africa, cerebrovascular diseases were identified as the third highest cause of death in South Africa (StatsSA, 2011). In addition, epidemiology research has shown that, relative to the period from 1992 to 1994, the period from 2002 to 2005 experienced a 65% increase in the mortality rates of rural South Africans above the age of 60 years due to vascular diseases, including stroke, ischaemic heart disease and hypertension (Tollman et al., 2008).

The rise in CVDs has been associated with urbanisation and a change in lifestyle factors (Vorster, 2002; Pieters & Vorster, 2008). For example, black South Africans are undergoing a process of rapid urbanisation that is associated with increased risk factors (such as change in the intake of total fat and animal protein and physical inactivity) for the development of CVD (Vorster, 2002). Steyn et al. (2005) reported that lifetime exposure to an unhealthy lifestyle (unhealthy dietary intake, inactivity and smoking) increases the likelihood of developing CVD in the future.
To date, several studies have been undertaken in Sub-Saharan African countries with the objective of determining the possible underlying risk factors associated with CVD in African populations. Data from these studies have identified various risk factors that contribute to the development of CVD, such as smoking, hypertension, diabetes, abdominal obesity, abnormal blood lipids and haemostasis (Vorster, 2002; Steyn et al., 2005; Mensah, 2008). In the context of CVD, abnormal haemostasis is characterised by either hypofibrinolysis or hypercoagulability, or both. Fibrinolysis and, in particular, one of its main inhibitors, plasminogen activator inhibitor-1 (PAI-1), have been found to play an important regulating role in the development of abnormal haemostasis and consequently, increased CVD development (Juhan-Vague & Alessi, 1996; Kohler et al., 2000). PAI-1 inhibits the activation of plasminogen, the fibrin-degrading enzyme, by binding its activators, tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), and is, therefore, a main inhibitor of the fibrinolysis process.

From preliminary investigations of PAI-1 in the black South African population (Jerling et al., 1994; Greyling et al., 2007; Naran et al., 2008; Nienaber et al., 2008; Pieters et al., 2010; De Lange et al., 2012; De Lange et al., 2013; Pieters et al., 2014), two important research issues were identified: i) methodological issues regarding the measurement of the different forms of PAI-1 in plasma, namely antigen (PAI-1\text{ag}), activity (PAI-1\text{act}) and the tPA/PAI-1 complex; and ii) associations between PAI-1 and obesity as well as the relationship with sarcopenic obesity (SO) in Africans, which will be discussed below.

Both PAI-1\text{act} and PAI-1\text{ag} have been associated with CVD in populations of European descent (Geppert et al., 1995; Juhan-Vague & Alessi, 1996; Bavenholm et al., 1998; Thogersen et al., 1998; Eržen & Šabovič, 2013). Although PAI-1 levels can be accurately measured by either one of these methods, there is substantial uncertainty regarding the effect of platelets on these PAI-1 assays. The alpha granules of platelets were traditionally thought to contain mostly latent PAI-1 (Declerck et al., 1988a). More recent publications, however, suggest that they also contain active PAI-1 (Nordenhem & Wiman, 1997; Brogren et al., 2004; Brogren et al., 2011). In addition, the effect of residual platelets in plasma on PAI-1 fractions has not been studied in detail and there is emerging evidence suggesting that platelet activation may differ between ethnicities. Previous research measuring PAI-1 levels in African and white ethnic groups has shown inconsistent ethnic differences (Jerling et al., 1994; Festa et al., 2003; Matthews et al., 2005; Lutsey et al., 2006; Greyling et al., 2007; Naran et al., 2008; Perry et al., 2008). We
hypothesise that some of this inconsistency may be related to the specific PAI-1 assays used in the different studies as well as differences in sample handling procedures.

The association between PAI-1 and obesity has been widely studied in populations of European descent, yet only limited information is available in other population groups. This association may be influenced by ethnicity, since body fat distribution has been shown to differ between ethnicities (Conway et al., 1995; Hill et al., 1999; Micklesfield et al., 2010). Increased incidences of CVD in obese and overweight individuals seem to be partially related to impaired fibrinolysis, which may result from increased PAI-1 concentration (Shimomura et al., 1996; Eriksson et al., 1998; Alessi et al., 2000a). Central obesity is also a known component of the metabolic syndrome (MetS) (Alberti et al., 2009). Accordingly, PAI-1 strongly correlates with the MetS and insulin resistance (IR) (Juhan-Vague & Alessi, 1997; Greyling et al., 2007; Chou et al., 2009; Palomo et al., 2009). It is not yet known, however, how PAI-1 relates to SO, a form of obesity that is associated with advanced age, muscle wasting and the presence of IR. It may be assumed that the combined effect of increased PAI-1 plasma levels and SO may potentiate each other, leading to negative health consequence in the elderly. More studies are needed to confirm such an association, however, as very limited data are available on the association of PAI-1 with SO (Cesari et al., 2005; Cesari et al., 2010).

The following sections will provide a brief overview of the haemostasis system, focusing on the coagulation and fibrinolysis systems and including more detail on PAI-1 and the regulation of PAI-1 in the blood. Secondly, issues regarding the measurement of PAI-1 in plasma, either as PAI-1$_{ag}$, PAI-1$_{aci}$, latent PAI-1 or PAI-1 in complex with tPA, will be discussed and thirdly, the association of PAI-1 and obesity will be considered. In this section special attention will be paid to disagreements in the literature regarding the relationship between PAI-1 and obesity as measured by ex vivo and in vivo techniques. In the last section, the undefined yet potential relationship between PAI-1, ageing and SO will be discussed.

2.2 Physiology of PAI-1

PAI-1 is a single-chain glycoprotein with a plasma concentration of 0.4 nM (Bastard & Pieroni, 1999; Rijken & Sakharov, 2001). PAI-1 belongs to the family of serine protease inhibitors (serpins) and has a molecular weight of 50 000 Dalton (Pannekoek et al., 1986; Kruithof, 1988). PAI-1 is produced by endothelial cells, hepatocytes, smooth muscle cells and platelets, as
noted in a review by Sprengers and Kluft (1987), as well as adipocytes (Alessi et al., 1997). PAI-1 exists in either an active, latent (or inactive) form or in complex with tPA (Hekman & Loskutoff, 1985; Sprengers & Kluft, 1987; Gils & Declerck, 2004). Normal plasma PAI-1 concentration for active PAI-1 is <50 U.mL\(^{-1}\) (with 80% of values less than 6 U.mL\(^{-1}\)) and <30 ng/mL for PAI-1\(_{ag}\) (Lijnen, 2005). In pathological conditions, however, plasma PAI-1 levels can increase 50-fold (Juhan-Vague et al., 1987). Active PAI-1 is unstable and has a half-life of approximately two to three hours, after which it will spontaneously convert to its latent form, although it can be reactivated in vitro (Sprengers & Kluft, 1987; Loskutoff & Curriden, 1990; Gils & Declerck, 2004). The half-life of PAI-1 can be increased by binding to vitronectin (Zhou et al., 2003) and most of the active PAI-1 in plasma is bound to vitronectin (Declerck et al., 1988b). PAI-1 can also form a stable complex with tPA that is cleared from the circulation by hepatocytes (Owensby et al., 1991). In the active form, PAI-1 can inhibit both tPA and uPA by forming a 1:1 stoichiometric complex with tPA or uPA, whereas latent PAI-1 does not react with these target proteinases (Gils & Declerck, 2004).

PAI-1 is stored in the alpha granules of platelets and is released during platelet activation and aggregation (Erickson et al., 1984; Sprengers & Kluft, 1987; Bastard & Pieroni, 1999). Only approximately 5-15% of PAI-1\(_{ag}\) has been found to be active in lysed platelet-rich plasma (Declerck et al., 1988a; Nordenhem & Wiman, 1997); it was believed, therefore, that platelets stored and released mainly inactive (latent) PAI-1 (Declerck et al., 1988a). In contrast, more recent studies have observed that platelets also release a substantial amount of active PAI-1 (Brogren et al., 2004; Brogren et al., 2011). These researchers have concluded that there is a de novo synthesis of PAI-1 within platelets and found that when platelets were lysed in the presence of tPA, the majority of the PAI-1 formed tPA/PAI-1 complexes, suggesting that platelets contain mostly active PAI-1 (Brogren et al., 2004; Brogren et al., 2011). Possible explanations for these differences found in the content of platelet lysates could be related to methodological issues, such as the methods used to prepare the platelet lysates (sonification and freezing and/or thawing of the samples), as these were found to affect the detection of PAI-1\(_{act}\) (Brogren et al., 2011). It is also known that the conversion of the active form of PAI-1 to the latent is influenced by several conditions such as low temperature, low pH and high salt concentration (Sancho et al., 1994). In addition, it has been suggested that the binding between PAI-1 and Ca\(^{2+}\) contributes to the stabilisation of active PAI-1 within platelets (Lang & Schleef, 1996). In vitro studies on clot lysis have also shown that PAI-1 released from platelets is an important role player in thrombolysis resistance (Fay et al., 1994; Stringer et al., 1994). Indeed, PAI-1 has an important role in hypofibrinolysis and is also known to be an important inhibitor of the fibrinolytic system (Rijken & Sakharov, 2001). The effect of residual platelets in
plasma on the different PAI-1 assays, therefore, remains an issue of debate. In order to understand PAI-1’s inhibiting role in the fibrinolytic system, the formation of a thrombus or blood clot first needs to be understood before its lysis can be discussed.

2.2.1 Blood clot formation: conversion of fibrinogen to fibrin

According to the conventional model of coagulation, blood clot formation takes place either via an intrinsic pathway by activation of the contact system or via an extrinsic pathway (in vitro or mechanical damage), e.g. when blood from damaged tissue comes into contact with tissue factor (TF) (Davie & Ratnoff, 1964; Hoffman & Monroe, 2001) (Figure 2.1). A cascade of enzyme reactions then follows, causing the conversion of plasma zymogens of serine proteases to active enzymes or conversion of fibrinogen to fibrin (Colman et al., 2000). After activation [the activated form of the factors (F) is indicated by a small letter “a”] of the intrinsic pathway (contact activation), FXIIa leads to the activation of FXI, FIX, FVIII and FX. The extrinsic pathway, on the other hand, involves TF which activates FVII, which also results in the activation of FX. The formation of TF/FVIIa complex is, however, inhibited by TF pathway inhibitor (TFPI), which also inhibits FXa. Activation of FX is essential for the formation of the prothrombinase complex, which includes FVa and phospholipids and converts prothrombin to thrombin in the common pathway (Colman et al., 2000). In the common pathway, thrombin converts fibrinogen into fibrin.
Figure 2.1: Conventional model of coagulation adapted from Hoffman and Monroe (2001) and Davie and Ratnoff (1964).
Arrows indicate activation of zymogens to active enzymes.

However, in a more recent model of coagulation, the cell-based model of coagulation, greater emphasis is placed on the complementary rather than separate roles of the intrinsic and extrinsic pathways (Hoffman & Monroe, 2001; Monroe et al., 2002; Miller, 2005). This model was developed because the conventional model does not explain, for example, why patients with a deficiency of either FIX or FVIII, known as haemophilia, suffer from a serious impaired blood coagulation disorder, despite fully functional extrinsic pathway factors (Miller, 2005). In addition, the cell-based model regards platelets as having a fundamental role in supporting the pro-coagulant and anticoagulant systems (Hoffman & Monroe, 2001; Monroe et al., 2002). The
cell-based model of coagulation postulates that coagulation occurs in three overlapping phases, namely I) the initiation phase, II) the amplification phase and III) the propagation phase (Hoffman & Monroe, 2001; Monroe et al., 2002; Vine, 2009) (Figure 2.2).

The initiation phase is activated when damage to the vessel wall brings plasma into contact with TF-bearing cells, derived from extravascular sources such as fibroblasts (Monroe et al., 2002; Miller, 2005). Activated FVII is required to bind TF in order to activate FIX and FX (Monkovic & Tracy, 1990). Activated FX is, however, quickly inhibited by TFPI or anti-thrombin when leaving the cell (Hoffman & Monroe, 2001), while the FXa that remains on the cell binds to FVa and a small amount of thrombin is generated (Monroe et al., 2002). Although the amount of thrombin formed is too small to cleave fibrinogen throughout the wound, this initially formed thrombin plays an important role in activating platelets and FVII in the second amplification phase of coagulation (Hoffman & Monroe, 2001; Monroe et al., 2002).
Figure 2.2: Cell-based model of coagulation (Initiation, amplification and propagation) and the main components of the fibrinolytic system as adapted from Rijken and Sakharov (2001), Hoffman and Monroe (2001), and Colman et al. (2000). Solid arrows indicate activation and dashed arrows indicate inhibition.

In the amplification phase, the initially generated thrombin binds to the platelets that have adhered to the extracellular tissue. This binding of the platelets to the extracellular tissue partially activates the platelets and localises them near the site of TF exposure (Hoffman & Monroe, 2001). Thrombin is a potent platelet activator and also activates FV (secreted from the alpha granules of activated platelets), FVIII (after being cleaved from von Willebrand factor) and
FXI (Hoffman & Monroe, 2001). When the platelets are fully activated and FVa and VIIIa are present, the stage is set for large-scale thrombin generation (Hoffman & Monroe, 2001).

In the last phase, propagation, the platelets are fully activated and this is the essential phase for thrombin generation. Activated FIX, released from TF-bearing cells, assembles on the surface of the platelets and forms complexes with FVIIa (Monroe et al., 2002). Factor IXa is not readily inhibited by anti-thrombin or any other plasma protease inhibitors, making it possible for FIXa to diffuse from the TF-bearing cell onto the platelets (Monroe et al., 2002). Additional FIX can also be provided by FXIIa, bound to the surface of the activated platelet (Hoffman & Monroe, 2001). When FX reaches the platelet surface, it is activated by the FIXa/VIIa complex (Monroe et al., 2002). After activation, FXa binds to its cofactor, FVa, and generates the thrombin needed to convert fibrinogen into a stable fibrin clot (Hoffman & Monroe, 2001).

Fibrinogen is a glycoprotein, composed of two sets of three polypeptide chains (Aα, Bβ and γ) that are connected by disulphide bonds at the respective N-terminal regions in the E domain (Mosesson et al., 2001). The E domain is the central region of the fibrinogen molecule where all the polypeptide chains are joined together to form two sets of coiled-coils that extend to the two outer D domains (Mosesson et al., 2001). The E and D domains contain binding sites for the conversion of fibrinogen to fibrin, platelet interaction, formation of cross-links and polymerisation sites (Mosesson et al., 2001).

Thrombin converts fibrinogen to fibrin through the cleaving of two pairs of A and B fibrinopeptides from the Aα and Bβ chains, respectively (Mutch et al., 2001; Rozenfel'd et al., 2001; Bridge et al., 2014) and expose the EA (des-A fibrin monomer) polymerisation sites (Figure 2.3). Each EA site then combines with a complementary binding pocket (Da) in the D domain of neighbouring molecules (Pratt et al., 1997; Mosesson et al., 2001). The EA:Da association results in the formation of the double-stranded twisting fibrils in which fibrin molecules become aligned in an end-to-middle overlapping domain arrangement (Ferry, 1952; Fowler et al., 1981; Mosesson et al., 2001). Hereafter, protofibrils will form lateral associations and branches to form fibrils and fibres (Mosesson et al., 2001). The clot that has formed is, however, still soluble at acid pH or in urea and unstable. Through the activation of FXIII by thrombin, fibrin forms covalent cross-links and the insoluble fibrin clot is formed (Bridge et al., 2014). This cross-linking occurs through the incorporation of ε-(γ-glutamyl) lysine (Lys) bridges between lysine residues on the γ and α chains (Mosesson et al., 2001). These fibrin fibres
contain binding sites where tPA and plasminogen can bind to activate plasminogen (Mosesson et al., 2001), initiating fibrinolysis and degradation of the fibrin clot, as described in the section below.

2.2.2 The fibrinolytic system

The above-mentioned process of clot formation is necessary for wound healing to occur. However, the fibrin clot cannot remain in the vasculature and should be removed again, through
the process of fibrinolysis. This process involves the binding of plasminogen to fibrin and its subsequent activation by plasminogen activators (PA), tPA and uPA (Thorsen et al., 1988). Plasminogen, an inactive zymogen of plasmin (the active enzyme), circulates in plasma at a concentration of 2 μM, and a small amount of plasminogen is already bound to fibrin during coagulation (Colman et al., 2000; Rijken & Sakharov, 2001). Plasmin is the main enzyme responsible for the lysis of a fibrin clot (Bridge et al., 2014). The surface of fibrin has binding sites, for both plasminogen and tPA, which help to localise and promote the conversion of plasminogen to plasmin (Rijken & Sakharov, 2001; Bridge et al., 2014). In addition, these binding sites have a regulatory function by ensuring that tPA first binds to fibrin before activating plasminogen, thereby reserving plasminogen in the circulation and preventing systemic fibrinogen lysis (Rijken & Sakharov, 2001). Plasmin bound to lysine residues on fibrin cleaves the fibres transversely, exposing new carboxyl-terminal lysine residues and, therefore, new binding sites for plasminogen (Rijken & Sakharov, 2001). The newly formed carboxyl-terminal lysine residues are important to accelerate the lysis rate of the intact fibrin network by creating a positive feedback mechanism (Suenson et al., 1984).

Two plasmin inhibitors, α₂-antiplasmin and α₂-macroglobulin, regulate the rate of fibrinolysis, with α₂-antiplasmin being the most important inhibitor of plasmin (Rijken & Sakharov, 2001). The C-terminal end of α₂-antiplasmin binds to the lysine-binding site of plasminogen, where fibrin is also non-covalently bound, thereby inhibiting the binding of fibrin to plasminogen (Carpenter & Mathew, 2008). The main inhibitory mechanism consist of plasmin/α₂-antiplasmin complex, while plasmin already bound to fibrin is relatively protected from α₂-antiplasmin and fibrinolysis can, therefore, still occur (Carpenter & Mathew, 2008). PAI-1, on the other hand, inhibits the conversion of plasminogen to plasmin by inhibiting either tPA or uPA (Thorsen et al., 1988; Rijken & Sakharov, 2001).

Plasminogen activation is regulated by the concentration of tPA and PAI-1 (Van Meijer & Pannekoek, 1995). According to Van Meijer and Pannekoek (1995), PAI-1 has partially overlapping binding sites for tPA and fibrin. In the presence of an excess of PAI-1 over tPA, PAI-1 will bind to the intact fibrin, whereas tPA has a higher affinity for PAI-1 compared with fibrin and will preferentially bind PAI-1 (Van Meijer & Pannekoek, 1995). This will result in the formation of inactive tPA/PAI-1 complex. As tPA and fibrin share a binding site on PAI-1, the tPA/PAI-1 complex will dissociate from fibrin. The inactive tPA/PAI-1 complex competes with the binding of free tPA on fibrin (Van Meijer & Pannekoek, 1995). Consequently, the tPA/PAI-1 complex bound to fibrin will prevent the conversion of plasminogen to plasmin, required for clot
lysis. When plasma PAI-1 is elevated, it can prevent lysis of the fibrin clot. Elevated plasma PAI-1 levels have been identified as a risk factor for the development of CVD (Juhan-Vague & Alessi, 1996; Nordt et al., 2001; Vaughan, 2005; Peng et al., 2008).

2.3 PAI-1 measurement

There are several different principles on which the measurement of PAI-1 in plasma can be based. PAI-1 can be measured as PAI-1\textsubscript{act}, PAI-1\textsubscript{ag}, latent (inactive) PAI-1 and PAI-1 in complex with tPA (Booth et al., 1988; Declerck et al., 1988a; Macy et al., 1993). PAI-1\textsubscript{act} assays measure only the free active form of PAI-1, while PAI-1\textsubscript{ag} includes active and latent PAI-1 as well as tPA/PAI-1 complex (Juhan-Vague et al., 1987; Booth et al., 1988; Declerck et al., 1988a). It is important to note that not all PAI-1\textsubscript{ag} kits, however, measure all the forms of PAI-1 with equal affinity, which could result in significant differences in plasma PAI-1\textsubscript{ag} levels (Kluft & Jie, 1990). Commercial kits are also available for the measurement of tPA/PAI-1 complex, while no commercial kits are available for the measurement of latent PAI-1.

In section 2.2, mention was made of the controversy concerning the main form of PAI-1 released from the alpha granules of aggregated platelets, i.e. latent or active. As PAI-1\textsubscript{ag} includes the measurement of both active and latent PAI-1, the \textit{in vitro} release of PAI-1 from aggregated platelets (present in plasma) may significantly influence the plasma PAI-1\textsubscript{ag} level. It is also not yet clear what the effect of residual platelets in plasma is on PAI-1\textsubscript{act} \textit{per se}. When platelets are activated, the platelets undergo conformational change, aggregate and release the content of their secretory alpha granules (Ikeda et al., 1997; Kamath et al., 2001). There are several parameters that can be used to determine platelet activation. Firstly, there are soluble parameters measured in plasma and/or urine that are released from the platelet granules [e.g. beta thromboglobulin (βTG) and platelet factor 4 (PF4)]; secondly, there are molecules that are exposed on, and then shed from, the platelet surface (e.g. membrane glycoproteins, such as P-selectin, glycoprotein IIb/IIIa, glycoprotein V and glycocalcin); and lastly, metabolic molecules secreted from activated platelets can be measured (e.g. thromboxane and some members of the prostaglandin family) (Kamath et al., 2001; Gurney et al., 2002). Beta thromboglobulin and PF4 are examples of proteins that are released from platelets’ alpha granules (Feinberg et al., 1999; Gurney et al., 2002). A debate still exists regarding which of these parameters best reflects \textit{in vivo} platelet activation (Kamath et al., 2001; Gurney et al., 2002). While βTG is frequently used, the plasma levels of βTG can be influenced by several factors such as time of day, age, sample handling and preparation (Gurney et al., 2002). In addition, plasma levels of
βTG could also be raised in patients with renal failure, since the kidneys are responsible for removal of circulating βTG (Kamath et al., 2001). Platelet factor 4, on the other hand, is a heparin-binding protein and can be increased by the presence of an anti-coagulant in the blood (Gurney et al., 2002). It also has a short half-life as it is more rapidly bound to the endothelial cells than βTG (Kamath et al., 2001; Brydon et al., 2006). It is because of the rapid binding of PF4 to the endothelial cells that plasma levels of these two proteins vary considerably, despite the release of similar concentrations of βTG and PF4 from the alpha granules of the platelets (Kamath et al., 2001; Brydon et al., 2006). Therefore, a distinction can be made between in vivo and artefactual in vitro platelet release since a comparable increase in both PF4 and βTG in blood samples will probably indicate an in vitro release, as no endothelial cells are present to bind PF4 (Kaplan & Owen, 1981; Kamath et al., 2001). Although other contents of the platelets’ alpha granules are also released, including fibrinogen, α2-antiplasmin, albumin, plasminogen and vitronectin, to name a few, βTG and PF4 are preferentially used as parameters as they are platelet-specific and are not secreted by other cells (Gurney et al., 2002). Other parameters such as P-selectin and thromboxane can also be used to measure platelet activation; these parameters, however, are also not platelet-specific (Gurney et al., 2002). Other techniques that can be used to determine platelet activation include functional studies such as the use of aggregometry to measure spontaneous platelet aggregation and the expression of glycoproteins such as P-selection by flow cytometry (Gurney et al., 2002; Brydon et al., 2006).

Plasma PAI-1 levels can, furthermore, vary according to the technique used for sample collection and handling as a result of the presence of aggregated platelets (Macy et al., 1993). It is recommended that collection of blood samples should be done early in the morning after a fasting period to avoid daytime variations (circadian pattern) associated with PAI-1 or an interaction between PAI-1 and nutritional aspects (Macy et al., 1993). In addition, blood should flow freely into the collection container, and prolonged use of a tourniquet or considerable manipulation of the vein by the needle should be avoided to prevent clotting of the sample in vitro (Ernst & Ernst, 2003). In vitro clot formation can also be prevented by ensuring complete distribution of anticoagulant within the sample, while vigorous shaking should be avoided as this can induce haemolysis or activate platelets (Ernst & Ernst, 2003). Blood samples should also be collected in an anticoagulant mix, such as sodium citrate (3.2 or 3.8%) tubes, to avoid in vitro interaction and/or activation of PAI-1 or platelets within the plasma (Funk, 2013). Although either 3.2% or 3.8% sodium citrate tubes are acceptable, it is important to know that clotting times tend to be longer in the 3.8% versus the 3.2% sodium citrate tubes (Funk, 2013). Samples should also not be placed on ice before centrifugation as this will enhance platelet activation (Böhm et al., 2006). The platelet content within the sample should ideally also be...
determined. According to the guidelines of the Clinical and Laboratory Standard Institute (CLSI), platelet-poor plasma (PPP) i.e. plasma with a platelet count <10 x 10^9/L, can be obtained by centrifuging the blood at no less than 1,500 g for 15 minutes (Arkin et al., 2003). After centrifugation, the middle layer of the plasma should be extracted and stored at a minimum of -70°C (Macy et al., 1993). Plasma can also be collected in tubes containing platelet inhibitors, such as CTAD tubes, to prevent in vitro platelet activation and/or degradation, which may influence PAI-1 assays (Funk, 2013).

In reviewing the literature, discrepancies in the plasma PAI-1_\text{act} and PAI-1_\text{ag} levels in African (and African American) and white population groups were recognised. Summarised in Table 2.1 is a comparison between the measurements of plasma PAI-1_\text{act} and PAI-1_\text{ag} in different ethnic groups (African, African American and European). Special attention was given to sample preparation and handling procedures, method of sample analysis and the resulting effect observed on either plasma PAI-1_\text{act} or PAI-1_\text{ag} levels. Studies that investigated plasma PAI-1_\text{act} levels reported consistently higher plasma PAI-1_\text{act} levels in white South African participants compared with black South African participants (Jerling et al., 1994; Greyling et al., 2007). Studies that investigated plasma PAI-1_\text{ag} levels, however, showed inconsistent results, with some studies reporting higher plasma PAI-1_\text{ag} levels in African Americans (Matthews et al., 2005). Other studies found no significant differences between white American and African American groups (Perry et al., 2008), whereas some reported higher PAI-1_\text{ag} levels in white compared with African and African American groups (Festa et al., 2003; Lutsey et al., 2006; Naran et al., 2008).

From the summary in Table 2.1 it is evident that a range of different commercial PAI-1 assays and immunological methods is often used to determine plasma PAI-1 levels. Despite the importance of standardised sampling procedures to avoid the presence of platelets in plasma, most studies do not give detailed information on the methods followed during sample collection, handling and analysis (Table 2.1). As no standardised method of PAI-1_\text{act} and PAI-1_\text{ag} measurements is being employed, it is difficult to draw conclusions regarding levels of PAI-1_\text{act} and PAI-1_\text{ag} in different ethnic groups, and even between different research groups.

Apart from methodological issues, plasma PAI-1 levels are also influenced by genetic and non-genetic or environmental determinants. The different determinants of plasma PAI-1 levels will be the focus of the next section.
Table 2.1: Comparison of plasma PAI-1$_{act}$ and PAI-1$_{ag}$ levels between black (African and African American) and white ethnic groups

<table>
<thead>
<tr>
<th>Measuring</th>
<th>Reference</th>
<th>Participants</th>
<th>Sample preparation</th>
<th>Kit used for analysis</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>of PAI-1${act}$ or PAI-1${ag}$</td>
<td>PAI-1$_{act}$ ↓ African</td>
<td>Healthy non-smoking male participants aged 18 to 23 years with a BMI range of 19-24 kg/m2. Sample consisted of 32 participants, of whom 15 were urban whites and 17 black Venda participants.</td>
<td>1. Sample collection: Fasting blood samples were collected by means of a 21-gauge Johnson & Johnson scalp vein infusion set. Samples were collected between 07:00 and 10:00 AM.</td>
<td>Plasma PAI-1$_{act}$ was measured using an indirect enzymatic method. Spectrolyse pL, Biopool, Umea, Sweden, Cat. No. 1012011.</td>
<td>Increased plasma PAI-1$_{act}$ levels in urban whites compared with black Venda participants were found (12.5 [8.50; 14.60] versus 0.80 [0.00; 5.4] U/mL, p<0.0001).</td>
</tr>
<tr>
<td></td>
<td>Jerling et al.</td>
<td>Healthy non-smoking male participants aged 18 to 23 years with a BMI range of 19-24 kg/m2. Sample consisted of 32 participants, of whom 15 were urban whites and 17 black Venda participants.</td>
<td>1. Sample collection: Fasting blood samples were collected by means of a 21-gauge Johnson & Johnson scalp vein infusion set. Samples were collected between 07:00 and 10:00 AM.</td>
<td>Plasma PAI-1$_{act}$ was measured using an indirect enzymatic method. Spectrolyse pL, Biopool, Umea, Sweden, Cat. No. 1012011.</td>
<td>Increased plasma PAI-1$_{act}$ levels in urban whites compared with black Venda participants were found (12.5 [8.50; 14.60] versus 0.80 [0.00; 5.4] U/mL, p<0.0001).</td>
</tr>
<tr>
<td></td>
<td>(1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAI-1$_{act}$ ↓ African</td>
<td>95 African and 114 white healthy urban women, between 1. Sample collection: Fasting (10 hours) venous blood samples were collected by means of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greyling et al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22
Table 2.1 (continued): Comparison of plasma PAI-1\textsubscript{act} and PAI-1\textsubscript{ag} levels between black (African and African American and white ethnic groups

<table>
<thead>
<tr>
<th>PAI-1\textsubscript{ag}</th>
<th>Festa \textit{et al.} (2003)</th>
<th>Men and women from three ethnic groups were studied: non-Hispanic whites, Hispanic and African American aged 40 to 69 years.</th>
</tr>
</thead>
</table>

1. **Sample collection:** Fasting (24 hours) blood samples were collected. No information provided on the method used to draw blood or the time of day the samples were taken.
2. **Type of tube used for blood sample collected:** Citrate tubes
3. **Method of sample handling:** Citrate sample was centrifuged for a minimum of 10 min at 3000 g to ensure no contamination from

Plasma PAI-1\textsubscript{ag} was measured by means of a two-site ELISA that is 12 times more sensitive to plasma free active and latent PAI-1, but not to tPA/PAI-1 complex (Declerck & Collen, 1990). This assay utilises the IgG fraction of monoclonal antibody 7D4 or 15H12 as capturing antibody.

- **PAI-1\textsubscript{ag}**
- **Festa \textit{et al.}**
- **1564 Men and women from three ethnic groups were studied: non-Hispanic whites, Hispanic and African American aged 40 to 69 years.**

PAI-1\textsubscript{ag} levels were found to be lower in blacks (SEM 13.38 [0.71] ng/mL) than in non-Hispanic whites (SEM 18.19 [0.80] ng/mL).
Table 2.1 (continued): Comparison of plasma PAI-1_{act} and PAI-1_{ag} levels between black (African and African American and white ethnic groups

<table>
<thead>
<tr>
<th>PAI-1<sub>ag</sub></th>
<th>Matthews et al. (2005)</th>
<th>2834 Women with CVD risk factors between the ages of 42 and 52 years from five different ethnic groups – White (n=1400), African American (n=729), Hispanic (n=226), Chinese (n=231) and Japanese (n=248) – participated in the study.</th>
<th>1. Sample collection: Fasting (10 hours) blood samples were collected. No indication of the method that was used to draw the blood samples or the time of day samples was collected. Type of tube used for blood sample collected: Type of tube used for blood sampling was not indicated. Method of sample handling: Samples were maintained at 4°C until frozen at -80°C. No indication of sample centrifugation or storage was provided.</th>
<th>Plasma PAI-1<sub>ag</sub> was measured by means of a commercial kit from American Diagnostica, IMUBIND®. This kit entails a solid-phase monoclonal antibody and a secondary enzyme-labelled coating antiserum. African Americans were found to have higher plasma PAI-1<sub>ag</sub> levels than white participants. Hispanic participants’ plasma PAI-1<sub>ag</sub> levels were significantly higher than those of the other groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-1<sub>ag</sub></td>
<td>Perry et al. (2008)</td>
<td>The participants were 36 healthy white American</td>
<td>1. Sample collection: Participants were required to remain still for at least five min prior to A commercial kit from Diagnostic Stago, Inc.</td>
<td>No significant race relationship was observed for</td>
</tr>
</tbody>
</table>
Table 2.1 (continued): Comparison of plasma PAI-1act and PAI-1ag levels between black (African and African American and white ethnic groups

<table>
<thead>
<tr>
<th>PAI-1ag (↓ African)</th>
<th>Lutsey et al. (2006)</th>
<th>Plasma PAI-1ag was determined in 996 participants.</th>
</tr>
</thead>
</table>

1. **Sample collection:**
 Blood collection method was not specified.

2. **Type of tube used for blood sample collected:**
 The type of tube use for blood sample collected was not provided.

3. **Method of sample handling:**
 No indication of sample centrifugation or storage was provided.

(Asserachrom → PAI-1) plasma PAI-1ag. In a subgroup of the participants, identified with a VAT measurement ≤ 2.0 cm², higher plasma PAI-1ag level was found in African American women than in the white American women.

In males lower plasma PAI-1ag concentration was reported for black than for white participants; however, among females no differences in to free PAI-1. 7F5-HRP plasma PAI-1ag

sample collection. Blood was drawn from the antecubital vein after a 12-hour fasting period. Samples were analysed within one week of collection. Time of sample collection was not specified.

2. **Type of tube used for blood sample collected:**
 Citrate tubes

3. **Method of sample handling:**
 No indication of sample centrifugation or storage was provided.

Plasma PAI-1ag was measured with a two-site ELISA in-house method. The IgG fraction of 7D4 monoclonal antibody was utilised as the coating antibody. This monoclonal antibody is five times more sensitive to free PAI-1. 7F5-HRP
Table 2.1 (continued): Comparison of plasma PAI-1_{act} and PAI-1_{ag} levels between black (African and African American and white ethnic groups

<table>
<thead>
<tr>
<th>PAI-1<sub>ag</sub></th>
<th>Study</th>
<th>Participants</th>
<th>Sample collection</th>
<th>Type of tube used for blood sample collected</th>
<th>Method of sample handling</th>
<th>Sample collection:</th>
<th>PAI-1<sub>ag</sub> levels were determined by means of a commercial kit (Coaliza PAI-1 kit, Chromogenix, Milano, Italy).</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-1<sub>ag</sub></td>
<td>Wong et al. (2006)</td>
<td>924 Participants aged 45 to 85 years without a history of CVD were included.</td>
<td>Fasting (eight hours) blood samples were used. No further information on sample collection was provided.</td>
<td>No indication of the type of tube used for sample collection was given.</td>
<td>The method followed during sample handling procedures was not provided.</td>
<td>Plasma PAI-1<sub>ag</sub> levels were higher in white participants than the black participants. The highest plasma PAI-1<sub>ag</sub> levels were found in the Chinese group.</td>
<td></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub></td>
<td>Naran et al. (2008)</td>
<td>Either diabetic or non-diabetic participants were included from three different ethnic groups: Indian (120 non-diabetic and 20 diabetic), White (158 non-diabetic)</td>
<td>Fasting blood samples were drawn from the antecubital vein (with minimum stasis) between 8:00 and 9:00 AM.</td>
<td>Samples were collected in pre-cooled tubes.</td>
<td>It was not specified whether a commercial kit or in-house method was used to measure plasma PAI-1<sub>ag</sub>.</td>
<td>Mean plasma PAI-1<sub>ag</sub> concentration was found to be significantly higher in white than in African participants. However, in participants with</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.1 (continued): Comparison of plasma PAI-1_{act} and PAI-1_{ag} levels between black (African and African American and white ethnic groups and 55 diabetic) and African (91 non-diabetic and 9 diabetic).

<table>
<thead>
<tr>
<th>Method of sample handling:</th>
<th>MetS, no racial differences were found.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples were held on ice until centrifugation at 200 x g for 20 min at 4°C and were stored at -70°C until assayed.</td>
<td></td>
</tr>
</tbody>
</table>

| Body mass index (BMI); cardiovascular disease (CVD); enzyme-linked immunosorbent assay (ELISA); gravitational acceleration (g); immunoglobulin G (IgG), minutes (Min); metabolic syndrome (MetS); plasminogen activator inhibitor-1 (PAI-1), PAI-1 antigen (PAI-1_{ag}); PAI-1 activity (PAI-1_{act}); standard error of mean (SEM); tissue plasminogen activator (tPA); visceral adipose tissue (VAT) |
2.4 Factors influencing PAI-1 plasma levels

Plasma PAI-1 levels are affected by several genetic and non-genetic determinants, as summarised in Table 2.2. Mechanisms of action are also included in Table 2.2, indicating the possible pathway by which these determinants can modify plasma PAI-1 levels. The human PAI-1 (SERPINE) gene is located at region q21.3-q22 of chromosome 7 with an approximate size of 12.2 kilo bases (kb) and consists of nine exons and eight introns (Strandberg et al., 1988). Several polymorphisms have been identified within the PAI-1 gene, to name a few, rs2227631 [a -844 G/A single-nucleotide polymorphism (SNP)], rs1799889 [a single-nucleotide insertion/deletion (indel) polymorphism located in the promoter region at -675 4G/5G], a SNP recognised by the HindIII restriction enzyme in restriction fragment length (RFLP) assays, a cytosine-adenine (CA)n dinucleotide repeat and a nine-nucleotide indel polymorphism at 11,320 base pair (bp) (Strandberg et al., 1988; Dawson et al., 1991; Nordt et al., 2001). However, not all polymorphisms within the PAI-1 gene have been associated with plasma PAI-1 levels (Henry et al., 1997; De Lange et al., 2013).

According to Roche et al. (2011), there are three different types of point mutations, namely transition, transversion and indel. Transition is the replacement of one purine or pyrimidine base by the other (adenine↔guanine; thymine↔cytosine) and occurs at a greater frequency than transversion (Roche et al., 2011). Transversion occurs when one purine is replaced by a pyrimidine or vice versa (cytosine↔adenine; cytosine↔guanine; thymine↔adenine; thymine↔guanine) (Roche et al., 2011). An example of transition in the PAI-1 gene is the substitution of a single guanine to an adenine in the -844 G/A bp. Indel refers to the insertion or deletion of a single base into one genome relative to another in such a way that a change takes place in the reading of the nucleotide sequence, as well as in the expression of the amino acids (Roche et al., 2011). This type of mutation is also referred to as frame-shift mutation. The indel mutation within the PAI-1 gene is located at bp -675 and leads to either the 4G or 5G sequence (Nordt et al., 2001). It has been observed that individuals with the homozygous form (-675 5G/5G) of the indel PAI-1 polymorphism have lower plasma PAI-1 levels than individuals with the heterozygous form (-675 4G/5G) (Sartori et al., 2001; Kathiresan et al., 2005; Bouchard et al., 2010; Incalcaterra et al., 2014). Individuals with the 4G/4G genotype, however, have been found to have significantly higher PAI-1 act levels than individuals with the 5G/5G genotype (Pieters et al., 2010). Being located in the promoter region of the PAI-1 gene, the -675 4G/5G PAI-1 polymorphism can regulate gene expression and the functional attributes of the PAI-1 gene (Nordt et al., 2001). Genetic variation in the DNA sequence of the PAI-1 gene contributes
to interpersonal variants in PAI-1 expression and plasma PAI-1 level (Lijnen, 2005). The identification of such PAI-1 polymorphisms is important in identifying individuals that are prone to the development of elevated plasma PAI-1 levels and are, therefore, also at greater risk of fibrinolytic irregularities. Only those PAI-1 polymorphisms frequently reported in the literature to affect plasma PAI-1 levels were included in Table 2.2.

Apart from the genetic determinants included in Table 2.2, several non-genetic determinants were also identified through the literature. Prospective studies relating to the non-genetic determinants of PAI-1 are still lacking and studies investigating PAI-1 determinants were mostly performed using cross-sectional research methods (Mykkänen et al., 1994; Gray et al., 1995; Margaglione et al., 1998; Morange et al., 1999; Mertens et al., 2006; Asselbergs et al., 2007). Consequently, insufficient information is available on the effect of non-genetic determinants on plasma PAI-1 levels over time.

The purpose of Table 2.2 is to provide a critical overview of the genetic and non-genetic determinants that result in altered plasma PAI-1_{act} and/or PAI-1_{ag} levels. It should be mentioned that associations between PAI-1 and many of these determinants were not consistently found in all studies and there were also studies that found that these determinants had no effect on or association with PAI-1 (Haglund et al., 1994; Prisco et al., 1994; Grubic et al., 1996; Henry et al., 1997; Finnegan et al., 2003; Torres-Carrillo et al., 2008).
Table 2.2: Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Determinants: Genetic</th>
<th>Effect on plasma PAI-1<sub>ag</sub> and/or PAI-1<sub>act</sub></th>
<th>Possible mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1799889 (PAI-1 -675 4G/5G)</td>
<td>Higher plasma PAI-1<sub>act</sub> (Eriksson et al., 1995; Panahloo et al., 1995; Henry et al., 1998; Incalcaterra et al., 2014) and PAI-1<sub>ag</sub> (Margaglione et al., 1998; Sartori et al., 2001; Kathiresan et al., 2005; Ding et al., 2006) levels associated with the 4G allele.</td>
<td>The -675 4G/5G is a single-nucleotide indel polymorphism located in the promoter region of the PAI-1 gene that leads to either the 4G or 5G sequence (Nordt et al., 2001). In the 5G allele a repressor protein binds to the promoter area of the PAI-1 gene, resulting in relatively reduced transcription of PAI-1 and consequently lower plasma PAI-1 levels (Dawson et al., 1993; Eriksson et al., 1995; Nordt et al., 2001).</td>
</tr>
<tr>
<td>rs2227631 (PAI-1 -844 A/G)</td>
<td>This PAI-1 polymorphism has been associated with higher PAI-1<sub>ag</sub> levels (Henry et al., 1998; Kathiresan et al., 2005; Morange et al., 2007; Bouchard et al., 2010).</td>
<td>The -844 G/A PAI-1 SNP is located in the promoter region of the PAI-1 gene (Nordt et al., 2001). Being located in the promoter region, it could be directly responsible for changes in plasma PAI-1 levels as it can influence gene transcription. It is challenging, however, to determine the independent effect of -844 A/G on plasma PAI-1 levels, since it is in strong LD with the -675 4G/5G PAI-1 polymorphism (Henry et al., 1998; Kathiresan et al., 2005; Bouchard et al., 2010).</td>
</tr>
<tr>
<td>rs2227666</td>
<td>Individuals harbouring the A allele</td>
<td>Both of these PAI-1 polymorphisms are located in an intron region of the PAI-1 gene,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
<th>Description</th>
<th>Reference/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2227694</td>
<td>(G/A) for the SNPs at rs2227666 or rs2227694 have higher plasma PAI-1_{ag} and it seems that their effect on plasma PAI-1 levels is related to their association with the -844 A allele (Morange et al., 2007).</td>
<td>(Morange et al., 2007). rs2227674 has been found to significantly (p=0.03) explain the residual variance in multivariable-adjusted PAI-1_{ag} levels (Kathiresan et al., 2005).</td>
</tr>
<tr>
<td>rs6465787</td>
<td>(C/T) This SNP has been observed to explain the residual variance in multivariable-adjusted PAI-1_{ag} levels (Kathiresan et al., 2005).</td>
<td>This PAI-1 polymorphism is located at the 5’ flanking region that is 3 kb upstream of the 4G/5G PAI-1 indel (Kathiresan et al., 2005). The reasons for the association between rs6465787 (C/T) and plasma PAI-1 levels are currently not known.</td>
</tr>
<tr>
<td>rs6092</td>
<td>(Ala/Thr) This SNP has been observed to contribute to plasma PAI-1_{ag} levels (Bouchard et al., 2010).</td>
<td>According to Morange et al. (2007), this PAI-1 polymorphism is located in an exon (coding) region of the PAI-1 gene. Although the mechanism behind the association of this polymorphism with plasma PAI-1 levels is unknown, it could be related to its functional location on the PAI-1 gene.</td>
</tr>
<tr>
<td>+12078</td>
<td>G/A This SNP has been associated with increased plasma PAI-1 levels (Henry et al., 1998).</td>
<td>Being located in the 3’ region, +12078 G/A could possibly be involved in the posttranscriptional regulation of the PAI-1 gene (Fattal et al., 1992). Yet it is also in strong linkage with both the -844G and -675 PAI-1 polymorphisms and it is difficult,</td>
</tr>
</tbody>
</table>

Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Determinants: Non-genetic</th>
<th>Effect on plasma PAI-1${ag}$ and/or PAI-1${act}$</th>
<th>Possible mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central obesity</td>
<td>Associated with increased plasma PAI-1${ag}$ levels (Shimomura et al., 1996; Alessi et al., 1997; Eriksson et al., 1998; Alessi et al., 2000b) and plasma PAI-1${act}$ levels (Eriksson et al., 1998)</td>
<td>The association between increased plasma PAI-1 levels and central obesity can be explained by the high numbers of stromal cells located in VAT, which seems to be the main source of PAI-1 in adipose tissue (Bastelica et al., 2002). Another possible mechanism for this association between PAI-1 and central obesity could be related to cytokine (TGF-β1, TNF-α and IL-1) disturbances, often seen in individuals with central obesity, and which are known to increase PAI-1 expression (Eriksson et al., 1998;</td>
</tr>
</tbody>
</table>
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Details</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood lipids</td>
<td>HDL-chol has a negative association with plasma PAI-1<sub>ag</sub> levels (Asselbergs et al., 2007; Barbato et al., 2009; Raiko et al., 2012).</td>
<td>The mechanism behind the association of HDL-chol with PAI-1 is unknown.</td>
</tr>
<tr>
<td>Blood lipids</td>
<td>Serum triglyceride levels are associated with increased plasma PAI-1<sub>ag</sub> (Margaglione et al., 1998; Schoenhard et al., 2008; Barbato et al., 2009; Raiko et al., 2012) and PAI-1<sub>act</sub> levels (Gray et al., 1995; Panahloo et al., 1995; Scarabin et al., 1998).</td>
<td>The association between PAI-1 and triglyceride could be related to VLDL, as triglycerides are predominantly transported in VLDL (Ramasamy, 2014). A VLDL response element in the PAI-1 promoter area mediates VLDL-induced PAI-1 transcription (Nilsson et al., 1998) and promotes PAI-1 gene up-regulation (Eriksson et al., 1998; Olufadi & Byrne, 2006). The observed association has been identified to be a result of VLDL stimulating PAI-1 production from endothelial and HepG2 cells (Mussoni et al., 1992; Allison et al., 1999).</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>Insulin resistance is positively associated with increased plasma PAI-1<sub>act</sub> (Vague et al., 1989; Bavenholm et al., 1998; Mavri et al., 2001; Aubert et al., 2003; Mertens et</td>
<td>The mechanism responsible for the association between IR and PAI-1 is largely unknown, although it has been explained by disturbances at adipose tissue level (Juhan-Vague & Alessi, 1996; Juhan-Vague et al., 1999; Alessi et al., 2000b; Solano et al., 2003). Such disturbances include the secretion of IR-related cytokines (TGF-β1 and TNF-α), which also stimulate PAI-1 expression in adipose tissue (Eriksson et al., 1998;</td>
</tr>
</tbody>
</table>
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Description</th>
<th>Possible Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension/renin-angiotensin pathway</td>
<td>Associated with increased plasma PAI-1<sub>act</sub> (Yarnell et al., 2000; Pieters et al., 2014) and PAI-1<sub>ag</sub> (Margaglione et al., 1998; Poli et al., 2000; Wang et al., 2007; Lieb et al., 2009) levels.</td>
<td>The renin-angiotensin pathway plays an important role in the regulation of blood pressure. Renin activates angiotensin-I, which is converted to angiotensin-II by ACE. This results in vascular constriction and an increase in blood pressure (Swales & Samani, 1993). One possible mechanism for the increase in plasma PAI-1 levels associated with high blood pressure could be related to the stimulating effect of angiotensin-II on PAI-1 production, as seen in vivo (Ridker et al., 1993) and in vitro (Vaughan et al., 1995; Mehta et al., 2002). Also, a polymorphism in the ACE gene loci was found to correlate with increased PAI-1 levels (Margaglione et al., 1998). Other possible mechanisms could be through accelerated perivascular and media fibrosis (Kaikita et al., 2001) or increased shear stress or endothelial dysfunction (Poli et al., 2000).</td>
</tr>
<tr>
<td>Gender difference</td>
<td>Higher plasma PAI-1<sub>ag</sub> (Gebara et al., 1995; Margaglione et al., 1998; Lutsey et al., 2006; Asselbergs et al., 2007) and PAI-1<sub>act</sub> (Krishnamurti et al., 1988; Sundell et al., 1989; Oestrogen might increase the clearance rate of plasma PAI-1 levels in pre-menopausal women (Lansink et al., 1999; Gopal et al., 2012). The effect could also be related to differences in WHR and fat distribution between men and women (Van Kesteren et al., 1998; Van Harmelen et al., 2000). The higher PAI-1<sub>act</sub> levels in African women are only in part related to the higher prevalence of obesity and the difference in fat deposition.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacroix et al., 1996) levels were found in white men compared with white pre-menopausal women. However, in an African population, higher PAI-1(_{\text{act}}) levels were found in the women compared with the men (Pieters et al., 2010).</td>
</tr>
<tr>
<td>Plasma PAI-1({\text{act}}) (Hashimoto et al., 1987; Berge et al., 2013) and PAI-1({\text{ag}}) levels increase with age (Tofler et al., 2005; Peng et al., 2008; Raiko et al., 2012).</td>
</tr>
<tr>
<td>Increased plasma PAI-1 levels seem to be induced by a variety of pathogens associated with the ageing process (MI, cerebral infarction, cancer, endothelial dysfunction, obesity, IR, hypertension and low-grade inflammation) (Tofler et al., 2005; Yamamoto et al., 2014).</td>
</tr>
<tr>
<td>Inconsistent findings; some intervention studies report that n-3 fatty acid supplementation increases plasma PAI-1(_{\text{act}}) level (Schmidt et al., 1990; Spannagl et al., 1991; Oosthuizen et al., 1994; Grundt et al., 1999), whereas other studies show no effect (Prisco et al., 1994; Toft et al., 1997; Hansen et al., 1994). The mechanism of action responsible for the association between plasma PAI-1 levels and n-3 polyunsaturated fatty acids is not fully understood. In vitro studies of cultured cells have suggested this observation could probably be related to the VLDL response element in the PAI-1 gene (Nilsson et al., 1998) or through activation of protein kinase C (Banfi et al., 1997).</td>
</tr>
</tbody>
</table>
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000; Finnegan et al., 2003). Observational studies mostly report a positive association between n-3 fatty acids and increased plasma PAI-1(^{act}) levels (Haglund et al., 1994; Byberg et al., 2001). Only a few studies analysed the effect of n-3 fatty acids on plasma PAI-1(^{ag}) levels, though data are also inconclusive (Haglund et al., 1994; Prisco et al., 1994).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>Heavy drinking is associated with higher plasma PAI-1(^{ag}) (Margaglione et al., 1998; Djoussé et al., 2000; Mukamal et al., 2001; Sasaki et al., 2001) and PAI-1(^{act}) levels (Hendriks et al., 1994; Sasaki et al., 2001; Pieters et al., 2010). Mechanisms for these associations are not completely understood. A possible pathway could be through the association of PAI-1 with triglyceride, explained by the VLDL response element in the PAI-1 promoter area (Nilsson et al., 1998), as previously mentioned. Increased triglyceride levels are associated with heavy alcohol consumption and, therefore, it is also likely that the increase in PAI-1 levels with alcohol consumption could be a consequence of the distorted triglyceride levels (Scarabin et al., 1998). On the other hand, in vitro investigations have found that low doses of alcohol down-regulate transcription of PAI-1 in cultured human endothelial cells (Booyse et al., 1999; Grenett et al., 2000).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Physical activity</th>
<th>Circadian pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased plasma PAI-1_act and PAI-1_ag levels were found in untrained individuals (Francis et al., 2014).</td>
<td>Strong positive effect on plasma PAI-1_ag (Johansen et al., 1991; Van der Bom et al., 2003) and PAI-1_act (Angleton et al., 1989; Hoekstra et al., 2002) levels, characterised by the circadian pattern of PAI-1 is mediated by two heterodimers (CLOCK:BMAL1 and CLOCK:BMAL2) that bind to the promoter area of PAI-1 and thereby regulate PAI-1 expression (Schoenhard et al., 2003).</td>
</tr>
<tr>
<td>Short-term physical activity* decreases both PAI-1_ag (Ribeiro et al., 2007) and PAI-1_act (Eriksson-Berg et al., 2002).</td>
<td></td>
</tr>
<tr>
<td>Long-term / regular physical activity** decreases plasma PAI-1_act level (De Geus et al., 1992; El-Sayed, 1996; Fernhall et al., 1997; Jahangard et al., 2009; Kupchak et al., 2013; Francis et al., 2014) and PAI-1_ag (Lira et al., 2010).</td>
<td></td>
</tr>
</tbody>
</table>

Physical activity has been associated with an increase in plasma tPA_act and a decrease in plasma PAI-1_act (Fernhall et al., 1997; DeSouza et al., 1998), which could result from the formation of tPA/PAI-1 complexes. This observed change in plasma tPA_act and PAI-1_act levels could be related to changes in liver blood flow and clearance of tPA/PAI-1 complex (Fras et al., 2004). Decreased PAI-1 levels also possibly reflect exercise-related beneficial changes in factors such as body composition, cardiovascular fitness (El-Sayed, 1996; Francis et al., 2014) and lipid levels (lower plasma triglyceride; LDL-chol and T-chol concentration) (De Geus et al., 1992; Lira et al., 2010).
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Possible Mechanisms of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher PAI-1 levels in the early morning than in the afternoon.</td>
<td></td>
</tr>
<tr>
<td>Acute-phase response</td>
<td>Plasma PAI-1\textsubscript{ag} levels are strongly increased in response to inflammation, as seen in sepsis (Mesters et al., 1996; Green et al., 2002; Zeerleder et al., 2006) and atherosclerosis (Peng et al., 2008). TGF-β1, TNF-α and IL-6 are inflammatory mediators that modulate the stimulation of acute-phase proteins such as PAI-1 (Binder et al., 2002). TNF-α can also be stimulated by lipopolysaccharides, which in turn results in the production of PAI-1 from endothelial cells and leads to an increased plasma PAI-1 level (Binder et al., 2002). TGF-β1 is released from platelets following vascular injury (Binder et al., 2002) and, therefore, also contributes to the elevated plasma PAI-1 levels associated with inflammation.</td>
</tr>
<tr>
<td>Smoking</td>
<td>Associated with increased plasma PAI-1\textsubscript{ag} (Margaglione et al., 1998; Coffey et al., 2011) and PAI-1\textsubscript{act} levels (Haaland et al., 1992; Ishizaki et al., 1996; Yarnell et al., 2000). The increase in plasma PAI-1 levels associated with regular smoking might be caused by the damaging effects of cigarette smoke on the vascular endothelium (Sasaki et al., 2001). This seems likely as endothelial cells, among others, are known to be responsible for PAI-1 production (Kruithof, 1988). In HUVECs, cigarette smoke extract has been found to damage the vascular endothelial cells by the c-J N-terminal kinase pathway, partly by means of oxidative stress (Hoshino et al., 2005).</td>
</tr>
</tbody>
</table>

Alanine (A); angiotensin converting enzyme (ACE); C-reactive protein (CRP); cytosine-adenine (CA); guanine (G); high-density lipoprotein-cholesterol (HDL-CHOL); human umbilical vein endothelial cells (HUVECs); insertion/deletion (indel); insulin resistance (IR); interleukin 1 (IL-1); interleukin 6 (IL-6); linkage disequilibrium (LD); low-density lipoprotein-cholesterol (LDL-CHOL); myocardial infarction (MI); plasminogen activator inhibitor-1 (PAI-1); PAI-1 antigen (PAI-1\textsubscript{ag}); PAI-1 activity (PAI-1\textsubscript{act}); single-nucleotide polymorphism (SNP); tissue plasminogen activator (tPA); total cholesterol (T-CHOL); transforming growth factor-β1 (TGF-β1); tumour necrosis factor-α (TNF-α); visceral adipose tissue
Table 2.2 (continued): Summary of genetic and non-genetic determinants of plasma PAI-1 levels and possible mechanisms of action

(VAT); very low-density lipoprotein (VLDL); waist-to-hip ratio (WHR). * acute submaximal physical exercise of ≤ 30 min; ** following exercise programme of 3-5 times per week of 30-45 min per session ≥ 3 months.
2.5 PAI-1 and obesity

The association between PAI-1 and obesity is well established, and has been found in animal as well as human studies (Samad & Loskutoff, 1996; Shimomura et al., 1996; Alessi et al., 1997; Eriksson et al., 1998). Samad and Loskutoff (1996) were the first to describe the expression of PAI-1 by adipose tissue in genetically modified obese mice. They reported PAI-1 expression to be five times higher in obese mice than in their lean counterparts (Samad & Loskutoff, 1996). In human studies, the production and expression of PAI-1 in adipose tissue have been studied through in vitro (Alessi et al., 1997; Giltay et al., 1998; Cigolini et al., 1999; Alessi et al., 2000b; Bastard et al., 2000; Bastelica et al., 2002; Lindeman et al., 2007) and in vivo studies (Mykkanen et al., 1994; De Pergola et al., 1997; Janand-Delenne et al., 1998; Peverill et al., 2007; Ekström et al., 2012). Obese individuals, specifically those with central obesity, have been shown to have increased plasma PAI-1 levels (Vague et al., 1989; De Pergola et al., 1997; Alessi et al., 2000b). Abdominal fat deposition takes place in two main fat depots [subcutaneous adipose tissue (SCAT) and intra-abdominal or visceral fat tissue (VAT)], which differ regarding PAI-1 expression. PAI-1 is considered by many to be expressed more in VAT than SCAT (Alessi et al., 1997; Cigolini et al., 1999; Bastelica et al., 2002). This seems to be related to structural and functional differences between VAT and SCAT. Visceral adipose tissue, present in the abdominal viscera in the mesentry and omentum, produces more pro-inflammatory cytokines, such as tumour necrosis factor-α (TNF-α), C-reactive protein (CRP) and interleukin-6 (IL-6) (Ibrahim, 2010), and also contains more stromal cells, the cellular component of adipose tissue that produces PAI-1 (Bastelica et al., 2002). In contrast, SCAT expresses more leptin and adiponectin and is found mainly in the femoral-gluteal regions, back and anterior abdominal wall (Ibrahim, 2010). In the following section, differences in PAI-1 expression in VAT and SCAT will be discussed by comparing the findings of in vitro and in vivo studies.

2.5.1 Ex vivo and in vivo studies on PAI-1 expression and synthesis in different fat depots (VAT and SCAT)

In ex vivo experiments, human abdominal fat tissue samples were used to compare PAI-1 production and secretion in SCAT versus VAT (Cigolini et al., 1999; Eriksson et al., 2000; Gottschling-Zeller et al., 2000; Bastelica et al., 2002). Results from many ex vivo studies indicate that VAT produces high levels of PAI-1 and has a greater capacity for PAI-1 messenger ribonucleic acid (mRNA) expression in comparison with SCAT. PAI-1 mRNA
expression in VAT has been reported to be five times higher than in abdominal SCAT (Alessi et al., 2000b; Bastelica et al., 2002). Supporting studies have shown PAI-1 secretion from adipocytes to be significantly higher in VAT depots when compared with SCAT depots, and as being an independent predictor of plasma PAI-1act in healthy men (Cigolini et al., 1999).

Eriksson et al. (2000), however, reported that PAI-1 expression from abdominal SCAT was approximately two times higher than from abdominal VAT in severely obese white individuals. Additionally, females were found to have a significant depot-specific PAI-1 secretion, with SCAT producing higher levels of PAI-1 than VAT (Eriksson et al., 2000). These depot-specific differences were not observed in men (Eriksson et al., 2000). These results differ from findings from other studies suggesting that VAT is the major source of plasma PAI-1act (Bastelica et al., 2002). Differences in findings could possibly be explained by the cell size of the different adipose tissue depots or even differences in study populations with regard to body mass index (BMI). In contrast with other studies (Alessi et al., 1997; Morange et al., 1999; Eriksson et al., 2000), Eriksson et al. (2000) expressed their results as nanograms of PAI-1 expressed / 10^7 cells, instead of ng/g adipose tissue. Since the cell size of the SCAT was found to be larger than that of VAT, it could have influenced the results significantly. Other studies included overweight and obese participants with a wider BMI range of 18 to 28 kg/m^2 (Alessi et al., 1997) and 21 to 40 kg/m^2 (Morange et al., 1999) as compared with the study population (mean BMI 43.1±1.2 kg/m^2) of Eriksson et al. (2000), indicating the possibility that degree of obesity might influence regional differences in PAI-1 secretion.

The importance of the contribution of accumulated SCAT to increased plasma PAI-1 levels has also been pointed out in other studies. Morange et al. (1999) reported a high correlation between PAI-1 production by VAT and SCAT, which suggested a similar regulatory pathway of PAI-1 in these two adipose depots, despite their different anatomic and metabolic characteristics. A study by Mavri et al. (2001) investigated PAI-1 expression from two subcutaneous territories (abdominal and femoral) in obese and lean individuals. The results of the Mavri et al. (2001) study found higher PAI-1 mRNA content in the abdominal SCAT in obese participants than in lean participants, which was also correlated with plasma PAI-1ag levels, even after the obese participants lost weight. However, PAI-1 mRNA content in the femoral SCAT was the same in both the lean and obese groups and showed no association
with plasma PAI-1 values (Mavri et al., 2001). This study supports the influence of regional fat distribution on elevated plasma PAI-1 levels in obese participants.

Unlike ex vivo studies, in vivo studies often use computed tomography to assess the different fat depots (SCAT and VAT) to determine their association with PAI-1 plasma levels. These investigations support the findings of most ex vivo studies, indicating that plasma PAI-1 levels are closely related to visceral fat areas and that improved fibrinolytic activity was found with the loss of visceral fat mass (Shimomura et al., 1996; Janand-Delenne et al., 1998). Other studies used anthropometric indicators such as BMI, waist circumference (WC) and waist-to-hip ratio (WHR) to investigate the relationship between plasma PAI-1 and distribution of body fat. PAI-1 was found to correlate positively with BMI and WHR in both males and females (Mykkanen et al., 1994). However, a study by Peverill et al. (2007) was unsupportive of the findings of ex vivo studies when evaluating body fat distribution by means of BMI and measurements of WC and hip circumference. In their findings, WC and WHR correlated with PAI-1 to a similar degree, whereas BMI correlated more strongly (Peverill et al., 2007). An inverse association between hip circumference and markers of coagulation after adjusting for WC was also found and, therefore, indicates a possible protective effect of gluteal fat distribution as opposed to android obesity (Peverill et al., 2007). Differences in findings could possibly be related to the inclusion of post-menopausal women in the study population of Peverill et al. (2007), while other studies included only pre-menopausal women (Vague et al., 1989; De Pergola et al., 1997; Janand-Delenne et al., 1998; Peverill et al., 2007). Post-menopausal women experience a redispersion of fat distribution (increased visceral fat accumulation) that is related to the female sex hormone oestrogen (Mattsson & Olsson, 2007). It should also be noted that therapeutic administration of oral oestrogen has been reported to reduce plasma PAI-1 levels (Ågren et al., 2008).

Nevertheless, WC, in comparison with computerised tomography and ultrasound, is regarded as a useful surrogate for the measurement of visceral fat (Pontiroli et al., 2002), while WHR and BMI seem to be poorly associated with these measures of visceral fat or markers of PAI-1 levels (Giltay et al., 1998; Pontiroli et al., 2002). Others have also found PAI-1 to be positively correlated with WC in obese women, independently of BMI (De Pergola et al., 1997). Increased WC, as an indication of visceral fat mass, could, therefore, be a marker of elevated PAI-1 plasma levels. However, such interpretations should be
made with caution, especially as WC was not found to be a suitable surrogate for assessing visceral fat mass in African women when these women were on a weight loss diet (Weinsier et al., 2001).

From ex vivo investigations it is evident that adipose tissue from the abdominal area, specifically VAT, has the greater capacity to induce PAI-1 expression and production, which, in part, could affect plasma PAI-1 levels. As ex vivo investigations are performed under controlled conditions outside the human body, however, it is difficult to assess the total contribution adipocytes might make to circulating PAI-1 levels when compared with other PAI-1-producing cells such as hepatocytes, platelets and endothelial and vascular smooth muscle cells. Furthermore, the results are inconsistent, as SCAT has also been found to have an acknowledgeable role in increased plasma PAI-1 levels. Therefore, it seems that VAT and PAI-1 levels are concurrently related to abnormal fat metabolism (discussion in section 2.5.2), rather than one bringing about the other (Lindeman et al., 2007). To gain a better understanding of the relationship between increased plasma PAI-1 levels and obesity, the following section focuses on possible mechanisms explaining this association.

2.5.2 Possible mechanisms explaining the role of increased PAI-1 expression and synthesis in adipose tissue

In section 2.5 it was mentioned that there seems to be an association between the stromal cells found in VAT and increased plasma PAI-1 levels. Nevertheless, other possible mechanisms have also been proposed to explain the expression and synthesis of PAI-1 in VAT versus SCAT. Weight loss, the involvement of the systemic inflammation process, the contribution of other PAI-1-producing cells, gender and ethnic differences, among others, have been investigated and will be discussed below.

Ex vivo studies strongly support weight loss as a means of decreasing plasma PAI-1 levels in obese individuals, thereby also lowering their risk for thrombotic events (Mavri et al., 2001; Pardina et al., 2012). Weight loss, especially the loss of SCAT, was shown to result in a decline in PAI-1 levels in comparison with loss in femoral regions (Mavri et al., 2001). This association is also supported by in vivo investigation. Bastard et al. (2000) studied the changes in plasma PAI-1 levels induced by following a very low calorie diet in obese white
individuals. This study aimed to verify whether decreased PAI-1 expression in adipose tissue is associated with decreasing plasma PAI-1 levels in obese individuals. Although a decrease in plasma PAI-1 levels was found, PAI-1 mRNA and protein content increased in SCAT. The researchers concluded that the reduction in plasma PAI-1 levels does not result from a diet-induced decrease in SCAT PAI-1 expression (Bastard et al., 2000). Even though PAI-1 mRNA and protein content increased in SCAT, it seems that a very low calorie diet may help clear circulating PAI-1 levels. The exact cause of this relationship is, however, still unexplained (Bastard et al., 2000). On the other hand, Janand-Delenne et al. (1998) found a positive correlation between loss of VAT and decreased PAI-1 levels in women.

In a recent study, the ability of the acute systemic inflammatory response to activate gene expression and PAI-1 production in VAT was demonstrated. According to Ekström (2012), during open heart surgery, PAI-1 mRNA expression was found to increase 27-fold in the omental (visceral) adipose tissue, compared with a threefold increase in the SCAT, followed by an increase in plasma PAI-1 levels. Cytokines, particularly transforming growth factor-β1 (TGF-β1), and interleukin-1 (IL-1), are widely acknowledged inflammatory mediators of PAI-1 (Morange et al., 1999; Birgel et al., 2000; Lindeman et al., 2007). TGF-β1 seems to regulate PAI-1 expression as part of an autocrine and paracrine function (Birgel et al., 2000). Particularly in subcutaneous adipocytes, TGF-β1 has been proposed as a main inducer of PAI-1 mRNA synthesis (Birgel et al., 2000; Eriksson et al., 2000), although others have reported no significant difference in the effect of TGF-β1 on PAI-1 secretion between the two fat depots (VAT and SCAT) (Gottschling-Zeller et al., 2000). Also, VAT has been ruled out as a relevant source of proinflammatory mediators by others, as soluble intercellular adhesion molecule-1, a sensitive marker of proinflammatory activity, is lacking in VAT (Lindeman et al., 2007).

Other sources of PAI-1, such as hepatocytes and endothelial cells, could also contribute to the elevated plasma PAI-1 levels seen in obesity (Eriksson et al., 1998). It is known that adipose tissue contains endothelial cells as well as fibroblasts, smooth muscle cells and macrophages, which are involved in the expression of PAI-1 mRNA (Shimomura et al., 1996). Others have also identified adipocytes, hepatocytes and endothelial cells as underlying sources of elevated PAI-1 levels in obese individuals (Bastard & Pieroni, 1999; Pardina et al., 2012).
As mentioned, increased PAI-1 levels are often associated with central obesity or android fat distribution (Vague et al., 1989; De Pergola et al., 1997; Alessi et al., 2000b). It is also known that there is a difference in body fat distribution between female and male genders. Female gender is generally associated with a gluteal or gynoid fat distribution (meaning greater fat accumulation on the hips, buttocks and thighs) compared with the android fat distribution of men (greater visceral fat mass accumulation in the abdominal area) (Vague, 1996). Android obesity is also a recognised cause of metabolic disorders like diabetes, gout, uric calculous disease and atherosclerosis (Vague, 1996). On the other hand, gynoid obesity is more often associated with mechanical complications such as trophic disturbances of the venous-lymphatic circulation and respiratory complications (bronchopulmonary infections) (Vague, 1996). Since android fat distribution is more strongly associated with male gender, men would be expected to have higher PAI-1 levels than women, especially as men have been found to have more VAT than women (Grauer et al., 1984). Yet decreased abdominal obesity in men has been shown to be more strongly associated with improvement of fibrinolytic activity (decrease in PAI-1 act levels) than in women following an endurance exercise training programme three times a week for six weeks (Kulaputana et al., 2005). Others have also reported that women have greater PAI-1 levels compared with men (Giltay et al., 1998). In a study by Nienaber et al. (2008), in a group of black South African girls (average 15 years of age) higher PAI-1 act levels were found than in boys even after adjustments for physical activity and body fat percentages were made. Van Harmelen et al. (2000), on the other hand, showed that differences in plasma PAI-1 act levels between men and women are due mainly to differences in WHR as opposed to gender differences in abdominal SCAT PAI-1 secretion. Possible differences in VAT PAI-1 secretion were not investigated. Toft et al. (1997), however, found an independent association between plasma PAI-1 act levels and WHR in women, but not in men. In order to explain the somewhat stronger relationship found in women, Mykkanen et al. (1994) suggested that over time, women with a gluteal fat distribution also tend to accumulate fat in the abdominal area, leading to a greater WHR and increased PAI-1 levels. Men, on the other hand, seem to have a pre-existing tendency to accumulate fat in the abdominal area and, therefore, a plateau in PAI-1 act is seen in men with a higher WHR (Mykkanen et al., 1994).

With regard to ethnicity, dissimilarity between circulating PAI-1 and fat distribution is evident. In a comparison of white and African American women with similar PAI-1 levels and BMI, significant associations between PAI-1 ag and VAT were found only in white women and not
in the African American women (Solano et al., 2003). When investigating ethnic differences in PAI-1\(_{\text{act}}\) and the association of PAI-1\(_{\text{act}}\) and markers of the MetS in 95 African and 114 white women, significantly lower PAI-1\(_{\text{act}}\) levels along with a weaker association between PAI-1\(_{\text{act}}\) and markers of the MetS were found in the African than in the white women (Greyling et al., 2007). In this study WC was found to be the most important independent contributor to plasma PAI-1\(_{\text{act}}\) in both groups (Greyling et al., 2007). The possibility cannot be excluded, however, that the difference in PAI-1 levels could be related to differences in fat distribution between ethnic groups, despite similar WC. Conway et al. (1995) investigated fat distribution and metabolic variables in obese black and white American women and showed that, despite similar WHR, black women had less VAT than white women (p=0.031). In a black and white South African sample, black women were also found to have less VAT in comparison with white women (p<0.001) after adjusting for age, height, weight and fat mass, despite the fact that there were no ethnic differences in WC, WHR, or dual-energy X-ray absorption (DXA) measurement of the abdominal regions (Mickslesfield et al., 2010). Similar to the VAT distribution in women, in a study by Hill et al. (1999), significantly lower VAT was found in black men than in white men after adjustment for percentage body fat, total body fat, BMI, WC, WHR or sagittal diameter. However, it is difficult to draw conclusions regarding the relationship of PAI-1 and body fat composition in black African populations as such information is limited and most research investigating these issues has been undertaken in populations of European descent (Eriksson et al., 1998; Hill et al., 1999; Bastard et al., 2000; Eriksson et al., 2000; Gottschling-Zeller et al., 2000). Owing to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in Africans may differ from that observed for other population groups and, therefore, merits further investigation.

It is possible that an association between PAI-1 and other forms of obesity such as SO exist. Sarcopenic obesity refers to a condition often seen in obese elderly who have both a low muscle mass and a high fat mass (Baumgartner, 2000). Recent research suggests that SO could be a high risk factor for the development of MetS and atherosclerosis (Kohara, 2014). It has also previously been hypothesised that the combined effect of sarcopenia and obesity relates to an increased incidence of physical disability, IR and, therefore, associated CVD morbidities such as hypertension, dislipidaemia and diabetes, conditions often found in obese elderly persons (Dominguez & Barbagallo, 2007; Zamboni et al., 2008). Furthermore, a strong independent relationship between PAI-1 and the MetS has been demonstrated and PAI-1 is acknowledged to be a recognised component of the MetS (Juhan-Vague & Alessi,
1997; Mertens et al., 2006; Palomo et al., 2009). Equally important, plasma PAI-1 levels have been shown to increase with age (Chou et al., 2009) as well as with co-morbidities associated with the ageing process, such as hypertension, myocardial infarction (MI) and cerebral infarction, arteriosclerosis and inflammation, to name a few (Yamamoto et al., 2014). In older individuals, obesity, IR and impaired fibrinolysis resulting from increased plasma PAI-1 levels are considered risk factors for the development of thrombotic CVD (McGill et al., 1994). Therefore, it seems reasonable to assume that a relationship exists between increased plasma PAI-1 levels and SO. Since such a relationship has not been extensively researched, our knowledge of SO and its relationship with PAI-1 is still lacking. In the following section, attention is given to the difference between sarcopenia and SO and the underlying mechanisms of development. Following this, the importance of exploring the association between PAI-1 and SO is motivated.

2.6 Sarcopenia and SO

2.6.1 Definition of sarcopenia and SO

In order to gain a better understanding of the term SO, it is first necessary to refer to the meaning of sarcopenia. Sarcopenia is a syndrome of age-related loss of muscle mass and strength, and is often associated with negative outcomes such as physical disability and poor quality of life in the elderly. This loss of muscle mass (35-40% of skeletal mass) occurs as part of the ageing process and gradually increases from 30 to 70 years of age (Micklesfield et al., 2010).

According to the European Working Group on Sarcopenia in Older People (EWGSOP, the Sarcopenia Working Group), the recommended criteria for the diagnosis of sarcopenia are the presence of low muscle mass and a documentation of either low muscle strength or low physical performance (Cruz-Jentoft et al., 2010). Several mechanisms underlying age-related muscle loss and the progression of sarcopenia have been identified. These include, among others, abnormal protein synthesis, proteolysis, proinflammatory cytokine levels (IL-1β, IL-6, TNF-α), hormone levels (growth hormone, insulin-like growth factor-1, testosterone), and neuromuscular and peripheral vascular integrity, but also malnutrition, lack of exercise and immobility (Morley et al., 2001; Nair, 2005; Cruz-Jentoft et al., 2010). Continuous high-intensity resistance training seems to be the most successful intervention.
for increasing muscle mass and strength in elderly (Borst, 2004), and is, therefore, the method of choice for preventing and reversing the development of sarcopenia.

In order to help with the clinical assessment and diagnosis of sarcopenia, different stages (pre-sarcopenia, sarcopenia and severe sarcopenia) have been proposed by the EWGSOP (Cruz-Jentoft et al., 2010). Pre-sarcopenia is characterised by the loss of muscle mass and is different from the sarcopenic stage, which also includes the criteria of either low muscle strength or low muscle performance. The last stage, severe sarcopenia, includes all three of the criteria: the presence of low muscle mass, muscle strength and muscle performance (Cruz-Jentoft et al., 2010). In addition, gender-specific cut-off points to define sarcopenia have been proposed. These cut-off points entail the measurement of appendicular skeletal muscle mass (ASM) from a DXA scan, which defines sarcopenia as ASM (kg) divided by body height2 (m) two standard deviations (SD) below the reference population group of younger adults (29 years of age), or less than 7.26 kg/m2 in men and 5.45 kg/m2 in women (Baumgartner et al., 1998; Cruz-Jentoft et al., 2010). Epidemiological data among elderly persons in New Mexico have estimated that the prevalence of sarcopenia increased from 13%-24% in those less than 70 years of age, to more than 50% in persons 80 years and older, and was slightly greater in Hispanics than in non-Hispanic whites (Baumgartner et al., 1998). In a recent study undertaken to develop cut-off points for sarcopenia in black South African women, ethnic-specific changes in age-related muscle and fat mass were highlighted (Kruger et al., 2015). A cut-off point of ASM index (ASMI) of <4.94 kg/m2 was determined in the reference population group, which consisted of young black South African women (Kruger et al., 2015). Accordingly, 9.1% of the older black women in the population were determined to be sarcopenic, compared with 16.7 to 38.7% when using other cut-off points (Kruger et al., 2015).

As with sarcopenia, the prevalence of SO increases with age (Zamboni et al., 2008) and is a condition that deserves attention, since persons who are obese and sarcopenic have worse outcomes than those who are sarcopenic and non-obese (Baumgartner et al., 1998; Morley et al., 2001; Tieland, 2013). SO differs from sarcopenia in that fat mass might be preserved or even increased, along with age-related change in muscle composition (such as fat infiltration in the muscle), leading to loss of muscle quality and performance (Visser et al., 2002; Stenholm et al., 2008; Cruz-Jentoft et al., 2010). There is, however, no consensus on the definitions and diagnostic criteria of SO and this issue has been critically reviewed by
Prado et al. (2012b). According to Prado et al. (2012b), this could possibly be a result of different opinions on the interpretation of low muscle mass and a high fat mass. It was also highlighted that different combinations of indicators used in previous studies to assess body composition might underestimate the risk prediction of SO, since sarcopenia and obesity were investigated in isolation in many of these studies (Prado et al., 2012a). Despite this fact, it would seem that several studies defined sarcopenia by low muscle mass (ASM < 2 SD for a healthy reference population group) and a fat mass percentage greater than the 60th percentile of a reference population group (Baumgartner et al., 2004; Stenholm et al., 2008; Waters et al., 2008; Rolland et al., 2009).

2.6.2 Pathogenesis and clinical implications of SO

The pathogenesis and clinical implications of SO are still poorly understood (Dominguez & Barbagallo, 2007; Zamboni et al., 2008; Cruz-Jentoft et al., 2010; Prado et al., 2012b; Kohara, 2014). Recently, Kohara (2014) proposed that SO is not merely the combined result of existing obesity and the development of sarcopenia with advanced age, but is related more to cardio-metabolic syndrome and functional abnormalities. According to Dominguez and Barbagallo (2007), cardio-metabolic syndrome is the combined diagnosis of hypertension and dyslipidaemia, often seen in older individuals. It would seem that changes that occur during ageing lead to sarcopenia and obesity (especially VAT) and act synergistically to induce IR, hypertension and dyslipidaemia, which then later on in life increase one’s risk of the development of type 2 diabetes mellitus (T2DM) and CVD (Dominguez & Barbagallo, 2007).

It has also been suggested that chronic low levels of inflammation, often accompanying advanced age, are caused by increased production of cytokines (TNF-α and IL-6) and leptin from excess adipose tissue and adipocytes, resulting in IR (Roubenoff, 2004; Dominguez & Barbagallo, 2007; Jensen, 2008; Stenholm et al., 2008). This chronic low level of inflammation might cause the progressive loss of muscle mass and an increase in fat mass (Roubenoff, 2004; Zamboni et al., 2008). As previously mentioned, in SO, fat infiltration in the muscle also takes place (Visser et al., 2002; Stenholm et al., 2008; Cruz-Jentoft et al., 2010). This additionally promotes the progressive loss of muscle mass and the degree of inflammation in a person with SO, but also increases the resistance to leptin in the muscle (Unger, 2005; Zamboni et al., 2008), leading to the reduction of fatty acid oxidation in the muscle, liver and heart (Unger, 2005).
Sarcopenic obesity, therefore, seems on the one hand to be related to the health risks associated with obesity (IR, hypertension, dyslipidaemia, diabetes and CVD) and on the other hand, to depleted muscle mass and functional disability (Baumgartner et al., 2004; Roubenoff, 2004). However, the combined effect seems to create an adverse condition associated with more physical functional decline than obesity alone and also a higher risk of MetS and atherosclerosis due to increased IR (Kohara, 2014). Of specific importance to the outcomes of the present study is the pathway (inflammation, obesity and IR) involved in the pathogenesis of SO, which is also related to the synthesis of PAI-1. In the following section, this issue will be addressed.

2.6.3 Sarcopenic obesity as a risk factor for the development of MetS and CVD and its association with PAI-1

Several studies have found SO to be associated with the MetS and CVD. In a cross-sectional survey conducted in New Mexico, the prevalence of T2DM was higher in the SO group (7.7%) than in the sarcopenic non-obese group (1.0% to 1.4%) (Baumgartner et al., 2004). The difference was, however, not statistically significant owing to the small number of cases. The prevalence of the MetS was found to be highest in the non-sarcopenic obese group, followed by the SO group, and was lowest in the non-obese sarcopenic group (Baumgartner et al., 2004). This study also indicated the likelihood of SO preceding disability in community-dwelling elderly (Baumgartner et al., 2004). Prospective observational studies showed that participants with MetS had a lower muscle-to-fat ratio (i.e. SO as determined by ratio of ASM to central obesity), which was found to be a dependent risk factor for the MetS and was also independently associated with arterial stiffness after adjusting for other risk factors (Kim et al., 2011). Recently, SO was shown to be an independent risk factor for the MetS with a 12-fold higher risk than in those without sarcopenia and obesity (Lu et al., 2013). With regard to CVD, longitudinal data indicated that CVD events were 23% [95% confidence interval (CI) 0.99-1.54; p=0.06] higher in those with SO compared either with sarcopenic or obese persons (Stephen & Janssen, 2009).

However, some conflicting findings have also been reported. In a small study comparing the CVD risk factors between SO and obesity in postmenopausal women, SO was found to be associated with a lower risk of CVD (Aubertin-Leheudre et al., 2006). Messier et al. (2009),
however, found the metabolic profile (i.e. IR) and quality of life of overweight and SO postmenopausal women to be comparable to that of non-sarcopenic overweight or obese women. Possible explanations for the conflicting results might be related to the use of different methods to determine body composition (such as BMI, WC and DXA measurements), diagnostic criteria and inclusion and exclusion criteria (age, gender, and race) (Stenholm et al., 2009; Prado et al., 2012b).

PAI-1 has also been identified as an independent component of the MetS, which is characterised by hyperglycaemia, hypertension, an abnormal blood lipid profile and central obesity (Juhan-Vauge & Alessi, 1997; Alberti et al., 2009; Chou et al., 2009; Palomo et al., 2009). In a cross-sectional study investigating the relationship between inflammatory, prothrombotic markers and the MetS in an Asian population group, Chou et al. (2009) showed that PAI-1 levels were elevated in the elderly. It was also evident that PAI-1 was positively associated with components of the MetS, including WC, plasma fasting glucose and triglycerides and negatively associated with high-density lipoprotein-cholesterol (HDL-chol) (Chou et al., 2009). Thus, PAI-1 demonstrates a complex relationship with the MetS that has profound implications, specifically for older obese individuals. This has important health implications as the components of the MetS are known to be conventional risk factors for the development of CVD (Alberti et al., 2009). Also, as shown by Tofler et al. (2005), advancing age is associated with elevated levels of haemostatic factors (increased levels of fibrinogen, von Willebrand factor, PAI-1ag and tPAag) indicative of a prothrombotic state in both ageing men and women, relating to endothelium dysfunction and vascular inflammation. They postulate that these haemostatic factors might provide a plausible mechanistic pathway through which chronic levels of low-grade inflammation, associated with age, lead to CVD (Tofler et al., 2005). It seems likely, therefore, that an important relationship between PAI-1 and SO exists, and that this relationship may differ from the association of PAI-1 with central adiposity, although only limited research has previously investigated this question (Cesari et al., 2005).

In a study that included data from the Trial of Angiotensin-Converting Enzyme Inhibition and Novel Cardiovascular Risk factors (TRAIN), total fat mass and appendicular lean mass, as measured by DXA, were used to determine the effect of sarcopenia and obesity on CRP, IL-6 and PAI-1 (Cesari et al., 2005). This study found no significant relationship between either obesity or sarcopenia and CRP, IL-6 or PAI-1 concentration (Cesari et al., 2005). The fact
that no relationship between PAI-1 and sarcopenia was found in this study population, however, does not exclude the possibility that PAI-1 may have a local rather than a systemic role in determining the loss of muscle mass (Cesari et al., 2005). Others have also suggested that increased PAI-1 induction in atrophic skeletal muscle might result in muscle fibrosis (often seen in sarcopenic individuals) by inhibiting the production of plasmin (Naderi et al., 2009). This highlights the possible relationship between PAI-1 and SO.

Since obesity is positively associated with age, it will in future have an increasingly negative impact on public health and the provision of health care services (Roubenoff, 2004). As the prevalence of obesity increases with age, so does the impact of SO, as well as other CVD risk factors in the older population group (Roubenoff, 2004; Yamamoto et al., 2005; Yamamoto et al., 2014). According to the findings of the Transition and Health during Urbanisation (THUSA) study, the prevalence of obesity increases with age in African women and was found to peak at the age of 35 to 44 years (Kruger et al., 2002). Physical inactivity was found to be the strongest determinant of obesity in this population group (Kruger et al., 2002), underlining the increased risk of SO in the African population. From previous research in our group among young black South Africans (average age of 15 years) it was also observed that overfatness, a low lean mass accompanied by high fat mass, usually coexists in children who are stunted (Nienaber et al., 2008). Therefore, it was hypothesised that overfat children have a higher risk of becoming adults with SO. Furthermore, overfatness, which was observed to be very prevalent (31.5% and 73.5% in boys and girls, respectively), was associated with undesirable levels of several haemostatic variables, including PAI-1 act (Nienaber et al., 2008). Understanding the connection between SO, ageing and PAI-1 seems to be crucial and deserves particular attention, seeing that this has not yet been thoroughly investigated.

2.7 Conclusion

This chapter focused on several research questions identified in earlier research on PAI-1 levels in black South Africans. These topics include an overview of the physiology of PAI-1, methodological issues regarding the measurement of the different forms of PAI-1, PAI-1 determinants in Africans and the association between PAI-1 and obesity, with a specific focus on SO.
Inconsistency was found in previous research investigating ethnic differences in plasma PAI-1 levels. This inconsistency may be a result of differences in assays used and/or differences in sample handling and preparation, which are known to influence plasma PAI-1 levels owing to the presence of residual platelets in plasma, among other factors. In the literature, disagreement regarding the form of PAI-1 (latent or active) released from the alpha granules of platelets was also found and the effect of residual platelets in plasma on the different PAI-1 assays remain to be determined. In addition, this literature chapter has also highlighted the importance of standardised methodological procedures to be followed during the measurement of plasma PAI-1 levels.

PAI-1 expression and synthesis in different fat depots (VAT and SCAT) have been studied in both ex vivo and in vivo studies. It seems that plasma PAI-1 levels are closely related to adipose tissue located within the abdominal area (specifically VAT). However, structural and functional differences between VAT and SCAT, as well as the influence of regional fat distribution and/or differences in body fat composition between genders and different ethnic groups also seem to influence plasma PAI-1 levels, although only limited data on Africans are available. In addition, SO, a specific form of obesity associated with muscle wasting, is a condition that is increasingly present in the elderly and is also associated with the development of the MetS and CVD. This chapter also discussed the possible associations between increased plasma PAI-1 levels, the development of SO and CVD risk factors, such as the presence of IR, obesity, chronic low grade inflammation and hypertension. Since there are only two studies which investigated the possible association between PAI-1 and SO, our understanding and knowledge of SO are limited, and no data on this association exist for Africans. Since, SO is associated with worse health outcomes than either sarcopenia or obesity alone, this issue deserves special attention.
CHAPTER 3: THE EFFECTS OF RESIDUAL PLATELETS IN PLASMA ON PLASMINOGEN ACTIVATOR INHIBITOR-1 AND PLASMINOGEN ACTIVATOR INHIBITOR-1-RELATED ASSAYS

Authors: Marlien Pieters, Sunelle A. Barnard, Du Toit Loots and Dingeman C. Rijken

This chapter includes:

3.1 Authors instructions of the journal, *PLOS ONE* (Impact factor: 3.234);
3.2 proof that the article has been accepted for publication in *PLOS ONE*; and
3.3 The article titled: “The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays”.

In addition, the published article is provided as Addendum D
3.1 Instructions to authors – *PLOS ONE*

(http://journals.plos.org/plosone/s/submission-guidelines)
Submission Guidelines

1. Read the Chinese translation of the PLOS policies referred to in this page.

Style and Format

File format
Manuscript files can be in the following formats: DOC, DOCX, RTF, or PDF. Microsoft Word documents should not be locked or protected.

LaTeX manuscripts must be submitted as PDFs. Read the LaTeX guidelines.

Length
Manuscripts can be any length. There are no restrictions on word count, number of figures, or amount of supporting information.

We encourage you to present and discuss your findings concisely.

Font
Use a standard font size and any standard font, except for Symbol font.

Headings
Limit manuscript sections and sub-sections to 3 heading levels. Make sure heading levels are clearly indicated in the manuscript text.

Layout
Manuscript text should be double-spaced.

Do not format text in multiple columns.

Page and line numbers
Include page numbers and line numbers in the manuscript file.

Footnotes
Footnotes are not permitted. If your manuscript contains footnotes, move the information into the main text or the reference list, depending on the content.

Language
Manuscripts must be submitted in English.

You may submit translations of the manuscript or abstract as supporting information. Read the supporting information guidelines.

Abbreviations
Define abbreviations upon first appearance in the text.

Do not use non-standard abbreviations unless they appear at least three times in the text.

Keep abbreviations to a minimum.

Reference style
PLOS uses "Vancouver" style, as outlined in the ICMJE sample references.

See reference formatting examples and additional instructions below.

Equations
We recommend using MathType for display and inline equations, as it will provide the most reliable outcome. If this is not possible, Equation Editor is acceptable.

Avoid using MathType or Equation Editor to insert single variables (e.g., “a² + b² = c²”), Greek or other symbols (e.g., β, Δ, or ’prime’), or mathematical operators (e.g., ≤, ≥, or ≈) in running text. Wherever possible, insert single symbols as normal text with the correct Unicode (hex) values.

Do not use MathType or Equation Editor for only a portion of an equation. Rather, ensure that the entire equation is included. Avoid “hybrid” inline or display equations, in which part is text and part is MathType, or part is MathType and part is Equation Editor.
Nomenclature

Use correct and established nomenclature wherever possible.

Units of measurement

Use SI units. If you do not use these exclusively, provide the SI value in parentheses after each value. Read more about SI units.

Drugs

Provide the Recommended International Non-Proprietary Name (rINN).

Species names

Write in italics (e.g., Homo sapiens). Write out in full the genus and species, both in the title of the manuscript and at the first mention of an organism in a paper. After first mention, the first letter of the genus name followed by the full species name may be used (e.g., H. sapiens).

Genes, mutations, genotypes, and alleles

Write in italics. Use the recommended name by consulting the appropriate genetic nomenclature database (e.g., HUGO for human genes). It is sometimes advisable to indicate the synonyms for the gene the first time it appears in the text. Gene prefixes such as those used for oncogenes or cellular localization should be shown in roman typeface (e.g., v-fes, c-MYC).

Copyediting manuscripts

Prior to submission, authors who believe their manuscripts would benefit from professional editing are encouraged to use language-editing and copyediting services. Obtaining this service is the responsibility of the author, and should be done before initial submission. These services can be found on the web using search terms like “scientific editing service” or “manuscript editing service.”

Submissions are not copyedited before publication.

Submissions that do not meet the PLOS ONE publication criterion for language standards may be rejected.

Manuscript Organization

Manuscripts should be organized as follows. Instructions for each element appear below the list.

Beginning section

The following elements are required, in order:

- Title page: List title, authors, and affiliations as first page of manuscript
- Abstract
- Introduction

Middle section

The following elements can be renamed as needed and presented in any order:

- Materials and Methods
- Results
- Discussion
- Conclusions (optional)

Ending section

The following elements are required, in order:

- Acknowledgments
- References
- Supporting information captions (if applicable)

Other elements

Figure captions are inserted immediately after the first paragraph in which the figure is cited. Figure files are uploaded separately.

Tables are inserted immediately after the first paragraph in which they are cited.

Supporting information files are uploaded separately.
Please refer to our downloadable sample files to make sure that your submission meets our formatting requirements:

- Download sample title, author list, and affiliations page (PDF)
- Download sample manuscript body (PDF)

Viewing Figures and Supporting Information in the compiled submission PDF

The compiled submission PDF includes low-resolution preview images of the figures after the reference list. The function of these previews is to allow you to download the entire submission as quickly as possible. Click the link at the top of each preview page to download a high-resolution version of each figure. Links to download Supporting Information files are also available after the reference list.

Parts of a Submission

Title

Include a full title and a short title for the manuscript.

<table>
<thead>
<tr>
<th>Title</th>
<th>Length</th>
<th>Guidelines</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full title</td>
<td>250 characters</td>
<td>Specific, descriptive, concise, and comprehensible to readers outside the field</td>
<td>Impact of Cigarette Smoke Exposure on Innate Immunity: A C. elegans Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solar Drinking Water Disinfection (SODIS) to Reduce Childhood Diarrhoea in Rural Bolivia: A Cluster-Randomized, Controlled Trial</td>
</tr>
<tr>
<td>Short title</td>
<td>70 characters</td>
<td>State the topic of the study</td>
<td>Cigarette Smoke Exposure and Innate Immunity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SODIS and Childhood Diarrhoea</td>
</tr>
</tbody>
</table>

Titles should be written in title case (all words capitalized except articles, prepositions, and conjunctions). Avoid specialist abbreviations if possible. For clinical trials, systematic reviews, or meta-analyses, the subtitle should include the study design.

Author List

Who belongs on the author list

All authors must meet the criteria for authorship as outlined in the authorship policy. Read the policy.

Those who contributed to the work but do not meet the criteria for authorship can be mentioned in the Acknowledgments. Read more about Acknowledgments.

Author names and affiliations

Enter author names on the title page of the manuscript and in the online submission system.

On the title page, write author names in the following order:

- First name (or initials, if used)
- Middle name (or initials, if used)
- Last name (surname, family name)

Each author on the list must have an affiliation. The affiliation includes department, university, or organizational affiliation and its location, including city, state/province (if applicable), and country.

If an author has multiple affiliations, enter all affiliations on the title page only. In the submission system, enter only the preferred or primary affiliation.
Author names will be published exactly as they appear in the manuscript file. Please double-check the information carefully to make sure it is correct.

Corresponding author

The submitting author is automatically designated as corresponding author in the submission system while the manuscript is under editorial consideration. To designate a new corresponding author while the manuscript is still under consideration, watch the video tutorial below.

Only one corresponding author can be designated in the submission system, but this does not restrict the number of corresponding authors that may be listed on the article in the event of publication. Whoever is designated as a corresponding author on the title page of the manuscript file will be listed as such upon publication. Include an email address for each corresponding author listed on the title page of the manuscript.

PLOS will soon require an ORCID ID for all corresponding authors. We strongly encourage you to register with ORCID now and add your ORCID to your profile in Editorial Manager if you have not already done so.

How to select a new corresponding author in Editorial Manager

Consortia and group authorship

If a manuscript is submitted on behalf of a consortium or group, include the consortium or group name in the author list, and include the full list of members in the Acknowledgments or in a supporting information file. Read the group authorship policy.

Author Contributions

Enter all author contributions in the submission system during submission. The contributions of all authors must be described using the CRediT Taxonomy of author roles. Read the policy.

Contributions will be published with the final article, and they should accurately reflect contributions to the work. The submitting author is responsible for completing this information at submission, and it is expected that all authors will have reviewed, discussed, and agreed to their individual contributions ahead of this time.

PLOS ONE will contact all authors by email at submission to ensure that they are aware of the submission.

Cover letter

Upload a cover letter as a separate file in the online system. The length limit is 1 page.

The cover letter should include the following information:

- Summarize the study’s contribution to the scientific literature
- Relate the study to previously published work
- Specify the type of article (for example, research article, systematic review, meta-analysis, clinical trial)
- Describe any prior interactions with PLOS regarding the submitted manuscript
- Suggest appropriate Academic Editors to handle your manuscript (see the full list of Academic Editors)
- List any opposed reviewers
Title page

The title, authors, and affiliations should all be included on a title page as the first page of the manuscript file.

Abstract

The Abstract comes after the title page in the manuscript file. The abstract text is also entered in a separate field in the submission system.

The Abstract should:

- Describe the main objective(s) of the study
- Explain how the study was done, including any model organisms used, without methodological detail
- Summarize the most important results and their significance
- Not exceed 300 words

Abstracts should not include:

- Citations
- Abbreviations, if possible

Introduction

The introduction should:

- Provide background that puts the manuscript into context and allows readers outside the field to understand the purpose and significance of the study
- Define the problem addressed and why it is important
- Include a brief review of the key literature
- Note any relevant controversies or disagreements in the field
- Conclude with a brief statement of the overall aim of the work and a comment about whether that aim was achieved

Materials and Methods

The Materials and Methods section should provide enough detail to allow suitably skilled investigators to fully replicate your study. Specific information and/or protocols for new methods should be included in detail. If materials, methods, and protocols are well established, authors may cite articles where those protocols are described in detail, but the submission should include sufficient information to be understood independent of these references.

We encourage authors to submit detailed protocols for newer or less well-established methods as supporting information. Read the supporting information guidelines.

Human or animal subjects and/or tissue or field sampling

Methods sections describing research using human or animal subjects and/or tissue or field sampling must include required ethics statements. See the reporting guidelines for human research, clinical trials, animal research, and observational and field studies for more information.

Data

PLOS journals require authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception.

Large data sets, including raw data, may be deposited in an appropriate public repository. See our list of recommended repositories.

For smaller data sets and certain data types, authors may provide their data within supporting information files accompanying the manuscript. Authors should take care to maximize the accessibility and reusability of the data by selecting a file format from which data can be efficiently extracted (for example,
spreadsheets or flat files should be provided rather than PDFs when providing tabulated data).

For more information on how best to provide data, read our policy on data availability. PLOS does not accept references to “data not shown.”

Cell lines
Methods sections describing research using cell lines must state the origin of the cell lines used. See the reporting guidelines for cell line research for more information.

New taxon names
Methods sections of manuscripts adding new taxon names to the literature must follow the reporting guidelines below for a new zoological taxon, botanical taxon, or fungal taxon.

Results, Discussion, Conclusions
These sections may all be separate, or may be combined to create a mixed Results/Discussion section (commonly labeled “Results and Discussion”) or a mixed Discussion/Conclusions section (commonly labeled “Discussion”). These sections may be further divided into subsections, each with a concise subheading, as appropriate. These sections have no word limit, but the language should be clear and concise.

Together, these sections should describe the results of the experiments, the interpretation of these results, and the conclusions that can be drawn.

Authors should explain how the results relate to the hypothesis presented as the basis of the study and provide a succinct explanation of the implications of the findings, particularly in relation to previous related studies and potential future directions for research.

PLOS ONE editorial decisions do not rely on perceived significance or impact, so authors should avoid overstating their conclusions. See the PLOS ONE Criteria for Publication for more information.

Acknowledgments
Those who contributed to the work but do not meet our authorship criteria should be listed in the Acknowledgments with a description of the contribution.

Authors are responsible for ensuring that anyone named in the Acknowledgments agrees to be named.

References
Any and all available works can be cited in the reference list. Acceptable sources include:

- Published or accepted manuscripts
- Manuscripts on preprint servers, if the manuscript is submitted to a journal and also publicly available as a preprint

Do not cite the following sources in the reference list:

- Unavailable and unpublished work, including manuscripts that have been submitted but not yet accepted (e.g., “unpublished work,” “data not shown”). Instead, include those data as supplementary material or deposit the data in a publicly available database.
- Personal communications (these should be supported by a letter from the relevant authors but not included in the reference list)

References are listed at the end of the manuscript and numbered in the order that they appear in the text. In the text, cite the reference number in square brackets (e.g., “We used the techniques developed by our colleagues [19] to analyze the data”). PLOS uses the numbered citation (citation-sequence) method and first six authors, et al.

Do not include citations in abstracts or author summaries.

Make sure the parts of the manuscript are in the correct order before ordering the citations.

Formatting references

Because all references will be linked electronically as much as possible to the papers they cite, proper formatting of the references is crucial.
PLOS uses the reference style outlined by the International Committee of Medical Journal Editors (ICMJE), also referred to as the “Vancouver” style. Example formats are listed below. Additional examples are in the ICMJE sample references.

A reference management tool, EndNote, offers a current style file that can assist you with the formatting of your references. If you have problems with any reference management program, please contact the source company’s technical support.

Journal name abbreviations should be those found in the National Center for Biotechnology Information (NCBI) databases.

<table>
<thead>
<tr>
<th>Source</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted, unpublished articles</td>
<td>Same as published articles, but substitute “In press” for page numbers or DOI.</td>
</tr>
<tr>
<td>Multimedia (videos, movies, or TV shows)</td>
<td>Hitchcock A, producer and director. Rear Window [Film]; 1954. Los Angeles: MGM.</td>
</tr>
</tbody>
</table>

Supporting Information

Authors can submit essential supporting files and multimedia files along with their manuscripts. All supporting information will be subject to peer review. All file types can be submitted, but files must be smaller than 10 MB in size.

Authors may use almost any description as the item name for a supporting information file as long as it contains an “S” and number. For example, “S1 Appendix” and “S2 Appendix,” “S1 Table” and “S2 Table,” and so forth.
Supporting information files are published exactly as provided, and are not copyedited.

Supporting information captions
List supporting information captions at the end of the manuscript file. Do not submit captions in a separate file.

The file number and name are required in a caption, and we highly recommend including a one-line title as well. You may also include a legend in your caption, but it is not required.

Example caption

S1 Text. Title is strongly recommended. Legend is optional.

In-text citations
We recommend that you cite supporting information in the manuscript text, but this is not a requirement. If you cite supporting information in the text, citations do not need to be in numerical order.

Read the supporting information guidelines for more details about submitting supporting information and multimedia files.

Figures and Tables

Figures
Do not include figures in the main manuscript file. Each figure must be prepared and submitted as an individual file.

Cite figures in ascending numeric order upon first appearance in the manuscript file.

Read the guidelines for figures.

Figure captions

Figure captions must be inserted in the text of the manuscript, immediately following the paragraph in which the figure is first cited (read order). Do not include captions as part of the figure files themselves or submit them in a separate document.

At a minimum, include the following in your figure captions:

- A figure label with Arabic numerals, and “Figure” abbreviated to “Fig” (e.g. Fig 1, Fig 2, Fig 3, etc). Match the label of your figure with the name of the file uploaded at submission (e.g. a figure citation of “Fig 1” must refer to a figure file named “Fig1.tif”).
- A concise, descriptive title

The caption may also include a legend as needed.

Read more about figure captions.

Tables

Cite tables in ascending numeric order upon first appearance in the manuscript file.

Place each table in your manuscript file directly after the paragraph in which it is first cited (read order). Do not submit your tables in separate files.

Tables require a label (e.g., “Table 1”) and brief descriptive title to be placed above the table. Place legends, footnotes, and other text below the table.

Read the guidelines for tables.

Data reporting

All data and related metadata underlying the findings reported in a submitted manuscript should be deposited in an appropriate public repository, unless already provided as part of the submitted article.

Read our policy on data availability.
Repositories may be either subject-specific (where these exist) and accept specific types of structured data, or generalist repositories that accept multiple data types. We recommend that authors select repositories appropriate to their field. Repositories may be subject-specific (e.g., GenBank for sequences and PDB for structures), general, or institutional, as long as DOIs or accession numbers are provided and the data are at least as open as CC BY. Authors are encouraged to select repositories that meet accepted criteria as trustworthy digital repositories, such as criteria of the Centre for Research Libraries or Data Seal of Approval. Large, international databases are more likely to persist than small, local ones.

See our list of recommended repositories.

To support data sharing and author compliance of the PLOS data policy, we have integrated our submission process with a select set of data repositories. The list is neither representative nor exhaustive of the suitable repositories available to authors. Current repository integration partners include Dryad and FlowRepository. Please contact data@plos.org to make recommendations for further partnerships.

Instructions for PLOS submissions with data deposited in an integration partner repository:

- Deposit data in the integrated repository of choice.
- Once deposition is final and complete, the repository will provide you with a dataset DOI (provisional) and private URL for reviewers to gain access to the data.
- Enter the given data DOI into the full Data Availability Statement, which is requested in the Additional Information section of the PLOS submission form. Then provide the URL passcode in the Attach Files section.

If you have any questions, please email us.

Accession numbers

All appropriate data sets, images, and information should be deposited in an appropriate public repository. See our list of recommended repositories.

Accession numbers (and version numbers, if appropriate) should be provided in the Data Availability Statement. Accession numbers or a citation to the DOI should also be provided when the data set is mentioned within the manuscript.

In some cases authors may not be able to obtain accession numbers of DOIs until the manuscript is accepted; in these cases, the authors must provide these numbers at acceptance. In all other cases, these numbers must be provided at submission.

Identifiers

As much as possible, please provide accession numbers or identifiers for all entities such as genes, proteins, mutants, diseases, etc., for which there is an entry in a public database, for example:

- Ensembl
- Entrez Gene
- FlyBase
- InterPro
- Mouse Genome Database (MGD)
- Online Mendelian Inheritance in Man (OMIM)
- PubChem

Identifiers should be provided in parentheses after the entity on first use.

Striking image

You can choose to upload a “Striking Image” that we may use to represent your article online in places like the journal homepage or in search results.

The striking image must be derived from a figure or supporting information file from the submission, i.e., a cropped portion of an image or the entire image. Striking images should ideally be high resolution, eye-catching, single panel images, and should ideally avoid containing added details such as text, scale bars, and arrows.

If no striking image is uploaded, we will designate a figure from the submission as the striking image.

Striking images should not contain potentially identifying images of people. Read our policy on identifying information.

The PLOS content license also applies to striking images. Read more about the content license.
Additional Information Requested at Submission

Funding statement

This information should not be in your manuscript file; you will provide it via our submission system.

This information will be published with the final manuscript, if accepted, so please make sure that this is accurate and as detailed as possible. You should not include this information in your manuscript file, but it is important to gather it prior to submission, because your financial disclosure statement cannot be changed after initial submission.

Your statement should include relevant grant numbers and the URL of any funder's website. Please also state whether any individuals employed or contracted by the funders (other than the named authors) played any role in: study design, data collection and analysis, decision to publish, or preparation of the manuscript. If so, please name the individual and describe their role.

Read our policy on disclosure of funding sources.

Competing interests

This information should not be in your manuscript file; you will provide it via our submission system.

All potential competing interests must be declared in full. If the submission is related to any patents, patent applications, or products in development or for market, these details, including patent numbers and titles, must be disclosed in full.

Read our policy on competing interests.

Manuscripts disputing published work

For manuscripts disputing previously published work, it is PLOS ONE policy to invite input from the disputed author during the peer review process. This procedure is aimed at ensuring a thorough, transparent, and productive review process.

If the disputed author chooses to submit a review, it must be returned in a timely fashion and contain a full declaration of all competing interests. The Academic Editor will consider any such reviews in light of the competing interest.

Authors submitting manuscripts disputing previous work should explain the relationship between the manuscripts in their cover letter, and will be required to confirm that they accept the conditions of this review policy before the manuscript is considered further.

Related manuscripts

Upon submission, authors must confirm that the manuscript, or any related manuscript, is not currently under consideration or accepted elsewhere. If related work has been submitted to PLOS ONE or elsewhere, authors must include a copy with the submitted article. Reviewers will be asked to comment on the overlap between related submissions.

We strongly discourage the unnecessary division of related work into separate manuscripts, and we will not consider manuscripts that are divided into “parts.” Each submission to PLOS ONE must be written as an independent unit and should not rely on any work that has not already been accepted for publication. If related manuscripts are submitted to PLOS ONE, the authors may be advised to combine them into a single manuscript at the editor’s discretion.

Guidelines for Specific Study Types

Human subjects research

All research involving human participants must have been approved by the authors’ Institutional Review Board (IRB) or by equivalent ethics committee(s), and must have been conducted according to the principles expressed in the Declaration of Helsinki. Authors should be able to submit, upon request, a statement from the IRB or ethics committee indicating approval of the research. We reserve the right to reject work that we believe has not been conducted to a high ethical standard, even when formal approval has been obtained.

Subjects must have been properly instructed and have indicated that they consent to participate by signing the appropriate
informed consent paperwork. Authors may be asked to submit a blank, sample copy of a subject consent form. If consent was verbal instead of written, or if consent could not be obtained, the authors must explain the reason in the manuscript, and the use of verbal consent or the lack of consent must have been approved by the IRB or ethics committee.

All efforts should be made to protect patient privacy and anonymity. Identifying information, including photos, should not be included in the manuscript unless the information is crucial and the individual has provided written consent by completing the Consent Form for Publication in a PLOS Journal (PDF). More information about patient privacy, anonymity, and informed consent can be found in the International Committee of Medical Journal Editors (ICMJE) Privacy and Confidentiality guidelines.

Manuscripts should conform to the following reporting guidelines:

- Studies of diagnostic accuracy: STARD
- Observational studies: STROBE
- Microarray experiments: MIAME
- Other types of health-related research: Consult the EQUATOR website for appropriate reporting guidelines

Methods sections of papers on research using human subjects or samples must include ethics statements that specify:

- The name of the approving institutional review board or equivalent committee(s). If approval was not obtained, the authors must provide a detailed statement explaining why it was not needed
- Whether informed consent was written or oral. If informed consent was oral, it must be stated in the manuscript:
 - Why written consent could not be obtained
 - That the Institutional Review Board (IRB) approved use of oral consent
 - How oral consent was documented

For studies involving humans categorized by race/ethnicity, age, disease/disabilities, religion, sex/gender, sexual orientation, or other socially constructed groupings, authors should:

- Explicitly describe their methods of categorizing human populations
- Define categories in as much detail as the study protocol allows
- Justify their choices of definitions and categories, including for example whether any rules of human categorization were required by their funding agency
- Explain whether (and if so, how) they controlled for confounding variables such as socioeconomic status, nutrition, environmental exposures, or similar factors in their analysis

In addition, outmoded terms and potentially stigmatizing labels should be changed to more current, acceptable terminology. Examples: “Caucasian” should be changed to “white” or “of [Western] European descent” (as appropriate); “cancer victims” should be changed to “patients with cancer.”

For papers that include identifying, or potentially identifying, information, authors must download the Consent Form for Publication in a PLOS Journal (PDF), which the individual, parent, or guardian must sign once they have read the paper and been informed about the terms of PLOS open-access license. The signed consent form should not be submitted with the manuscript, but authors should securely file it in the individual's case notes and the methods section of the manuscript should explicitly state that consent authorization for publication is on file, using wording like:

The individual in this manuscript has given written informed consent (as outlined in PLOS consent form) to publish these case details.

For more information about PLOS ONE policies regarding human subjects research, see the Publication Criteria and Editorial Policies.

Clinical trials

Clinical trials are subject to all policies regarding human research. PLOS ONE follows the World Health Organization's (WHO) definition of a clinical trial:

> A clinical trial is any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects on health outcomes [...] Interventions include but are not restricted to drugs, cells and other biological products, surgical procedures, radiologic procedures, devices, behavioural treatments, process-of-care changes, preventive care, etc.

All clinical trials must be registered in one of the publicly-accessible registries approved by the WHO or ICMJE (International Committee of Medical Journal Editors). Authors must provide the trial registration number. Prior disclosure of results on a clinical trial registry site will not affect consideration for publication. We reserve the right to inform authors' institutions or ethics committees, and to reject the manuscript, if we become aware of unregistered trials.
PLOS ONE supports prospective trial registration (i.e. before participant recruitment has begun) as recommended by the ICMJE’s clinical trial registration policy. Where trials were not publicly registered before participant recruitment began, authors must:

- Register all related clinical trials and confirm they have done so in the Methods section
- Explain in the Methods the reason for failing to register before participant recruitment

Clinical trials must be reported according to the relevant reporting guidelines, i.e. CONSORT for randomized controlled trials, TREND for non-randomized trials, and other specialized guidelines as appropriate. The intervention should be described according to the requirements of the TiDIEr checklist and guide. Submissions must also include the study protocol as supporting information, which will be published with the manuscript if accepted.

Authors of manuscripts describing the results of clinical trials must adhere to the CONSORT reporting guidelines appropriate to their trial design, available on the CONSORT Statement web site. Before the paper can enter peer review, authors must:

- Provide the registry name and number in the methods section of the manuscript
- Provide a copy of the trial protocol as approved by the ethics committee and a completed CONSORT checklist as supporting information (which will be published alongside the paper, if accepted). This should be named S1 CONSORT Checklist.
- Include the CONSORT flow diagram as the manuscript’s “Fig 1”

Any deviation from the trial protocol must be explained in the paper. Authors must explicitly discuss informed consent in their paper, and we reserve the right to ask for a copy of the patient consent form.

The methods section must include the name of the registry, the registry number, and the URL of your trial in the registry database for each location in which the trial is registered.

Animal research

We work in consultation with the PLOS ONE Animal Research Advisory Group to develop policies. Animal Research Advisory Group members may also be consulted on individual submissions.

All research involving vertebrates or cephalopods must have approval from the authors' Institutional Animal Care and Use Committee (IACUC) or equivalent ethics committee(s), and must have been conducted according to applicable national and international guidelines. Approval must be received prior to beginning research.

If we note differences between an IACUC-approved protocol and the methods reported in a submitted manuscript, we may report these discrepancies to the relevant institution or committee.

Methods sections of manuscripts reporting results of animal research must include required ethics statements that specify:

- The full name of the relevant ethics committee that approved the work, and the associated permit number(s). Where ethical approval is not required, the manuscript should include a clear statement of this and the reason why.
- Relevant details for efforts taken to ameliorate animal suffering

Example ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Minnesota (Permit Number: 27-2956). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering.

The organism(s) studied should always be stated in the abstract. Where research may be confused as pertaining to clinical research, the animal model should also be stated in the title.

Where unregulated animals are used or ethics approval is not required, authors should make this clear in submitted articles and explain why ethical approval was not required. Relevant regulations that grant exemptions should be cited in full. It is the authors’ responsibility to understand and comply with all relevant regulations.

We reserve the right to reject work that the editors believe has not been conducted to a high ethical standard, even if authors have obtained formal approval or approval is not required under local regulations.

We encourage authors to follow the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines for all submissions describing laboratory-based animal research and to upload a completed ARRIVE Guidelines Checklist to be published as supporting information. Please note that
inclusion of a completed ARRIVE Checklist may be a formal requirement for publication at a later date.

Non-human primates

Manuscripts describing research involving non-human primates must include details of animal welfare, including information about housing, feeding, and environmental enrichment, and steps taken to minimize suffering, including use of anesthesia and method of sacrifice if appropriate, in accordance with the recommendations of the Weatherall report, *The use of non-human primates in research* (PDF).

Humane endpoints

Manuscripts describing studies that use death as an endpoint will be subject to additional ethical considerations, and may be rejected if they lack appropriate justification for the study or consideration of humane endpoints.

Observational and field studies

Methods sections for submissions reporting on any type of field study must include ethics statements that specify:

- Permits and approvals obtained for the work, including the full name of the authority that approved the study; if none were required, authors should explain why
- Whether the land accessed is privately owned or protected
- Whether any protected species were sampled
- Full details of animal husbandry, experimentation, and care/welfare, where relevant

Paleontology and archaeology research

Manuscripts reporting paleontology and archaeology research must include descriptions of methods and specimens in sufficient detail to allow the work to be reproduced. Data sets supporting statistical and phylogenetic analyses should be provided, preferably in a format that allows easy re-use.

Specimen numbers and complete repository information, including museum name and geographic location, are required for publication. Locality information should be provided in the manuscript as legally allowable, or a statement should be included giving details of the availability of such information to qualified researchers.

If permits were required for any aspect of the work, details should be given of all permits that were obtained, including the full name of the issuing authority. This should be accompanied by the following statement:

| All necessary permits were obtained for the described study, which complied with all relevant regulations. |

If no permits were required, please include the following statement:

| No permits were required for the described study, which complied with all relevant regulations. |

Manuscripts describing paleontology and archaeology research are subject to the following policies:

- **Sharing of data and materials.** Any specimen that is erected as a new species, described, or figured must be deposited in an accessible, permanent repository (i.e., public museum or similar institution). If study conclusions depend on specimens that do not fit these criteria, the article will be rejected under PLOS ONE's data availability criterion.
- **Ethics.** PLOS ONE will not publish research on specimens that were obtained without necessary permission or were illegally exported

Systematic reviews and meta-analyses

A systematic review paper, as defined by The Cochrane Collaboration, is a review of a clearly formulated question that uses explicit, systematic methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. These reviews differ substantially from narrative-based reviews or synthesis articles. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies.

Reports of systematic reviews and meta-analyses must include a completed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and flow diagram to accompany the main text. Blank templates are available here:

- Checklist: PDF or Word document
- Flow diagram: PDF or Word document
Authors must also state in their “Methods” section whether a protocol exists for their systematic review, and if so, provide a copy of the protocol as supporting information and provide the registry number in the abstract.

If your article is a systematic review or a meta-analysis you should:

- State this in your cover letter
- Select “Research Article” as your article type when submitting
- Include the PRISMA flow diagram as Fig 1 (required where applicable)
- Include the PRISMA checklist as supporting information

Meta-analysis of genetic association studies

Manuscripts reporting a meta-analysis of genetic association studies must report results of value to the field and should be reported according to the guidelines presented in *Systematic Reviews of Genetic Association Studies* by Sagoo et al.

On submission, authors will be asked to justify the rationale for the meta-analysis and how it contributes to the base of scientific knowledge in the light of previously published results. Authors will also be asked to complete a checklist (DOCX) outlining information about the justification for the study and the methodology employed. Meta-analyses that replicate published studies will be rejected if the authors do not provide adequate justification.

Personal data from third-party sources

For all studies using personal data from internet-based and other third-party sources (e.g., social media, blogs, other internet sources, mobile phone companies), data must be collected and used according to company/website Terms and Conditions, with appropriate permissions. All data sources must be acknowledged clearly in the Materials and Methods section.

Note that Terms of Use contracts do not qualify as informed consent, even if they address the use of personal data for research.

In the Ethics Statement, authors should declare any potential risks to individuals or individual privacy, or affirm that in their assessment, the study posed no such risks. In addition, the following Ethics and Data Protection requirements must be met.

For interventional studies, which impact participants’ experiences or data, the study design must have been prospectively approved by an Ethics Committee, and informed consent is required. The Ethics Committee may waive the requirement for approval and/or consent.

For observational studies in which personal experiences and accounts are not manipulated, consultation with an Ethics or Data Protection Committee is recommended. Additional requirements apply in the following circumstances:

- If information used could threaten personal privacy or damage the reputation of individuals whose data are used, an Ethics Committee should be consulted and informed consent obtained or specifically addressed.
- If authors accessed any personal identifying information, an Ethics or Data Protection Committee should oversee data anonymization. If data were anonymized and/or aggregated before access and analysis, informed consent is generally not required.

Note that Terms of Use contracts do not qualify as informed consent, even if they address the use of personal data for research.

See our reporting guidelines for human subjects research.

Cell lines

Authors reporting research using cell lines should state when and where they obtained the cells, giving the date and the name of the researcher, cell line repository, or commercial source (company) who provided the cells, as appropriate.

Authors must also include the following information for each cell line:

For de novo (new) cell lines, including those given to the researchers a gift, authors must follow our policies for human subjects research or animal research, as appropriate. The ethics statement must include:
For established cell lines, the Methods section should include:

- Details of institutional review board or ethics committee approval; AND
- For human cells, confirmation of written informed consent from the donor, guardian, or next of kin

Authors should check established cell lines using the ICLAC Database of Cross-contaminated or Misidentified Cell Lines to confirm they are not misidentified or contaminated. Cell line authentication is recommended – e.g., by karyotyping, isozyme analysis, or short tandem repeats (STR) analysis – and may be required during peer review or after publication.

Blots and gels

Manuscripts reporting results from blots (including Western blots) and electrophoretic gels should follow these guidelines:

- In accordance with our policy on image manipulation, the image should not be adjusted in any way that could affect the scientific information displayed, e.g. by modifying the background or contrast.
- All blots and gels that support results reported in the manuscript should be provided.
- Original uncropped and unadjusted blots and gels, including molecular size markers, should be provided in either the figures or the supplementary files.
- Lanes should not be overcropped around the bands; the image should show most or all of the blot or gel. Any non-specific bands should be shown and an explanation of their nature should be given.
- The image should include all relevant controls, and controls should be run on the same blot or gel as the samples.
- A figure panel should not include composite images of bands originating from different blots or gels. If the figure shows non-adjacent bands from the same blot or gel, this should be clearly denoted by vertical black lines and the figure legend should provide details of how the figure was made.

Antibodies

Manuscripts reporting experiments using antibodies should include the following information:

- The name of each antibody, a description of whether it is monoclonal or polyclonal, and the host species.
- The commercial supplier or source laboratory.
- The catalogue or clone number and, if known, the batch number.
- The antigen(s) used to raise the antibody.
- For established antibodies, a stable public identifier from the Antibody Registry.

The manuscript should also report the following experimental details:

- The final antibody concentration or dilution.
- A reference to the validation study if the antibody was previously validated. If not, provide details of how the authors validated the antibody for the applications and species used.

We encourage authors to consider adding information on new validations to a publicly available database such as Antibodypedia or CiteAb.

Methods, software, databases, and tools

PLOS ONE will consider submissions that present new methods, software, or databases as the primary focus of the manuscript if they meet the following criteria:

Utility

The tool must be of use to the community and must present a proven advantage over existing alternatives, where applicable. Recapitulation of existing methods, software, or databases is not useful and will not be considered for publication. Combining data and/or functionalities from other sources may be acceptable, but simpler instances (i.e. presenting a subset of an already existing database) may not be considered. For software, databases, and online tools, the long-term utility should also be discussed, as relevant. This discussion may include maintenance, the potential for future growth, and the stability of the hosting, as applicable.

Validation

Submissions presenting methods, software, databases, or tools must demonstrate that the new tool achieves its intended
If similar options already exist, the submitted manuscript must demonstrate that the new tool is an improvement over existing options in some way. This requirement may be met by including a proof-of-principle experiment or analysis; if this is not possible, a discussion of the possible applications and some preliminary analysis may be sufficient.

Availability

Software should be open source, deposited in an appropriate archive, and conform to the Open Source Definition. Databases must be open-access and hosted somewhere publicly accessible, and any software used to generate a database should also be open source. If relevant, databases should be open for appropriate deposition of additional data. Dependency on commercial software such as Mathematica and MATLAB does not preclude a paper from consideration, although complete open source solutions are preferred. Authors should provide a direct link to the deposited software or the database hosting site from within the paper.

Software submissions

Manuscripts describing software should provide full details of the algorithms designed. Describe any dependencies on commercial products or operating system. Include details of the supplied test data and explain how to install and run the software. A brief description of enhancements made in the major releases of the software may also be given. Authors should provide a direct link to the deposited software from within the paper.

Database submissions

For descriptions of databases, provide details about how the data were curated, as well as plans for long-term database maintenance, growth, and stability. Authors should provide a direct link to the database hosting site from within the paper.

New taxon names

When publishing papers that describe a new zoological taxon name, PLOS aims to comply with the requirements of the International Commission on Zoological Nomenclature (ICZN). Effective 1 January 2012, the ICZN considers an online-only publication to be legitimate if it meets the criteria of archiving and is registered in ZooBank, the ICZN’s official registry.

For proper registration of a new zoological taxon, we require two specific statements to be included in your manuscript.

In the **Results** section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example:

| Anochetus boltoni Fisher sp. nov. urn:lsid:zoobank.org:act:B6C072CF-1CA6-40C7-8396-534E91EF7FBB |

You will need to contact Zoobank to obtain a GUID (LSID). Please do this as early as possible to avoid delay of publication upon acceptance of your manuscript. It is your responsibility to provide us with this information so we can include it in the final published paper.

Please also insert the following text into the **Methods** section, in a sub-section to be called “Nomenclatural Acts”:

The electronic edition of this article conforms to the requirements of the amended International Code of Zoological Nomenclature, and hence the names contained herein are available under that Code from the electronic edition of this article. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub: XXXXXXXX. The electronic edition of this work was published in a journal with an ISSN, and has been archived and is available from the following digital repositories: PubMed Central, LOCKSS [author to insert any additional repositories].

All PLOS articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article.

When publishing papers that describe a new botanical taxon, PLOS aims to comply with the requirements of the International Code of Nomenclature for algae, fungi, and plants (ICN). The following guidelines for publication in an online-only journal have been agreed such that any scientific botanical name published by us is considered effectively published under the rules of the Code. Please note that these guidelines differ from those for zoological nomenclature, and apply only to seed plants, ferns, and lycophytes.

Effective January 2012, the description or diagnosis of a new taxon can be in either Latin or English. This does not affect the requirements for scientific names, which are still to be Latin.
Also effective January 2012, the electronic PDF represents a published work according to the ICN for algae, fungi, and plants. Therefore the new names contained in the electronic publication of PLOS article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

Additional information describing recent changes to the Code can be found here.

For proper registration of the new taxon, we require two specific statements to be included in your manuscript.

In the Results section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example:

Journal staff will contact IPNI to obtain the GUID (LSID) after your manuscript is accepted for publication, and this information will then be added to the manuscript during the production phase.

In the Methods section, include a sub-section called "Nomenclature" using the following wording:

The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been submitted to IPNI, from where they will be made available to the Global Names Index. The IPNI LSIDs can be resolved and the associated information viewed through any standard web browser by appending the LSID contained in this publication to the prefix http://ipni.org/. The online version of this work is archived and available from the following digital repositories: [INSERT NAMES OF DIGITAL REPOSITORIES WHERE ACCEPTED MANUSCRIPT WILL BE SUBMITTED (PubMed Central, LOCKSS etc)].

All PLOS articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article.

Fungal names

When publishing papers that describe a new botanical taxon, PLOS aims to comply with the requirements of the International Code of Nomenclature for algae, fungi, and plants (ICN). The following guidelines for publication in an online-only journal have been agreed such that any scientific botanical name published by us is considered effectively published under the rules of the Code. Please note that these guidelines differ from those for zoological nomenclature.

Effective January 2012, the description or diagnosis of a new taxon can be in either Latin or English. This does not affect the requirements for scientific names, which are still to be Latin.

Also effective January 2012, the electronic PDF represents a published work according to the ICN for algae, fungi, and plants. Therefore the new names contained in the electronic publication of PLOS article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

Additional information describing recent changes to the Code can be found here.

For proper registration of the new taxon, we require two specific statements to be included in your manuscript.

In the Results section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example:

| Hymenogaster huthii | Stielow et al. 2010, sp. nov. [urn:lsid:indexfungorum.org:names:518624] |

You will need to contact either Mycobank or Index Fungorum to obtain the GUID (LSID). Please do this as early as possible to avoid delay of publication upon acceptance of your manuscript. It is your responsibility to provide us with this information so we can include it in the final published paper. Effective January 2013, all papers describing new fungal species must reference the identifier issued by a recognized repository in the protologue in order to be considered effectively published.

In the Methods section, include a sub-section called "Nomenclature" using the following wording (this example is for taxon names submitted to MycoBank; please substitute appropriately if you have submitted to Index Fungorum):

http://journals.plos.org/plosone/s/submission-guidelines
The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MB/. The online version of this work is archived and available from the following digital repositories: [INSERT NAMES OF DIGITAL REPOSITORIES WHERE ACCEPTED MANUSCRIPT WILL BE SUBMITTED (PubMed Central, LOCKSS etc)].

All PLOS articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article.

Qualitative research

Qualitative research studies use non-quantitative methods to address a defined research question that may not be accessible by quantitative methods, such as people's interpretations, experiences, and perspectives. The analysis methods are explicit, systematic, and reproducible, but the results do not involve numerical values or use statistics. Examples of qualitative data sources include, but are not limited to, interviews, text documents, audio/video recordings, and free-form answers to questionnaires and surveys.

Qualitative research studies should be reported in accordance to the Consolidated criteria for reporting qualitative research (COREQ) checklist. Further reporting guidelines can be found in the Equator Network's Guidelines for reporting qualitative research.

Feedback

Was this information helpful?
Help us improve this page by leaving feedback below. For questions about a specific manuscript, please email the journal.

☐ Yes
☐ No

Comments

Send feedback
3.2 Proof that article has been accepted for publication in *PLOS ONE*

PONE-D-16-40532

The Effects of Residual Platelets in Plasma on Plasminogen Activator Inhibitor-1 and Plasminogen Activator Inhibitor-1-related Assays

Dear Prof Pieters,

I am pleased to inform you that your manuscript has been deemed suitable for publication in *PLOS ONE*. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other question or concerns, please email plosone@plos.org.

Thank you for submitting your work to *PLOS ONE*.

With kind regards,

PLOS ONE Editorial Office Staff on behalf of
Dr. Pablo Garcia de Frutos
Academic Editor

PLOS ONE

27 January 2017
3.3 Accepted article submitted to *PLOS ONE*

The Effects of Residual Platelets in Plasma on Plasminogen Activator Inhibitor-1 and Plasminogen Activator Inhibitor-1-related Assays

Short title: Residual Platelets Influence Plasminogen Activator Inhibitor-1 Assays

Key words: PAI-1, Clot lysis time, Fibrinolysis, Platelets, βTG

Marlien Pieters1*, Sunelle A. Barnard1, Du Toit Loots2, Dingeman C. Rijken3

1 Centre of Excellence for Nutrition, North-West University, Potchefstroom, North West province, South Africa;

2 Human Metabolomics, North-West University, Potchefstroom, North West province, South Africa;

3 Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands

* Corresponding Author

E-mail address: marlien.pieters@nwu.ac.za (MP)
Abstract: 297 Text: 3150

Abbreviations:

βTG, beta thromboglobulin; CLT, clot lysis time; CTAD, citrate-theophylline, adenosine, dipyridamol; ELISA, enzyme-linked immunosorbent assay; HREC, Health Research Ethics Committee; MPV, mean platelet volume; NWU, North-West University; PAI-1; plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; PPP, platelet-poor plasma; PRP, platelet-rich plasma; tPA/PAI-1 complex, tissue plasminogen activator/PAI-1 complex; SABPA, Sympathetic activity and Ambulatory Blood Pressure in Africans.
Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.
Keywords

Plasminogen activator inhibitor-1, Clot lysis time, Fibrinolysis, Platelets, β-thromboglobulin
3.3.2 Introduction

Plasminogen activator inhibitor type-1 (PAI-1) is a serine protease inhibitor (serpin) (1, 2), which acts as a main inhibitor of fibrinolysis (3). Elevated plasma PAI-1 levels have been associated with a risk for developing atherothrombosis (4-6) due to its antifibrinolytic properties, by reducing the clearance of fibrin in plaques (5), and also via its influence on cellular migration, matrix remodelling and activation of growth factors (7, 8). Plasma PAI-1 exists either in an active or latent form, or in complex with tissue plasminogen activator (tPA) (9-11). The active form of PAI-1 is unstable, with a half-life of approximately two to three hours, after which it will spontaneously convert to the inactive, latent form (9, 12). PAI-1 is produced by various cells such as endothelial cells, hepatocytes, smooth muscle cells, adipocytes, and platelets (11, 13). In platelets, PAI-1 is stored in the alpha granules and is released during platelet activation and aggregation (11, 14, 15).

Recently, there has been a debate about which form of PAI-1, or at least the relative proportion of each form, is released from the platelet alpha granules. It was traditionally believed that platelets store and release mainly latent PAI-1, since, only approximately 5-10% of PAI-1 antigen (PAI-1_ag) was shown to be active in lysed platelet-rich plasma (16). More recent studies however, suggest that platelets release a substantial amount of active PAI-1 (17-19). This is due to the observed de novo synthesis of PAI-1 within platelets, which was indicated to remain active for over 24 hours (17). Possible explanations for the contradictory evidence pertaining to platelet PAI-1 activity, could be due to the different approaches used in these experiments for preparing the platelet lysates (sonification and freezing and or thawing of the samples), which have been reported to influence the detection of PAI-1 (18). Furthermore, the conversion of active PAI-1 to its latent state can be influenced by low temperatures, low pH and high salt concentrations (20). It is however not clear as to how the PAI-1, released from the alpha granules of residual platelets in plasma, affects PAI-1 assays and PAI-1-related assays.
The overall aim of the study was therefore to investigate the effect of residual platelets in plasma, on various PAI-1 and PAI-1-related assays: PAI-1 activity (PAI-1 act), PAI-1 antigen (PAI-1 ag), and tPA/PAI-1 complex, as well as plasma fibrinolytic potential (a functional parameter of fibrinolysis, measured as plasma clot lysis time (CLT)). The study consisted of two sub-studies. In the first, varying centrifugation speeds (352 and 1500 g) were used to prepare platelet-containing plasma, from 151 participants in the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study. The purpose of this sub-study was to determine the effect of residual platelets in plasma on various PAI-1 assay results, by relating these assays to a marker of platelet alpha granule release (beta thromboglobulin (βTG)). In this sub-study, absolute platelet counts were not measured, and additionally it was not possible to calculate to what degree plasma PAI-1 levels were influenced by in vitro platelet activation and or degradation. Additionally, Merolla et al. (21) found that different centrifugation speeds may result in different platelet populations, which could also have had an effect on our results. The purpose of the second study was, therefore, to determine the influence of actual platelet count on PAI-1 ag, as the antigen assay was the assay found to be significantly influenced by plasma platelet content in the first sub-study. In the follow-up study, plasma was collected from 23 additional participants, and platelet count and size, in addition to βTG and PAI-1 ag concentrations, where determined from three different plasma preparations: platelet-poor plasma (PPP – 2000 g), platelet-containing plasma (352 g, in keeping with the first sub-study protocol) and platelet-rich plasma (PRP – 200 g). PPP was collected in citrate tubes, containing platelet stabilisers, in order to provide basal plasma PAI-1 ag levels without any of the influencing effects of in vitro platelet activation and/or degradation. Furthermore, the 352 g and 200 g citrated plasma samples were analysed not only as fresh-frozen, but also after five defrost-refreeze cycles, ensuring complete alpha granule release from the platelets, in order to determine the total platelet PAI-1 ag and βTG content.
3.3.3 Materials and Methods

Study population and ethics – SABPA study

The Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study, was a cross-sectional study including 409 (202 men and 207 women) school teachers between the ages of 25 – 60 years, from the North West Province, South Africa. Of these participants 151 individuals were randomly selected for inclusion in the present study. All samples were analysed at the same time. Exclusion criteria were: elevated ear temperature, dependence or abuse of psychotropic substances, regular blood donors, and individuals vaccinated within the previous three months. The study complied with all applicable international regulations and the Helsinki declaration for investigation of human participants. The study was approved by the Health Research Ethics Committee (HREC) of the North-West University (NWU), Potchefstroom Campus (NWU-00016-10-A1).

Study population and ethics – follow-up study

Twenty three individuals from the same socio-demographic profile as the SABPA study participants were recruited by means of a purposive sampling method from the Potchefstroom Campus of the NWU. The same inclusion and exclusion criteria as well as ethical principles were adhered to. The study was approved by the HREC of the NWU, Potchefstroom Campus (NWU-00016-10-A1). All samples were collected and analysed at the same time.

Blood collection – SABPA study

Fasting blood samples with minimum stasis were collected from the antebrachial vein before 10:00 am. 3.2% Citrate samples were used for the analysis of PAI-1 (activity, antigen and
tPA/PAI-1 complex), βTG and CLT. Samples were randomly divided into two groups. One half of the study population samples were centrifuged at 352 g and the other half at 1500 g for 15 minutes at 20 °C to yield plasma containing a varying number of platelets. Aliquots were snap frozen on dry ice and stored at -82 °C until analysis.

Blood collection – follow-up study

Fasting blood samples with minimum stasis were collected from the antebrachial vein before 10:00 am. Blood was collected into two 3.2% citrated tubes and one CTAD tube (a citrate tube containing platelet stabilisers; theophylline, adenosine and dipyridamol). CTAD plasma was prepared by centrifuging the samples at 2000 g for 30 minutes at 20 °C, to yield PPP with platelets protected from in vitro activation or degradation. Two types of citrate plasma were prepared by centrifuging one of the citrated tubes at 352 x g for 15 minutes at 20 °C, to yield platelet-containing plasma, and the other tube at 200 x g for 10 minutes at 20 °C, to yield PRP. These conditions were comparable to that of the SABPA study and also served the purpose to provide information on standard plasma type preparations – PPP and PRP. All samples were centrifuged within 20 min of collection.

Platelet count and size analyses were performed in fresh whole blood samples collected both in citrate and CTAD tubes, as well as in the different plasma preparations described above. The remaining plasma was then aliquoted, snap frozen on dry ice and stored at -82°C. The CTAD plasma samples and half of the aliquots of the two citrate plasma preparations, of each individual, were thawed once only, by placing these in a 37 °C water bath for 10 minutes, immediately prior to PAI-1ag and βTG analyses. The second half of the citrated plasma sample aliquots underwent five freeze-thaw cycles (x 5), once daily, prior to
analysis, to ensure maximum platelet α-granule release. Fig. 3.1 provides a schematic depiction of the study design.

Biochemical analysis

PAI-1\textsubscript{act} was measured using an indirect enzymatic method (Technozym PAI-1 Actibind, Technoclone, Vienna, Austria), and PAI-1\textsubscript{ag}, using a two-site enzyme-linked immunosorbent assay (ELISA) (TriniLIZE PAI-1\textsubscript{ag}, TCoag, Bray Ireland). tPA/PAI-1 complex was analysed using a solid phase enzyme immunoassay, specific to PAI-1 complexed to tPA (Technoclone, Vienna, Austria). An antigenic assay was used to measure βTG levels by means of an ELISA (Asserachrom® βTG Diagnostica Stago, Asnières sur Seine, France).

CLT was determined by studying the lysis of a tissue factor-induced plasma clot by exogenous tPA. Changes in turbidity during clot formation and lysis were monitored as described by Lisman \textit{et al.} [24]. Tissue factor and tPA concentrations were slightly modified to obtain comparable CLTs of approximately 60 minutes. The modified concentrations were 17 mmol/L CaCl\textsubscript{2}, 60 ng/ml tPA (Actilyse, Boehringer Ingelheim, Ingelheim, Germany) and 10 μmol/L phospholipids vesicles (Rossix, Mölndal, Sweden). Tissue factor was diluted 3000 times (Dade Innovin, Siemens Healthcare Diagnostics Inc., Marburg, Germany). CLT was defined as the time from the midpoint, from clear to maximum turbidity (representative of the clot formation), to the midpoint in the transition from maximum turbidity to the final baseline turbidity (representative of the lysis of the clot) [24]. Platelet count and mean platelet volume were determined with a Coulter AcT 5-part differential (5 diff) autoloader haematology analyser (Beckman Coulter, Fullerton, CA, USA).

Statistical analysis
The data was analysed with the computer software package Statistica (Statsoft Inc., Tulsa, Oklahoma, USA). A p-value of 0.05 or less was regarded as statistically significant. Descriptive data is presented as median (25th; 75th percentiles) as most of the variables were not normally distributed. Kruskal-Wallis analysis of variance (ANOVA) with multiple comparisons of mean post-hoc tests were used to compare differences in the PAI-1 and CLT assays, between population sub-groups divided into quartiles of βTG levels. Correlations between variables were determined both with Spearman Rank order and Pearson (for log transformed data) correlation tests. Only the Spearman data is reported, as both correlation tests provided similar results. Significant differences between correlation coefficients obtained were also calculated. For the follow-up study, Wilcoxon-Matched pairs tests were used to determine significant differences between plasma prepared at 200 and 352 g and also between fresh-frozen and 5 times defrosted-refrozen samples.

3.3.4 Results

SABPA study

The study population included 151 participants, with a mean age of 45.7 (±8.75) years and a BMI of 26.9 (±2.29). When comparing the samples prepared at the two different centrifugation speeds, the 352 g group had significantly higher βTG (3263 vs 355 IU/mL; p < 0.0001) and PAI-1\textsubscript{ag} (33.8 vs 20.8 ng/mL; p < 0.0001) levels, compared to the 1500 g group, with borderline significantly higher PAI-1\textsubscript{act} (2.95 vs 1.91 U/mL; p = 0.03) and longer CLT (78.2 vs 74.4 min; p = 0.04). No difference in tPA/PAI-1 complex (p=0.09) was observed (Table 3.1).

When dividing the study population into quartiles according to plasma βTG levels (Table 3.2), PAI-1\textsubscript{ag} increased consistently across the βTG quartiles. PAI-1\textsubscript{act} showed a significant
increase in the highest βTG quartile only, with CLT tending to be longer, without reaching significance. No difference was observed in tPA/PAI-1 complex across the βTG quartiles. βTG was furthermore correlated with PAI-1 ag (r=0.66; p<0.0001), demonstrating statistically weaker correlations with PAI-1 act (r=0.22; p=0.008); tPA/PAI-1 complex (r=0.12; p=0.13) and CLT (r=0.20; p=0.02) (Table 3.3). Although CLT correlated with all the PAI-1 assays, it showed the strongest correlation with PAI-1 act (r=0.74; p<0.0001).

Follow-up Study

Table 3.4 presents the descriptive statistics of the follow-up study group. A total of 23 participants were included. Platelet counts in the citrated and CTAD whole blood were similar. The platelet count of the CTAD samples centrifuged at 2000 g was 1.00 (1.00-2.00) x 10^3/µL, confirming that it was indeed platelet poor (<10 x 10^3/µL). The platelet counts of the 352 g and 200 g plasma were 323 (257 – 440) x 10^3/µL and 523 (389 – 674) x 10^3/µL respectively. The 352 g plasma had a significantly lower mean platelet volume (7.00 [6.65 – 7.60] fL) than the 200 g plasma (7.80 [7.00 – 8.30] fL), which in turn had a similar mean platelet volume than that of the whole blood. βTG levels increased 60 fold and 150 fold in the 352 g and 200 g plasma respectively, compared to the PPP, while PAI-1 ag levels increased 15 and 22 fold respectively. In both the 352 g and 200 g plasma, the βTG levels of the samples that underwent 5 freeze-thaw cycles, prior to analyses, were significantly lower than that of the samples that were defrosted once only, prior to analysis, possibly due to instability of βTG (5 % and 3 % respectively), while PAI-1 ag levels showed significant increases of 26% and 27% respectively.

When combining the different types of plasma, βTG had a highly significant correlation with platelet count (r=0.91, p<0.0001). When investigating the different types of plasma
separately, βTG levels correlated well with platelet count in the 352 g (r=0.60, p=0.002) and 200 g (r=0.70, p=0.0002) plasma samples, with a smaller and non-significant correlation (r=0.40, p=0.06) in the PPP (Table 3.5). For all the types of plasma combined, PAI-1\textsubscript{ag} and platelet count were highly correlated (r=0.91, p<0.0001). Compared with βTG, PAI-1\textsubscript{ag} showed even stronger statistical correlations with platelet count in the 352 g (r=0.85, p<0.0001) and 200 g (r=0.81, p<0.0001) plasma, also with a non-significant relationship in the PPP. None of the plasma preparations’ βTG levels correlated with whole blood platelet count, while the correlation of PAI-1\textsubscript{ag} of the 200 g plasma with whole blood platelet count, reached borderline significance (r=0.4, p=0.06). Furthermore, βTG and PAI-1\textsubscript{ag} correlated significantly when combining the different types of plasma (r=0.86, p<0.0001), however, correlated negatively in PPP (r=-0.61, p=0.002), with significant positive correlations in the 352 g (r=0.55, p=0.006) and 200 g (r=0.74, p<0.0001) plasma separately (Table 3.6).

3.3.5 Discussion

In this study we investigated the effect of residual platelets present in plasma, on plasma PAI-1 and PAI-1-related assay results. Our data suggests that the presence of platelets in plasma significantly influences plasma PAI-1\textsubscript{ag} levels in a concentration dependent manner, likely due to an increase in mainly plasma latent PAI-1. Only in the presence of large amounts of platelets such as in PRP, functional effects in terms of plasma fibrinolytic potential are seen, suggesting the presence of a comparatively lower concentration of active PAI-1 in platelets. It was furthermore demonstrated that platelets present in plasma, do not initially release all of their PAI-1 content and that further release of PAI-1 can occur upon further / complete in vitro platelet degradation.
The SABPA study data indicated that βTG levels had a significantly larger effect on PAI-1\textsubscript{ag} levels than any of the other PAI-1 variables or CLT. When dividing the study population into βTG quartiles, PAI-1\textsubscript{act} and CLT increased in the highest βTG quartile only, suggesting that there may be a small amount of active PAI-1 present in platelets. In agreement with this, Serizawa \textit{et al.} [25] found longer CLT in PRP than PPP which was ascribed to the presence of active PAI-1 in platelets. Since PAI-1\textsubscript{ag} is composed of latent PAI-1, active PAI-1 and PAI-1 in complex with tPA, and considering that: 1) only minimal differences were observed in PAI-1\textsubscript{act}, tPA/PAI-1 complex and CLT across the βTG quartiles, and 2) βTG showed much weaker correlations with PAI-1\textsubscript{act}, tPA/PAI-1 complex and CLT than with PAI-1\textsubscript{ag}, the data suggests that platelet alpha granule release largely contributes to increased plasma PAI-1\textsubscript{ag}, by increasing latent PAI-1. It was unfortunately not possible to measure plasma latent PAI-1 levels directly, as no such commercial assay is currently available. Latent PAI-1 is unable to inhibit tPA; therefore, the presence of latent PAI-1 in plasma may lead to a falsely assumed increased fibrinolytic inhibitory capacity. The lack of increase in CLT across the βTG quartiles, (apart from the highest quartile) confirms this. These results are also in agreement with a study by Juhan-Vague \textit{et al.} [26] who found PAI-1, released from platelets, \textit{in vitro}, to be mainly in the inactive form. Combined, this data suggests that platelets likely contain both latent and active PAI-1, but that a high plasma platelet content (such as in PRP) is required before the active PAI-1 present in platelets has functional effects on plasma fibrinolytic potential.

Follow-up Study

Data from the follow-up study, clearly demonstrated the significant effects of platelets present in plasma, on plasma PAI-1\textsubscript{ag} levels. Platelet count and βTG and PAI-1\textsubscript{ag} levels were highly correlated, in the different plasma preparations containing platelets (352 g and
200 g), with no significant associations in the PPP. PAI-1\textsubscript{ag} levels in PRP already tended to correlate with whole blood platelet count. PAI-1\textsubscript{ag} levels, were furthermore, up to 22 fold higher in PRP when compared to basal levels in PPP (which was exempted from the possible influence of residual platelet content or \textit{in vitro} platelet α-granule release), highlighting the magnitude of the effect of platelets on plasma PAI-1\textsubscript{ag} levels, compared to other sources of PAI-1 (endothelial cells, hepatocytes, smooth muscle cells and adipocytes) [13,15]. The additional 1.3 fold increase in plasma PAI-1\textsubscript{ag}, subsequent to maximal degradation (5 x freeze-thaw cycles), suggests that \textit{in vitro} platelet degradation can contribute to a further increase in plasma PAI-1\textsubscript{ag} levels, confirming the necessity of the use of the correct plasma preparation protocols to standardise platelet count and to ensure the preparation of platelet-poor plasma (<10 x 103/μL). Differences in platelet size were also detected when comparing the 352 g and the 200 g plasma, indicating the presence of different platelet populations in the samples centrifuged at different speeds. Since platelets with larger sizes are known to be more metabolically active than smaller platelets [27], platelet size, in addition to platelet count, most likely influence the relationship between platelets present in plasma and PAI-1\textsubscript{ag} levels.

Although βTG is extensively used as a marker of platelet alpha granule release, it does have limitations. The sensitivity of βTG as a marker of platelet activation and alpha granule release can be influenced by various factors; including the choice of anticoagulant, and sample handling and preparation procedures, [28,29]. Furthermore, βTG shows diurnal variation and is additionally influenced by age, renal function and the use of various medications, such as beta blockers for instance [28,29]. In order to minimise the possible influence of these confounders, in this study all samples were collected in an identical manner, before 10:00 am and stored at identical temperatures. None of the participants were using beta blockers or had impaired renal function. The significant correlation between platelet count and βTG (r=0.91, p<0.0001) furthermore supports its use as a proxy marker.
for the number of platelets in plasma in our study populations. While PAI-1 activity may be
influenced by freeze-thaw cycles, we opted to work with frozen samples as this type of
sample is most often used in studies and therefore relevant to a larger audience. Furthermore all plasma preparations were treated similarly making comparison between the
different preparations possible. Although samples were not specifically treated to prevent
possible in vitro conversion of active to latent PAI-1, samples were processed within 20
minutes after collection and snap frozen to limit in vitro conversion.

The results from the present study indicate that the content of the alpha granules released
from platelets in plasma, significantly influences plasma PAI-1_{ag} levels, with limited effects on
PAI-1_{act}, tPA/PAI-1 complex or fibrinolysis rate (measured as CLT). This effect on PAI-1_{ag} is
thought to be largely due to an increased release of latent PAI-1 from platelets which is
unable to bind tPA and inhibit fibrinolysis. Due to the potential contribution of latent PAI-1 to
PAI-1_{ag} levels, PAI-1_{act} may be the more clinically useful assay to determine the fibrinolytic
inhibitor capacity of plasma. In plasma with a high platelet count, such as PRP, the
component of platelet PAI-1 that is active, may, however have functional effects by
decreasing plasma fibrinolytic potential. These results suggest that PAI-1_{ag} is more sensitive
to the presence of platelets in plasma, than other PAI-1 assays (PAI-1_{act} and tPA/PAI-1
complex) or CLT but that these assays may also be influenced by platelets when present in
high numbers such as in PRP.

3.3.6 Acknowledgements

We would like to thank the SAPBA research team, the field-workers of the North-West
University, South Africa, and the SAPBA project leader, Prof Leone Malan
3.3.7 Funding statement

This work was supported by grants from the National Research Foundation (NRF) of South Africa (Grant UID: 94213) (http://www.nrf.ac.za) and the South African Medical Research Council (http://www.mrc.ac.za). Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the NRF.
3.3.8 References

Table footnotes and legends to figures

Table 3.1. Comparison of βTG, PAI-1 assays and CLT according to centrifugation speed in SABPA study.

βTG - beta thromboglobulin; CLT - clot lysis time; PAI-1 – plasminogen activator inhibitor-1
PAI-1_{act} – PAI-1 activity; PAI-1_{ag} – PAI-1 antigen; tPA/PAI complex - tissue plasminogen activator/PAI-1 complex.

Table 3.2. PAI-1_{act}, PAI-1_{ag}, tPA/PAI-1 complex and CLT according to βTG in SABPA study group.

ANOVA, analysis of co-variance; βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; tPA/PAI-complex, tissue plasminogen activator/PAI-1 complex; * # Means with the same symbol differ significantly.

Table 3.3. Spearman rank order correlations between βTG, PAI-1 assays and CLT in SABPA study group.

βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; tPA/PAI-complex, tissue plasminogen activator/PAI-1 complex. * Significantly weaker correlation with βTG than the correlation of PAI-1_{ag} with βTG.
Table 3.4. Descriptive statistics of follow-up group.

Table 3.5. Spearman rank order correlations of βTG and PAI-1$_{ag}$ with whole blood, CTAD and citrate plasma platelet count of the follow-up study.

Table 3.6. Spearman rank order correlations between βTG and PAI-1$_{ag}$ in the respective plasma preparations of the follow-up study.

Fig. 3.1. Design of follow-up study
Table 3.1 Comparison of βTG, PAI-1 assays and CLT according to centrifugation speed in SABPA study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>352 g (n=75)</th>
<th>1500 g (n=75)</th>
<th>p-value (Mann-Whitney)</th>
</tr>
</thead>
<tbody>
<tr>
<td>βTG (IU/mL)</td>
<td>3263 (2009; 4394)</td>
<td>355 (218; 584)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PAI-1 ag (ng/mL)</td>
<td>33.8 (28.4; 42.4)</td>
<td>20.8 (16.7; 25.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PAI-1 act (U/mL)</td>
<td>2.95 (0.69; 8.72)</td>
<td>1.91 (0.25; 4.68)</td>
<td>0.03</td>
</tr>
<tr>
<td>tPA/PAI complex (ng/mL)</td>
<td>8.78 (6.59; 11.7)</td>
<td>7.90 (6.01; 10.2)</td>
<td>0.09</td>
</tr>
<tr>
<td>CLT (min)</td>
<td>78.2 (69.7; 86.4)</td>
<td>74.4 (69.7; 79.8)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

βTG - beta thromboglobulin; CLT - clot lysis time; PAI-1 – plasminogen activator inhibitor-1; PAI-1 act – PAI-1 activity; PAI-1 ag – PAI-1 antigen; tPA/PAI complex - tissue plasminogen activator/PAI-1 complex.
Table 3.2: PAI-1\(_{\text{act}}\), PAI-1\(_{\text{ag}}\), tPA/PAI-1 complex and CLT according to βTG quartiles in SABPA study group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SAPBA study group</th>
<th>βTG 1(^{st}) Quartile (≤341 IU/mL)</th>
<th>βTG 2(^{nd}) Quartile (341 IU/mL - 817 IU/mL)</th>
<th>βTG 3(^{rd}) Quartile (817 IU/mL - 3263 IU/mL)</th>
<th>βTG 4(^{th}) Quartile (>3263 IU/mL)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>n (25; 75% percentile)</td>
<td>p-value</td>
</tr>
<tr>
<td>PAI-1(_{ag}) (ng/L)</td>
<td>37 20.4 (16.0; 25.8) *</td>
<td>38 21.5 (17.0; 26.7) *</td>
<td>37 29.6 (25.1; 39.7) *</td>
<td>37 40.7 (31.0; 42.9) *</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>PAI-1(_{act}) (U/mL)</td>
<td>34 2.56 (0.31; 4.89)</td>
<td>37 1.89 (0.20; 3.77) *</td>
<td>37 1.37 (0.41; 6.70)</td>
<td>36 5.65 (1.28; 10.3) *</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>tPA/PAI-1 complex (ng/mL)</td>
<td>35 8.00 (6.36; 10.2)</td>
<td>37 7.55 (5.26; 10.1)</td>
<td>37 8.65 (6.28; 11.7)</td>
<td>38 9.06 (7.32; 11.3)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>CLT (min)</td>
<td>34 75.4 (69.7; 79.5)</td>
<td>37 73.9 (69.7; 78.6)</td>
<td>36 76.6 (67.7; 84.1)</td>
<td>35 81.5 (71.6; 96.0)</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

ANOVA, analysis of co-variance; βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1\(_{act}\), PAI-1 activity; PAI-1\(_{ag}\), PAI-1 antigen; tPA/PAI-complex, tissue plasminogen activator/PAI-1 complex; * # Medians with different symbols differ significantly.
Table 3.3: Spearman rank order correlations between βTG, PAI-1 assays and CLT in SABPA study group.

<table>
<thead>
<tr>
<th>Variables</th>
<th>βTG</th>
<th>PAI-1<sub>ag</sub></th>
<th>PAI-1<sub>act</sub></th>
<th>tPA/PAI-1 complex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r (p-value)</td>
<td>r (p-value)</td>
<td>r (p-value)</td>
<td>r (p-value)</td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL)</td>
<td>0.66 (<0.0001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PAI-1<sub>act</sub> (U/mL)</td>
<td>0.22 (0.008) *</td>
<td>0.43 (<0.0001)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tPA/PAI-1 complex (ng/mL)</td>
<td>0.12 (0.13) *</td>
<td>0.30 (0.0002)</td>
<td>0.64 (<0.0001)</td>
<td>-</td>
</tr>
<tr>
<td>CLT (min)</td>
<td>0.20 (0.02) *</td>
<td>0.41 (<0.0001)</td>
<td>0.74 (<0.0001)</td>
<td>0.50 (<0.0001)</td>
</tr>
</tbody>
</table>

βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}; PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; tPA/PAI-complex, tissue plasminogen activator/PAI-1 complex. * Significantly weaker correlation with βTG than the correlation of PAI-1_{ag} with βTG.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Study population (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (25th; 75th percentiles)</td>
</tr>
<tr>
<td>Gender: men / women (n)</td>
<td>12 / 11</td>
</tr>
<tr>
<td>Ethnicity: black / white (n)</td>
<td>11 / 12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>36 (29; 42)</td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>120 (110; 130)</td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
<td>80 (70; 80)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.4 (22.0; 28.4)</td>
</tr>
<tr>
<td>CTAD whole blood platelet count (x10³/µL)</td>
<td>239 (195; 248)</td>
</tr>
<tr>
<td>Citrate whole blood platelet count (x10³/µL)</td>
<td>234 (194; 257)</td>
</tr>
<tr>
<td>CTAD plasma 2000 g platelet count (x10³/µL)</td>
<td>1.00 (1.00; 2.00)</td>
</tr>
<tr>
<td>Citrate plasma 352 g platelet count (x10³/µL)</td>
<td>323 (257; 440)</td>
</tr>
<tr>
<td>Citrate plasma 200 g platelet count (x10³/µL)</td>
<td>523 (389; 674)</td>
</tr>
<tr>
<td>Whole blood CTAD MPV (fL)</td>
<td>7.80 (7.40; 8.40)</td>
</tr>
<tr>
<td>Whole blood Citrate MPV (fL)</td>
<td>7.80 (7.20; 8.30)</td>
</tr>
<tr>
<td>MPV (fL) 352 g plasma</td>
<td>7.00 (6.65; 7.60)</td>
</tr>
<tr>
<td>MPV (fL) 200 g plasma</td>
<td>7.80 (7.00; 8.30)</td>
</tr>
<tr>
<td>βTG (IU/mL) CTAD 2000 g plasma</td>
<td>120 (92; 156)</td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 1 plasma</td>
<td>7269 (6218; 8902)</td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 5 plasma</td>
<td>6890 (5770; 7985)</td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 1 plasma</td>
<td>17683 (14703; 19089)</td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 5 plasma</td>
<td>17182 (14322; 18393)</td>
</tr>
<tr>
<td>PAI-1ag (ng/mL) CTAD 2000 g plasma</td>
<td>5.16 (3.80; 11.5)</td>
</tr>
<tr>
<td>PAI-1ag (ng/mL) 352 g x 1 plasma</td>
<td>76.7 (64.1; 86.0)</td>
</tr>
<tr>
<td>PAI-1ag (ng/mL) 352 g x 5 plasma</td>
<td>96.9 (74.7; 117)</td>
</tr>
<tr>
<td>PAI-1ag (ng/mL) 200 g x 1 plasma</td>
<td>114.2 (90.6; 155)</td>
</tr>
<tr>
<td>PAI-1ag (ng/mL) 200 g x 5 plasma</td>
<td>145 (115; 191)</td>
</tr>
</tbody>
</table>

BMI, body mass index; βTG, beta thromboglobulin; CTAD, citrate-theophylline, adenosine, dipyridamol; DBP, diastolic blood pressure; g, gravitational acceleration; PAI-1, plasminogen activator inhibitor-1; PAI-1ag, PAI-1 antigen; SBP, systolic blood pressure; MPV, mean platelet volume; * & ** Median with the same symbol differ significantly between the 1x and 5 x frozen and defrosted samples.
Table 3.5: Spearman rank order correlations of βTG and PAI-1_{ag} with whole blood, CTAD and citrate plasma platelet count of the follow-up study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Platelet count x10<sup>3</sup>/µl (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTAD whole blood</td>
</tr>
<tr>
<td></td>
<td>r (p-value)</td>
</tr>
<tr>
<td>βTG (IU/mL) CTAD 2000 g plasma</td>
<td>-0.14 (0.5)</td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 1 plasma</td>
<td>-</td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 1 plasma</td>
<td>-</td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) CTAD 2000 g plasma</td>
<td>0.04 (0.9)</td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 352 g x 1 plasma</td>
<td>-</td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 200 g x 1 plasma</td>
<td>-</td>
</tr>
</tbody>
</table>

βTG, beta thromboglobulin; CTAD, citrate-theophylline, adenosine, dipyridamol; g, gravitational acceleration; PAI-1, plasminogen activator inhibitor-1; PAI-1_{ag}, PAI-1 antigen.
Table 3.6: Spearman rank order correlations between \(\beta \text{TG} \) and PAI-1\text{ag} in the respective plasma preparations of the follow-up study

<table>
<thead>
<tr>
<th>Variables</th>
<th>(\beta \text{TG} - \text{PAI-1}_{\text{ag}}) r (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTAD plasma 2000 g</td>
<td>-0.61 (0.002)</td>
</tr>
<tr>
<td>Citrate plasma 352 g x 1</td>
<td>0.55 (0.006)</td>
</tr>
<tr>
<td>Citrate plasma 200 g x 1</td>
<td>0.74 (<0.0001)</td>
</tr>
</tbody>
</table>

\(\beta \text{TG}, \) beta thromboglobulin; CTAD, citrate-theophylline, adenosine, dipyridamol; \(g \), gravitational acceleration; PAI-1, plasminogen activator inhibitor-1; PAI-1\text{ag}, PAI-1 antigen.
Figure 3.1: Design of follow-up study
CHAPTER 4: DEGREE OF OBESITY INFLUENCES THE RELATIONSHIP OF PAI-1 WITH BODY FAT DISTRIBUTION AND METABOLIC VARIABLES IN AFRICAN WOMEN

Authors: Sunelle A Barnard, Marlien Pieters, Cornelie Nienaber-Rousseau, Herculina S Kruger

This chapter includes:

4.1 Authors instructions of the journal, *Thrombosis Research* (Impact factor: 2.320);
4.2 proof that the article has been accepted for publication in *Thrombosis Research* and;
4.3 the accepted article titled: “Degree of obesity influences the relationship of PAI-1 with body fat distribution and metabolic variables in African women”.

In addition, the published article is provided as Addendum E
4.1 Instructions to authors – *Thrombosis Research*

(https://www.elsevier.com/journals/thrombosis-research/0049-3848?generatepdf=true)

Thrombosis Research is an international journal with a goal of rapid dissemination of new information on thrombosis, hemostasis, and vascular biology to advance science and clinical care. The journal publishes peer-reviewed original research, along with reviews, editorials, and opinions and critics. Both basic and clinical studies are published. Publication of research which will lead to novel approaches in diagnosis, therapy, prognosis and prevention of thrombotic and hemorrhagic diseases is given high priority. Rapid communication and high visibility is facilitated by on-line submission, processing, and dissemination through Science Direct with powerful on-line links to other journals and sources.

Several categories of manuscripts will be considered for publication

Full Length Articles are reports of original work. (5-6,000 words)

Review Articles constitute a literature review of a particular area and can be clinical or concentrate on a basic science topic. Review Articles are often commissioned but if you would like to submit a proposal, please contact Dr Erik Klok at F.A.Klok@LUMC.nl. Proposals for a series of review articles under one main heading will also be considered. Short reviews, providing a concise overview of the current research and/or clinical status of the topics under discussion, will also be considered. (6-7,000 words)

Correspondence (Letters-to-the-Editor) are contributions which should be concerned with matters of opinion and criticism on contributions published in the journal and other matters of interest to researchers in our field (1,500 words, 10 references, 1 figure, 1 table).

Editorials provide comments on matters significant to the readers of *Thrombosis Research* (1,500 words).

Reports of Scientific Meetings are published from time-to-time. Please contact the Editors-in-Chief regarding these.

Supplement issues may cover various topics in the field of thrombosis and hemostasis. They are approved by the Editors-in-Chief and edited preferably by one of the Editors of *Thrombosis Research*.

In addition to the above categories various **News Items** and **Announcements** will also be considered (500 words).

86
Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see https://www.elsevier.com/publishingethics and https://www.elsevier.com/journal-authors/ethics.

Human and animal rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans, http://www.wma.net/en/30publications/10policies/b3/index.html; Uniform Requirements for manuscripts submitted to Biomedical journals, http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed. All animal studies need to ensure they comply with the ARRIVE guidelines. More information can be found at http://www.nc3rs.org.uk/page.asp?id=1357.

Conflict of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. See also https://www.elsevier.com/conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.
Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see https://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck https://www.elsevier.com/editors/plagdetect.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results
In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration
resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g. investors' meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram can be found on http://www.consort-statement.org.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see https://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult https://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has pre-printed forms for use by authors in these cases: please consult https://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see https://www.elsevier.com/OAauthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see https://www.elsevier.com/openaccesslicenses).
Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. For more information see https://www.elsevier.com/copyright.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit https://www.elsevier.com/fundingbodies.
After acceptance, open access papers will be published under a non-commercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access
This journal offers authors a choice in publishing their research:
Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse
• An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institution
Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (https://www.elsevier.com/access).
• No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards. For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses: Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, let others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is USD 3000, excluding taxes. Learn more about Elsevier’s pricing policy: https://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (http://elsevier.com/greenopenaccess). Authors can also self-archive their manuscripts immediately and enable public access from their institution’s repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 12 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languageediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Informed consent and patient details
Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more
information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals, https://www.elsevier.com/patient-consent-policy. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g. Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Submit your article
Please submit your article via http://ees.elsevier.com/tr.

Referees
Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

NEW SUBMISSIONS
Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process.
As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or lay-out that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged.
The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements
There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions. If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes. Divide the article into clearly defined sections. Figures and tables embedded in text Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file.

REVISED SUBMISSIONS
Use of word processing software
Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: https://www.elsevier.com/guidepublication). See also the section on Electronic artwork. To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure
Subdivision - unnumbered sections
Divide your article into clearly defined sections. Each subsection is given a brief heading. Each heading should appear on its own separate line. Subsections should be used as much as possible when cross-referencing text: refer to the subsection by heading as opposed to simply 'the text'.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Authors should stipulate that informed consent was obtained when applicable to research on humans, with the comment that the study was approved by the institutional Ethics Committee on human research. Manuscripts reporting animal experiments must include the statement that all animals received care in compliance with the American, European, or any other Convention on Animal Care, with the comment that the study was approved by the institutional Ethics Committee.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information
• **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each
affiliation, including the country name and, if available, the e-mail address of each author.

- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

A word count should be provided in the 'Enter Comments' section of EES and on the title page. A word count of the text should include Tables and Legends. Exclude the Abstract and Reference list. If the manuscript was presented at a meeting, the name of the organization, the place and the date on which it was read must be indicated.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

An abstract for a full length article should not exceed 250 words. Structured abstracts are encouraged and should use the following

Headings: Introduction, Materials and Methods, Results and Conclusions.

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). See https://www.elsevier.com/highlights for examples.
Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Keywords should preferably be taken from Index Medicus. After the keywords, please also list all abbreviations used.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g. providing language help, writing assistance or proof reading the article, etc.).

All contributors who do not meet the criteria for authorship should be listed in an acknowledgements section. Authors should disclose whether they had any writing assistance and identify the entity that paid for this assistance.

Units
Follow internationally accepted rules and conventions: use the international system of units. If other units are mentioned, please give their equivalent in system of units.

Generic names of drugs and equipment should be used throughout the manuscript with brand names (proprietary name) and the name and location (city, state, country) of the manufacturer in parentheses when first mentioned in the text.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g. X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should
this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.

Artwork
Electronic artwork

General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Indicate per figure if it is a single, 1.5 or 2-column fitting image.
• For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
• Please note that individual figure files larger than 10 MB must be provided in separate source files.

A detailed guide on electronic artwork is available on our website: https://www.elsevier.com/artworkinstructions. You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below): EPS (or PDF): Vector drawings. Embed the font or save the text as 'graphics'.

TIFF (or JPG): Colour or grey-scale photographs (halftones): always use a minimum of 300 dpi. TIFF (or JPG): Bitmapped line drawings: use a minimum of 1000 dpi.

TIFF (or JPG): Combinations bitmapped line/half-tone (colour or grey-scale): a minimum of 500 dpi is required.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
• Supply files that are too low in resolution.
• Submit graphics that are disproportionately large for the content.
Colour artwork

Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge that these figures will appear in colour online (e.g. ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in colour in the printed version. For colour reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for colour: in print or online only. For further information on the preparation of electronic artwork, please see https://www.elsevier.com/artworkinstructions.

Illustration services

Elsevier's WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier's expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions

Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be
mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g. after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles (http://citationstyles.org), such as Mendeley (http://www.mendeley.com/features/reference-manager) and Zotero (https://www.zotero.org/), as well as EndNote (http://endnote.com/downloads/styles). Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link: http://open.mendeley.com/use-citation-style/thrombosis-research
When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style
Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.
Example: '.....as demonstrated [3,6]. Barnaby and Jones [8] obtained a different result'
List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.
Examples:
Reference to a journal publication:
Reference to a website:

Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.issn.org/services/online- services/access-to-the-ltwa/.
Video data

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labelled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at https://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

AudioSlides

The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at https://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary material

Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the
‘Track Changes’ option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages at https://www.elsevier.com/artworkinstructions.

Virtual Microscope
The journal encourages authors to supplement in-article microscopic images with corresponding high resolution versions for use with the Virtual Microscope viewer. The Virtual Microscope is a web based viewer that enables users to view microscopic images at the highest level of detail and provides features such as zoom and pan. This feature for the first time gives authors the opportunity to share true high resolution microscopic images with their readers. More information and examples are available at https://www.elsevier.com/about/content-innovation/virtual-microscope. Authors of this journal will receive an invitation e-mail to create microscope images for use with the Virtual Microscope when their manuscript is first reviewed. If you opt to use the feature, please contact virtualmicroscope@elsevier.com for instructions on how to prepare and upload the required high resolution images.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.
Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
• E-mail address
• Full postal address

All necessary files have been uploaded, and contain:
• Keywords
• All figure captions
• All tables (including title, description, footnotes)

Further considerations
• Manuscript has been 'spell-checked' and 'grammar-checked'
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
Printed version of figures (if applicable) in colour or black-and-white
Indicate clearly whether or not colour or black-and-white in print is required.
For any further information please visit our customer support site at http://support.elsevier.com.

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal Physics Letters B):

http://dx.doi.org/10.1016/j.physletb.2010.09.059

When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of
use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop's 'Create Your Own Book' service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

You can track your submitted article at https://www.elsevier.com/track-submission. You can track your accepted article at https://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.
Dear Prof. Pieters,

We are happy to inform you that your manuscript has been accepted for publication in Thrombosis Research.

Your accepted manuscript will now be transferred to our production department and work will begin on creation of the proof. If we need any additional information to create the proof, we will let you know. If not, you will be contacted again in the next few days with a request to approve the proof and to complete a number of online forms that are required for publication.

When your paper is published on ScienceDirect, you want to make sure it gets the attention it deserves. To help you get your message across, Elsevier has developed a new, free service called AudioSlides: brief, webcast-style presentations that are shown (publicly available) next to your published article. This format gives you the opportunity to explain your research in your own words and attract interest. You will receive an invitation email to create an AudioSlides presentation shortly. For more information and examples, please visit http://www.elsevier.com/audioslides.

With kind regards

Henri Versteeg, PhD

Editor-in-Chief

Thrombosis Research

6 September 2016
Degree of obesity influences the relationship of PAI-1 with body fat distribution and metabolic variables in African women

Running title: Plasminogen activator inhibitor-1 and body fat

Sunelle A Barnard, Marlien Pieters, Cornelie Nienaber-Rousseau, Herculina S Kruger

Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa

E-mail address of each author
Sunelle A Barnard 13024787@nwu.ac.za
Marlien Pieters marlien.pieters@nwu.ac.za
Cornelie Nienaber-Rousseau cornelie.nienaber@nwu.ac.za
Salome Kruger salome.kruger@nwu.ac.za

Corresponding Author:
Prof. Marlien Pieters
Centre of Excellence for Nutrition
North-West University
Potchefstroom Campus Tel no: +27 18 299 2462
Private Bag X6001 Fax no: +27 18 299 2464
Potchefstroom E-mail address: marlien.pieters@nwu.ac.za
2520, South Africa
Word count:

Summary: 250 Text: 4622

Abbreviations:

ANCOVA, analysis of co-variance; ANOVA, analysis of variance; ASM, appendicular skeletal muscle mass; BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; DXA, dual-energy x-ray absorptiometry; ECLIA, electrochemiluminescence immunoassay; FNIH, Foundation for the National Institutes of Health; HIV, human immunodeficiency virus; HREC, Health Research Ethics Committee; HRT, hormone replacement therapy; HOMA-IR, homeostatic model assessment of insulin resistance; IR, insulin resistance; ISAK, International Society for the Advancement of Kinanthropometry; MetS, metabolic syndrome; PAI-1, plasminogen activator inhibitor-1; PAI-1 activity; PURE, Prospective Urban and Rural Epidemiology; SANHANES, South African National Health and Nutrition Examination Survey; SCAT, subcutaneous adipose tissue; SO, sarcopenic obesity; SONDRAA, Sarcopenic Obesity and Non-communicable Disease Risk in African Adults; VAT, visceral adipose tissue; VLDL, very low density lipoproteins; WC, waist circumference; WHtR, waist-to-height ratio.
4.3.1 Abstract

Introduction

Although the relationship of plasminogen activator inhibitor-1 (PAI-1) with obesity has been well established, the relationship of PAI-1 with different body fat distribution patterns is less clear particularly in non-white ethnicities.

Methods

We investigated the cross-sectional association of PAI-1 \textsubscript{act} with body fat % and two different body fat distribution patterns, namely sarcopenic obesity (SO) and visceral (VAT) compared to subcutaneous (SCAT) abdominal obesity, in 246 healthy African women by creating sub-groups according to different body fat distribution patterns.

Results

The PAI-1 \textsubscript{act} level of the SO group did not differ significantly from that of the excessive % body fat, non-sarcopenic group (p=0.8). The relationship of PAI-1 \textsubscript{act}, with body fat %, insulin, triglycerides and appendicular skeletal mass (ASM) was influenced by body fat distribution patterns and degree of obesity. PAI-1 \textsubscript{act} was higher (1.65 vs 0.16 U/ml; p=0.001) in women with a proportionally higher abdominal VAT compared to higher abdominal SCAT compartment in the total study population, but not in the centrally obese sub-group (1.72 vs 0.83 U/ml; p=0.5). Multiple regression models indicated that body fat % \textit{per se} did not contribute significantly to PAI-1 \textsubscript{act} variance in women with increased fat mass.

Conclusion

Fat distribution patterns and degree of obesity influenced the association of PAI-1 \textsubscript{act} with insulin, triglycerides, ASM and body fat % in African women. In centrally obese women, abdominal VAT no longer contributed more to plasma PAI-1 \textsubscript{act}, than abdominal SCAT. Inflammation and endothelial dysfunction contributed more to PAI-1 \textsubscript{act} variance in obese African women than did body fat % \textit{per se}.

Keywords: Plasminogen activator inhibitor-1; abdominal obesity; sarcopenic obesity; dual-energy x-ray absorptiometry.
4.3.2 Introduction

Over the last decades the prevalence of obesity has increased dramatically, such that it is currently considered a global pandemic [1]. A world-wide estimate on the prevalence of overweight and obesity has shown that from 1980 to 2013 the proportion of overweight men and women have increased (from 28.8% to 36.9% and 29.8% to 38.0%, respectively) [2]. South Africa is no exception, according to the South African National Health and Nutrition Examination Survey (SANHANES) of 2013, the prevalence of overweight and obesity in women is 24.8% and 39.2%, respectively, which is significantly higher than in men (20.1% and 10.6%, respectively) [3]. Furthermore, females above 45 years of age have a significantly higher prevalence of obesity than younger females [3].

Plasminogen activator inhibitor type 1 (PAI-1), an important inhibitor of fibrinolysis, has previously been reported to be associated with obesity in both in vitro [4-7] and in vivo studies [8, 9]. Furthermore, PAI-1 has shown strong associations with the metabolic syndrome (MetS) and insulin resistance (IR) [10-12] and other co-morbidities associated with obesity such as hypertension, myocardial and cerebral infarction, atherosclerosis and inflammation [13].

Although the relationship of PAI-1 with obesity and more specifically central obesity (frequently determined by waist circumference (WC) has been well established [4, 14, 15], the relationship of PAI-1 with different central obesity fat distribution patterns is less clear particularly in non-white ethnicities, such as Africans. It is for instance possible that the abdominal visceral adipose tissue (VAT) to abdominal subcutaneous adipose tissue (SCAT) ratio could potentially influence plasma PAI-1 levels, despite similar WC. In general PAI-1 production was found to be higher in VAT (as an ectopic fat depot) than in SCAT due to the higher amount of stromal cells [5, 6], production of pro-inflammatory cytokines and higher macrophage content / infiltration [16, 17], however, the importance of PAI-1 expression in abdominal SCAT has also been demonstrated [18, 19]. It has furthermore been demonstrated that body fat distribution patterns differ between ethnicities, with African women having significantly less VAT compared to white women, despite similar WC [20]. In addition, the association of PAI-1 with body composition also differs between ethnicities [10, 21] necessitating these studies in non-white individuals.
Furthermore, limited information is available regarding the effect of different forms of obesity, such as sarcopenic obesity (SO), on PAI-1 [22, 23]. SO is defined as the co-occurrence of increased fat mass in the presence of age related loss of skeletal muscle mass and strength and is typically associated with fat infiltration in the muscle [24, 25]. SO has also previously been suggested to be strongly associated with the development of MetS and atherosclerosis [24]. Hence, it is possible that plasma PAI-1 levels might be more increased in individuals with SO compared to non-sarcopenic obese individuals.

Understanding the relationship between PAI-1 and different body fat distribution patterns, is important to predict the disease risk conveyed through PAI-1 in individuals who did not escape the overweight and obesity pandemic, especially in the under-studied African population. We consequently aimed to investigate the relationship of PAI-1 with two different body fat distribution patterns, namely SO and visceral compared to subcutaneous abdominal obesity in African women. In addition, we explored the relationship between PAI-1 and body fat % in the different body fat distribution patterns. Data on insulin, triglycerides, appendicular skeletal mass (ASM) and inflammation (C-reactive protein) are also provided as these may act as co-variates in the relationship of PAI-1 with body fat [26-28].

4.3.3 Methods and Methods

Study population

The study population included cross-sectional data collected in 2012 from 246 urban dwelling African women as part of the Sarcopenic Obesity and Non-communicable Disease Risk in African Adults (SONDRAA) study. The SONDRAA study is nested in the South African arm of the longitudinal Prospective Urban and Rural Epidemiology (PURE) study. Detailed information on the study design and participant selection criteria of the PURE study have been previously reported [29]. In brief, the sub-study included participants that were randomly selected from households in the Tlokwe municipality, located in the North West province of South Africa. The inclusion criteria were apparent physically and psychologically healthy African women. Participants were excluded if they presented with any disabilities, serious diseases, taking anabolic steroids or protein supplements, as well as pregnant or lactating women. Twenty-six of the women were premenopausal and only one woman in the cohort used hormone replacement therapy (HRT). Sixty per cent of the women were taking anti-hypertensive drugs and approximately half were current or past tobacco users. Only coded data was used and the
names of the participants remained confidential. The study was approved by the Health Research Ethics Committee (HREC) of the North West University (Potchefstroom Campus) (NWU-00016-10-A1) and all participants gave written informed consent.

Anthropometrical assessment

Body weight was measured to the nearest 0.1 kg on an electronic scale (Seca, Birmingham, UK) and height was measured with a freestanding stadiometer (Seca, Birmingham, UK) to the nearest 0.1 cm. Waist circumference was also recorded to the nearest decimal using a steel measuring tape (Lufkin, Apex, NC, USA). The thicknesses of the abdominal and supraspinal skinfolds were measured with a Harpenden calliper (Baty International, West Sussex, UK) on the landmarks as established by the International Society for the Advancement of Kinanthropometry (ISAK). Skinfolds were measured to the nearest 0.1 mm by gently pulling the skin away from the body, taking care not to include the underlying muscle in the double layer of skin and subcutaneous fat. To improve the accuracy and consistency of all measurements, these measurements were performed twice by the same anthropometrist and the average calculated.

Body composition (fat mass; fat-free soft tissue mass; and body fat %) was measured using DXA (Hologic Discovery W, APEX system software version 2.3.1). Fat mass and fat-free soft tissue mass for the whole body, trunk and limbs were derived using standard DXA cut-off lines. Appendicular skeletal muscle mass (ASM) was derived as the sum of the fat-free mass excluding bone of the arms and the legs [30].

Determination of body fat distribution patterns

The women were categorised into several sub-groups according to distinct body composition patterns, in order to investigate the relationship between PAI-1 and different body fat distribution patterns. These groups were determined by using the available DXA and anthropometrical data. Body fat % instead of body mass index (BMI) was used in this study, as body fat % is considered a more sensitive marker of excessive adiposity than BMI [31].
Sarcopenic obesity

To investigate the relationship between PAI-1 and SO, the study population was divided into four mutually exclusive groups. Group 1 – Excessive body fat % group (n=115), was determined as body fat percentage >35.8% for women aged 30-49 years and body fat percentage >37.7% for women aged 50-84 years [32]. Sarcopenia was an exclusion criterion for this group. Group 2 – Sarcopenic group (n=59), sarcopenia was defined as ASM <15.02 kg based on the guidelines of the Foundation for the National Institutes of Health (FNIH) [33]. The FNIH ASM cut-point was chosen, since it had been found to be sensitive to detect reduced functional ability in the black female South African population [34]. Women with excessive body fat % were excluded from this group. Group 3 – SO group (n=36), this group included individuals who were both sarcopenic and presented with excessive body fat %. Lastly, group 4 included women who were non-sarcopenic and had a normal body fat % (n=36).

Visceral compared to subcutaneous central abdominal obesity

Since the use of sophisticated techniques such as nuclear magnetic resonance or computerised tomography scans was not a financially viable option in our research setting, we created a surrogate marker to differentiate between women with preferential visceral compared to preferential subcutaneous central abdominal obesity. This was done by obtaining the average of the central body skinfolds (abdominal and supraspinal) and dividing it by the WC. We then divided the group into tertiles according to the skinfold : WC ratio variable in order to compare the highest (proportionally more SCAT) with the lowest (proportionally more VAT) tertile group. This was also done separately for women with central obesity (defined as waist-to-height ratio (WHtR) of >0.5) [35] to investigate the effect of the two forms of abdominal fat distribution on PAI-1 levels in women already defined to be centrally obese.

Blood and urine collection

A registered nurse collected fasting blood samples with minimum stasis from the antebrachial vein before 10:00 in the morning. Serum samples were used for C-reactive protein (CRP), triglycerides and insulin analyses, sodium fluoride plasma for glucose and citrate plasma samples for the analysis of PAI-1 act. Samples were centrifuged at 2000 x g for 15 minutes and stored at -82°C until further analysis. Spot urine was collected for albumin and creatinine determination.
Biochemical analysis

PAI-1\textsubscript{act} was measured using an indirect enzymatic method (Technozym PAI-1 Actibind, Technoclone, Vienna, Austria). Serum insulin levels were measured by an electrochemiluminescence immunoassay (ECLIA) with a Roche Elecsys immunoassay analyser kit from Cobas-. Plasma glucose concentrations were determined via a hexokinase method using the Synchron→-Systems (Beckman Coulter Co., Fullerton, CA, USA). HIV status was determined using the First Response rapid HIV test (PMC Medical, India) and positive results were confirmed with CD4 testing. High sensitivity CRP was determined using the Cobas Integra 400 plus biochemistry analyser (Roche diagnostics, Basel, Switzerland). Triglycerides measurements were done by Sequential Multiple Analyser Computer (SMAC) using the Konelab20iTM auto analyser (Thermo Fisher Scientific Oy, Vantaa, Finland). Urinary albumin and creatinine were determined with the Cobas Integra 400 plus (Roche, Basel, Switzerland) and the ratio calculated. HIV testing, CRP, triglycerides, insulin, glucose, albumin and creatinine measurements were performed to describe the health status of the participants and also since they may act as co-variates in the relationship between PAI-1 and body fat [36, 37].

Calculation of insulin resistance

The estimate of IR as determined by the homeostasis model assessment (HOMA) was calculated using the formula: HOMA-IR = [(fasting plasma insulin (\(\mu\text{U/ml}\)) x fasting plasma glucose (mmol/l)/22.5) concentration] [38].

Statistical analysis

Data was analysed using the computer software package Statistica (Statsoft Inc., Tulsa Oklahoma, USA). A p-value of 0.05 or less was regarded as statistically significant. Since most of the variables were not normally distributed, the data was log-transformed to improve normality and to allow the use of parametric statistical analyses. Descriptive data is presented both as median (25th; 75th percentiles) and mean (± standard deviation). As the association of PAI-1 with many of the body fat variables were not linear we decided to follow the approach of sub-dividing the study population rather than to present the data of the total group as continuous data in order to get a better representation of the true relationships. The t-test for independent samples was used to compare differences between two groups. Analysis of variance (ANOVA) with Tukey’s honest significant difference post-hoc tests were used to
compare differences between more than two groups and analysis of co-variance (ANCOVA) was used when adjustment for confounders was required. Pearson and partial correlations were used to determine correlations between log-transformed variables. Single and forward stepwise multiple regression analyses were used to determine the association of body fat % with PAI-1. The covariates entered into the multiple regression model were: insulin, age, skinfold : WC ratio, tobacco use, alcohol consumption, CRP, body fat %, triglycerides, menopausal status and albumin : creatinine ratio as a marker of endothelial dysfunction. These co-variates were based on their potential influence on the relationship between PAI-1 and body fat [26-28, 37, 39, 40]. Women with CRP >10mg/L were excluded from analysis [41]. Only the variables that entered the stepwise multiple regression are presented in the tables.

4.3.4 Results

Sarcopenic obesity

The study population consisted of 246 women who were grouped according to the following identified fat distribution patterns in order to investigate the relationship between PAI-1\textsubscript{act} and SO: excessive body fat % (n=115), sarcopenic (n=59), SO (n=36) and non-sarcopenic, normal body fat % (n=36) (Table 4.1). One-way ANOVA indicated no significant age differences between the groups (p=0.5) with the sarcopenic group having the highest prevalence of HIV infection (22%). Post-hoc comparison between the groups revealed that for most of the variables (ASM, insulin, glucose, HOMA-IR, body fat %, WC, BMI, WHtR, skinfold : WC ratio), the sarcopenic group had significantly lower values than the other three groups with little difference between the other groups.

PAI-1\textsubscript{act} of the SO group did not differ significantly from that of the excessive body fat % group (p=0.8) or the non-sarcopenic, normal body fat % (p=0.7). There was also no significant difference between MetS-related markers (insulin, glucose, HOMA-IR and triglycerides) between the SO and excessive body fat % group. The excessive body fat % group did however, have significantly higher BMI, central obesity (WC and WHtR) and a lower central skinfold : WC ratio indicating a proportionally higher central VAT than SCAT fat distribution.

The association of PAI-1\textsubscript{act} with body fat %, insulin, triglycerides and ASM differed between the different body fat distribution sub-groups (Table 4.2). PAI-1\textsubscript{act} correlated with body fat % in the
non-sarcopenic, normal body fat % only ($r=0.39; p=0.02$) with adjustment for insulin, triglycerides, menopausal status affecting this relationship only marginally ($r=0.34; p=0.07$). PAI-1_{act} showed a borderline correlation ($r=0.31; p=0.07$) with insulin in the SO group, but not in any of the other sub-groups. It had a significant positive association with triglycerides in the excessive body fat % group ($r=0.27; p=0.005$) with an association of similar magnitude in the non-sarcopenic, normal body fat % group ($r=0.3; p=0.09$), albeit non-significant probably due to the smaller sample size. PAI-1_{act} correlated with ASM in the non-sarcopenic, normal body fat % group only ($r=0.38; p=0.03$).

Visceral compared to subcutaneous central obesity

We divided the study group into tertiles according to the skinfold : WC ratio variable and compared PAI-1_{act}, insulin and HOMA-IR between the first and third tertile to determine the differences in women with proportionally higher abdominal VAT (quartile 1) vs women with proportionally higher abdominal SCAT (quartile 3). PAI-1_{act}, insulin and HOMA-IR were statistically and clinically significantly higher in the group with the proportionally higher abdominal VAT (quartile 1) (Table 4.3). When selecting only women with central obesity (WHR >0.5), the differences between the first and third quartiles were no longer significant. In addition, PAI-1_{act} correlated significantly (albeit weakly) with the skinfold : WC ratio in the total study population ($r=-0.18; p=0.007$), but not in the centrally obese women ($r=-0.12; p=0.1$).

Association of PAI-1_{act} with body fat %

In order to determine the relationship of PAI-1, insulin, triglycerides, CRP and skinfold : WC ratio with body fat %, the entire study population was divided into quartiles according to their body fat % (Table 4.4). PAI-1_{act} increased across the body fat % quartiles, but significance was reached in the fourth quartile only (body fat % >45.6%). No increase was observed between the second and third quartile. Insulin and CRP levels in quartile two, three and four were all significantly higher than in quartile one with no difference in triglyceride levels across the four quartiles. Furthermore, CRP had a significant positive correlation with body fat % ($r=0.38, p<0.0001$) and correlated negatively with the skinfold : WC ratio ($r=-0.31, p<0.0001$) (data not shown). Skinfold : WC ratio levels decreased across the body fat % quartiles, with a significantly lower skinfold : WC ratio in the fourth compared to the first quartile, indicating a proportionally higher VAT vs. SCAT distribution in the fourth quartile.
In order to determine the contribution of body fat % to PAI-1$_\text{act}$ we performed single and forward stepwise multiple regression for each of the body fat % quartile groups (Table 4.5). In the single regression models, body fat % contributed significantly ($p=0.01$) to the variance in PAI-1$_\text{act}$ in the third quartile only (>40.5 to ≤ 45.6% body fat), explaining 11% of the variance. In the forward stepwise multiple regression models, insulin made the biggest contribution (12.4%) to the variance in PAI-1$_\text{act}$ followed by the albumin : creatinine ratio, menopausal status and age, with fat % not entering the model, in the first quartile. In the second quartile, triglycerides, age and insulin entered the model explaining 19.8, 4.9 and 2%, respectively. In the third quartile, in agreement with the single regression, fat % contributed to the variance in PAI-1$_\text{act}$, explaining 5.31% of the variance with age (4.07%) and triglycerides (12.7%) also entering the model. In the fourth quartile, the main contributors to PAI-1$_\text{act}$ variance were the albumin : creatinine ratio explaining 10.7%, CRP 3.58%, menopausal status 2.88% and skinfold : WC .2.99% of the PAI-1 variance. In the most obese group (body fat % >45.6%) the multiple regression models explained the smallest percentage of total PAI-1 variance (16%) compared to the other groups (24, 26.7 and 22%).

4.3.5 Discussion

Although the association between PAI-1 and obesity has been well established, much less is known regarding the relationship of PAI-1 with different body fat distribution patterns, with virtually no information available on non-white ethnicities such as Africans. The association of PAI-1 with VAT [21] and MetS [10] has for instance been shown to differ between black and white individuals. PAI-1 associated significantly with VAT in Caucasians, while no association was found in African Americans [21]. PAI-1 was also found to be more prominently associated with markers of the MetS in white than in black Africans [10]. Furthermore, differences in body fat distribution have also been found, with African women having significantly less VAT compared to white women, despite similar WC [20]. It is, therefore, postulated that due to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in black individuals may differ from that observed for other population groups and, therefore, merits further investigation. Our data demonstrate that in African women, the association of PAI-1$_\text{act}$ with body fat %, insulin, triglycerides and ASM are influenced by body fat distribution patterns and degree of obesity. It investigates the association of PAI-1$_\text{act}$ with SO and shows that while increased VAT is associated with increased plasma PAI-1$_\text{act}$ levels, abdominal SCAT also significantly contributes to PAI-1$_\text{act}$ levels, in obese women specifically.
Lastly, we demonstrated that body fat % per se, does not significantly contribute to increased plasma PAI-1$_{act}$ in women with high fat mass (body fat % >45.6%), but that other factors associated with obesity (known and as of yet unidentified), are more prominently related to the increased PAI-1$_{act}$.

Sarcopenic obesity

PAI-1 is significantly associated with both obesity and IR [11, 12, 42, 43]. Since IR and MetS appear to be closely related to SO [24], it was postulated that PAI-1$_{act}$ may be even higher in SO individuals than in individuals who are obese without having sarcopenia. There was, however, no difference in PAI-1$_{act}$ between the SO and the excessive body fat % group. This is likely due to the fact that in this study population, insulin-related markers did not differ between the two groups, suggesting that IR was not more prominent among the SO women than among the total excessive body fat % group. The prevalence of HIV infection on the other hand, was significantly higher in the sarcopenic group. It is, therefore, likely that the observed muscle wasting in this group may be the result of HIV infection in those affected. In addition, the excessive body fat % group was on average more centrally obese than the SO group and displayed a proportionally higher abdominal VAT component, two factors that each have the potential to significantly increase PAI-1$_{act}$ [44-46]. These results are also in agreement with Cesari et al. [22], who found no significant association between either sarcopenia or obesity and PAI-1 concentration.

When investigating the relationship of PAI-1$_{act}$ with body fat %, insulin, triglycerides and ASM, we found that the relationships differed between the different groups. PAI-1 correlated significantly with body fat % and ASM in the non-sarcopenic, normal body fat % group only, with insulin in the SO group and with triglycerides in the excessive body fat % group. This suggests the association of PAI-1 with these variables is not a constant / fixed relationship, but that their relative contributions to PAI-1 are influenced by body fat distribution patterns.
Visceral compared to subcutaneous central obesity

PAI-1 is considered by many to be expressed more in VAT than in SCAT [5, 6]. This is thought to be related to structural and functional differences between VAT and SCAT. Visceral adipose tissue, a major ectopic fat depot, present in the abdominal viscera in the mesentry and omentum, produces more pro-inflammatory cytokines like tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [16], it contains more stromal cells, which is the cellular component of adipose tissue that produces PAI-1 and exhibit a higher macrophage content which contributes to the increased cytokine production [6, 17]. In contrast, SCAT expresses more leptin and adiponectin and is mainly found in the femoral-gluteal regions, back and anterior abdominal wall [16]. Evidence does, however, exist that PAI-1 mRNA in abdominal SCAT (but not femoral SCAT) correlated positively with plasma PAI-1 levels in obese individuals [19] and that PAI-1 expression in SCAT is higher than in VAT in obese individuals and in females [18]. This data suggests that the degree of obesity may influence regional differences in PAI-1 secretion. In general agreement with the literature, our data indicated that plasma PAI-1_{act} levels were significantly higher in black African women with a proportionally higher abdominal VAT compared to SCAT compartment. However, in women who were already centrally obese, this was no longer the case. This data together with the literature suggest that in obese women, abdominal SCAT can significantly contribute to the increased plasma PAI-1 levels found in obesity and in so doing, increase CVD risk.

Association of PAI-1_{act} with body fat percentage

In obesity, there are many different factors that can influence PAI-1 levels. These include IR, inflammation and regulation of PAI-1 producing cells by inflammatory cytokines, increased triglycerides, as well as the increased adipocyte mass [42, 43, 47]. We subsequently wanted to determine the relationship of body fat % per se with PAI-1. When dividing the study population according to body fat % quartiles, body fat % contributed, in both single and multiple regression models to the PAI-1_{act} variance in quartile 3 only. This suggests that other factors than body fat % itself, which are associated with increased fat mass, are likely responsible for the increased PAI-1_{act} levels in quartile 4. This notion is supported by our data indicating a correlation between PAI-1_{act} and body fat % in the non-sarcopenic, normal body fat % women only while no associations were found in the excessive body fat % or the SO groups. It has also been suggested that PAI-1 is not closely dependent on fat mass, but rather reflects fat redistribution patterns [17, 48].

118
In order to compare the contribution of body fat % per se to other factors associated with obesity on plasma PAI-1 \(_{\text{act}}\), we also investigated the role of insulin, triglycerides, menopausal status, CRP (as a marker of inflammation), skinfold : WC ratio, age, alcohol consumption, smoking and the albumin : creatinine ratio (as a marker of endothelial dysfunction). Insulin levels entered the stepwise multiple regression as a contributor to PAI-1 \(_{\text{act}}\) variance in model 1 and 2 only, suggesting that it contributes proportionally more to PAI-1 \(_{\text{act}}\) variance in women with a lower body fat %. Triglycerides did not differ across the body fat % quartiles, but it was the most significant contributor to PAI-1 \(_{\text{act}}\) variance in the 2\(^{nd}\) and 3\(^{rd}\) body fat % quartile. The association between PAI-1 and triglyceride has been previously explained by the fact that very low density lipoproteins (VLDL) triglycerides increase PAI-1 levels [49, 50], through a VLDL response element identified in the promoter region of the PAI-1 gene that mediates VLDL-induced PAI-1 transcription in endothelial cells [51]. Menopausal status entered the stepwise regression models as contributor to PAI-1 \(_{\text{act}}\) variance, but its contribution was also not significant, explaining about 2.8% only. C-reactive protein contributed to the variance in PAI-1 \(_{\text{act}}\) in women with high fat mass (quartile 4) only, although the contribution was relatively minor at 3.7%. Additional analysis confirmed a positive relationship between CRP and body fat %, indicating that inflammation increases as body fat % increase, as is known from the literature [52, 53]. We also found a negative association between CRP and the skinfold : WC ratio, suggesting that inflammation is increased in the presence of proportionally increased abdominal VAT. Next we investigated the possible contribution of the abdominal VAT / SCAT distribution and found that there was a significant proportional increase in the abdominal VAT compartment as body fat % increased, and that it served as a significant contributor to the PAI-1 \(_{\text{act}}\) variance in the most obese women. This proportional increase in VAT is in agreement with the literature indicating that post-menopausal women experience a redispersion of fat distribution with increased visceral fat accumulation, which is thought to be related to the female sex hormone oestrogen [54]. The largest (and only statistically significant) contributor to PAI-1 \(_{\text{act}}\) in the obese individuals was endothelial dysfunction (albumin : creatinine ratio). Evidence exists for the presence of endothelial dysfunction in obesity [37], which is thought to be induced by obesity-associated metabolic abnormalities such as IR, adipokines, oxidative stress, increased free fatty acids, TNF-\(\alpha\) as well as activation of innate immunity [55, 56]. At the same time, increased PAI-1 is recognised as an early marker of endothelial dysfunction [57, 58] suggesting endothelial dysfunction as a mechanistically plausible modulator of PAI-1 \(_{\text{act}}\) in obesity. It is also important to note that in the most obese individuals, the above mentioned known PAI-1 associates, explained the smallest percentage of total PAI-1 variance, compared to the other body fat % quartiles, suggesting that other, as of yet unidentified factors, additionally contribute to the increased PAI-1 in obesity. Our results indicate that in African women with increased fat mass,
body fat % per se contributes to a lesser extent to plasma PAI-1_{act} than other obesity-related metabolic derangements such as inflammation and endothelial dysfunction.

A limitation of the study, being cross-sectional in design, was that causality could not be determined for PAI-1_{act}. While every attempt has been made to prevent possible selection bias, it is not impossible that it may have occurred in some form. A further limitation of the study was the inability to estimate VAT and SCAT directly using DXA software as this is not available in our laboratory. Also, we acknowledge that the skinfold : WC ratio is a novel and rather crude method to distinguish between abdominal fat distribution patterns. The fact that associations with PAI-1_{act} were found, suggest however that it could potentially be used in settings where access to more sophisticated techniques is limited and it deserves further investigation.

In conclusion, our data indicates that PAI-1_{act} is not higher in SO African women who do not display increased IR, compared to obese, non-sarcopenic women. Furthermore, fat distribution patterns and degree of obesity were found to influence the association of PAI-1_{act} with insulin, triglycerides, ASM and body fat %. Our data also suggests that in centrally obese women, abdominal VAT no longer contributed more than abdominal SCAT to plasma PAI-1_{act}, where no differences were found between the two adipocyte compartments and that abdominal SCAT should be considered a significant contributor to plasma PAI-1 in obese women. Lastly in obese African women, the known PAI-1 associates explained a smaller percentage of total PAI-1_{act} variance compared to the other body fat % quartiles suggesting additional, as of yet unidentified mechanistic pathways in obesity. Also the increased PAI-1 observed in obesity in African women, is more strongly influenced by other obesity-related metabolic abnormalities such as inflammation and endothelial dysfunction than by body fat % per se. Whether these varying associations between PAI-1 and body fat distribution patterns in Africans will result in different disease risk profiles of the diseases contingent upon PAI-1 needs to be established in future research.

4.3.6 Acknowledgements

This work was supported by services of the SONDRAA research team and the Centre of Excellence for Nutrition of the North-West University, South Africa. Funding was through the National Research Foundation (NRF) of South Africa (Grant UID: 94213). Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the NRF.
Conflict of Interest

None of the authors have any conflict of interest to declare.

Author Contributions

Sunelle A. Barnard – analysis and interpretation of data; critical writing of manuscript.

Marlien Pieters - analysis and interpretation of data, critical writing of manuscript.

Cornelie Nienaber-Rousseau – anthropometrist that collected the anthropometry data, interpretation of data and critical reviewing the manuscript.

Herculina S. Kruger – interpretation of data, critical reviewing the manuscript and PI of the SONDRAA study.
4.3.7 Reference

Legends to Tables

Table 4.1 Descriptive statistics of the different body fat distribution groups

ASM, appendicular skeletal muscle mass; HIV, human immunodeficiency virus; HOMA-IR, homeostatic model assessment of insulin resistance; MetS, metabolic syndrome; PAI-1, Plasminogen activator inhibitor-1 activity; WC, waist circumference; WHtR, waist-to-height ratio. * fat% >35.8% for 30-49 years of age or >37.7% for 50-84 years of age [32]. ** ASM <15.02 kg [33]. # Significantly different from the other three groups. * Median/means/percentages with the same symbol differ significantly. ANCOVA p-value after adjustment for insulin.

Table 4.2 Associations of PAI-1 with body fat percentage, insulin, triglyceride and ASM in the sub-groups

ASM, appendicular skeletal muscle mass; PAI-1, plasminogen activator inhibitor-1 activity; SO, sarcopenic obesity. * Adjusting for insulin and triglyceride; ** fat% >35.8% for 30-49 years of age or >37.7% for 50-84 years of age[32]. *** ASM <15.02 kg [33].

Table 4.3 Difference in PAI-1, insulin, HOMA-IR and HOMA-%β between the 1st and 3rd skinfold : WC ratio tertiles

HOMA-IR, homeostatic model assessment of insulin resistance; PAI-1, Plasminogen activator inhibitor-1 activity; WC, waist-circumference; SCAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. * waist-to-height ratio (WHtR) >0.5.

Table 4.4 PAI-1, insulin, triglyceride, CRP and skinfold : WC ratio according to body fat percentages quartiles

PAI-1, plasminogen activator inhibitor-1 activity; CRP, C-reactive protein. # Significantly different from the other three groups. *$ Medians with the same symbol differ significantly.
Table 4.5 Contribution of body fat percentage to PAI-1_{act} variance: single and multiple regression

Alb:creat, albumin – creatinine ratio; CI, confidence interval; CRP, C-reactive protein; PAI-1_{act}, plasminogen activator inhibitor-1 activity; WC, waist circumference.
Table 4.1: Descriptive statistics of the different body fat distribution groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sarcopenic Obese (n=36)</th>
<th>Excessive body fat %* (n=115)</th>
<th>Sarcopenic** (n=59)</th>
<th>Non-sarcopenic, normal body fat % (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (±Std.)</td>
<td>Median (25th; 75th percentile)</td>
<td>Mean (±Std.)</td>
<td>Median (25th; 75th percentile)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.6 (±11.1)</td>
<td>61.0 (50.5; 68.0)</td>
<td>57.6 (±9.98)</td>
<td>55.0 (49.0; 66.0)</td>
</tr>
<tr>
<td>PAI-1act (U/ml)</td>
<td>3.89 (±8.10)</td>
<td>0.78 (0.01; 4.22)</td>
<td>4.00 (±7.23)</td>
<td>1.52 (0.01; 4.13)</td>
</tr>
<tr>
<td>ASM (kg)</td>
<td>13.5 (±1.21)</td>
<td>13.8 (12.7; 14.3)</td>
<td>19.2 (±2.98)</td>
<td>18.5 (16.8; 20.6)</td>
</tr>
<tr>
<td>Insulin (µU/ml)</td>
<td>18.2 (±13.1)</td>
<td>14.2 (8.94; 20.0)</td>
<td>22.4 (±3.19)</td>
<td>15.0 (10.6; 24.0)</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>6.25 (±4.48)</td>
<td>5.00 (4.43; 6.00)</td>
<td>5.86 (±3.19)</td>
<td>5.00 (4.46; 5.86)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>5.86 (±9.21)</td>
<td>3.15 (2.11; 4.68)</td>
<td>6.73 (±13.2)</td>
<td>3.60 (1.90; 6.44)</td>
</tr>
<tr>
<td>Triglyceride(mmol/l)</td>
<td>1.40 (±1.29)</td>
<td>1.23 (0.78; 1.53)</td>
<td>1.22 (±0.84)</td>
<td>0.98 (0.74; 1.33)</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>42.6 (±3.83)</td>
<td>41.2 (39.7; 45.1)</td>
<td>45.2 (±3.99)</td>
<td>45.2 (42.3; 47.9)</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>86.2 (±10.5)</td>
<td>85.7 (76.8; 95.0)</td>
<td>98.3 (±10.7)</td>
<td>98.5 (92.1; 104)</td>
</tr>
<tr>
<td>WHtR</td>
<td>0.57 (±0.08)</td>
<td>0.57 (0.51; 0.63)</td>
<td>0.63 (±0.07)</td>
<td>0.62 (0.59; 0.66)</td>
</tr>
<tr>
<td>Measure</td>
<td>Group 1 (Mean ± SD)</td>
<td>Group 2 (Median; IQR)</td>
<td>Group 3 (Mean ± SD)</td>
<td>Group 4 (Median; IQR)</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Skinfold : WC ratio</td>
<td>4.60 (±2.15)</td>
<td>4.00 (3.14; 5.18)</td>
<td>3.10 (±1.01)</td>
<td>2.83 (2.47; 3.50)</td>
</tr>
<tr>
<td>Abdominal skinfold (mm)</td>
<td>27.3 (±12.2)</td>
<td>27.6 (17.5; 35.0)</td>
<td>41.5 (±12.1)</td>
<td>41.7 (32.1; 50.5)</td>
</tr>
<tr>
<td>Supra-spinal skinfold (mm)</td>
<td>17.8 (±8.81)</td>
<td>17.4 (11.2; 24.7)</td>
<td>27.5 (±10.2)</td>
<td>26.7 (19.7; 34.8)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.9 (±4.82)</td>
<td>26.6 (24.6; 30.5)</td>
<td>34.8 (±5.75)</td>
<td>34.0 (30.8; 38.1)</td>
</tr>
<tr>
<td>HIV status n (%)</td>
<td>4 (11%)</td>
<td>5 (4%)</td>
<td>13 (22%)</td>
<td>5 (14%)</td>
</tr>
<tr>
<td>MetS n (%)</td>
<td>16 (44%)</td>
<td>54 (47%)</td>
<td>8 (13.5%)</td>
<td>13 (36%)</td>
</tr>
<tr>
<td>Menopausal status (%)</td>
<td>31 (86.1%)</td>
<td>101 (87.8%)</td>
<td>54 (91.5%)</td>
<td>33 (91.7%)</td>
</tr>
<tr>
<td>Tobacco users (%)</td>
<td>14 (40%)</td>
<td>50 (45%)</td>
<td>30 (57)</td>
<td>35 (60%)</td>
</tr>
</tbody>
</table>

ASM, appendicular skeletal muscle mass; HIV, human immunodeficiency virus; HOMA-IR, homeostatic model assessment of insulin resistance; MetS, metabolic syndrome; PAI-1act, plasminogen activator inhibitor-1 activity; WC, waist circumference; WHtR, waist-to-height ratio. * fat% >35.8% for 30-49 years of age or >37.7% for 50-84 years of age [32]. ** ASM <15.02 kg [33].

* Significantly different from the other three groups. ** Medians/means/percentages with the same symbol differ significantly. * ANCOVA p-value after adjustment for insulin.
Table 4.2: Associations of PAI-1$_{act}$ with body fat percentage, insulin, triglyceride and ASM in the sub-groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Body fat %</th>
<th>Insulin (µU/ml)</th>
<th>Triglyceride (mmol/l)</th>
<th>ASM (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>r (p-value)</td>
<td>Partial r (p-value)*</td>
<td>r (p-value)</td>
</tr>
<tr>
<td>PAI-1$_{act}$ (U/ml)</td>
<td>Total</td>
<td>235</td>
<td>0.20 (0.002)</td>
<td>0.20 (0.003)</td>
<td>0.09 (0.2)</td>
</tr>
<tr>
<td></td>
<td>Sarcopenic Obese</td>
<td>36</td>
<td>0.24 (0.16)</td>
<td>0.16 (0.4)</td>
<td>0.31 (0.07)</td>
</tr>
<tr>
<td></td>
<td>Excessive body fat %**</td>
<td>110</td>
<td>0.14 (0.15)</td>
<td>0.14 (0.1)</td>
<td>0.09 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Sarcopenic***</td>
<td>56</td>
<td>-0.01 (0.9)</td>
<td>0.01 (0.9)</td>
<td>-0.13 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Non-sarcopenic, normal body fat %</td>
<td>33</td>
<td>0.39 (0.02)</td>
<td>0.34 (0.07)</td>
<td>0.10 (0.6)</td>
</tr>
</tbody>
</table>

ASM, appendicular skeletal muscle mass; PAI-1$_{act}$, plasminogen activator inhibitor-1 activity; SO, sarcopenic obesity. * Adjusted for insulin, triglyceride and menopausal status; ** fat% >35.8% for 30-49 years of age or >37.7% for 50-84 years of age [32]; *** ASM <15.02 kg [33].
Table 4.3: Difference in PAI-1_{act}, insulin and HOMA-IR between the 1^{st} and 3^{rd} skinfold : WC ratio tertiles

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total study group</th>
<th>Central obese group*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>↑VAT ↓SCAT</td>
<td>↑SCAT ↓VAT</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Median (25, 75% percentile)</td>
</tr>
<tr>
<td>Skinfold : WC ratio tertile 1 (\leq 3.02)</td>
<td>1.65 (0.01; 5.12)</td>
<td>0.16 (0.01; 1.40)</td>
</tr>
<tr>
<td>Median (25, 75% percentile)</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Skinfold : WC ratio tertile 3 (>4.76)</td>
<td>8.83 (5.19; 16.0)</td>
<td>15.9 (10.6; 24.8)</td>
</tr>
<tr>
<td>Median (25, 75% percentile)</td>
<td>81</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>Skinfold : WC ratio tertile 1 (\leq 2.8)</td>
<td>1.77 (0.90; 3.48)</td>
<td>3.83 (2.31; 6.47)</td>
</tr>
<tr>
<td>Median (25, 75% percentile)</td>
<td>81</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

HOMA-IR, homeostatic model assessment of insulin resistance; PAI-1_{act}, Plasminogen activator inhibitor-1 activity; WC, waist-circumference; SCAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. * waist-to-height ratio (WHtR) >0.5.
Table 4.4: PAI-1\textsubscript{act}, insulin, triglyceride, CRP and skinfold : WC ratio according to body fat percentages quartiles

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total group</th>
<th>Body fat% 1st Quartile (≤34.5%)</th>
<th>Body fat% 2nd Quartile (>34.5 - ≤40.5%)</th>
<th>Body fat% 3rd Quartile (>40.5 - ≤45.6%)</th>
<th>Body fat% 4th Quartile (>45.6%)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median (25, 75% percentile) (n)</td>
<td>(p)-value</td>
</tr>
<tr>
<td>PAI-1\textsubscript{act} (U/ml)</td>
<td>0.07 (0.01; 1.23)*</td>
<td>58</td>
<td>0.82 (0.01; 3.26)</td>
<td>59</td>
<td>0.83 (0.01; 2.83)</td>
<td>59</td>
</tr>
<tr>
<td>Insulin (µU/ml)</td>
<td>7.01 (4.43; 14.23)#</td>
<td>61</td>
<td>14.9 (9.39; 26.7)</td>
<td>59</td>
<td>15.0 (9.04; 21.44)</td>
<td>59</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>0.92 (0.72; 1.37)</td>
<td>62</td>
<td>0.99 (0.73; 1.56)</td>
<td>59</td>
<td>1.03 (0.79; 1.41)</td>
<td>59</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>1.81 (0.58; 4.39)#</td>
<td>58</td>
<td>3.43 (1.82; 5.93)</td>
<td>47</td>
<td>3.62 (2.23; 5.56)</td>
<td>50</td>
</tr>
<tr>
<td>Skinfold : WC ratio</td>
<td>8.41 (6.13; 11.48)*$</td>
<td>61</td>
<td>4.00 (3.35; 5.16)*$</td>
<td>61</td>
<td>3.10 (2.59; 4.02)*</td>
<td>61</td>
</tr>
</tbody>
</table>

* PAI-1\textsubscript{act}, plasminogen activator inhibitor-1 activity; \# CRP, C-reactive protein. \# Significantly different from the other three groups. *\$ Medians with the same symbol differ significantly.
Table 4.5: Contribution of body fat percentage to PAI-1_{act} variance: single and multiple regression

<table>
<thead>
<tr>
<th>Body fat % Quartiles</th>
<th>n</th>
<th>β</th>
<th>95% CI</th>
<th>Total % variance explained</th>
<th>p-value</th>
<th>Co-variates that entered model</th>
<th>β</th>
<th>95% CI</th>
<th>Total % variance explained</th>
<th>% variance explained by each co-variates</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insulin</td>
<td>-0.52</td>
<td>-0.89; -0.15</td>
<td>12.4</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>1st Quartile</td>
<td>58</td>
<td>-0.65</td>
<td>-3.27; 1.97</td>
<td>0.4</td>
<td>0.6</td>
<td>26.5</td>
<td>2.27</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(≤34.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alb:Creat</td>
<td>0.32</td>
<td>0.05; 0.59</td>
<td>9.99</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Menopausal status</td>
<td>-0.78</td>
<td>-2.19; 0.63</td>
<td>26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age</td>
<td>1.87</td>
<td>-0.68; 4.41</td>
<td>1.81</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>59</td>
<td>-3.11</td>
<td>-14.0; 7.83</td>
<td>0.6</td>
<td>0.6</td>
<td>19.8</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>34.5 - ≤40.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Triglyceride</td>
<td>1.13</td>
<td>0.18; 2.08</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age</td>
<td>-2.19</td>
<td>-5.34; 0.96</td>
<td>26.7</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insulin</td>
<td>0.23</td>
<td>-0.49; 0.95</td>
<td>2.00</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>59</td>
<td>16.5</td>
<td>3.79; 29.1</td>
<td>11</td>
<td>0.01</td>
<td>12.7</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>40.5 - ≤45.6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Triglyceride</td>
<td>0.84</td>
<td>-0.05; 1.74</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Body fat %</td>
<td>12.0</td>
<td>-1.96; 26.0</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

135
<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Alb:Creat</th>
<th>CRP</th>
<th>Menopausal status</th>
<th>skinfold : WC ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Quartile</td>
<td>59</td>
<td>-0.85</td>
<td>-0.55</td>
<td>1.78</td>
<td>-1.44</td>
</tr>
<tr>
<td>(>45.6%)</td>
<td>0.35</td>
<td>-1.58;</td>
<td>-1.42</td>
<td>-0.15; 1.78</td>
<td>-4.15; 1.27</td>
</tr>
<tr>
<td></td>
<td>-1.21; 4.94</td>
<td>-0.12</td>
<td>0.36</td>
<td>4.71</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>4.07</td>
<td>3.58</td>
<td>0.2</td>
<td>2.88</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.03</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Alb:creat, albumin – creatinine ratio; CI, confidence interval; CRP, C-reactive protein; PAI-1 act, plasminogen activator inhibitor-1 activity; WC, waist circumference.
CHAPTER 5 THE CONTRIBUTION OF DIFFERENT ADIPOSE TISSUE DEPOTS TO PLASMA PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) LEVELS

Authors: Sunelle A. Barnard, Marlien Pieters, Zelda De Lange

This chapter includes:

5.1 The instructions given to authors by the journal Blood Reviews (Impact factor: 6.627);
5.2 proof that the article has been accepted for publication in Blood Reviews; and
5.3 the accepted article titled: “The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels”.

In addition, the published article is provided as Addendum F.
5.1 Instructions to authors – *Blood Reviews*
(http://www.journals.elsevier.com/blood-reviews/)

Blood Reviews publishes peer reviewed review articles covering the spectrum of clinical and laboratory haematological practice and research. Although most reviews are invited, the editors welcome suggestions from potential authors. They should first write a brief outline of an intended review and send this to Dr Drew Provan - a.b.provan@qmul.ac.uk or to Dr Hillard Lazarus - hml@case.edu

Authors of invited reviews can submit their manuscript to the Editor's via the submission site http://ees.elsevier.com/bloodreviews

Ethics in publishing

For information on Ethics in publishing and Ethical guidelines for journal publication see https://www.elsevier.com/publishingethics and https://www.elsevier.com/journal-authors/ethics.

Human and animal rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans, http://www.wma.net/en/30publications/10policies/b3/index.html; Uniform Requirements for manuscripts submitted to Biomedical journals, http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed. All animal studies need to ensure they comply with the ARRIVE guidelines. More information can be found at http://www.nc3rs.org.uk/page.asp?id=1357.

Conflict of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential...
conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. See also https://www.elsevier.com/conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see https://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck https://www.elsevier.com/editors/plagdetect.

Contributors
Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors.
that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Reporting clinical trials

Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram can be found on http://www.consort-statement.org.

Registration of clinical trials

Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors (ICMJE, http://www.icmje.org) recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which
the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Article transfer service

This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information about this can be found here: https://www.elsevier.com/authors/article-transfer-service.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see https://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult https://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult https://www.elsevier.com/permissions.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see https://www.elsevier.com/OAauthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see https://www.elsevier.com/openaccesslicenses).

Author rights

As an author you (or your employer or institution) have certain rights to reuse your work. For more information see https://www.elsevier.com/copyright.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study
design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit https://www.elsevier.com/fundingbodies.

After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access
This journal offers authors a choice in publishing their research:

- **Open access**
 - Articles are freely available to both subscribers and the wider public with permitted reuse.
 - An open access publication fee is payable by authors or on their behalf (e.g. by their research funder or institution).

- **Subscription**
 - Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (https://www.elsevier.com/access).
 - No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.
Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (http://elsevier.com/greenopenaccess). Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

Elsevier Publishing Campus

The Elsevier Publishing Campus (www.publishingcampus.com) is an online platform offering free lectures, interactive training and professional advice to support you in publishing your research. The College of Skills training offers modules on how to prepare, write and structure your article and explains how editors will look at your paper when it is submitted for publication. Use these resources, and more, to ensure that your submission will be the best that you can make it.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop (http://webshop.elsevier.com/languagediting/) or visit our customer support site (http://support.elsevier.com) for more information.

Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals, https://www.elsevier.com/patient-consent-policy. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any
patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Article structure

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction

State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Essential title page information

- **Title:** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations:** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author:** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
- **Present/permanent address:** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.
Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:
Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. For further information on the preparation of electronic artwork, please see https://www.elsevier.com/artworkinstructions.
Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at https://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the 'Track Changes' option in any Microsoft Office files as these will appear in the published supplementary file(s). For more
detailed instructions please visit our artwork instruction pages at https://www.elsevier.com/artworkinstructions.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at https://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:

- E-mail address; and
- Full postal address.

All necessary files have been uploaded, and contain:

- Keywords;
- All figure captions;
- All tables (including title, description, footnotes);
- Further considerations;
- Manuscript has been 'spell-checked' and 'grammar-checked';
- References are in the correct format for this journal;
- All references mentioned in the Reference list are cited in the text, and vice versa;
- Permission has been obtained for use of copyrighted material from other sources (including the Internet);
- Printed version of figures (if applicable) in color or black-and-white; and
- Indicate clearly whether or not color or black-and-white in print is required.

For any further information please visit our customer support site at http://support.elsevier.com.

Author Disclosure Form
The corresponding author must submit a completed Author Disclosure Form with their submission. The form enables the corresponding author to record the contribution of each author and confirms whether ethical approval for the study has been sought, whether funding
for the study was provided and whether there are any conflicts of interest. It must be signed by the corresponding author and uploaded to EES with the manuscript.

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s Webshop. Corresponding authors who have published their article open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.
5.2 Proof that the article has been accepted for publication in Blood Reviews

Dear Marlien,

I am pleased to inform you that your paper "The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels" has been accepted for publication in Blood Reviews.

Thank you for submitting your work to our journal.

Yours sincerely,

Fer Mesman
Editorial Office
Blood Reviews
13 May 2016
5.3 Accepted article submitted to Blood Reviews

The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels

Running title: Body fat distribution and plasma plasminogen activator inhibitor-1

Sunelle A. Barnard*, Marlien Pieters*, Zelda De Lange*

* Both authors contributed equally

a Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa

E-mail address of each author
Sunelle A Barnard 13024787@nwu.ac.za
Marlien Pieters marlien.pieters@nwu.ac.za
Zelda De Lange zelda.delange@nwu.ac.za

Corresponding Author:
Prof. Marlien Pieters
Centre of Excellence for Nutrition
North-West University
Potchefstroom Campus Tel no: +27 18 299 2462
Private Bag X6001 Fax no: +27 18 299 2464
Potchefstroom E-mail address: marlien.pieters@nwu.ac.za
2520, South Africa
Word count:

Summary: 146
Text: 4566

Abbreviations:

BMI, body mass index; IL-1, interleukin-1; IL-6, interleukin-6; IR, insulin resistance; MetS, metabolic syndrome; mRNA, messenger ribonucleic acid; NRF, National Research Foundation; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; PCR, polymerase chain reaction; SCAT, subcutaneous adipose tissue; TGF-β1, transforming growth factor β; TNF-α, tumour necrosis factor-α; VAT, visceral adipose tissue; VLDL, very low density lipoproteins; WC, waist circumference; WHR, waist-to-hip ratio.
5.3.1 Abstract

Increased plasma plasminogen activator inhibitor-1 (PAI-1) level is considered a mechanistic pathway through which obesity contributes to increased cardiovascular disease risk. Abdominal adipose tissue specifically, is a major PAI-1 source with visceral adipose tissue (VAT), an ectopic fat depot, generally considered to produce more PAI-1 than subcutaneous adipose tissue. This does, however, not necessarily lead to increased plasma PAI-1 levels. This review provides an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It discusses factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels, placing the relative contribution of adipose tissue into perspective. In conclusion, the relationship between VAT and plasma PAI-1 levels is not fixed, but can be modulated by a number of factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities.

Keywords
Plasminogen activator inhibitor-1; visceral adipose tissue; subcutaneous adipose tissue; body fat distribution
5.3.2 Introduction

Plasminogen activator inhibitor-1 (PAI-1), the main inhibitor of fibrinolysis, contributes to increased cardiovascular risk in overweight and obese individuals [1]. Elevated plasma PAI-1 levels are considered to be a biochemical marker of obesity [2] and also as a component of the metabolic syndrome (MetS), which is characterised by dyslipidaemia, hypertension, glucose intolerance and increased abdominal fat distribution [3,4]. The association between PAI-1 and obesity, especially central obesity, has been well established in both animal and human studies [5-11] and is largely considered to be the result of PAI-1 production by adipose tissue [5,6,12,13]. PAI-1 is produced by a variety of cells contained in adipose tissue; these include pre-adipocytes, mature adipocytes, stromal cells, endothelial cells, smooth muscle cells and monocytes/macrophages [14].

Abdominal fat deposition, takes place in two main fat depots [subcutaneous adipose tissue (SCAT) and intra-abdominal or visceral fat tissue (VAT)] which is considered to be an ectopic fat depot. Ectopic fat refers to the storage of fat in non-adipose tissue like the liver, skeletal muscle, viscera, pancreas and the heart [15,16]. Although, it is not yet certain how ectopic fat accumulation takes place, it is postulated to be related to an overflow of triglycerides into other organs as SCAT loses the ability to expand and to store excess energy [17]. According to this theory, the expandability of SCAT protects other organs against ectopic fat deposition [18]. In support thereof, SCAT does not seem to be associated with a linear increase in cardiovascular risk factors in obesity [19]. Furthermore, when compared to VAT, abdominal and thigh SCAT were observed to be protective against obesity-associated metabolic complications such as insulin resistance (IR) [20,21].

It is generally accepted that ectopic fat, and for the purpose of this review, VAT specifically, produces more PAI-1 than SCAT [5,22]. Consistently, computed tomography (CT) data from obese individuals have shown higher PAI-1 levels in VAT than SCAT [8,23]. Also, PAI-1 gene expression, determined by means of adipose biopsies, has been shown to be higher in the
omental adipose tissue compared to SCAT during acute systemic inflammation which was also accompanied by increased plasma PAI-1 levels [9]. However, contradicting evidence also exists, as some studies have shown comparable PAI-1 antigen (PAI-1ag) secretion from VAT and SCAT [24], or even higher PAI-1 messenger ribonucleic acid (mRNA) expression and increased rate of PAI-1ag synthesis in SCAT than in VAT [25]. Although adipose tissue PAI-1 concentration and production have important local effects, it is the concentration of PAI-1 in the blood that contributes to the development of CVD [reviewed by 26,27], and therefore, the effect of body fat distribution on plasma PAI-1 levels has important pathophysiological consequences for the development of obesity-related CVD. Evidence regarding the contribution of the different fat depots to plasma PAI-1 levels seems conflicting. While it has been shown that adipose tissue from different body fat depots contributes to plasma PAI-1 levels [6,8,23,28,29], others found PAI-1 expression in different adipose tissue depots not to be directly related to plasma PAI-1 levels [30,31]. What is also often not considered is the relative contribution of the different fat depots to plasma PAI-1 levels, in relation to other PAI-1 producing pathways associated with obesity such as IR, increased triglycerides, inflammation and endothelial dysfunction and their influence on the different PAI-1 producing tissues (adipose tissue, hepatocytes, smooth muscle cells, platelets and endothelial cells) in the body. This review aims to provide an overview of ex vivo and in vivo studies investigating the association between fat distribution and plasma PAI-1 levels. It also discusses the contribution of other PAI-1 producing pathways found in obesity in order to draw conclusions regarding the contribution of different adipose tissue depots to plasma PAI-1 levels.

5.3.3 Ex vivo studies

Several human ex vivo studies have been carried out that show adipose tissue to be an important source of PAI-1 (Table 5.1). These studies can be divided into studies investigating adipocyte PAI-1 content and or gene expression and those investigating plasma PAI-1 levels. Studies investigating adipocyte PAI-1 content and or gene expression strongly support a greater production and expression of PAI-1 mRNA in VAT compared with SCAT [12,13,22]. When
using human adipose tissue in culture from obese individuals, Alessi et al. [5] found PAI-1\textsubscript{ag} concentration to be greater in VAT than SCAT. The association between VAT and PAI-1 seems to be related to structural and functional differences between VAT and SCAT. Visceral adipose tissue, present in the abdominal viscera in the mesentry and omentum, produces more pro-inflammatory cytokines, such as tumour necrosis factor-\(\alpha\) (TNF-\(\alpha\)), transforming growth factor \(\beta\) (TGF-\(\beta\)1), interleukin-6 (IL-6) and IL-1 [28,32,33], and also contains more stromal cells, one of the main cellular components of adipose tissue that produces PAI-1 [12] as well as macrophages which also produce PAI-1 [34,35].

However, there are some contradicting findings in human \textit{ex vivo} studies. Eriksson et al. [25] for example reported that PAI-1 expression from abdominal SCAT was approximately two times higher than abdominal VAT in severely obese white individuals. Additionally, females were found to have a significant depot-specific PAI-1 secretion, with SCAT producing higher levels of PAI-1 than VAT [25], while these differences were not observed in men. Differences in findings could possibly be explained by the cell size of the different adipose tissue depots or even differences in study populations (as will be discussed below). In contrast with other studies [5,25,28], Eriksson et al. [25] expressed their results as nanograms of PAI-1 expressed / 10\(^7\) cells, and not ng/g adipose tissue. Since the cell size of the SCAT was found to be larger than that of VAT, it could have influenced the results. In a review, Skurk and Hauner [14] even conclude that large fat cells produce more PAI-1 than small fat cells regardless of fat depot. Furthermore, Morange et al. [28] reported a high correlation between PAI-1 production by VAT and SCAT and concluded that there could be a similar regulatory pathway of PAI-1 in these two adipose depots, despite their different anatomic and metabolic characteristics. Differences can also be seen between different SCAT depots. When investigating PAI-1 expression from two subcutaneous territories (abdominal and femoral) in obese and lean individuals, the results indicated a higher PAI-1 mRNA content in the abdominal SCAT of the obese participants, which was also correlated with plasma PAI-1\textsubscript{ag} levels, compared with the lean participants, while no difference in the PAI-1 mRNA content of the femoral SCAT was observed [29].
With regards to *ex vivo* studies, it should be kept in mind that the results can be influenced by the data collection and analytical method used. For example, data employing cultured human adipose tissue explants, suggest a direct contribution of visceral adipose tissue to plasma PAI-1 levels [8,28,36], while studies using native human adipose tissue found similar or even lower PAI-1 mRNA expression in VAT compared to SCAT [5,36,37]. Lindeman *et al.* [30] suggest that the increased PAI-1 release from adipose tissue explants is likely related to an incubation artefact rather than being a true reflection of the *in vivo* situation.

An increased adipocyte PAI-1 content does, furthermore not necessarily relate to increased plasma PAI-1 levels. As an example, in SCAT, elevated PAI-1 gene expression was found to be present during very low-calorie diets in obese participants, while plasma PAI-1 levels were decreased [38]. Furthermore, when comparing differences between VAT and SCAT depots, no correlation was found between PAI-1 mRNA and plasma PAI-1 (antigen and activity) in either one of the two fat depots [39]. On the other hand, Morange *et al.* [28] investigated the correlation between plasma PAI-1 and PAI-1 measured in adipose tissue explants by means of real-time polymerase chain reaction (PCR). They found a correlation between plasma PAI-1 (antigen and activity) and the PAI-1_{ag} level measured in cultured SCAT explants. This relationship was not investigated in VAT explants.

Due to the fact that *ex vivo* investigations are performed under controlled conditions outside the human body, it is also difficult to assess the total contribution adipose tissue might make to plasma PAI-1 levels when compared with other PAI-1 producing cells such as hepatocytes, platelets and endothelial and vascular smooth muscle cells. It is also possible that VAT and PAI-1 levels are concurrently related to abnormal fat metabolism, rather than the one bringing about the other [30]. Notwithstanding the fact that PAI-1 has a strong association with body fat distribution, these results suggest that assumptions regarding plasma PAI-1 levels based on adipose tissue PAI-1 content and gene expression should not be made.
5.3.4 *In vivo* studies

In vivo human studies support the strong association between PAI-1, obesity and body fat distribution and provide more evidence for the influence of adipose tissue depots on plasma PAI-1 levels [9,23,40-43]. *In vivo* studies often use anthropometric indicators [such as body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), weight loss programs etc.] and computerised tomography scan to assess the association of body fat distribution or differences in fat depots (SCAT and VAT) with plasma PAI-1 levels. Whereas, *ex vivo* studies use methods such as mRNA quantification or freshly collected or cultured adipose tissue samples, with or without stimulating factors. When considering the methodological differences between *in vivo* and *ex vivo* studies, it is not surprising that some studies have indicated that *ex vivo* results do not always lead to *in vivo* changes in PAI-1 plasma levels [38,39].

Several studies have used anthropometrical indicators like WC, BMI and WHR to investigate possible associations between plasma PAI-1 levels and body fat distribution [43-45]. BMI, as a general marker of body fat, was found to be strongly associated with PAI-1 [6,29,46] confirming the association of PAI-1 with total obesity. BMI does, however, not reflect body fat distribution and WC, as a measure of central obesity, was demonstrated to be a significant contributor to plasma PAI-1 levels [4,41,43,44] independent of BMI [41], supporting the strong association between plasma PAI-1, VAT and central obesity. Consistently, when compared with computerised tomography scan and ultrasound, WC has been regarded as a useful surrogate for the measurement of visceral fat [47], whereas WHR and BMI seem to be associated with VAT or plasma PAI-1 to a lesser extent [47,48].

On the other hand, a stronger correlation between BMI and plasma PAI-1, as compared with WC has also been demonstrated [42]. However, in this study WC and WHR correlated with plasma PAI-1 to a similar degree. Furthermore, after adjusting for WC, an inverse association between hip circumference and markers of coagulation was found, which possibly indicated a
protective effect of gluteal fat distribution as opposed to android obesity [42]. These anthropometrical differences associated with PAI-1 could be related to the inclusion of different study populations as will be discussed in more detail below. Nevertheless, the use of increased WC, as an indication of visceral fat mass, seems to be a marker of elevated PAI-1 plasma levels. However, such interpretations should be made with caution, particularly in terms of non-European populations as WC was not regarded as a suitable surrogate for assessing visceral fat mass in African women, following a weight loss diet [49].

The main focus of the following section will therefore be to discuss in v vivo studies investigating the relationship between plasma PAI-1 levels and body fat distribution in relation to factors, identified from the literature, that may influence this relationship namely gender, ethnicity, level or degree of obesity, weight-loss, the 4G/5G PAI-1 polymorphism and other PAI-1 producing tissue in obesity.

5.3.4.1 Gender

It is known that body fat distribution is highly sex specific and that plasma PAI-1 levels differ between men and women [40,50]. Women generally have gluteal-femoral or peripheral depots (lower body obesity consisting of SCAT) compared with the android fat distribution of men (excess of body fat accumulation in the abdominal area that is associated with increased VAT) [51,52]. In layman’s terms these are referred to as pear (lower body obesity) and apple (abdominal obesity) shape figures. Furthermore, adipocytes in the VAT depot is considered to be more metabolically active than adipocytes in the SCAT [32]. When considering the strong association between plasma PAI-1 and VAT, men would be expected to have higher plasma PAI-1 levels than women. Previous studies have confirmed this notion by demonstrating a direct correlation between VAT and plasma PAI-1 concentration in obese men, but not in women [53]. VAT has also been suggested to be an independent predictor of plasma PAI-1 activity (PAI-1act) in healthy men [22]. On the contrary, when comparing abdominal VAT in
healthy non-obese, overweight men and women, greater PAI-1\textsubscript{ag} levels were found in women than men [48]. In agreement, others have also reported a stronger association between WHR and plasma PAI-1 levels in women than men [24,50]. A possible explanation for the stronger relationship between PAI-1 and WHR in women could be related to a tendency of women with a preferential gluteal fat distribution to accumulate fat also in the abdominal area when becoming overweight/obese, leading to a greater WHR (and VAT) and consequently increased PAI-1 levels [40].

Previous research undertaken by our group, involving African participants, found PAI-1\textsubscript{act} levels to be higher in women than in men, despite adjusting for differences in body composition. Plasma PAI-1\textsubscript{act} furthermore associated not only more strongly, but also with more anthropometric variables in the men than the women [43]. Plasma PAI-1\textsubscript{act} had a linear positive relationship with BMI and skinfold thickness in men, whereas in women, PAI-1\textsubscript{act} plateaued at higher BMI levels and did not change across skinfold categories. Due to the preferential peripheral fat distribution (SCAT) in women and the preferential visceral (abdominal) fat accumulation in men, an obese man will have proportionally more VAT than an obese woman. Consequently, despite the higher PAI-1\textsubscript{act} levels observed in women, the proportionally lower VAT may explain the overall lower correlations with anthropometric variables compared to the men. Furthermore, since women deposit gynoid fat preferentially, peripheral SCAT likely increased more than VAT in these obese African women, explaining the plateau in plasma PAI-1\textsubscript{act} at higher BMI. While in men with a preferentially increased VAT deposition in the abdominal area, PAI-1\textsubscript{act} levels continued to increase in conjunction with the increase in VAT. Similarly, skinfolds represent SCAT and in men, more VAT would have been deposited before an increase in SCAT is observed explaining the rise in PAI-1 levels across skinfold quintiles. Since women preferentially store peripheral SCAT, this adipose compartment will continue to increase in accordance with an increase in skinfold, while their VAT compartment remains proportionally smaller explaining the lack of difference across the skinfold quintiles. There also seems to be important differences in the size of adipocytes between VAT and SCAT depots in
women, as women were found to have larger SCAT adipocytes compared to VAT adipocytes [54] while no differences were observed for men.

According to Eriksson et al. [25] obese females seem to have a significant depot-specific PAI-1 secretion, with the SCAT depot producing higher levels of PAI-1 than the VAT depot, while this was not observed in men. Additionally, the authors suggested that SCAT is the most important adipose depot for PAI-1 secretion in obese individuals [25], since it is regarded to be a considerably larger fat depot than VAT [52] (see section on degree of obesity below). In support of this, measurements of abdominal VAT by means of computerised tomography scan have shown that VAT explained 28% only of the variance in plasma PAI-1_{act} in premenopausal women [23].

The menopausal status of women may also influence the relationship between different adipose tissue depots and plasma PAI-1. Compared to pre-menopausal women, post-menopausal women experience a redisposition of fat distribution (increased visceral fat accumulation) that is related to the female sex hormone oestrogen [55]. It should also be noted that therapeutic administration of oral oestrogen has been reported to reduce plasma PAI-1 levels [56]. Therefore, the inclusion of pre- and / or post-menopausal women in a study may influence the outcome of the association of body composition with plasma PAI-1 levels.

5.3.4.2 Ethnicity

When comparing the association between body composition and plasma PAI-1 levels between different ethnic groups, dissimilarities have been found. For instance, significant associations between plasma PAI-1_{ag} and VAT have been observed in white women, but not in African American women, despite similar PAI-1 levels and BMI ranges [57]. African women have also been found to have significantly lower PAI-1_{act} levels as well as a weaker association with markers of the MetS in comparison with white South African women [44]. Previous studies have
indicated that white Americans compared with black Americans have less VAT in spite of similar WC and BMI measurements [45,58]. Similar findings were also observed in studies that included black and white South Africans [59,60]. In a black and white South African sample, black women were found to have less VAT in comparison with white women after adjusting for age, height, weight and fat mass, despite the fact that there were no ethnic differences in WC, WHR, or dual-energy X-ray absorption measurement of the abdominal regions [61]. Similar to the VAT distribution in women, in a study by Hill et al. [45], significantly lower VAT was found in black than in white men after adjustment for percentage body fat, total body fat, BMI, WC, WHR or sagittal diameter. However, it is difficult to draw conclusions regarding the relationship of PAI-1 and body fat composition in African populations as such information is limited and most research investigating these issues has been undertaken in populations of European descent [6,13,25,38,45]. Owing to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in Africans may differ from that observed for other population groups and, therefore, merits further investigation.

5.3.4.3 Level or degree of obesity

The general notion that increased plasma PAI-1 levels are associated with central obesity or android fat distribution does not seem to hold true in all circumstances. As mentioned previously, in severely obese individuals, PAI-1 expression from abdominal SCAT was found to be approximately two times higher than from abdominal VAT and it was proposed that the degree of obesity influences regional differences in PAI-1 secretion [25]. As previously explained this might, however, also have been the result of the way in which Eriksson et al. [25] reported their results i.e. in terms of cell size.

In support of this finding, when grouping participants according to different body composition patterns, the degree of obesity seems to have a significant influence on regional differences in PAI-1 secretion. African women with a proportionally higher abdominal VAT compartment have
been found to have significantly higher plasma PAI-1 levels than women with a proportionally higher abdominal SCAT compartment (unpublished results). However, in women who were classified to be centrally obese, this was no longer the case. Within reason, it would seem therefore that the degree of obesity have an influence on the association between different body fat depots and plasma PAI-1 levels.

5.3.5 Weight-loss

Weight-loss that is associated with the loss of adipose tissue mass has been shown to be effective in lowering plasma PAI-1 levels in obese individuals [29,38,62-65]. Following gastric bypass in severely obese individuals, plasma PAI-1 levels were observed to normalise one month after surgery and PAI-1 expression, in both SCAT and VAT, was found to be lower than that of non-obese individuals within one year after surgery [62]. Mavri et al. [29] found that a three month weight reduction program resulted in a decline in plasma PAI-1 levels, which was only associated with loss of abdominal SCAT and not loss in the femoral adipose tissue. On the contrary, other studies have observed changes in plasma PAI-1 levels that correlated with changes in VAT and not SCAT after weight reduction in healthy pre-menopausal women [23]. Such findings are supported by other studies that observed VAT and plasma PAI-1 levels to decrease significantly after weight loss, in both men and women [53,66]. Yet, the relationship between VAT and PAI-1 disappeared in women after adjustment for total body fat mass [53]. Weight reduction due to surgical treatment or dieting seems to be an effective means to help lower plasma PAI-1 levels and promote a favourable haemostatic profile although whether this reduction is adipose depot specific remains a topic of investigation.

5.3.6 4G/5G PAI-1 polymorphism

Throughout the literature several PAI-1 polymorphisms have been identified, that may influence plasma PAI-1 levels, of these the 4G/5G PAI-1 polymorphism has been shown to exert the greatest impact [67,68] and is also thought to be associated with obesity and increased adipose tissue [11,69-72]. The 4G/5G is a single-nucleotide insertion / deletion polymorphism located at
position -675 in the promoter region of the PAI-1 gene that leads to either a 4G or 5G sequence [67]. In the 5G allele a repressor protein binds to the promoter area of the PAI-1 gene, resulting in relatively reduced transcription of PAI-1, and therefore in lower plasma PAI-1 levels [67,73,74]. Not all studies, however found a significant association between the 4G/5G genotypes and plasma PAI-1 levels and it is postulated that obesity may influence this relationship. The 4G/5G polymorphism is considered a response polymorphism meaning that the difference in PAI-1 levels between 4G and 5G becomes more obvious in the presence of environmental and/or disease factors, that stimulate PAI-1 expression [75], such as obesity. In agreement with this, some studies [11,72,76] found a stronger relationship between plasma PAI-1 levels and the 4G/5G polymorphism in obesity, although there were also some studies that did not find a difference in the strength of the relationship [77-79].

Results regarding the relationship of this polymorphism with obesity are also contradicting, as some studies [11,71,72,80] found carriers of the 4G allele to be more common among obese individuals while others did not [81-84]. Although, the mechanism of action explaining the possible association between the 4G/5G PAI-1 gene and obesity is not yet known, Demiralp et al. [85] suggested that overexpression of PAI-1 in 3T3-L1 cells (mouse cell line of fibroblasts that can differentiate into adipocytes) can increase adipocyte differentiation and that the 4G allele was significantly more active than the 5G allele in driving PAI-1 gene transcription, thus contributing to adipogenesis.

Despite possible interaction of plasma PAI-1 levels and the 4G/5G PAI-1 polymorphism with obesity, little is known regarding the relationship with body fat distribution, in particular the difference in VAT versus SCAT. In one study investigating the genetic variations within the PAI-1 gene that are related to the amount of body fat and regional fat distribution, the 4G/5G PAI-1 polymorphism was found to be associated with VAT in postmenopausal women [70]. Homozygotes for the 5G allele had 50% more VAT compared to carriers of the 4G allele. This suggests that it may be involved in modulating adipose tissue distribution at menopause [70].
agreement with this, Sartori et al. [11] found the 4G/5G polymorphism to influence PAI-1 expression in central obesity (VAT), but not in peripheral obesity (SCAT). Van Harmelen et al. [86] furthermore found no effect of the 4G/5G polymorphism on PAI-1 secretion from abdominal SCAT adipose tissue. Although not enough evidence is available to draw firm conclusions, these results suggest that the 4G/5G PAI-1 polymorphism may potentially influence the relationship between plasma PAI-1 levels and body fat distribution, and warrants further investigation.

5.3.7 Other PAI-1 producing tissue in obesity

As mentioned earlier, Janand-Delenne et al. [23] found VAT to explain only 28% of the variance in plasma PAI-1 act in premenopausal women. Also in a recent study (unpublished results) we found inflammation, endothelial dysfunction and triglycerides to contribute more to PAI-1 act variance in obese African women than body fat % per se. These results reiterate the concept that plasma PAI-1 levels, in obesity, are influenced by many different factors of which increased adipocyte mass is only one and that plasma PAI-1 in obesity seems to increase owing to a systemic response [87]. Other factors that can influence plasma PAI-1 levels include IR, inflammatory cytokines, oxidative stress as well as increased triglycerides, which can regulate PAI-1 production in all PAI-1 producing tissue and not adipose tissue only [3,88,89]. The association between PAI-1 and triglyceride has been previously explained by the fact that very low density lipoproteins (VLDL) triglycerides increase PAI-1 levels [6,90], through a VLDL response element identified in the promoter region of the PAI-1 gene that mediates VLDL-induced PAI-1 transcription in endothelial cells [91].

The largest contributor to PAI-1 act in our recent study was endothelial dysfunction (unpublished results). Evidence exists for the presence of endothelial dysfunction in obesity [92], which is thought to be induced by obesity-associated metabolic abnormalities such as IR, adipokines, oxidative stress, increased free fatty acids, tissue TNF-α as well as activation of innate immunity [93,94]. At the same time, increased PAI-1 is recognised as an early marker of endothelial
dysfunction [95,96] suggesting endothelial dysfunction as a mechanistically plausible modulator of PAI-1 act in obesity. Others have also identified hepatocytes and endothelial cells as underlying sources of elevated PAI-1 levels in obese individuals [36,62].

The association between inflammation and PAI-1 has been firmly established with a variety of cytokines such as TNFα, TGF-β1, IL-1 and IL-6, acting as inflammatory mediators of PAI-1 [7,12,13,30,46,97-100]. Therefore, the chronic low grade pro-inflammatory environment in obesity can significantly contribute to plasma PAI-1 levels I the presence of several PAI-1 inducers [2]. These PAI-1 stimulating effects of pro-inflammatory cytokines are not only limited to adipocytes, but are also present in hepatocytes, smooth muscle cells and endothelial cells [101,102]. In a recent study, the ability of the acute systemic inflammatory response to activate gene expression and PAI-1 production in VAT was demonstrated. According to Ekström [9], during open heart surgery, PAI-1 mRNA expression was found to increase 27-fold in the omental (visceral) adipose tissue, compared with a threefold increase in the SCAT, followed by an increase in plasma PAI-1 ag levels. TGF-β1 seems to regulate PAI-1 expression as part of an autocrine and paracrine function [99]. Particularly in subcutaneous adipocytes, TGF-β1 has been proposed as a main inducer of PAI-1 mRNA synthesis [25,99], although others have reported no significant difference in the effect of TGF-β1 on PAI-1 ag secretion between the two fat depots (VAT and SCAT) [13].

Apart from adipocytes, adipose tissue furthermore contains endothelial cells as well as fibroblasts, smooth muscle cells and macrophages, which are all involved in the expression of PAI-1 mRNA [8]. Other factors associated with obesity that can influence plasma PAI-1 levels, include oxidative stress, circadian clock proteins, cortisol and angiotensin-converting enzyme [reviewed by 103].
5.3.8 Conclusion

While *ex vivo* evidence indicates VAT to be the main PAI-1 producing adipose depot due to structural and functional differences compared to SCAT, this does not always relate to increased plasma PAI-1 levels as depicted in Figure 5.1. Particularly in obesity and in females where the SCAT depot is often significantly larger than the VAT depot, SCAT becomes a significant contributor to plasma PAI-1 levels and, therefore, also to increased cardiovascular disease risk. Also owing to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in non-European populations may differ from that observed for Europeans and, therefore, merits further investigation. Furthermore, genetic variation such as the 4G/5G PAI-1 polymorphism may influence the relationship between VAT and plasma PAI-1 although more evidence is needed to confirm this. As PAI-1 is produced by many different tissues, the contribution of other tissue such as endothelial cells, particularly in the case of endothelial dysfunction, to plasma PAI-1 levels in obesity should also not be negated and should be considered as a major contributor to plasma PAI-1 levels.

Practice Points

- The contribution of body fat distribution to increased plasma PAI-1 levels has important pathophysiological consequences for the development of obesity-related CVD risk.
- Despite VAT being the main PAI-1 producing adipose depot, due to structural and functional differences compared to SCAT, this does not always relate to increased plasma PAI-1 levels.
- PAI-1 production in adipose tissue explants studied *ex vivo* should not be directly related to the *in vivo* situation due to the possible occurrence of incubation artefact effects, leading to the misinterpretations of results.
- Factors such as gender, ethnicity, possibly genetics, level or degree of obesity, and other PAI-1 producing tissues are important when considering the relative contribution of different
fat depots to plasma PAI-1 levels, since these factors not only influence the plasma PAI-1 levels, but also the relative associated CVD risk.

Research Agenda

• More studies are needed to understand the relationship of PAI-1 with body composition in non-European populations, as most studies included European populations only and data pertaining to non-European populations are limited.
• The relative contribution of endothelium dysfunction to plasma PAI-1 levels in obesity is often overlooked, though could assist in our understanding of the relationship between obesity and PAI-1, and therefore warrants more detailed investigation.

Conflict of interest statement

The authors have no conflict of interest to declare.

Acknowledgements

This work was funded through the National Research Foundation (NRF) of South Africa (Grant UID: 94213). Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the NRF.
5.3.9 References

[84] De Lange Z, Rijken DC, Hoekstra T, Conradie KR, Jerling JC, Pieters M. In black South Africans from rural and urban communities, the 4G/5G PAI-1 polymorphism influences PAI-1 activity, but not plasma clot lysis time. PLOS One 2013;8(12):e83151.

[88] Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 2010;2010:513948.

Legend to Table

Table 5.1: Summary of studies investigating the association of PAI-1 production and mRNA levels in adipose tissue (VAT versus SCAT)

BMI, body mass index; mRNA, messenger ribonucleic acid; PAI-1, plasminogen activator inhibitor-1; PAI-1\textsubscript{act}, PAI-1 activity; PAI-1\textsubscript{ag}, PAI-1 antigen; SD, standard deviation; SCAT, subcutaneous adipose tissue; TGF\textbeta1, transforming growth factor beta 1; TNF\textalpha, tumour necrosis factor-alpha; VAT, visceral adipose tissue; VLCD, very low calorie diet; yrs., years; \uparrow, increased PAI-1 synthesis and/or production.

Legend to Figure

Figure 5.1: The association between VAT and plasma PAI-1 levels and the factors modulating this association

VAT, visceral adipose tissue; PAI-1, plasminogen activator inhibitor-1; SCAT, subcutaneous adipose tissue; \uparrow, increased VAT and plasma PAI-1 levels; \leftrightarrow association.
Table 5.1: Summary of studies investigating the association of PAI-1 production and mRNA levels in adipose tissue (VAT versus SCAT)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Aims</th>
<th>Participant characteristics (mean±SD)</th>
<th>Adipose tissue measured</th>
<th>PAI-1 measured</th>
<th>Relevant finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastelica et al., 2002 [12]</td>
<td>Compare the localisation of PAI-1 synthesis between human VAT and SCAT.</td>
<td>n= 26 Twenty-two white women and four men BMI 41±6.3 kg/m² Age 41±12 yrs.</td>
<td>Cryosections of freshly collected human adipose tissue (in culture). Samples were collected during gastroplasty.</td>
<td>Supernatant PAI-1 ag, plasma PAI-1 ag and PAI-1 act and PAI-1 mRNA in adipocytes.</td>
<td>↑ PAI-1 synthesis in VAT compared with SCAT. PAI-1 production is related to the presence of stromal cells, which are more numerous in VAT than in SCAT.</td>
</tr>
<tr>
<td>Gottschling-Zeller et al., 2000 [13]</td>
<td>Compare PAI-1 expression and secretion in omental fat and SCAT from obese and non-obese participants.</td>
<td>n=11 Obese individuals (eight women and three men) BMI 45±8.7 kg/m² Age 39±13.8 yrs. n=7 non-obese individuals (two women and five men) BMI 24±2.7 kg/m² Age 41±13.9 yrs. All participants were of Caucasian origin.</td>
<td>Isolated SCAT and omental abdominal adipocytes (in suspension culture) from severely obese (who underwent vertical gastric banding for</td>
<td>PAI-1 ag and PAI-1 mRNA in adipose tissue.</td>
<td>↑ PAI-1 synthesis in VAT compared with SCAT. Omental adipocytes release significantly more PAI-1 in vitro compared to subcutaneous adipocytes from obese and non-obese individuals. Did not find endothelial cells (present in adipose tissue) to contribute to the production of PAI-1. Observed that TGF-β1 contributes to the regulation of PAI-1 secretion.</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Details</td>
<td>Participants</td>
<td>Experimental Details</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Cigolini et al., 1999 [22]</td>
<td>Aimed to determine whether TNF-α influence PAI-1 production in human adipose tissue.</td>
<td>n=35 Non-neoplastic, overweight individuals BMI 28±5 kg/m²
Seven individuals were surgical patients, for whom both SCAT and VAT were obtained. Twenty-eight individuals were outpatients from which SCAT was obtained by needle biopsies.</td>
<td>Omental and SCAT biopsies (incubated, isolated adipocytes) from obese non-diabetic individuals.</td>
<td>↑ PAI-1 expression and release in VAT compared with SCAT. However, do not support VAT to be the only fat depot that contributes to plasma PAI-1 levels. These two fat depots were found not to be substantially different from each other, with regards to response to TNF-α stimulation. It was concluded that similar factors control expression in VAT and SCAT under these experimental conditions.</td>
<td></td>
</tr>
<tr>
<td>Alessi et al., 1997 [5]</td>
<td>Investigated PAI-1 expression by human adipose tissue and its different cellular fractions, in particular PAI-1ₐ₉ production from VAT (omenta) versus SCAT.</td>
<td>n=13 women BMI 26-29 kg/m²
Only in seven participants comparison between VAT and SCAT was performed (four men and three women)
BMI 18-28 kg/m²
Age 39-79 yrs.</td>
<td>Tissue was obtained during elective abdominoplasty (incubated).</td>
<td>↑ PAI-1 production in VAT compared with SCAT. Supports the important contribution of VAT in determining plasma PAI-1 levels.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Objective</td>
<td>Participants</td>
<td>Tissue Obtained</td>
<td>Plasma PAI-1ag and PAI-1 mRNA Expression</td>
<td>Conclusion</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lindeman et al., 2007</td>
<td>Systematically evaluate the molecular basis of the association between VAT and plasma PAI-1 in humans.</td>
<td>Men and women were included and grouped according to BMI. BMI 20-32 kg/m² in one group and morbid obese participants (BMI>40 kg/m²) in the other group.</td>
<td>Tissue was obtained during elective aneurysm repair (normal weight and overweight individuals) or during gastric banding for morbid obesity.</td>
<td>Plasma PAI-1ag and PAI-1 mRNA from adipose tissue explants. Data corroborates a strong relationship between VAT and plasma PAI-1 levels. However, low and similar PAI-1 mRNA expression in SCAT and VAT excluded VAT as a relevant source of plasma PAI-1. The authors conclude that VAT and plasma PAI-1 are co-correlated rather than causatively related.</td>
<td></td>
</tr>
<tr>
<td>Polac et al., 2001</td>
<td>To substantiate the link between intra-abdominal VAT and circulating PAI-1 by performing analysis of PAI-1 expression in human VAT and SCAT.</td>
<td>n=28 Post-menopausal women BMI 28.29±4.32 kg/m² Age 53.59±6.35 yrs.</td>
<td>Samples of VAT and SCAT were obtained in the beginning of a gynaecological operation.</td>
<td>Plasma PAI-1ag and PAI-1 mRNA in adipose tissue. Indicates similar PAI-1 mRNA expression in both SCAT and VAT that seems to be influenced by lipid metabolism. No correlation was found between plasma PAI-1 and VAT or SCAT PAI-1 mRNA.</td>
<td></td>
</tr>
<tr>
<td>Morange et al., 1999</td>
<td>Aimed to investigate the relation between the production of PAI-1 by adipose tissue, plasma PAI-1 levels and</td>
<td>n=30 Participants (three men and 27 women). Age 16-70 yrs. (mean = 47) BMI 21-42 kg/m² (mean = 27) VAT and SCAT were</td>
<td>Tissue was obtained during elective abdominal surgery</td>
<td>Plasma PAI-1ag and PAI-1ag in adipose tissue. Observed a similar correlation between PAI-1 production from VAT and SCAT. Further suggested a similar regulatory pathway of PAI-1 in the two fat depots. Supports the role of adipose tissue in determining plasma PAI-1.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Brief Description</td>
<td>Participants</td>
<td>Methods</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Dusserre et al., 2000 [37]</td>
<td>Investigated the difference in gene expression of six proteins secreted by adipocytes obtained from abdominal VAT and SCAT.</td>
<td>n=9 Five women and four men BMI 34±4 kg/m² Age 42±5 yrs.</td>
<td>Adipose tissue biopsies were collected during elective open abdominal surgery.</td>
<td>PAI-1 mRNA in adipose tissue.</td>
<td></td>
</tr>
<tr>
<td>Bastard et al., 2000 [38]</td>
<td>Aimed to determine if the changes in SCAT PAI-1 expression influence plasma PAI-1 levels during weight loss in obese humans following a VLCD.</td>
<td>n=15 Fourteen women and one male participant, all of Caucasian descent. BMI >30 kg/m² Age 48±3 yrs.</td>
<td>Samples were obtained from the abdominal skin of participants by a liposuction mini-cannula attached to a syringe.</td>
<td>Plasma PAI-1 ag. and PAI-1 mRNAs in adipose tissue. ♦ PAI-1 mRNA and PAI-1 concentration in SCAT during VLCD. Suggest therefore that the changes in SCAT PAI-1 expression are not related to the decrease of plasma PAI-1 levels observed during VLCD in obese participants.</td>
<td></td>
</tr>
<tr>
<td>Eriksson et al., 2000 [25]</td>
<td>To determine differences in adipose gene</td>
<td>n=22 Obese individuals Fourteen women and eight</td>
<td>Abdominal SCAT and VAT were</td>
<td>PAI-1 ag. and PAI-1 mRNAs in adipose ♦ Secretion of PAI-1 and PAI-1 gene expression were found in SCAT compared with...</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Objective</td>
<td>Study Details</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mavri et al., 2001 [29]</td>
<td>To determine if the changes in PAI-1 mRNA content in two SCAT depots (abdominal and femoral) are associated with changes in plasma PAI-1 after weight-loss.</td>
<td>n=40 Obese individuals二十年 women and four men BMI >25 kg/m² Age 40 ± 10 yrs. Also sixteen lean participants, 17 women and seven men. BMI 25 kg/m² Lean participants had a similar age range as the obese participants.</td>
<td>Plasma PAI-1act and PAI-1ag as well as PAI-1 mRNA in adipose tissue. Obese participants had ↑ plasma PAI-1 and PAI-1 gene expression (in abdominal SCAT) compared to lean participants. Plasma PAI-1 levels were associated with PAI-1 expression in the abdominal adipose tissue, whereas femoral SCAT showed similar PAI-1 mRNA in obese and lean participants. The authors concluded that only abdominal and not femoral SCAT PAI-1 expression is a contributor to increased plasma PAI-1 levels in obesity. Both plasma PAI-1 and PAI-1 mRNA in abdominal SCAT also decreased following weight-loss.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shimomura et al., 1996 [8]</td>
<td>To investigate the relationship between plasma PAI-1 levels and the amount of fat tissue</td>
<td>n=101 Sixty-one obese participants (31 men and three women) BMI 31±5 kg/m²</td>
<td>Plasma PAI-1ag and PAI-1 mRNA in adipose tissue from rats. Although both VAT and SCAT expressed PAI-1 mRNA, PAI-1 expression ↑ in VAT but not in SCAT during the development of obesity in rats. In both obese and non-obese humans,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAT versus SCAT and changes in PAI-1 gene expression in adipose tissue during development of obesity in humans and animals.</td>
<td>Age 43±13 yrs. Forty non-obese participants (37 men and 13 women) BMI 23±2 kg/m² Age 44±14 yrs. SCAT and VAT from humans were assessed by means of computerised tomography. n=15 Female Sprague-Dawley rats (12 weeks of age). and VAT from control rats and rats with a ventromedial hypothalamus lesion.</td>
<td>plasma PAI-1 correlated to VAT, but not SCAT. The authors concluded that enhanced PAI-1 gene expression from VAT might contribute to increased plasma PAI-1 levels.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMI, body mass index; mRNA, messenger ribonucleic acid; PAI-1, plasminogen activator inhibitor-1; PAI-1 act, PAI-1 activity; PAI-1 ag, PAI-1 antigen; SD, standard deviation; SCAT, subcutaneous adipose tissue; TGF-β1, transforming growth factor-beta 1; TNF-α, tumour necrosis factor-alpha; VAT, visceral adipose tissue; VLCD, very low calorie diet; yrs., years; ↑, increased PAI-1 synthesis and/or production.
Figure 5.1: The association between VAT and plasma PAI-1 levels and the factors modulating this association

VAT, visceral adipose tissue; PAI-1, plasminogen activator inhibitor-1; SCAT, subcutaneous adipose tissue; ↑, increased VAT and plasma PAI-1 levels; ↔ association.

Strength of relationship is modulated by factors such as:

1. Significantly larger SCAT depot (e.g. in severe obesity and females)
2. Ethnicity
3. Obesity-associated metabolic abnormalities e.g. endothelial dysfunction
4. Genetics?
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1 Introduction

This chapter provides a summary of the most important findings of the three articles presented in Chapters 3, 4 and 5 of this thesis. In each of these chapters the results were discussed, interpreted and compared with the relevant literature. In this chapter, conclusions based on the research findings and recommendations for future research will be provided. The relevance of these results will also be highlighted against the broader scientific background. The main findings and conclusions drawn are aimed at addressing the objectives of this study. Therefore, the main aim and objectives introduced in Chapter 1 are repeated below, followed by a general discussion and conclusion.

Aim and objectives:

Aim:
The aim of this study was, to determine two unresolved methodological and clinical issues related to PAI-1, as identified in the black South African population.

Objectives:

1. To determine the effect of residual platelets, present in plasma, on different plasma PAI-1 assays (total PAI-1 content, active PAI-1 and tPA/PAI-1 complex) as well as a functional marker namely clot-lysis time (CLT);
2. to explore the relationship of PAI-1 with body fat in African women with special focus on excessive obesity, sarcopenic obesity and body fat distribution patterns; and
3. to review ex vivo and in vivo studies investigating the association between body fat distribution and plasma PAI-1 levels, in order to identify factors that may potentially influence the relationship and to determine the contribution of body fat to plasma PAI-1 levels relative to that of other PAI-1 producing tissue.
6.2 The effect of residual platelets, present in plasma, on different plasma PAI-1 assays (total PAI-1 content, active PAI-1 and tPA/PAI-1 complex)

Plasminogen activator type-1 (PAI-1) is an important inhibitor of fibrinolysis (Rijken & Lijnen, 2009) and it is also associated with the risk of developing atherothrombosis (Salomaa et al., 1995; Smith et al., 2005; Peng et al., 2008). PAI-1 exists in either an active or latent form or in a complex with tissue plasminogen activator (tPA) (Hekman & Loskutoff, 1985; Sprengers & Kluft, 1987; Gils & Declerck, 2004). PAI-1 is stored in the alpha granules of platelets (Sprengers & Kluft, 1987; Declerck et al., 1988a; Alessi et al., 1997) and is produced by a variety of cells, such as endothelial cells, hepatocytes, smooth muscle cells and adipocytes (Skurk & Hauner, 2004). The accepted view concerning the main form of PAI-1 released from alpha granules of platelets has recently been challenged by controversial evidence. Declerck et al. (1988a) stated that the alpha granules of platelets were traditionally thought to contain mostly latent PAI-1, while more recent publications suggest that the alpha granules of platelets also contain active PAI-1 (Nordenhem & Wiman, 1997; Brogren et al., 2004; Brogren et al., 2011). What is still not clear is how the PAI-1, which is released from the alpha granules of residual platelets in plasma, affects the plasma levels of the different forms of PAI-1 (activity, antigen and tPA/PAI-1 complex) as well as the fibrinolytic potential of plasma. We postulated that residual platelets in plasma might have different effects on apparent PAI-1 levels, which may be the result of different assays used, differences in sample handling such as type of blood collection tube, centrifugation speed and time, additionally also platelet concentration and size. We therefore, investigated the effect of residual platelets in plasma on PAI-1 and PAI-1-related assays by relating a marker of alpha granule release (beta thromboglobulin (βTG)), as well as platelet concentration and size, to PAI-1 activity (PAI-1_{act}), PAI-1 antigen (PAI-1_{ag}), tPA/PAI-1 complex and a functional parameter of fibrinolysis, fibrinolytic potential, measured as plasma clot lysis time (CLT).

We analysed PAI-1_{ag}, PAI-1_{act}, tPA/PAI-1 complex and CLT in platelet-containing plasma prepared at two centrifugation speeds (352 and 1500 g) of 151 participants from the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study. A limitation of the study was that plasma platelet count was not determined and it was not possible to calculate to what degree plasma PAI-1 levels were confounded by in vitro platelet activation and or degradation. A follow-up study was, therefore performed to obtain platelet count and size as well as plasma βTG and PAI-1_{ag} concentrations in a similar population group as the original study population. In this follow-up study a variety of plasma types were prepared: platelet-poor plasma (PPP – 2000 g), platelet-containing plasma (352 g) and platelet-rich plasma (PRP – 200
Because it is also important for this research to obtain basal plasma PAI-1$_{ag}$ levels not confounded by in vitro platelet activation and/or degradation, PPP was collected in citrated tubes containing platelet stabilisers (CTAD tubes). The citrated plasma samples (352 g and 200 g) were analysed in a fresh-frozen state and also after five defrost-refreeze cycles to ensure complete alpha granule release from the platelets; this was done to determine the total platelet PAI-1$_{ag}$ and βTG content. It was determined that plasma βTG had a significant association with PAI-1$_{ag}$ levels and weak associations only with PAI-1$_{act}$ and CLT. Upon dividing the SABPA study population into quartiles based on βTG levels, PAI-1$_{ag}$ increased significantly across the quartiles while PAI-1$_{act}$ and CLT tended to increase in the 4th quartile only, suggesting possible functional effects on plasma fibrinolytic potential in the presence of high platelet counts (such as PRP) only. In addition, the results indicated that platelet count strongly affected plasma PAI-1$_{ag}$ in a concentration dependent manner. Strong correlations between PAI-1$_{ag}$ levels, platelet count and βTG levels in the different plasma preparations containing platelets (325 g and 200 g) were observed. Evidence for the size of the contribution which platelets can make to plasma PAI-1$_{ag}$ was found in that the basal PAI-1$_{ag}$ level in PPP increased up to 22 fold in PRP. With the maximum degradation of the platelets (5x freeze-thaw cycles) a further increase in plasma PAI-1$_{ag}$ was observed. This accentuates the importance of the correct plasma preparation protocol in order to standardise platelet count and to ensure the preparation of PPP (<10 x 10^3/µL). It was unfortunately not possible to determine to what extent the presence of platelet stabilisers can inhibit the effects of platelets in plasma on PAI-1 and related assays, as CTAD tubes were used to prepare PPP only. This should be investigated in future studies on this topic. Also in the first sub-study, the data that was used to compare the effect of the two centrifugation speeds were collected from different individuals. A scientifically stronger design would have been to prepare the samples from the same individuals at two different speeds to prevent inter-individual differences (potentially) confounding the results obtained. This option was unfortunately not available to us and since the inclusion criteria were quite specific, providing a homogenous study population, and the individuals randomly divided into the two sample preparation groups, the results likely reflect a true relationship between βTG and PAI-1$_{ag}$.

The latter findings suggests that platelets likely contain both latent and active PAI-1, but that a high plasma platelet content (such as in PRP) is required before the active PAI-1 present in platelets has functional fibrinolytic effects. This data therefore aids in settling the debate regarding the main form of PAI-1 present in platelets (Declerck et al., 1988a; Nordenhem & Wiman, 1997; Brogren et al., 2004). This study provides direct evidence of the effect of residual
platelets on plasma PAI-1 and PAI-1 related assays. We conclude that PAI-1$_{ag}$ is more sensitive to the presence of platelets in plasma than is PAI-1$_{act}$ or the functional marker, CLT. We also found that platelets present in plasma do not initially release all of its PAI-1 content and that it releases additional PAI-1 upon further or complete degradation. Our results, consequently, highlight the importance of precise protocol control when measuring plasma PAI-1$_{ag}$.

6.3 The relationship of PAI-1 with body fat in African women with special focus on excessive obesity, sarcopenic obesity and body fat distribution patterns

In the recent National Health and Nutrition Examination Survey (SANHANES) of South Africa, a significant increase in the prevalence of obesity and overweight in older women compared to men was observed (Shisana et al., 2013). Besides being an important inhibitor of fibrinolysis, PAI-1 plays an important role in obesity, specifically central obesity, the metabolic syndrome (MetS) and insulin resistance (IR) (Juhan-Vague & Alessi, 1997; Mertens et al., 2006; Greyling et al., 2007). Although the association between PAI-1 and obesity is well known, the association between PAI-1 and body fat distribution patterns is less clear, particularly in non-white ethnicities with demonstrated differences in body fat distribution patterns and PAI-1 levels. For instance, the association of PAI-1 with visceral adipose tissue (VAT) and MetS has been shown to differ between black and white South Africans (Greyling et al., 2007). Mckelsfield et al. (2010) found no association between PAI-1 and VAT in African Americans, but a significant association between PAI-1 and VAT in Caucasians. Work that was done before that of Mckelsfield et al. (2010) by Vague et al. (1989), De Pergola et al. (1997) and Alessi et al. (2000b) have also shown differences in body fat distribution patterns between ethnicities, with African women having significantly less VAT compared to women of European descent, despite similar waist circumferences (WC). Therefore, it is possible that the association of PAI-1 with WC, which is often used a marker of central adiposity, may differ between ethnic groups, depending on the type of adipose tissue (VAT vs SCAT) deposited in the abdominal area. The main PAI-1 producing adipose tissue is VAT, while, in general, sub-cutaneous adipose tissue (SCAT) produces less PAI-1. According to Alessi et al. (1997) and Bastelica et al. (2002) this is caused by a higher amount of stromal cells in VAT. Alessi et al. (1997) and Ibrahim (2010) indicates that it also the result of the production of pro-inflammatory cytokines and higher macrophage content / infiltration found in VAT. In addition, the importance of PAI-1 expression in abdominal SCAT has also been demonstrated (Eriksson et al., 2000; Mavri et al., 2001) While WC is often used as a surrogate marker for abdominal obesity, the effect of the ratio of abdominal VAT to abdominal SCAT (which seem to differ between ethnicities) despite a similar
WC, on PAI-1 levels, has however, received far less attention. We, therefore, hypothesised that due to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in Africans may differ from that observed for other population groups and, therefore, necessitate its study in non-white individuals. Limited information is also available regarding the effect of specific forms of obesity, such as sarcopenic obesity (SO), on PAI-1 (Cesari et al., 2005; Cesari et al., 2010). Due to the relative close association between IR, MetS and SO (Kohara, 2014) as well as the association between PAI-1, IR and Mets (Alessi & Juhan-Vague, 2008), it was postulated that PAI-1 might be higher in SO individuals than obese individuals, who are not sarcopenic.

The association of PAI-1_{act} with body fat percentage and two different fat distribution patterns, namely SO and preferentially VAT compared to SCAT abdominal obesity in 246 African women were, therefore, investigated by creating sub-groups according to different body fat distribution patterns. The results of this investigation showed that the PAI-1_{act} levels of the SO group did not differ significantly from that of women in the excessive percentage body fat (the non-sarcopenic) group. This can be attributed to the fact that in the population participating in the research, the insulin-related markers and the MetS status of the two groups did not differ. Future studies should focus on the inclusion of SO individuals with confirmed MetS status and/or insulin abnormalities, to better answer the question of whether PAI-1 will be further increased in these individuals. The results of the present study confirmed that the relationship of PAI-1_{act} with body fat percentage, insulin, triglycerides and appendicular skeletal mass (ASM) were influenced by body fat distribution patterns together with the degree of obesity, suggesting that the association of PAI-1 with the mentioned variables is not a constant or fixed relationship, but that the relative contributions of these variables to PAI-1 are influenced by body fat distribution patterns. In comparing preferential VAT to SCAT central obesity, it was established that PAI-1_{act} is higher in women with a proportionally higher abdominal VAT compared to the higher abdominal SCAT compartment in the total study population. This was not the case in the centrally obese sub-group, suggesting that, when central obesity is already present, VAT no longer contributes proportionally more to plasma PAI-1 levels than SCAT. It seems that in the presence of large SCAT depots, such as in women or obese individuals, SCAT becomes a significant contributor to plasma PAI-1 levels. In general this statement is in agreement with the literature in which it was demonstrated that PAI-1 messenger ribonucleic acid (mRNA) in abdominal SCAT (but not femoral SCAT) is positively correlated with plasma PAI-1 levels in obese individuals (Mavri et al., 2001). It is, furthermore, confirmed by the finding that PAI-1 expression in SCAT, is higher than in VAT in obese individuals and in females (Eriksson et al.,
We also determined the contribution of body fat percentage to plasma PAI-1\textsubscript{act}, taking other metabolic abnormalities associated with obesity into consideration. We demonstrated for the first time that in African women with increased fat mass, body fat percentage contributes to plasma PAI-1\textsubscript{act} to a lesser extent than other obesity-related metabolic derangements such as inflammation and endothelial dysfunction.

Results from our study make a significant contribution to the limited information available regarding the association of PAI-1 with body composition in Africans. Results obtained from individuals of European descent cannot simply be extrapolated to Africans, due to the known differences in body fat distribution as well as known differences in PAI-1 levels, necessitating these studies in non-white individuals.

6.4 The association between body fat distribution and plasma PAI-1 levels, potential factors influencing this relationship and the contribution of body fat to plasma PAI-1 levels relative to that of other PAI-1 producing tissue

While performing the study mentioned in Section 6.3, it was discovered that there is a large body of evidence on this topic, but with contradicting results. It was, therefore, decided to investigate the apparent discrepant findings between the different studies to provide an overall clearer picture of the association of PAI-1 with body composition. Increased PAI-1 is considered a mechanistic pathway by which obesity contributes to the increased risk of CVD in overweight and obese individuals (Kohler & Grant, 2000). Elevated plasma PAI-1 is considered a biochemical marker of obesity (Phelan & Kerins, 2014) and is also part of the MetS (Mertens \textit{et al.}, 2006; Alessi & Juhan-Vague, 2008). As far as obesity is concerned there are several pathways that contribute to increased plasma PAI-1 production, with abdominal adipose tissue considered a major source. The association between PAI-1 and obesity, especially central obesity, has been well established in research in both humans and animals (Samad & Loskutoff, 1996; Shimomura \textit{et al.}, 1996; Alessi \textit{et al.}, 1997; Eriksson \textit{et al.}, 1998; Alessi \textit{et al.}, 2003; Ekström \textit{et al.}, 2012). This association is considered to be largely the result of PAI-1 produced by adipose tissue (Alessi \textit{et al.}, 1997; Eriksson \textit{et al.}, 1998; Gottschling-Zeller \textit{et al.}, 2000; Bastelica \textit{et al.}, 2002). PAI-1 in adipose tissue is produced by a variety of cells that include pre-adipocytes, mature adipocytes, stromal cells, endothelial cells, smooth muscle cells and monocytes/macrophages (Skurk & Hauner, 2004).
Fat depot specific PAI-1 production has furthermore been identified with VAT, as an ectopic fat depot, generally producing more PAI-1 than SCAT (Alessi et al., 1997; Cigolini et al., 1999). Ectopic fat refers to the storage of fat in non-adipose tissue (such as the liver, skeletal muscles, viscera, pancreas and heart) that seems to accumulate when there is an overflow of triglycerides into other organs as SCAT loses the ability to expand and to store excess energy (Heilbronn et al., 2004; Morelli et al., 2013; Thomas et al., 2013). However, contradicting evidence also exists regarding the main PAI-1 producing depot, as some studies have shown comparable PAI-1 secretion from VAT and SCAT (Alessi et al., 2000b), or even higher PAI-1 mRNA expression and increased rate of PAI-1 synthesis in SCAT than in VAT (Eriksson et al., 2000). Furthermore, an increase in PAI-1 production by a specific fat depot does not necessarily lead to increased plasma PAI-1 levels. Even though several research investigations and reviews have focussed on the relationship between (central) obesity and PAI-1, there is no review investigating the contribution of different body fat depots to plasma PAI-1 levels. Also, despite VAT being the most prominent PAI-1 producing tissue, the relationship with plasma PAI-1 levels is less clear. There is also contradicting conditional evidence indicating SCAT to be the major PAI-1 producing adipose tissue depot instead of VAT.

The aim of this review was, therefore, to provide an overview of ex vivo and in vivo studies investigating the association between body fat distribution and plasma PAI-1 levels. Factors that seem to influence or regulate this relationship, including gender, ethnicity, level or degree of obesity and weight loss were discussed, while the contribution of other tissue to plasma PAI-1 level in obesity was also considered in order to place the relative contribution of adipose tissue depots into perspective. Although deduction from the literature lead to the conclusion that despite ex vivo evidence identifying VAT to be the main PAI-1 producing adipose depot due to structural and functional differences compared to SCAT, this does not always relate to increased plasma PAI-1 levels. SCAT, furthermore, seems to significantly contribute to plasma PAI-1 levels, particularly in obese women who have a greater tendency to accumulate SCAT rather than VAT. This research also highlights the possibility that the increased plasma PAI-1 levels associated with obese women may consequently increase their CVD risk. The need for future studies in non-European populations is demonstrated by the findings on the importance of ethnic differences in plasma PAI-1 and body composition. Further research is also needed to confirm the possible influence of genetic variation, such as the 4G/5G PAI-1 polymorphism, on the relationship between VAT and plasma PAI-1. This review is the first to highlight the contribution of other tissue to plasma PAI-1 levels, such as endothelial cells, particularly in the case of endothelial dysfunction that is often associated with obesity. Finally, evidence on the
association between body fat distribution and plasma PAI-1 levels is summarised; it is also accentuated that this relationship is not fixed but can be modulated by a number of different factors which include gender, ethnicity, possibly genetics, level or degree of obesity and other PAI-1 producing tissues.

6.5 Recommendations for future research

1. The findings from our study highlight the importance of precise protocol control, especially when measuring plasma PAI-1\textsubscript{ag}. It is, therefore, recommended that future studies should ensure standardised platelet count and preferentially the use of platelet poor plasma (<10 x 103/µL) when measuring PAI-1, and in particular PAI-1\textsubscript{ag}, to prevent any effect that residual platelets in plasma might have on the measurement of plasma PAI-1 levels. Furthermore, inconsistent ethnic differences as shown by previous research measuring PAI-1 levels in African and white ethnic groups (Jerling \textit{et al.}, 1994; Festa \textit{et al.}, 2003; Matthews \textit{et al.}, 2005; Lutsey \textit{et al.}, 2006; Greyling \textit{et al.}, 2007; Naran \textit{et al.}, 2008; Perry \textit{et al.}, 2008) should be investigated. In such ethnic comparison studies, a standardised PAI-1 assay should be employed as well as standardised sample handling procedures in order to determine true ethnic differences not confounded by analytical differences.

2. Considering our finding that highlighted the important contribution of abdominal SCAT to plasma PAI-1 in obese African women, it is crucial that future studies investigate the contribution of both VAT and SCAT compartments and not only VAT, which is generally regarded as the most important contributor to plasma PAI-1 levels. Furthermore, if available, future studies should use dual-energy x-ray absorption estimates of VAT and SCAT to aid in the understanding of the association of PAI-1 with different body fat distribution patterns, particularly in non-white ethnicities. Nevertheless, the skinfold : WC ratio that was used in our study might potentially be used in settings where such sophisticated techniques are not available. Lastly, our results identified other obesity-related metabolic abnormalities, such as inflammation and endothelial dysfunction, rather than body fat percentage per se to have a stronger influence on increased PAI-1 in obesity in African women and these factors should be taken into account when investigating the relationship between obesity and PAI-1.
1. The contribution of body fat distribution to increased plasma PAI-1 levels has important pathophysiological consequences for the development of obesity-related CVD risk. Despite VAT being the main PAI-1 producing fat depot, increased VAT does not always relate to increased plasma PAI-1 levels. Therefore, future studies should consider the relative contribution of factors such as gender, ethnicity, possibly genetics, level or degree of obesity and other PAI-1 producing tissues, when considering the influence different fat depots have on plasma PAI-1 levels. Owing to ethnic differences in body fat composition and the fact that existing research is mainly based on European populations only, future research on African populations is needed to better understand the relationship of PAI-1 with body composition. Since increased plasma PAI-1 levels in obesity are associated with the increased risk for IR, MetS and CVD, further research investigating the relationship between PAI-1 and body composition will also contribute to the general health and well-being of the black South African populations.

Findings from this study contribute to methodological and clinical considerations relating to PAI-1 in the black South African population. More specifically, our results provide novel insight regarding the measurement of PAI-1 and PAI-1 related assays, the relationship of PAI-1 with different body fat distribution patterns in African women as well as the relative contribution of different fat depots to plasma PAI-1 levels and factors influencing this association. These results indeed answered several research issues and led to new questions in this field of research.

Ding, J., Nicklas, B.J., Fallin, M.D., de Rekeneire, N., Kritchevsky, S.B., Pahor, M., Rodondi, N., Li, R., Zmuda, J.M. & Harris, T.B. 2006. Plasminogen activator inhibitor type 1 gene polymorphisms and haplotypes are associated with plasma plasminogen activator inhibitor type 1 levels but not with myocardial infarction or stroke. *American heart journal, 152*(6):1109-1115.

Mukamal, K.J., Jadhav, P.P., D'Agostino, R.B., Massaro, J.M., Mittleman, M.A., Lipinska, I., Sutherland, P.A., Matheny, T., Levy, D., Wilson, P.W., Ellison, R.C., Sibershatz, H., Muller,

ANNEXURE A: SABPA INFORMED CONSENT FORM

NORTH-WEST UNIVERSITY
POTCHEFSTROOM CAMPUS
SCHOOL FOR PHYSIOLOGY, NUTRITION AND CONSUMER SCIENCES
PARTICIPATION INFORMATION AND CONSENT FORM

PART 1
PRINCIPAL RESEARCHER: Dr Leoné Malan, Subject Group Physiology
PROJECT LEADER: Dr Leoné Malan, Subject Group Physiology

Associate Researcher(s): The postdoctoral fellow involved in this trial is Dr. Szabolcs Péter. Other persons assisting in the study are Dr. Hugo W. Huisman, Prof. Johannes M. van Rooyen, Prof. Nico T. Malan, Dr. R Schutte, Mrs Carla M.T. Fourie, Mrs. Tina Scholtz (Cardiovascular research group, Physiology), Prof. Salomé Kruger & Dr. Ramoteme Mamabolo, (Physical activity) Proff. Hans de Riddal (Anthropometry), Marié Wissing (Phychology), Linda Brand & Brain Harvey (Pharamacology), Kobus Mentz (Education), Francois van der Westhuizen (Biochemistry), Hester Kloppper (Nursing), Nancy Frasure-Smith & Francois Lespérance (Psychology, Canada), Alaa Alkerwi (Epidemiology, Luxembourg), Yackoob Seedat (ECG, Kwazulu Natal), Paul Rheeder (Sonar, Pretoria University), drs. Johan Potgieter & Michael Temane & Mr Tumi Khumalo (Psychology), Mrs Gedina de Wet (Nursing).

This Participant Information and Consent Form is 7 pages long. Please make sure you have all the pages.

Your Consent
You are invited to take part voluntarily in this research project.

This participant information document contains detailed information about the research project which has been explained to you verbally. Its purpose is to explain to you as openly and clearly as possible all the procedures involved in this project before you decide whether or not to take part.

Please read this Participant Information Form carefully. Feel free to ask questions about any information in this document. You may also wish to discuss the project with a relative or friend or your local health worker. Feel free to do this.
Once you understand what the project is about and if you agree to take part in it, you will be asked to sign the Consent Form. By signing the Consent Form, you indicate that you understand the information and that you give your consent to participate in the research project.

You will be given a copy of the Participant Information and Consent Form to keep as a record.

What is the study about?

The aim of this project is to have an impact on the eventual prevention and treatment of lifestyle diseases in Africans from South Africa. New knowledge regarding the relationship between higher nervous system activity implicating cardiovascular metabolic and psychological well-being will improve understanding and change strategies at the roots of treatment and prevention of lifestyle diseases.

Our research has shown that lifestyle diseases in urbanised Africans present higher obesity levels, high blood pressure or hypertension prevalence rates and the experiencing of more stress. This pattern is enhanced during psychosocial stress/urbanisation in participants with a specific coping style.

Hence the planner SABPA project, which is the first study in South Africa where coping and direct markers of nervous system activity in Africans will be measured.

Purpose of study

The purpose of this study is to investigate biological markers associated with higher sympathetic nervous system activity in urbanised teachers with a specific coping style.

To investigate the relationship between blood pressure, inflammation, obesity, stress and coping in more detail we are going to perform this study in 400 men and women from the North-West Province, aged 25-60 years. A comprehensive assessment of the cardiovascular and nervous systems by means of non-invasive painless techniques will be performed and a blood sample will be taken by an experienced research doctor and nurse to determine your blood sugar, cardiovascular, inflammation and stress hormone levels amongst other health markers.
Procedures

All measurements are performed in the Metabolic Unit (lipid clinic) of the University. A researcher has explained the entire procedure in detail and while you are reading this information document you have time to ask questions and to have clarified matters. If you are fine with the explained procedure you are requested to sign a *consent form (at the end of this document). Remember all personal data will be handled with care and remain confidential.

*By consenting to participate in this study, you consent to the storage and later analysis and testing of your stored blood samples for the purposes noted above. Your blood will also be tested for preliminary results on HIV status, since your HIV status may directly influence the main purposes of this study. If you would like to know what your HIV-status is, we will provide it. If tested positive we will refer you to your doctor and he/she will perform the necessary tests which will allow you to apply for chronic medication benefit. Also, the blood cells from your donated blood sample will be used to investigate the molecular genetics of higher nervous activity and type 2 diabetes in order to enable pre-symptomatic diagnosis of hypertension and diabetes in the long term.

Why was I chosen? Teachers are exposed to changing curricula and disciplinary problems whilst living in an urbanised environment adding to higher stress experiencing and nervous system activity.

How was I chosen?
Inclusion criteria:
Phase I: 200 black Africans aged 25-60 years (male=100, female=100)
Phase II: 200 white Africans (N = male, 100 = female) aged 25-60 years.

Exclusion criteria: pregnancy, lactation, any acute/chronic medication (e.g. high blood pressure, TB/tuberculosis, high sugar/diabetes, arthritis, anti-clotting/stroke factors, epilepsy/mental diseases or being treated for it as well-being addicted to the medicine). You cannot be included if you have been vaccinated in the previous 3 months and if you are a regular blood donor.

What will be expected of me?
You, as participant will be screened once by a registered nurse to be eligible complying too the inclusion criteria. The following procedures will be followed:
Recruitment, screening and informed sessions with all participants will be done two months prior to the study (October – November 2007, Phase I, and November, 2008, Phase II) and informed consent forms will be signed.

After selection of all participants, the details of the project will be discussed with you in English or your home language, i.e. what the exact objectives of the study are, what procedures will be taken and what will be expected from each of you (e.g. overnight stay, resting blood pressure procedures and fasting urine and blood samples are required, importance of complying with the correct sampling methods, incentives. You will be given the opportunity to ask questions.

Data collection for each participant will involve two days (15 minutes in the morning and 2 ½ hours in the evening on Day I; and 2 hours on Day II):

DAY 1

On Day I at 07:00, the blood pressure apparatus, which will measure your blood pressure and heart function as well as a physical activity meter will be applied to your arm and waist at your school and you can then resume your normal daily activities. In the afternoon you must complete the Neethling Brain Instrument questionnaire which measures thought processes of the brain.

At the end of Day I (+/- 16:30) you will be transported from your schools to overnight in the Metabolic Unit Research Facility of the North-West University. This unit is a research unit for human studies and equipped with 10 well-furnished bedrooms, a kitchen, two bathrooms and a television room. Each of you will subjected to the following procedures:

- at the end of Day I between +/- 17:15 and 18:00 you will be welcomed and each of you will receive your own private bedroom.
- The procedures, which will be done, will explained again and each of you will then complete a general socio-demographic health questionnaire. Afterwards you will receive dinner.
- After dinner, psychological questionnaires will be completed under supervision of registered education specialists and psychologists. Completion of questionnaires will take approximately 40 minutes, including a break of 20 minutes with coffee/tea and biscuits. This will be your last meal for Day I as you must be fasting on Day II for obtaining good results.
- Thereafter, you can relax and watch television or socialise with you co-participants. It will be wise to go to bed not later than 22:00 as the blood
pressure apparatus will take measurements every hour during the night and it can be tiring.

DAY II

- At 06:45 on Day II the AMBP will be removed and a urine sample collected. Once this has been done you will be directed to the anthropometric station where your weight, height and body circumferences will be measured.
- The next station involves the blood pressure measurement station. Whilst in a sitting position your blood pressure will be taken in duplicate with the sphygmomanometer (the same as used at clinics) with a resting period of 5 minutes in between. Our registered research doctor/nurse will take a fasting saliva sample as well as a blood sample of 45ml from a vein in your dominate arm. The infusion set will be left in your arm to lessen the effect of inserting a needle again for blood sampling after exposure to the low stressors. A small amount of diluted heparin will be left in the infusion set in your arm to prevent clotting.

Next the cardiovascular measurements will follow consisting of three separate procedures:

- The 1st measurement involves an ECG apparatus, which measures heart function, with 12 leads, which will be placed in position on your rib cage/front part of the body.
- The 2nd measurements are non-invasive and will be done by means of the Finometer device which also involves the assessment of heart functioning such as pulse (9 beats per minutes), stroke volume (blood volume ejected by the heart per beat), cardiac output (blood volume ejected by the heart per minutes), total peripheral resistance (resistance against which the heart has to work while ejecting the blood into the aorta) as well as the elasticity of your large arteries (compliance). For this procedure a blood pressure cuff will be placed around your left arm and middle finger which will be inflated and stepwise deflated. You will not have more discomfort than during a common blood pressure measurement. This will take about 5 minutes.
- The stressor application procedure follows: You will now be exposed to a stressor for 1 minute whilst your blood pressure and ECG will still be taken. After exposure a saliva and blood sample (45 ml) will be taken. After 10 minutes another saliva sample will be taken. Then the stressor application procedure will be repeated with the second stressor.
- At another station your 3rd measurement includes the assessment of pulse wave velocity, i.e. how fast your blood travels through your arteries. This measurement gives us an indication about how stiff your vessel walls are. The stiffer your vessel wall is the faster the blood travels from one point of your body to another. These painless measurements will
require two technicians using blunt probes (tonometer) putting light pressure on the neck and on the foot to measure the velocity of the pulse waves. This takes only a few minutes. An ultrasound device will be taken of your arteries in the neck with a blunt probe to indicate the intrinsic thickness of your arteries which contributes to high blood pressure.

The two stressors you will be exposed to for one minute includes:

1. The **Colour-Word-Conflict Chart** (applied for 1 minute) is written in various colours. You must say or select the ink colour rather than the name of the colour spelled out by the word. A sliding scale with monetary incentives (maximum of R55.00) will be given if you can complete reading the chart.

2. The **Cold Pressor Test (Foot)** (applied for 1 minute): Immersion of your foot up to the wrist in ice water (4 degrees Celsius). As the cold can make you hold your breath you must quietly count to yourself during cold exposure to breath more rhythmic.

- You have reached the end of the sampling phase.
- **Thank you for your participation! You now will have the opportunity to shower and a take away breakfast will be given.**
- Immediate feedback on your HIV/AIDS status, obesity, blood pressure and blood glucose/sugar value will be given. HIV/Aids post-test counselling will be arranged if you are tested positive.
- You are now transported back to your school and after one week you will receive your Neethling Brain Instrument and 24-hour blood pressure reports.

Possible Risks

The measurements performed in our study will include only non-invasive techniques that are not expected to reveal any risks but might cause little discomfort. The taking of blood samples is an invasive procedure with a minimal risk of bleeding. Thus the procedure may cause only a few seconds of light discomfort. All tests will be performed by experienced research nurses of our department. There may be additional unforeseen or unknown risks.

Precautions to protect the participant

The measurements performed in our study will include only non-invasive techniques that are not expected to reveal any risks but might cause little discomfort. The taking of blood samples is an
invasive procedure with a minimal risk of bleeding. Thus the procedure may cause only a few seconds of light discomfort. All tests will be performed by experienced research nurses of our department. There may be additional unforeseen or unknown risks.

Other treatments whilst on study

It is important to tell the research staff about any treatments or medications you may be taking, including non-prescription medications, vitamins or herbal remedies during your participation in the study.

Incentive

1. All teachers will receive feedback on their health profile and if necessary references will be given to physicians/clinics/hospitals.
2. Printout feedback on 24-hour blood pressure monitoring report (normally costing R637.60) sonar of the artery (R1200.00), resting ECG (R600.00) and other variables (R500.00). Your benefit of participation is a comprehensive assessment of the cardiovascular and metabolic condition including investigation of blood pressure, inflammatory status and psychological well-being. These examinations will help us to assess the degree of vascular impairment of the arteries and to predict your risk of possible cardiovascular events such as heart attacks and stroke. The results may assist your doctor in decision making for further treatment or for instituting preventive measures. Our study will also contribute to the identification of possible factors leading to high blood pressure. As 24-hour ambulatory blood pressure monitoring is required for the diagnosis of hypertension, medical aids insist on this method of diagnosis to quality for chronic medication. Additional testing could also reveal illnesses of a chronic nature and would serve as a motivation to quality for chronic medication, such as metabolic syndrome, anti-inflammatory and cholesterol-lowering drugs.
3. Monetary incentive on completion of the colour word conflict chart (+/- R55.00).
4. Dinner and breakfast (+/- R24.00).
5. Neethling Brain Instrument profiles done by registered user of the Whole Brain (normally costing +/- R350.00)
6. Coping skills workshop will be arranged on request.

Privacy, confidentiality and disclosure of information
By consenting to participate in the study, you consent to the storage and later analysis and testing of your stored blood samples for purposes noted above. Your blood samples will be discarded immediately after analysis. All information provided by you and the results of tests will be treated in the strictest confidence and will only be used for the purpose of this research project. It will only be disclosed with your permission, except as required by law. The results of your medical test will be labelled only with a code number, and will be sorted separately from any identifying information. When the results are analysed we will be looking for differences between groups of people, not at the results of individuals. No information that could identify any person taking part in the study will be revealed when the results are reported.

Participation is voluntary

Participation in any research project is voluntary. If you do not wish to take part, you are not obliged to. If you decide to take part and later change your mind, you are free to withdraw from the project at any stage.

Your decision whether to take part or not to take part or to take part and then withdraw, will not affect your routine treatment you relationship with those treating you or your relationship with the North-West University.

Before you make your decision a member of the research team will be available so that you can ask any questions you have about the research project. You can ask for any information you want. Sign the Consent Form only after you have had a chance to ask your questions and have received satisfactory answers.

If you decide to withdraw from this project, please notify a member of the research team before you withdraw.

Ethical guidelines

This project will be carried out according to Ethical Guidelines of the Helsinki declaration from 2000 with additional notes in 2002. This statement has been developed to protect the interest of people who agree to participate in human research studies.

The ethical aspect of this research project have been approved by the Human Research Ethics Committee of the North-West University Potchefstroom.
Further information or any problems

If you require further information or if you have any problems concerning the project, you can contact the principal researcher or the other researchers responsible for this project:

Dr Leoné Malan (018-299 2438)
Signature:

Sr. Chirssie Lessing (018-299 2480)
Project leader: Dr Leoné Malan

PART 2

To the subject signing the consent as in part 3 of this document

You are invited to participate in a research project as described in paragraph 2 of Part 1 of this document. It is important that your read/listen to and understand the following general principles, which apply to all participants in our research project: participation in this project is voluntary.

1. It is possible that you personally will not derive any benefit from participation in this project, although the knowledge obtained from the results may be beneficial to other people.

2. You will be free to withdraw from the project at any stage without having to explain the reasons for your withdrawal. However, we would like to request that you would rather not withdraw without a thorough consideration of your decision, since it may have an effect on the statistical reliability of the results of the project.

3. The nature of the project, possible risk factors, factors which may cause discomfort, the expected benefits to the subjects and the now and the most probable permanent consequences which may follow from your participation in this project, are discussed in Part 1 of this document.

4. We encourage you to ask questions at any stage about the project and procedures to the project leader or the personnel, who will readily give more information. They will discuss all procedures with you.

5. We require that you indemnify the university from any liability due to detrimental effects of treatment by University staff or students or other subjects to yourself or anybody else. We also require indemnity from liability of the University regarding any treatment to yourself or another person due to participation in this project, as explained in part 1. Lastly it is required to abandon any claim against the university regarding treatment of yourself or another person due to participation in this project as described in Part 1.
6. If you are married, it is required that your spouse abandon any claims that he/she could have against the University regarding treatment or dearth of yourself due to the project explained in Part 1.

PART 3

Consent

Title of the project: “The SABPA study (Sympathetic activity and Ambulatory Blood Pressure in Africans)

I, the undersigned……………………………………………………………………………. (full names) read/listen to the information on the project in PART 1 and PART 2 of this document and I declare that I understand the information. I had the opportunity to discuss aspects of the project with the project leader and I declare that I participate in the project as a volunteer. I hereby give my consent to be a subject in this project.

(Signature of the subject)

Signed at …………………………………………..on ……………………………………..2008/2009

Witnesses

1………………………………………………………

2……………………………………………………….

Signed at …………………………………………..on ……………………………………..2008/2009

230
PARTICIPANT INFORMATION LEAFLET AND CONSENT FORM
FOR ACADEMIC STAFF OF THE NORTH WES PROVINCE,
SOUTH AFRICA

TITLE OF THE RESEARCH PROJECT: Platelet PAI-1 content and α-granule release in a black and white South African study group

REFERENCE NUMBERS:

PRINCIPAL INVESTIGATOR: Prof Marlien Pieters
You are being invited to take part in a research project that forms part of the PhD study of Ms Sunelle Barnard under the supervision of Prof M Pieters. Please take some time to read the information presented here, which will explain the details of this project. Please ask the researcher any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Health Research Ethics Committee of the Faculty of Health Sciences of the North-West University (NWU............) and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki and the ethical guidelines of the National Health Research Ethics Council. It might be necessary for the research ethics committee members or relevant authorities to inspect the research records.

What is this research study all about?

- This study will be conducted at the Metabolic Unit, building G17 at the NWU, Potchefstroom campus and will involve the drawing of a single blood sample (15ml), by an experienced and trained professional nurse.

- The aim of this research is:
 - To investigate factors involved in blood clot formation and breakdown

Why have you been invited to participate?

- You have been selected to participate because you are from a similar socio-demographic background as participants from the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study and you comply with the
same inclusion and exclusion criteria. In the SABPA study, a group of 150 participants’ blood samples were used to investigate blood clot formation and breakdown. We now need some additional information to explain our initial findings and that is why we have to collect a small amount of blood again.

- You have complied with the following inclusion criteria:
 • you are a healthy black or white academic staff member from the Potchefstroom campus of the North-West University and you are between the ages of 25 to 60 years.

- You will be excluded if:
 • pregnant or lactating (as these conditions may alter the data.);
 • using α or β blockers, psychotropic substances and/or have been vaccinated in the past three months or is regular blood donors (this medication, vaccination or donation of blood might alter the data.); and
 • presenting with elevated ear temperature (>37.5°C) (to make sure you do not have an infection, which may also alter the data);

What will your responsibilities be?

- At the Metabolic Unit (G17), located on the NWU, a professional nurse will take a single blood sample of 15 ml. This will take ± 15 minutes of your time and all blood samples will be taken before 10 am at a pre-specified time slot. Additionally, you will be expected to be in a fasting state when the blood sample is taken. This means that you may not eat or drink anything after 10 pm the night before the sample is taken. You should also avoid alcohol, smoking or exercise the day preceding blood sampling.

Will you benefit from taking part in this research?

- The direct benefits for you as a participant will be that you will receive information on your blood clotting profile as well as a full blood count analysis that could help to identify conditions such as inflammation, infection, different types of anaemia and bleeding disorders and includes information on 1) white blood cells (white blood cell count, and differential: neutrophils, lymphocytes, monocytes, eosinophils, basophils); 2) red blood cells (red blood cell count, hemoglobin,
hematocrit, and red blood cell indices: mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration); and 3) platelets (platelet count). The meaning of all of these will be explained to you and should any of the counts fall outside the normal range, you will be referred to your doctor for follow-up.

- The indirect benefit will be that the knowledge gained from this study will ultimately lead to the better understanding of the haemostatic profile of the different ethnic groups within South Africa.

Are there risks involved in your taking part in this research?

- The risks in this study are:

 • Emotional, as you might experience stress (after having blood drawn) that can also possibly result in nausea, sweating and lowering of blood pressure. To prevent this, the blood sampling procedure and what to expect will be explained to you beforehand. You will be warned that you may experience some discomfort and pain when the blood sample is drawn. The blood sample will be taken in a private room and a bed will be available if you feel the need to lie down and in which case you will be kept under observation.

 • Physical, as you might experience pain and discomfort when the blood sample is taken. To minimise pain and discomfort, the blood sample will be taken by an experienced professional nurse. Only the amount of blood (15 ml) as stipulated in the protocol will be taken. You will be kept under observation for bleeding. Aftercare will be provided and the necessary procedure will be taken to ensure the bleeding has stopped.

- The benefits therefore outweigh the possible risk.

What will happen in the unlikely event of some form of discomfort occurring as a direct result of your taking part in this research study?

- Should you have the need for any further assists after the blood sample was taken, a bed will be provided for you to lie down. A professional nurse will also be present to provide all the necessary medical assistance.
Who will have access to the data?

- **Anonymity will be maintained by assigning a number to each participant, which will be used on the blood samples and tubes, instead of using the participants’ name.**
- **Confidentiality will be ensured by only using coded data for all samples, all data storage and analyses.**
- **Reporting of findings will be anonymous by reporting only coded data with no mention of the names of the participants that participated in this study. Only the researchers (Prof Marlien Pieters and Mrs Sunelle A. Barnard) will have access to the data and all researchers working with the data will have to sign a letter of confidentiality, to ensure confidential handling of all data as well as no unethical disclosure of the data.**
- **Data will be kept safe and secure by locking hard copies in locked cupboards in the researcher’s office and for electronic data it will be password protected. Data will be stored for seven years.**

What will happen with the data/samples?

- **This is a once off collection and data will be analysed at CEN and physiology department of the North-West University, Potchefstroom campus. After data analysis has taken place all blood samples will be destroyed following the medical waste procedure of the NWU.**

Will you be paid to take part in this study and are there any costs involved?

- **No, you will not be paid to take part in the study but refreshments (a light healthy snack and something to drink) will be provided. There will be no costs involved for you, if you do take part. A compensation of R50 will be provided for time and effort put into the study.**

Is there anything else that you should know or do?

- **You can contact Prof Marlien Pieters at (018) 299 2462 if you have any further queries or encounter any problems.**
You can contact the Health Research Ethics Committee via Mrs Carolien van Zyl at 018 299 2089; carolien.vanzyl@nwu.ac.za if you have any concerns or complaints that have not been adequately addressed by the researcher.

You will receive a copy of this information and consent form for your own records.

How will you know about the findings?

All participants will be offered the results of their blood clotting profile as well as their full blood count. This will be communicated to the participants within a month after data collection at a time and place that is convenient for the participant.

Declaration by participant

By signing below, I ………………………………………………… agree to take part in a research study titled: Platelet PAI-1 content and α-granule release in a black and white study group

I declare that:

• I have read this information and consent form and it is written in a language with which I am fluent and comfortable.

• I have had a chance to ask questions to both the person obtaining consent, as well as the researcher and all my questions have been adequately answered.

• I understand that taking part in this study is voluntary and I have not been pressurised to take part.

• I may choose to leave the study at any time and will not be penalised or prejudiced in any way.

• I may be asked to leave the study before it has finished, if the researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.
Signed at *(place)* ... on *(date)* 20....

<table>
<thead>
<tr>
<th>Signature of participant</th>
<th>Signature of witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>................................</td>
<td>................................</td>
</tr>
</tbody>
</table>
Declaration by person obtaining consent

I (name) …………………………………………….. declare that:

• I explained the information in this document to ………………………………………

• I encouraged him/her to ask questions and took adequate time to answer them.

• I am satisfied that he/she adequately understands all aspects of the research, as discussed above

• I did/did not use an interpreter.

Signed at (place) ……………………………………… on (date) ……………………… 20....

.. ..
Signature of person obtaining consent Signature of witness

Declaration by researcher

I (name) …………………………………………….. declare that:

• I explained the information in this document to ………………………………………

• I encouraged him/her to ask questions and took adequate time to answer them.

• I am satisfied that he/she adequately understands all aspects of the research, as discussed above

• I did/did not use an interpreter.

Signed at (place) ……………………………………… on (date) ……………………… 20....

.. ..
Signature of researcher Signature of witness
ANNEXURE C: SONDRAA INFORMED CONSENT FORM

PURE-SA PROJECT (Prospective Rural and Urban Epidemiology) and Bone Health Study

INFORMED CONSENT

I, the undersigned…….(full names) read/listened to the information on the project in PART 1 and PART 2 of this document and I declare that I understand the information. I had the opportunity to discuss aspects of the project with the project leader and I declare that I participate in the project as a volunteer. I hereby give my consent to be a subject in this project.

I indemnify the University, also any employee or student of the University, of any liability against myself, which may arise during the course of the project.

I will not submit any claims against the University regarding personal detrimental effects due to the project, due to negligence by the University, its employees or students, or any other subjects.

I agree to be tested for HIV:

\[\begin{array}{c} \text{YES} \hspace{1cm} \text{NO} \end{array} \]

I want to know my HIV-status:

\[\begin{array}{c} \text{YES} \hspace{1cm} \text{NO} \end{array} \]

I give consent that the outcome of results can be disclosed with members of the PURE-SA research team for effective management and compliance to the project. The test results will be treated with the highest confidentiality.

__

(Signature of the subject)

Signed at ______________________________ on ____________________________

Witnesses

1. ___________________________________ 2. ___________________________________
1. School/Institute: Africa Unit for Transdisciplinary Health Research (AUTHeR)

2. Title of project/trial: PURE: Prospective Urban and Rural Epidemiology and Bone Health Study

3. Full names, surname and qualifications of project leader: Annamarie Kruger, Ph.D. (Nutrition) and Lanthé Kruger, Ph.D. (Physiology)

4. Rank/position of project leader: Research Manager

5. Aim of this project

PURE's aim is that understanding the different lifestyle and health transitions of individuals in response to societal changes will elucidate societal and individual adaptive strategies that could diminish the adverse health effects of industrialization and urbanization on health, while retaining its benefits.

The aims of the Bone Health study is to investigate and improve bone health in women. It is very important to build strong and healthy bones in the childhood and teen years to avoid osteoporosis and other bone problems later in life. Osteoporosis is a condition in which bones are fragile, making them fracture or break much easier. The spine, wrist and hips are particularly vulnerable to fracture.

6. Evaluation/measurement points:
Each participant will undergo multiple evaluations at different stations. These include:

- HIV counselling and testing
- Blood sample (18.5 ml)
- Anthropometrics (height, weight, skinfold thickness, circumference of arm, leg and waist)
- Urine sample (spot urine sample)
• Pregnancy test (DXA assessment may not be performed when pregnant)
• Bone density measurements - DXA
• Bone density measurement - Osteometer
• Blood pressure measurement
• Pulse wave velocity
• Carotid IMT scan (Intimal-medial thickness)
• Echo-cardiogram
• Electrocardiogram
• Physical strength test
 o Forearm and hand strength test by squeezing an object
 o Getting up from a chair and walking on straight line for 6 meters
 o Stepping on and off a step
• Questionnaires
 o Eight-year follow-up
 o Bone Health
 o Attitudes towards HIV/AIDS
 o Physical Activity
 o Socio-Demographic
 o Medicine use

7. **Description of the nature of discomfort or hazards of probable permanent consequences for the subjects which may be associated with the project:** *(Including possible side-effects of and interactions between drugs or radio-active isotopes which may be used.)*

It will take each participant quite a while (about an hour) to complete the questionnaires and discomfort may be experienced with the taking of blood samples. No measures will have permanent damage or consequences for the participants. If participant is unable to perform a test (especially physical strength test) they will not be forced to take the test.

8. **Precautions taken to protect the subjects:**

The research nurse will be present at all times, and will be responsible for the blood sampling. She is very experienced and has performed these procedures numerous times in previous studies.

9. **Description of the benefits which may be expected from this project:**

When measures with immediate results are taken, such as blood pressure, the information will be communicated to the individual to seek professional help. Since this study is a longitudinal
study, subjects that are high at risk will be identified from the dataset and personal feedback will be given.

10. **Alternative procedures which may be beneficial to the subjects:**
There will be tested for HIV/AIDS, therefore pre-test counselling will be given. If the subject wants to know his/her status and he/her tests positive, post counselling will also be given.

PART 2

To the subject signing the consent:

You are invited to participate in a research project. It is important that you read/listen to and understand the following general principles, which apply to all participants in our research project:

- Participation in this project is voluntary.
- It is possible that you personally will not derive any benefit from participation in this project, although the knowledge obtained from the results may be beneficial to other people.
- You will be free to withdraw from the project at any stage without having to explain the reasons for your withdrawal. However, we would like to request that you would rather not withdraw without a thorough consideration of your decision, since it may have an effect on the statistical reliability of the results of the project.
- The nature of the project, possible risk factors, factors which may cause discomfort, the expected benefits to the subjects and the known and the most probable permanent consequences which may follow from your participation in this project, are discussed in Part 1 of this document.
- We encourage you to ask questions at any stage about the project and procedures to the project leader or the personnel, who will readily give more information. They will discuss all procedures with you.
- The University staff will use standardised procedures and take all possible precaution to protect the subject from risks. We require that you indemnify the University from any liability due to detrimental effects of treatment by University staff or students or other subjects to yourself or anybody else. We also require indemnity from liability of the University regarding any treatment to yourself or another person due to participation in this project, as explained in Part 1. Lastly it is required to abandon any claim against the University regarding treatment of yourself or another person due to participation in this project as described in Part 1.
• If you are married, it is required that your spouse abandon any claims that he/she could have against the University regarding treatment or death of yourself due to the project explained in Part 1.
• All information will be kept CONFIDENTIAL.

_________________________________ ________________________________
Signature of project leader Date
ANNEXURE D: PUBLISHED ARTICLE - THE EFFECTS OF RESIDUAL PLATELETS IN PLASMA ON PLASMINOGEN ACTIVATOR INHIBITOR-1 AND PLASMINOGEN ACTIVATOR INHIBITOR-1-RELATED ASSAYS (CHAPTER 3)
The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

Marlien Pieters1*, Sunelle A. Barnard1, Du Toit Loots2, Dingeman C. Rijken3

1 Centre of Excellence for Nutrition, North-West University, Potchefstroom, North West province, South Africa, 2 Human Metabolomics, North-West University, Potchefstroom, North West province, South Africa, 3 Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands

* marlien.pieters@nwu.ac.za

Abstract

Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.
Residual platelets influence plasminogen activator inhibitor-1 assays

Introduction

Plasminogen activator inhibitor type-1 (PAI-1) is a serine protease inhibitor (serpin) [1, 2], which acts as a main inhibitor of fibrinolysis [3]. Elevated plasma PAI-1 levels have been associated with a risk for developing atherothrombosis [4–6] due to its antifibrinolytic properties, by reducing the clearance of fibrin in plaques [5], and also via its influence on cellular migration, matrix remodelling and activation of growth factors [7, 8]. Plasma PAI-1 exists either in an active or latent form, or in complex with tissue plasminogen activator (tPA) [9–11]. The active form of PAI-1 is unstable, with a half-life of approximately two to three hours, after which it will spontaneously convert to the inactive, latent form [9, 12]. PAI-1 is produced by various cells such as endothelial cells, hepatocytes, smooth muscle cells, adipocytes, and platelets [11, 13]. In platelets, PAI-1 is stored in the alpha granules and is released during platelet activation and aggregation [11, 14, 15].

Recently, there has been a debate about which form of PAI-1, or at least the relative proportion of each form, is released from the platelet alpha granules. It was traditionally believed that platelets store and release mainly latent PAI-1, since, only approximately 5–10% of PAI-1 antigen (PAI-1\textsubscript{agg}) was shown to be active in lysed platelet-rich plasma [16]. More recent studies however, suggest that platelets release a substantial amount of active PAI-1 [17–19]. This is due to the observed \textit{de novo} synthesis of PAI-1 within platelets, which was indicated to remain active for over 24 hours [17]. Possible explanations for the contradictory evidence pertaining to platelet PAI-1 activity, could be due to the different approaches used in these experiments for preparing the platelet lysates (sonification and freezing and or thawing of the samples), which have been reported to influence the detection of PAI-1 [18]. Furthermore, the conversion of active PAI-1 to its latent state can be influenced by low temperatures, low pH and high salt concentrations [20]. It is however not clear as to how the PAI-1, released from the alpha granules of residual platelets in plasma, affects PAI-1 assays and PAI-1-related assays.

The overall aim of the study was therefore to investigate the effect of residual platelets in plasma, on various PAI-1 and PAI-1-related assays: PAI-1 activity (PAI-1\textsubscript{act}), PAI-1 antigen (PAI-1\textsubscript{agg}), and tPA/PAI-1 complex, as well as plasma fibrinolytic potential (a functional parameter of fibrinolysis, measured as plasma clot lysis time (CLT)). The study consisted of two sub-studies. In the first, varying centrifugation speeds (352 and 1500 g) were used to prepare platelet-containing plasma, from 151 participants in the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study. The purpose of this sub-study was to determine the effect of residual platelets plasma on various PAI-1 assay results, by relating these assays to a marker of platelet alpha granule release (beta thromboglobulin (βTG)). In this sub-study, absolute platelet counts were not measured, and additionally it was not possible to calculate to what degree plasma PAI-1 levels were influenced by \textit{in vitro} platelet activation and or degradation. Additionally, Merolla \textit{et al.} [21] found that different centrifugation speeds may result in different platelet populations, which could also have had an effect on our results. The purpose of the second study was, therefore, to determine the influence of actual platelet count on PAI-1\textsubscript{agg} as the antigen assay was the assay found to be significantly influenced by plasma platelet content in the first sub-study. In the follow-up study, plasma was collected from 23 additional participants, and platelet count and size, in addition to βTG and PAI-1\textsubscript{agg} concentrations, where determined from three different plasma preparations: platelet-poor plasma (PPP– 200 g), platelet-containing plasma (352 g, in keeping with the first sub-study protocol) and platelet-rich plasma (PRP–200 g). PPP was collected in citrate tubes, containing platelet stabilisers, in order to provide basal plasma PAI-1\textsubscript{agg} levels without any of the influencing effects of \textit{in vitro} platelet activation and/or degradation. Furthermore, the 352 g and 200 g citrated plasma samples were analysed not only as fresh-frozen, but also after five defrost-refreeze cycles, ensuring complete alpha
granule release from the platelets, in order to determine the total platelet PAI-1\textsubscript{ag} and βTG content.

Materials and methods

Study population and ethics–SABPA study

The Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study, was a cross-sectional study including 409 (202 men and 207 women) school teachers between the ages of 25–60 years, from the North West Province, South Africa. Of these participants 151 individuals were randomly selected for inclusion in the present study. All samples were analysed at the same time. Exclusion criteria were: elevated ear temperature, dependence or abuse of psychotropic substances, regular blood donors, and individuals vaccinated within the previous three months. The study complied with all applicable international regulations and the Helsinki declaration for investigation of human participants. The study was approved by the Health Research Ethics Committee (HREC) of the North-West University (NWU), Potchefstroom Campus (NWU-00016-10-A1).

Study population and ethics–follow-up study

Twenty three individuals from the same socio-demographic profile as the SABPA study participants were recruited by means of a purposive sampling method from the Potchefstroom Campus of the NWU. The same inclusion and exclusion criteria as well as ethical principles were adhered to. The study was approved by the HREC of the NWU, Potchefstroom Campus (NWU-00016-10-A1). All samples were collected and analysed at the same time.

Blood collection–SABPA study

Fasting blood samples with minimum stasis were collected from the antebrachial vein before 10:00 am. 3.2% Citrate samples were used for the analysis of PAI-1 (activity, antigen and tPA/PAI-1 complex), βTG and CLT. Samples were randomly divided into two groups. One half of the study population samples were centrifuged at 352 g and the other half at 1500 g for 15 minutes at 20˚C to yield plasma containing a varying number of platelets. Aliquots were snap frozen on dry ice and stored at -82˚C until analysis.

Blood collection–follow-up study

Fasting blood samples with minimum stasis were collected from the antebrachial vein before 10:00 am. Blood was collected into two 3.2% citrated tubes and one CTAD tube (a citrate tube containing platelet stabilisers; theophylline, adenosine and dipyridamol). CTAD plasma was prepared by centrifuging the samples at 2000 g for 30 minutes at 20˚C, to yield PPP with platelets protected from *in vitro* activation or degradation. Two types of citrate plasma were prepared by centrifuging one of the citrated tubes at 352 x g for 15 minutes at 20˚C, to yield platelet-containing plasma, and the other tube at 200 x g for 10 minutes at 20˚C, to yield PRP. These conditions were comparable to that of the SABPA study and also served the purpose to provide information on standard plasma type preparations–PPP and PRP. All samples were centrifuged within 20 min of collection.

Platelet count and size analyses were performed in fresh whole blood samples collected both in citrate and CTAD tubes, as well as in the different plasma preparations described above. The remaining plasma was then aliquoted, snap frozen on dry ice and stored at -82˚C. The CTAD plasma samples and half of the aliquots of the two citrate plasma preparations, of each individual, were thawed once only, by placing these in a 37˚C water bath for 10 minutes,
immediately prior to PAI-1_\text{ag} and βTG analyses. The second half of the citrated plasma sample aliquots underwent five freeze-thaw cycles (x 5), once daily, prior to analysis, to ensure maximum platelet α-granule release. Fig 1 provides a schematic depiction of the study design.

Biochemical analysis

PAI-1_\text{ag} was measured using an indirect enzymatic method (Technozym PAI-1 Actibind, Technoclone, Vienna, Austria), and PAI-1_\text{ag} using a two-site enzyme-linked immunosorbent assay (ELISA) (TriniLIZE PAI-1_\text{ag}, TCoag, Bray Ireland). tPA/PAI-1 complex was analysed using a solid phase enzyme immunoassay, specific to PAI-1 complexed to tPA (Technoclone, Vienna, Austria). An ELISA assay was used to measure βTG levels (Asserachroḿ β TG Diagnostica Stago, Asnières sur Seine, France). CLT was determined by studying the lysis of a tissue factor-induced plasma clot by exogenous tPA. Changes in turbidity during clot formation and lysis were monitored as described by Lisman et al. [22]. Tissue factor and tPA concentrations were slightly modified to obtain comparable CLTs of approximately 60 minutes. The modified concentrations were 17 mmol/L CaCl_2, 60 ng/ml tPA (Actilyse, Boehringer Ingelheim, Ingelheim, Germany) and 10 μmol/L phospholipids vesicles (Rossix, Mölndal, Sweden). Tissue factor was diluted 3000 times (Dade Innovin, Siemens Healthcare Diagnostics Inc., Marburg, Germany). CLT was defined as the time from the midpoint, from clear to maximum turbidity (representative of the clot formation), to the midpoint in the transition from maximum turbidity to the final baseline turbidity (representative of the lysis of the clot) [22]. Platelet count and mean platelet volume were determined with a Coulter AcT 5-part differential (5 diff) auto-loader haematology analyser (Beckman Coulter, Fullerton, CA, USA).

Statistical analysis

The data was analysed with the computer software package Statistica (Statsoft Inc., Tulsa Oklahoma, USA). A p-value of 0.05 or less was regarded as statistically significant. Descriptive data is presented as median (25th, 75th percentiles) as most of the variables were not normally distributed. Kruskal-Wallis analysis of variance (ANOVA) with multiple comparisons of mean post-hoc tests were used to compare differences in the PAI-1 and CLT assays, between population sub-groups divided into quartiles of βTG levels. Correlations between variables were determined both with Spearman Rank order and Pearson (for log transformed data) correlation tests. Only the Spearman data is reported, as both correlation tests provided similar
results. Significant differences between correlation coefficients obtained were also calculated. For the follow-up study, Wilcoxon-Matched pairs tests were used to determine significant differences between plasma prepared at 200 and 352 g and also between fresh-frozen and 5 times defrosted-refrozen samples.

Results

SABPA study

The study population included 151 participants, with a mean age of 45.7 (±8.75) years and a BMI of 26.9 (±2.29). When comparing the samples prepared at the two different centrifugation speeds, the 352 g group had significantly higher βTG (3263 vs 355 IU/mL; p < 0.0001) and PAI-1ag (33.8 vs 20.8 ng/mL; p < 0.0001) levels, compared to the 1500 g group, with borderline significantly higher PAI-1act (2.95 vs 1.91 U/mL; p = 0.03) and longer CLT (78.2 vs 74.4 min; p = 0.04). No difference in tPA/PAI-1 complex (p = 0.09) was observed (Table 1).

When dividing the study population into quartiles according to plasma βTG levels (Table 2), PAI-1ag increased consistently across the βTG quartiles. PAI-1act showed a significant increase in the highest βTG quartile only, with CLT tending to be longer, without reaching significance. No difference was observed in tPA/PAI-1 complex across the βTG quartiles. βTG was furthermore correlated with PAI-1ag (r = 0.66; p<0.0001), demonstrating statistically weaker correlations with PAI-1act (r = 0.22; p = 0.008); tPA/PAI-1 complex (r = 0.12; p = 0.13) and CLT (r = 0.20; p = 0.02) (Table 3). CLT showed the strongest correlation with PAI-1act (r = 0.74; p<0.0001).

Follow-up study

Table 4 presents the descriptive statistics of the follow-up study group. Platelet counts in the citrated and CTAD whole blood were similar. The platelet count of the CTAD samples centrifuged at 2000 g was 1.00 (1.00–2.00) x 10^3/μL, confirming that it was indeed platelet poor (<10 x 10^3/μL). The platelet counts of the 352 g and 200 g plasma were 323 (257–440) x 10^3/μL and 523 (389–674) x 10^3/μL respectively. The 352 g plasma had a significantly lower mean platelet volume (7.00 [6.65–7.60] fL) than the 200 g plasma (7.80 [7.00–8.30] fL), which in turn had a similar mean platelet volume than that of the whole blood. βTG levels increased 60 fold and 150 fold in the 352 g and 200 g plasma respectively, compared to the PPP, while PAI-1ag levels increased 15 and 22 fold respectively. In both the 352 g and 200 g plasma, the βTG levels of the samples that underwent 5 freeze-thaw cycles, prior to analyses, were significantly lower than that of the samples that were defrosted once only, prior to analysis, possibly due to instability.
of βTG (5% and 3% respectively), while PAI-1 levels showed significant increases of 26% and 27% respectively.

When combining the different types of plasma, βTG had a highly significant correlation with platelet count (r = 0.91, p < 0.0001). When investigating the different types of plasma separately, βTG levels correlated well with platelet count in the 352 g (r = 0.60, p = 0.002) and 200 g (r = 0.70, p = 0.0002) plasma samples, with a smaller and non-significant correlation (r = 0.40, p = 0.06) in the PPP (Table 5). For all the types of plasma combined, PAI-1 levels correlated well with platelet count (r = 0.91, p < 0.0001). Compared with βTG, PAI-1 showed even stronger statistical correlations with platelet count in the 352 g (r = 0.85, p < 0.0001) and 200 g (r = 0.81, p < 0.0001) plasma. None of the plasma preparations' βTG levels correlated with whole blood platelet count, while the correlation of PAI-1 with whole blood platelet count reached borderline significance (r = 0.4, p = 0.06). Furthermore, βTG and PAI-1 correlated significantly when combining the different types of plasma (r = 0.86, p < 0.0001), however, correlated negatively in PPP (r = -0.61, p = 0.002), with significant positive correlations in the 352 g (r = 0.55, p = 0.006) and 200 g (r = 0.74, p < 0.0001) plasma separately (Table 6).

Discussion

This study investigated the effect of residual platelets present in plasma, on plasma PAI-1 and PAI-1-related assay results. The presence of platelets in plasma significantly influenced plasma PAI-1 levels in a concentration dependent manner, likely due to an increase in mainly plasma latent PAI-1. Only in the presence of large amounts of platelets such as in PRP,

Table 2. PAI-1_{act}, PAI-1_{ag}, tPA/PAI-1 complex and CLT according to βTG quartiles in SABPA study group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>βTG 1<sup>st</sup> Quartile (< 341 IU/mL)</th>
<th>βTG 2<sup>nd</sup> Quartile (341 IU/mL—817 IU/mL)</th>
<th>βTG 3<sup>rd</sup> Quartile (817 IU/mL—3263 IU/mL)</th>
<th>βTG 4<sup>th</sup> Quartile (> 3263 IU/mL)</th>
<th>ANOVA p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Median (25; 75% percentile)</td>
<td>Median (25; 75% percentile)</td>
<td>Median (25; 75% percentile)</td>
<td>Median (25; 75% percentile)</td>
<td></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/L)</td>
<td>37 20.4 (16.0; 25.8) *</td>
<td>38 21.5 (17.0; 26.7) *</td>
<td>37 29.6 (25.1; 39.7) #</td>
<td>37 40.7 (31.0; 42.9) #</td>
<td><0.0001</td>
</tr>
<tr>
<td>PAI-1<sub>act</sub> (U/mL)</td>
<td>34 2.56 (0.31; 4.89)</td>
<td>37 1.89 (0.20; 3.77) *</td>
<td>37 1.37 (0.41; 6.70)</td>
<td>36 5.65 (1.28; 10.3) #</td>
<td>0.03</td>
</tr>
<tr>
<td>tPA/PAI-1 complex (ng/mL)</td>
<td>35 8.00 (6.36; 10.2)</td>
<td>37 7.55 (5.26; 10.1)</td>
<td>37 8.65 (6.28; 11.7)</td>
<td>38 9.06 (7.32; 11.3)</td>
<td>0.1</td>
</tr>
<tr>
<td>CLT (min)</td>
<td>34 75.4 (69.7; 79.5)</td>
<td>37 73.9 (69.7; 78.6)</td>
<td>36 76.6 (67.7; 84.1)</td>
<td>35 81.5 (71.6; 96.0)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

ANOVA, analysis of co-variance; βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; tPA/PAI-1 complex, tissue plasminogen activator/PAI-1 complex

* # Medians with different symbols differ significantly.

doi:10.1371/journal.pone.0171271.t002

Table 3. Spearman rank order correlations between βTG, PAI-1 assays and CLT in SABPA study group.

<table>
<thead>
<tr>
<th>Variables</th>
<th>βTG r (p-value)</th>
<th>PAI-1<sub>ag</sub> r (p-value)</th>
<th>PAI-1<sub>act</sub> r (p-value)</th>
<th>tPA/PAI-1 complex r (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL)</td>
<td>0.66 (<0.0001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PAI-1<sub>act</sub> (U/mL)</td>
<td>0.22 (0.008) *</td>
<td>0.43 (<0.0001)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tPA/PAI-1 complex (ng/mL)</td>
<td>0.12 (0.13) *</td>
<td>0.30 (0.0002)</td>
<td>0.64 (<0.0001)</td>
<td>-</td>
</tr>
<tr>
<td>CLT (min)</td>
<td>0.20 (0.02) *</td>
<td>0.41 (<0.0001)</td>
<td>0.74 (<0.0001)</td>
<td>0.50 (<0.0001)</td>
</tr>
</tbody>
</table>

βTG, beta thromboglobulin; CLT, clot lysis time; PAI-1, plasminogen activator inhibitor-1; PAI-1_{act}, PAI-1 activity; PAI-1_{ag}, PAI-1 antigen; tPA/PAI-1 complex, tissue plasminogen activator/PAI-1 complex.

* Significantly weaker correlation with βTG than the correlation of PAI-1_{ag} with βTG.

doi:10.1371/journal.pone.0171271.t003
functional effects in terms of plasma fibrinolytic potential are seen, suggesting the presence of a comparatively lower concentration of active PAI-1 in platelets. It was furthermore demonstrated that platelets present in plasma, do not initially release all of their PAI-1 content and that further release of PAI-1 can occur upon further / complete in vitro platelet degradation.

SABPA study

The SABPA study data indicated that βTG levels had a significantly stronger association with PAI-1_{ag} levels than any of the other PAI-1 variables or CLT. When dividing the study population into βTG quartiles, PAI-1_{act} and CLT increased in the highest βTG quartile only, suggesting that there may be a small amount of active PAI-1 present in platelets. In agreement with this, Serizawa et al. [23] found longer CLT in PRP than PPP which was ascribed to the presence of active PAI-1 in platelets. Since PAI-1_{ag} is composed of latent PAI-1, active PAI-1 and PAI-1 in complex with tPA, the data suggests that platelet alpha granule release largely contributes to increased plasma PAI-1_{ag} by increasing latent PAI-1. It was unfortunately not possible

Table 4. Descriptive statistics of the follow-up study group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study population (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (25<sup>th</sup>; 75<sup>th</sup> percentiles)</td>
</tr>
<tr>
<td>Gender: men / women (n)</td>
<td>12 / 11</td>
</tr>
<tr>
<td>Ethnicity: black / white (n)</td>
<td>11 / 12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>36 (29; 42)</td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>120 (110; 130)</td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
<td>80 (70; 80)</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>26.4 (22.0; 28.4)</td>
</tr>
<tr>
<td>CTAD whole blood platelet count (x10<sup>3</sup>/μL)</td>
<td>239 (195; 248)</td>
</tr>
<tr>
<td>Citrate whole blood platelet count (x10<sup>3</sup>/μL)</td>
<td>234 (194; 257)</td>
</tr>
<tr>
<td>CTAD plasma 2000 g platelet count (x10<sup>3</sup>/μL)</td>
<td>1.00 (1.00; 2.00)</td>
</tr>
<tr>
<td>Citrate plasma 352 g platelet count (x10<sup>3</sup>/μL)</td>
<td>323 (257; 440)</td>
</tr>
<tr>
<td>Citrate plasma 200 g platelet count (x10<sup>3</sup>/μL)</td>
<td>523 (389; 674)</td>
</tr>
<tr>
<td>Whole blood CTAD MPV (fL)</td>
<td>7.80 (7.40; 8.40)</td>
</tr>
<tr>
<td>Whole blood Citrate MPV (fL)</td>
<td>7.80 (7.20; 8.30)</td>
</tr>
<tr>
<td>MPV (fL) 352 g plasma</td>
<td>7.00 (6.65; 7.60)</td>
</tr>
<tr>
<td>MPV (fL) 200 g plasma</td>
<td>7.80 (7.00; 8.30)</td>
</tr>
<tr>
<td>βTG (IU/mL) CTAD 2000 g plasma</td>
<td>120 (92; 156)</td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 1 plasma</td>
<td>7269 (6218; 8902)<sup>a</sup></td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 5 plasma</td>
<td>6890 (5770; 7985)<sup>a</sup></td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 1 plasma</td>
<td>17683 (14703; 19089)<sup>a</sup></td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 5 plasma</td>
<td>17182 (14322; 18393)<sup>a</sup></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) CTAD 2000 g plasma</td>
<td>5.16 (3.80; 11.5)</td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 352 g x 1 plasma</td>
<td>76.7 (64.1; 86.0)<sup>a</sup></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 352 g x 5 plasma</td>
<td>96.9 (74.7; 117)<sup>a</sup></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 200 g x 1 plasma</td>
<td>114.2 (90.6; 155)<sup>a</sup></td>
</tr>
<tr>
<td>PAI-1<sub>ag</sub> (ng/mL) 200 g x 5 plasma</td>
<td>145 (115; 191)<sup>a</sup></td>
</tr>
</tbody>
</table>

BMI, body mass index; βTG, beta thromboglobulin; CTAD, citrate-theophylline, adenosine, dipyridamol; DBP, diastolic blood pressure; g, gravitational acceleration; PAI-1, plasminogen activator inhibitor-1; PAI-1_{ag}, PAI-1 antigen; SBP, systolic blood pressure; MPV, mean platelet volume

^a Median with the same symbol differ significantly between the 1x and 5x frozen and defrosted samples.

doi:10.1371/journal.pone.0171271.t004
to measure plasma latent PAI-1 levels directly, as no such commercial assay is currently available. Latent PAI-1 is unable to inhibit tPA; therefore, the presence of latent PAI-1 in plasma may lead to a falsely assumed increased fibrinolytic inhibitory capacity. The lack of increase in CLT across the βTG quartiles, (apart from the highest quartile) confirms this. These results are also in agreement with a study by Juhan-Vague et al. [24] who found PAI-1, released from platelets, in vitro, to be mainly in the inactive form. Combined, this data suggests that platelets likely contain both latent and active PAI-1, but that a high plasma platelet content (such as in PRP) is required before the active PAI-1 present in platelets has functional effects on plasma fibrinolytic potential.

Follow-up study

Data from the follow-up study, clearly demonstrated the significant effects of platelets present in plasma, on plasma PAI-1 antigen levels. Platelet count and βTG and PAI-1 antigen levels were highly correlated in the different plasma preparations containing platelets (352 g and 200 g), with no significant associations in the PPP. PAI-1 antigen levels in PRP already tended to correlate with whole blood platelet count. PAI-1 antigen levels, were furthermore, up to 22 fold higher in PRP when compared to basal levels in PPP (which was exempted from the possible influence of residual platelet content or in vitro platelet α-granule release), highlighting the magnitude of the effect of platelets on plasma PAI-1 antigen levels, compared to other sources of PAI-1.

Table 5. Spearman rank order correlations of βTG and PAI-1 antigen with whole blood, CTAD and citrate plasma platelet count of the follow-up study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Platelet count x10^9/μl (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>βTG (IU/mL) CTAD 2000 g plasma</td>
<td>CTAD whole blood r (p-value) 0.40 (0.06)</td>
</tr>
<tr>
<td>βTG (IU/mL) 352 g x 1 plasma</td>
<td>Citrate whole blood r (p-value) -</td>
</tr>
<tr>
<td>βTG (IU/mL) 200 g x 1 plasma</td>
<td>Citrate plasma (200 g) r (p-value) 0.6 (0.002)</td>
</tr>
<tr>
<td>PAI-1 antigen (ng/mL) CTAD 2000 g plasma</td>
<td>0.04 (0.9)</td>
</tr>
<tr>
<td>PAI-1 antigen (ng/mL) 352 g x 1 plasma</td>
<td>-0.36 (0.09)</td>
</tr>
<tr>
<td>PAI-1 antigen (ng/mL) 200 g x 1 plasma</td>
<td>0.20 (0.3)</td>
</tr>
<tr>
<td>βTG, beta thromboglobulin; CTAD, citrate-theophylline, adenosine, dipyridamol; g, gravitational acceleration; PAI-1, plasminogen activator inhibitor-1; PAI-1 antigen.</td>
<td>doi:10.1371/journal.pone.0171271.t005</td>
</tr>
</tbody>
</table>
(endothelial cells, hepatocytes, smooth muscle cells and adipocytes) [11, 13]. The additional 1.3 fold increase in plasma PAI-1\textsubscript{ag} subsequent to maximal degradation (5 x freeze-thaw cycles), suggests that \textit{in vitro} platelet degradation can contribute to a further increase in plasma PAI-1\textsubscript{ag} levels, confirming the necessity of the use of the correct plasma preparation protocols to standardise platelet count and to ensure the preparation of platelet-poor plasma (<10 x 10\(^3\)/\(\mu\)L). Differences in platelet size were also detected when comparing the 352 g and the 200 g plasma, indicating the presence of different platelet populations in the samples centrifuged at different speeds. Since platelets with larger sizes are known to be more metabolically active than smaller platelets [25], platelet size, in addition to platelet count, most likely influence the relationship between platelets present in plasma and PAI-1\textsubscript{ag} levels.

Although \(\beta\)TG is extensively used as a marker of platelet alpha granule release, it does have limitations. The sensitivity of \(\beta\)TG as a marker of platelet activation and alpha granule release can be influenced by various factors; including the choice of anticoagulant, and sample handling and preparation procedures [26, 27]. The significant correlation between platelet count and \(\beta\)TG (\(r = 0.91, p < 0.0001\)) does however support its use as a proxy marker for the number of platelets in plasma in our study populations. While PAI-1 activity may be influenced by freeze-thaw cycles, we opted to work with frozen samples as this type of sample is most often used in studies and therefore relevant to a larger audience. It should be noted that since all samples were frozen at least once, possible effects of freezing on platelet function cannot be excluded. All plasma preparations were however treated similarly making comparison between the different preparations possible. Although samples were not specifically treated to prevent possible \textit{in vitro} conversion of active to latent PAI-1, samples were processed within 20 minutes after collection and snap frozen to limit \textit{in vitro} conversion.

The results from the present study indicate that the content of the alpha granules released from platelets in plasma, significantly influences plasma PAI-1\textsubscript{ag} levels, with limited effects on PAI-1\textsubscript{act}, tPA/PAI-1 complex or fibrinolysis rate (measured as CLT). This effect on PAI-1\textsubscript{ag} is thought to be largely due to an increased release of latent PAI-1 from platelets which is unable to bind tPA and inhibit fibrinolysis. Due to the potential contribution of latent PAI-1 to PAI-1\textsubscript{ag} levels, PAI-1\textsubscript{act} may be the more clinically useful assay to determine the fibrinolytic inhibitor capacity of plasma. In plasma with a high platelet count, such as PRP, the component of platelet PAI-1 that is active, may, however have functional effects by decreasing plasma fibrinolytic potential. These results suggest that PAI-1\textsubscript{ag} is more sensitive to the presence of platelets in plasma, than other PAI-1 assays (PAI-1\textsubscript{act} and tPA/PAI-1 complex) or CLT but that these assays may also be influenced by platelets when present in high numbers such as in PRP.

Supporting information

S1 Data. SABPA study. (XLSX)

S2 Data. Follow-up study. (XLSX)

Acknowledgments

We would like to thank the SAPBA research team, the field-workers of the North-West University, South Africa, and the SAPBA project leader, Prof Leone Malan.

Author contributions

Conceptualization: MP DCR.
Data curation: MP SAB.
Formal analysis: MP SAB DL.
Funding acquisition: MP DL.
Investigation: MP SAB DL.
Methodology: MP DCR.
Project administration: MP.
Resources: MP DL.
Supervision: MP DCR.
Validation: MP.
Visualization: MP SAB.
Writing – original draft: MP SAB.
Writing – review & editing: MP SAB DL DCR.

References
ANNEXURE E: PUBLISHED ARTICLE - DEGREE OF OBESITY INFLUENCES THE RELATIONSHIP OF PAI-1 WITH BODY FAT DISTRIBUTION AND METABOLIC VARIABLES IN AFRICAN WOMEN (CHAPTER 4)
Full Length Article

Degree of obesity influences the relationship of PAI-1 with body fat distribution and metabolic variables in African women

Sunelle A. Barnard, Marlien Pieters *, Cornelie Nienaber-Rousseau, Herculina S. Kruger

Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa

A R T I C L E I N F O

Article history:
Received 21 April 2016
Received in revised form 19 August 2016
Accepted 6 September 2016
Available online 13 September 2016

Keywords:
Plasminogen activator inhibitor-1
Abdominal obesity
Sarcopenic obesity
Dual-energy x-ray absorptiometry

A B S T R A C T

Introduction: Although the relationship of plasminogen activator inhibitor-1 (PAI-1) with obesity has been well established, the relationship of PAI-1 with different body fat distribution patterns is less clear particularly in non-white ethnicities.

Methods: We investigated the cross-sectional association of PAI-1act with body fat % and two different body fat distribution patterns, namely sarcopenic obesity (SO) and visceral (VAT) compared to subcutaneous (SCAT) abdominal obesity, in 246 healthy African women by creating sub-groups according to different body fat distribution patterns.

Results: The PAI-1act level of the SO group did not differ significantly from that of the excessive % body fat, non-sarcopenic group (p = 0.8). The relationship of PAI-1act with body fat %, insulin, triglycerides and appendicular skeletal mass (ASM) was influenced by body fat distribution patterns and degree of obesity. PAI-1act was higher (1.65 vs 0.16 U/ml; p = 0.001) in women with a proportionally higher abdominal VAT compared to higher abdominal SCAT compartment in the total study population, but not in the centrally obese sub-group (1.72 vs 0.83 U/ml; p = 0.5). Multiple regression models indicated that body fat % per se did not contribute significantly to PAI-1act variance in women with increased fat mass.

Conclusion: Fat distribution patterns and degree of obesity influenced the association of PAI-1act with insulin, triglycerides, ASM and body fat % in African women. In centrally obese women, abdominal VAT no longer contributed more to plasma PAI-1act, than abdominal SCAT. Inflammation and endothelial dysfunction contributed more to PAI-1act variance in obese African women than did body fat % per se.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decades the prevalence of obesity has increased dramatically, such that it is currently considered a global pandemic [1]. A world-wide estimate on the prevalence of overweight and obesity has shown that from 1980 to 2013 the proportion of overweight men and women has increased (from 28.8% to 36.5% and 29.8% to 38.0%, respectively) [2]. South Africa is no exception, according to the South African National Health and Nutrition Examination Survey (SANHANES) of 2013, the prevalence of overweight and obesity in women is 24.8% and 39.2%, respectively, which is significantly higher than in men (20.1% and 10.6%, respectively) [3]. Furthermore, females above 45 years of age have a significantly higher prevalence of obesity than younger females [3].

Plasminogen activator inhibitor type 1 (PAI-1), an important inhibitor of fibrinolysis, has previously been reported to be associated with obesity in both in vitro [4–7] and in vivo studies [8,9]. Furthermore, PAI-1 has shown strong associations with the metabolic syndrome (metS) and insulin resistance (IR) [10–12] and other co-morbidities associated with obesity such as hypertension, myocardial and cerebral infarction, atherosclerosis and inflammation [13].

Although the relationship of PAI-1 with obesity and more specifically central obesity (frequently determined by waist circumference (WC)) has been well established [4,14,15], the relationship of PAI-1 with different central obesity fat distribution patterns is less clear particularly in non-white ethnicities, such as Africans. It is for instance

*Corresponding author at: Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa.

E-mail addresses: 13024787@nwu.ac.za (S.A. Barnard), marlien.pieters@nwu.ac.za (M. Pieters), corneile.nienaber@nwu.ac.za (C. Nienaber-Rousseau), salome.kruger@nwu.ac.za (H.S. Kruger).

http://dx.doi.org/10.1016/j.thromres.2016.09.003
0049-3848/© 2016 Elsevier Ltd. All rights reserved.
possible that the abdominal visceral adipose tissue (VAT) to abdominal subcutaneous adipose tissue (SCAT) ratio could potentially influence plasma PAI-1 levels, despite similar WC. In general PAI-1 production was found to be higher in VAT (as an ectopic fat depot) than in SCAT due to the higher amount of stromal cells [5,6], production of pro-inflammatory cytokines and higher macrophage content/infiltiration [16, 17], however the importance of PAI-1 expression in abdominal SCAT has also been demonstrated [18,19]. It has furthermore been demonstrated that body fat distribution patterns differ between ethnicities, with African women having significantly less VAT compared to white women, despite similar WC [20]. In addition, the association of PAI-1 with body composition also differs between ethnicities [10,21] necessitating these studies in non-white individuals.

Furthermore, limited information is available regarding the effect of different forms of obesity, such as sarcopenic obesity (SO), on PAI-1 [22, 23]. SO is defined as the co-occurrence of increased fat mass in the presence of age related loss of skeletal muscle mass and strength and is typically associated with fat infiltration in the muscle [24,25]. SO has also previously been suggested to be strongly associated with the development of mets and atherosclerosis [24]. Hence, it is possible that plasma PAI-1 levels might be more increased in individuals with SO compared to non-sarcopenic obese individuals.

Understanding the relationship between PAI-1 and different body fat distribution patterns, is important to predict the disease risk conveyed through PAI-1 in individuals who did not escape the overweight and obesity pandemic, especially in the under-studied African population. We consequently aimed to investigate the relationship of PAI-1 with two different body fat distribution patterns, namely SO and visceral compared to subcutaneous abdominal obesity in African women. In addition, we explored the relationship between PAI-1 and body fat % in the different body fat distribution patterns. Data on insulin, triglycerides, appendicular skeletal mass (ASM) and inflammation (C-reactive protein) are also provided as these may act as co-variates in the relationship of PAI-1 with body fat [26–28].

2. Methods and methods

2.1. Study population

The study population included cross-sectional data collected in 2012 from 246 urban dwelling African women as part of the Sarcopenic Obesity and Non-communicable Disease Risk in African Adults (SONDRAA) study. The SONDRAA study is nested in the South African arm of the longitudinal Prospective Urban and Rural Epidemiology (PURE) study. Detailed information on the study design and participant selection criteria of the PURE study have been previously reported [29]. In brief, the sub-study included participants that were randomly selected from households in the Tlokwe municipality, located in the North West province of the South Africa. The inclusion criteria were apparent physically and psychologically healthy African women. Participants were excluded if they presented with any disabilities, serious diseases, taking anabolic steroids or protein supplements, as well as pregnant or lactating women. Twenty-six of the women were premenopausal and only one if they presented with any disabilities, serious diseases, taking anabolic steroids or protein supplements, as well as pregnant or lactating women. Twenty-six of the women were premenopausal and only one

2.2. Anthropometrical assessment

Body weight was measured to the nearest 0.1 kg on an electronic scale (Seca, Birmingham, UK) and height was measured with a free-standing stadiometer (Seca, Birmingham, UK) to the nearest 0.1 cm. Waist circumference was also recorded to the nearest decimal using a steel measuring tape (Lufkin, Apex, NC, USA). The thicknesses of the abdominal and supraspinal skinfolds were measured with a Harpenden calliper (Baty International, West Sussex, UK) on the landmarks as established by the International Society for the Advancement of Kinanthropometry (ISAK). Skinfolds were measured to the nearest 0.1 mm by gently pulling the skin away from the body, taking care not to include the underlying muscle in the double layer of skin and subcutaneous fat. To improve the accuracy and consistency of all measurements, these measurements were performed twice by the same anthropometrist and the average calculated.

Body composition (fat mass; fat-free soft tissue mass; and body fat %) was measured using DXA (Hologic Discovery W, APEX system software version 2.3.1). Fat mass and fat-free soft tissue mass for the whole body, trunk and limbs were derived using standard DXA cut-off lines. Appendicular skeletal muscle mass (ASM) was derived as the sum of the fat-free mass excluding bone of the arms and the legs [30].

2.3. Determination of body fat distribution patterns

The women were categorised into several sub-groups according to distinct body composition patterns, in order to investigate the relationship between PAI-1 and different body fat distribution patterns. These groups were determined by using the available DXA and anthropometrical data. Body fat % instead of body mass index (BMI) was used in this study, as body fat % is considered a more sensitive marker of excessive adiposity than BMI [31].

2.4. Sarcopenic obesity

To investigate the relationship between PAI-1 and SO, the study population was divided into four mutually exclusive groups. Group 1 – excessive body fat % group (n = 115), was determined as body fat percentage >35.8% for women aged 30–49 years and body fat percentage >37.7% for women aged 50–84 years [32]. Sarcopenia was an exclusion criterion for this group. Group 2 - sarcopenic group (n = 59), sarcopenia was defined as ASM <15.02 kg based on the guidelines of the Foundation for the National Institutes of Health (FNIH) [33]. The FNIH ASM cut-point was chosen, since it had been found to be sensitive to detect reduced functional ability in the black female South African population [34]. Women with excessive body fat % were excluded from this group. Group 3 - SO group (n = 36), this group included individuals who were both sarcopenic and presented with excessive body fat %. Lastly, group 4 included women who were non-sarcopenic and had a normal body fat % (n = 36).

2.5. Visceral compared to subcutaneous central abdominal obesity

Since the use of sophisticated techniques such as nuclear magnetic resonance or CT scans was not a financially viable option in our research setting, we created a surrogate marker to differentiate between women with preferential visceral compared to preferential subcutaneous central abdominal obesity. This was done by obtaining the average of the central body skinfolds (abdominal and supraspinal) and dividing it by the WC. We then divided the group into tertiles according to the skinfold:WC ratio variable in order to compare the highest (proportionally more SCAT) with the lowest (proportionally more VAT) tertile group. This was also done separately for women with central obesity (defined as WHtR of >0.5) [35] to investigate the effect of the two forms of abdominal fat distribution on PAI-1 levels in women already defined to be centrally obese.

2.6. Blood and urine collection

A registered nurse collected fasting blood samples with minimum stasis from the antecubital vein before 10:00 in the morning. Serum
samples were used for C-reactive protein (CRP), triglycerides and insulin analyses, sodium fluoride plasma for glucose and citrated plasma samples for the analysis of PAI-1_{act}. Samples were centrifuged at 2000 × g for 15 min and stored at −82 °C until further analysis. Spot urine was collected for albumin and creatinine determination.

2.7. Biochemical analysis

PAI-1_{act} was measured using an indirect enzymatic method (Technozym PAI-1 Actibind, Technoclone, Vienna, Austria). Plasma glucose concentrations were determined via a hexokinase method using the Synchrontm® Systems (Beckman Coulter Co., Fullerton, CA, USA). HIV status was determined using the First Response rapid HIV test (PMCh Medical, India) and positive results were confirmed with CD4 testing. High sensitivity CRP was determined using the Cobas Integra 400® plus biochemistry analyser (Roche diagnostics, Basel, Switzerland). Triglycerides measurements were done by Sequential Multiple Analyser Computer (SMAC) using the Konelab20TM auto analyser (Thermo Fisher Scientific Oy, Vantaa, Finland). Urinary albumin and creatinine were determined with the Cobas Integra 400 plus (Roche, Basel, Switzerland) and the ratio calculated. HIV testing, CRP, triglycerides, insulin, glucose, albumin and creatinine measurements were performed to describe the health status of the participants and also since they may act as co-variates in the relationship between PAI-1 and body fat [36,37].

2.8. Calculation of insulin resistance

The estimate of IR as determined by the homeostasis model assessment (HOMA) was calculated using the formula: HOMA-IR = [(fasting plasma insulin (μU/ml) × fasting plasma glucose (mmol/l))/22.5] concentration [38].

2.9. Statistical analysis

Data was analysed using the computer software package Statistica (Statsoft Inc., Tulsa Oklahoma, USA). A p-value of 0.05 or less was regarded as statistically significant. Since most of the variables were not normally distributed, the data was log-transformed to improve normality and to allow the use of parametric statistical analyses. Descriptive data is presented both as median (25th; 75th percentiles) and mean (± standard deviation). As the association of PAI-1 with many of the body fat variables were not linear we decided to follow the approach of sub-dividing the study population rather than to present the data of the smaller sample size. PAI-1_{act} correlated with ASM in the non-sarcopenic, normal body fat % group only (r = 0.38; p = 0.03). When selecting only women with central obesity (WhtR 0.5), the differences between the first and third tertile to determine the differences in women with proportionally higher abdominal VAT (quartile 1) vs women with proportionally higher abdominal SCAT (quartile 3). PAI-1_{act} and insulin and HOMA-IR were statistically and clinically significantly higher in the group with the proportionally higher abdominal VAT (quartile 1) (Table 3). When selecting only women with central obesity (WhtR >0.5), the differences between the first and third quartiles were no longer significant. In addition, PAI-1_{act} correlated significantly (albeit weakly) with the skinfold:WC ratio in the total study population (r = −0.18; p = 0.007), but not in the centrally obese women (r = −0.12; p = 0.1).

3. Results

3.1. Sarcopenic obesity

The study population consisted of 246 women who were grouped according to the following identified fat distribution patterns in order to investigate the relationship between PAI-1_{act} and SO: excessive body fat % (n = 115), sarcopenic (n = 59), SO (n = 36) and non-sarcopenic, normal body fat % (n = 36) (Table 1). One-way ANOVA indicated no significant age differences between the groups (p = 0.5) with the sarcopenic group having the highest prevalence of HIV infection (22%). Post-hoc comparison between the groups revealed that for most of the variables (ASM, insulin, glucose, HOMA-IR, body fat %, WC, BMI, WhtR, skinfold:WC ratio), the sarcopenic group had significantly lower values than the other three groups with little difference between the other groups.

PAI-1_{act} of the SO group did not differ significantly from that of the excessive body fat % group (p = 0.8) or the non-sarcopenic, normal body fat % (p = 0.7). There was also no significant difference between metS-related markers (insulin, glucose, HOMA-IR and triglycerides) between the SO and excessive body fat % group. The excessive body fat % group did however, have significantly higher BMI, central obesity (WC and WhtR) and a lower central skinfold:WC ratio indicating a proportionally higher central VAT than SCAT fat distribution.

The association of PAI-1_{act} with body fat %, insulin, triglycerides and ASM differed between the different body fat distribution sub-groups (Table 2). PAI-1_{act} correlated with body fat % in the non-sarcopenic, normal body fat % only (r = 0.39; p = 0.02) with adjustment for insulin, triglycerides, menopausal status affecting this relationship only marginally (r = 0.34; p = 0.07). PAI-1_{act} showed a borderline correlation (r = 0.31; p = 0.07) with insulin in the SO group, but not in any of the other sub-groups. It had a significant positive association with triglycerides in the excessive body fat % group (r = 0.27; p = 0.005) with an association of similar magnitude in the non-sarcopenic, normal body fat % group (r = 0.3; p = 0.09), albeit non-significant probably due to the smaller sample size. PAI-1_{act} correlated with ASM in the non-sarcopenic, normal body fat % group only (r = 0.38; p = 0.03).

3.2. Visceral compared to subcutaneous central obesity

We divided the study group into tertiles according to the skinfold:WC ratio variable and compared PAI-1_{act}, insulin and HOMA-IR between the first and third tertile to determine the differences in women with proportionally higher abdominal VAT (quartile 1) vs women with proportionally higher abdominal SCAT (quartile 3). PAI-1_{act}, insulin and HOMA-IR were statistically and clinically significantly higher in the group with the proportionally higher abdominal VAT (quartile 1) (Table 3). When selecting only women with central obesity (WhtR >0.5), the differences between the first and third quartiles were no longer significant. In addition, PAI-1_{act} correlated significantly (albeit weakly) with the skinfold:WC ratio in the total study population (r = −0.18; p = 0.007), but not in the centrally obese women (r = −0.12; p = 0.1).

3.3. Association of PAI-1_{act} with body fat %

In order to determine the relationship of PAI-1, insulin, triglycerides, CRP and skinfold:WC ratio with body fat %, the entire study population was divided into quartiles according to their body fat % (Table 4). PAI-1_{act} increased across the body fat % quartiles, but significance was reached in the fourth quartile only (body fat % >45.6%). No increase was observed between the second and third quartile. Insulin and CRP levels in quartile two, three and four were all significantly higher than in quartile one with no difference in triglyceride levels across the four quartiles. Furthermore, CRP had a significant positive correlation with body fat % (r = 0.38, p = 0.0001) and correlated negatively with the
In order to determine the contribution of body fat % to PAI-1act we performed single and forward stepwise multiple regression for each of the body fat % quartiles (Table 5). In the single regression models, body fat % contributed significantly (p < 0.01) to the variance in PAI-1act in the third quartile only (≥40.5 to ≤45.6% body fat), explaining 11% of the variance. In the forward stepwise multiple regression models, insulin made the biggest contribution (12.4%) to the variance in PAI-1act followed by the albumin:creatinine ratio, menopausal status and age, with fat % not entering the model, in the first quartile. In the second quartile, triglycerides, age and insulin entered the model explaining 19.8, 4.9 and 2%, respectively. In the third quartile, in agreement with the single regression, fat % contributed to the variance in PAI-1act explaining 5.31% of the variance with age (4.07%) and triglycerides (4.06%) also entering the model. In the fourth quartile, the main contributors to PAI-1act variance were the albumin:creatinine ratio explaining 10.7%, CRP 3.58%, menopausal status 2.88% and skinfold:WC 2.99% of the PAI-1 variance. In the most obese group (body fat % >45.6%) the multiple regression models explained the smallest percentage of total PAI-1 variance (16%) compared to the other groups (24, 26.7 and 22%).

4. Discussion

Although the association between PAI-1 and obesity has been well established, much less is known regarding the relationship of PAI-1 with different body fat distribution patterns, with virtually no information available on non-white ethnicities such as Africans. The association of PAI-1 with VAT [21] and metS [10] has for instance been shown to differ between black and white individuals. PAI-1 associated significantly with VAT in Caucasians, while no association was found in African Americans [21]. PAI-1 was also found to be more prominently associated with markers of the metS in white than in black Africans [10]. Furthermore, differences in body fat distribution have also been found, with African women having significantly less VAT compared to white women, despite similar WC [20]. It is, therefore, postulated that due to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in blacks may differ from that observed for other population groups and, therefore, merits further investigation.

Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sarcomopenic (n = 36)</th>
<th>Excessive body fat %<sup>a</sup> (n = 115)</th>
<th>Sarcomopenic<sup>b</sup> (n = 59)</th>
<th>Non-sarcomopenic, normal body fat % (n = 36)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean (±SD)</td>
<td>Median (25th; 75th percentile)</td>
<td>Mean (±SD)</td>
<td>Median (25th; 75th percentile)</td>
<td>p-Value</td>
</tr>
<tr>
<td>PAI-1<sub>act</sub> (U/ml)</td>
<td>3.89 (±8.10)</td>
<td>0.78 (0.01; 4.22)</td>
<td>4.00 (±7.23)</td>
<td>1.52 (0.01; 4.13)</td>
<td>0.09 (0.17)<sup>b</sup></td>
</tr>
<tr>
<td>ASM (kg)</td>
<td>20.4 (±49.6)</td>
<td>1.52 (0.01; 4.13)</td>
<td>1.86 (±50.0)</td>
<td>0.50 (0.01; 4.36)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Insulin (μU/ml)</td>
<td>8.2 (±13.1)</td>
<td>1.84 (0.01; 21.4)</td>
<td>2.02 (±2.43)</td>
<td>0.71 (0.01; 2.56)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>6.25 (±4.48)</td>
<td>5.00 (0.43; 6.00)</td>
<td>5.86 (±3.19)</td>
<td>4.01 (0.41; 6.98)<sup>b</sup></td>
<td>0.002</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>5.86 (±9.21)</td>
<td>3.15 (2.11; 6.68)</td>
<td>6.73 (±13.32)</td>
<td>3.60 (1.90; 6.44)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>1.40 (±1.29)</td>
<td>1.23 (0.78; 1.53)</td>
<td>1.22 (±0.84)</td>
<td>1.09 (0.78; 1.23)<sup>b</sup></td>
<td>0.001</td>
</tr>
<tr>
<td>%Fat (%)</td>
<td>42.6 (±3.83)</td>
<td>41.2 (39.7; 45.1)</td>
<td>45.2 (±3.99)</td>
<td>45.2 (42.3; 47.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>86.2 (±10.5)</td>
<td>85.7 (76.8; 95.0)</td>
<td>98.3 (±10.7)</td>
<td>98.5 (92.1; 104)<sup>b</sup></td>
<td><0.0001</td>
</tr>
<tr>
<td>WHtR</td>
<td>0.57 (±0.08)</td>
<td>0.57 (0.51; 0.63)</td>
<td>0.63 (±0.07)</td>
<td>0.62 (0.59; 0.66)<sup>b</sup></td>
<td>0.001</td>
</tr>
<tr>
<td>SKAT</td>
<td>4.60 (±2.15)</td>
<td>4.00 (3.14; 5.18)</td>
<td>3.10 (±1.01)</td>
<td>2.83 (2.47; 3.50)<sup>b</sup></td>
<td>0.001</td>
</tr>
<tr>
<td>Abdominal skinfold (mm)</td>
<td>27.3 (±12.2)</td>
<td>27.6 (17.5; 35.5)</td>
<td>41.5 (±12.1)</td>
<td>41.7 (32.1; 50.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Supra-spinal skinfold (mm)</td>
<td>15.8 (±8.81)</td>
<td>17.1 (11.2; 24.7)</td>
<td>27.5 (±10.2)</td>
<td>26.7 (19.7; 34.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>27.9 (±4.82)</td>
<td>26.6 (24.6; 30.5<sup>a</sup>)</td>
<td>34.8 (±5.75)</td>
<td>34.0 (30.8; 38.1)<sup>b</sup></td>
<td><0.0001</td>
</tr>
<tr>
<td>HIV status n (%)</td>
<td>11 (4%)</td>
<td>5 (4%)<sup>b</sup></td>
<td>13 (22%)</td>
<td>14 (22%)<sup>b</sup></td>
<td>0.005</td>
</tr>
<tr>
<td>MetS n (%)</td>
<td>16 (44%)<sup>a</sup></td>
<td>54 (4%)<sup>a</sup></td>
<td>31 (18%)</td>
<td>31 (18%)<sup>a</sup></td>
<td><0.0001</td>
</tr>
<tr>
<td>Menopausal status (%)</td>
<td>31 (86%)</td>
<td>101 (87.8%)</td>
<td>54 (91.5%)</td>
<td>33 (91.7%)</td>
<td>0.81</td>
</tr>
<tr>
<td>Tobacco users (%)</td>
<td>14 (40%)</td>
<td>50 (45%)</td>
<td>50 (45%)</td>
<td>50 (45%)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Variables</th>
<th>Body fat %</th>
<th>Insulin (μU/ml)</th>
<th>Triglyceride (mmol/l)</th>
<th>ASM (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r (p-value)</td>
<td>r (p-value)</td>
<td>r (p-value)</td>
<td>r (p-value)</td>
</tr>
<tr>
<td>PAI-1<sub>act</sub> (U/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.20 (0.0002)</td>
<td>0.20 (0.0003)</td>
<td>0.09 (0.2)</td>
<td>0.25 (<0.0001)</td>
</tr>
<tr>
<td>Sarcomopenic obese</td>
<td>0.24 (0.16)</td>
<td>0.16 (0.4)</td>
<td>0.31 (0.07)</td>
<td>0.22 (0.2)</td>
</tr>
<tr>
<td>Excessive body fat %<sup>a</sup></td>
<td>0.14 (0.1)</td>
<td>0.14 (0.1)</td>
<td>0.27 (0.005)</td>
<td>0.27 (0.005)</td>
</tr>
<tr>
<td>Sarcomopenic<sup>a</sup></td>
<td>-0.01 (0.9)</td>
<td>-0.13 (0.4)</td>
<td>-0.13 (0.4)</td>
<td>0.22 (0.10)</td>
</tr>
<tr>
<td>Non-sarcomopenic, normal body fat %</td>
<td>0.39 (0.02)</td>
<td>0.34 (0.07)</td>
<td>0.10 (0.6)</td>
<td>0.30 (0.09)</td>
</tr>
</tbody>
</table>

ASM, appendicular skeletal muscle mass; HIV, human immunodeficiency virus; HOMA-IR, homeostatic model assessment of insulin resistance; metS, metabolic syndrome; PAI-1_{act}, Plasminogen activator inhibitor-1 activity; WC, waist circumference; WHR, weight-to-height ratio. * M: Means/means/percentages with the same symbol differ significantly.

^a Significantly different from the other three groups.

^b ANCOVA p-value after adjustment for insulin.

^c Fat % >35.8% for 30–49 years of age or >37.7% for 50–84 years of age [32].

^d ASM < 15.02 kg [33].
investigation. Our data demonstrate that in African women, the association of PAI-1 act with body fat %, insulin, triglycerides and ASM are influenced by body fat distribution patterns and degree of obesity. It investigates the association of PAI-1 act with SO and shows that while increased VAT is associated with increased plasma PAI-1 act levels, abdominal SCAT also significantly contributes to PAI-1 act levels, in obese women specifically. Lastly, we demonstrated that body fat % per se, does not significantly contribute to increased plasma PAI-1 act in women with high fat mass (body fat % - 45.6%), but that other factors associated with obesity (known and of as yet unidentified), are more prominently related to the increased PAI-1 act.

4.1. Sarcopenic obesity

PAI-1 is significantly associated with both obesity and insulin resistance [11,12,42,43]. Since insulin resistance and metS appear to be closely related to SO [24], it was postulated that PAI-1 act may be even higher in SO individuals than in individuals who are obese without having sarcopenia. There was, however, no difference in PAI-1 act between the SO and the excessive body fat % group. This is likely due to the fact that in this study population, insulin-related markers did not differ between the two groups, suggesting that insulin resistance was not more prominent among the SO women than among the total excessive body fat % group. The prevalence of HIV infection on the other hand, was significantly higher in the sarcopenic group. It is, therefore, likely that the observed muscle wasting in this group may be the result of HIV infection in those affected. In addition, the excessive body fat % group was on average more centrally obese than the SO group and displayed a proportionally higher abdominal VAT component, two factors that each have the potential to significantly increase PAI-1 act [44–46]. These results are also in agreement with Cesari et al. [22], who found no significant association between either sarcopenia or obesity and PAI-1 concentration.

When investigating the relationship of PAI-1 act with body fat %, insulin, triglycerides and ASM, we found that the relationships differed between the different groups. PAI-1 correlated significantly with body fat % and ASM in the non-sarcopenic, normal body fat % group only, with insulin in the SO group and with triglycerides in the excessive body fat % group. This suggests the association of PAI-1 with these variables is not a constant/fixated relationship, but that their relative contributions to PAI-1 are influenced by body fat distribution patterns.

4.2. Visceral compared to subcutaneous central obesity

PAI-1 is considered by many to be expressed more in VAT than in SCAT [5,6]. This is thought to be related to structural and functional differences between VAT and SCAT. Visceral adipose tissue, a major ectopic fat depot, present in the abdominal visera in the mesentery and omentum, produces more pro-inflammatory cytokines like tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [16], it contains more stromal cells, which is the cellular component of adipose tissue that produces PAI-1 and exhibit a higher macrophage content which contributes to the increased cytokine production [6,17]. In contrast, SCAT expresses more leptin and adiponectin and is mainly found in the femoral-gluteal regions, back and anterior abdominal wall [16]. Evidence does, however, exist that PAI-1 mRNA in abdominal SCAT (but not femoral SCAT) correlated positively with plasma PAI-1 levels in obese individuals [19] and that PAI-1 expression in SCAT is higher than in VAT in obese individuals and in females [18]. This data suggests that the degree of obesity may influence regional differences in PAI-1 secretion. In general agreement with the literature, our data indicated that plasma PAI-1 act levels were significantly higher in black African women with a proportionally higher abdominal VAT compared to SCAT compartment. However, in women who were already centrally obese, this was no longer the case. This data together with the literature suggest that in obese women, abdominal SCAT can significantly contribute to the increased plasma PAI-1 levels found in obesity and in so doing, increase CVD risk.

Table 3

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total study group</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Central obese group*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAT</td>
<td>SCAT</td>
<td>VAT</td>
<td>SCAT</td>
<td>VAT</td>
<td>SCAT</td>
</tr>
<tr>
<td>Skinfold:WC ratio tertile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (≥3.02) median (25, 75% percentile) n</td>
<td>1.65 (0.01; 5.12)</td>
<td>78</td>
<td>0.16 (0.01; 1.40)</td>
<td>78</td>
<td>0.001</td>
<td>1.72 (0.01; 3.76)</td>
</tr>
<tr>
<td>2 (≥4.76) median (25, 75% percentile) n</td>
<td>16.3 (10.3; 25.3)</td>
<td>76</td>
<td>8.83 (5.19; 16.0)</td>
<td>81</td>
<td>0.0007</td>
<td>15.9 (10.6; 24.8)</td>
</tr>
<tr>
<td>3 (≥3.8) median (25, 75% percentile) n</td>
<td>4.03 (2.37; 6.47)</td>
<td>77</td>
<td>1.77 (0.90; 3.48)</td>
<td>81</td>
<td><0.0001</td>
<td>3.83 (2.31; 6.47)</td>
</tr>
</tbody>
</table>

HOMA-IR, homeostatic model assessment of insulin resistance; PAI-1 act, Plasminogen activator inhibitor-1 activity; WC, waist-circumference; SCAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.

* Waist-to-height ratio (WHtR) > 0.5.

Table 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total group</th>
<th>Body fat % 1st quartile (≤34.5%)</th>
<th>Body fat % 2nd quartile (34.5–40.5%)</th>
<th>Body fat % 3rd quartile (40.5–45.6%)</th>
<th>Body fat % 4th quartile (>45.6%)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (25, 75% percentile) n</td>
<td>p-Value</td>
</tr>
<tr>
<td>PAI-1 act (U/ml)</td>
<td>0.07 (0.01; 1.23)*</td>
<td>58</td>
<td>0.82 (0.01; 3.26)</td>
<td>59</td>
<td>0.03 (0.01; 2.83)</td>
<td>59</td>
</tr>
<tr>
<td>Insulin (μU/ml)</td>
<td>7.01 (4.43; 14.23)*</td>
<td>61</td>
<td>14.9 (9.39; 26.7)</td>
<td>59</td>
<td>15.0 (9.04; 21.44)</td>
<td>59</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>0.92 (0.72; 1.37)</td>
<td>62</td>
<td>0.99 (0.73; 1.56)</td>
<td>59</td>
<td>1.03 (0.79; 1.41)</td>
<td>59</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td>1.81 (0.58; 4.39)*</td>
<td>58</td>
<td>3.43 (1.82; 5.93)</td>
<td>47</td>
<td>3.62 (2.23; 5.56)</td>
<td>50</td>
</tr>
<tr>
<td>Skinfold:WC ratio</td>
<td>8.41 (6.13; 11.48)*</td>
<td>61</td>
<td>4.00 (3.35; 5.16)</td>
<td>61</td>
<td>3.10 (2.59; 4.02)</td>
<td>61</td>
</tr>
</tbody>
</table>

PAI-1 act, plasminogen activator inhibitor-1 activity; CRP, C-reactive protein.* Medians with the same symbol differ significantly.

* Significantly different from the other three groups.
4.3. Association of PAI-1_{act} with body fat percentage

In obesity, there are many different factors that can influence PAI-1 levels. These include insulin resistance, inflammation and regulation of PAI-1 producing cells by inflammatory cytokines, increased triglycerides, as well as the increased adipocyte mass [42,43,47]. We subsequently wanted to determine the relationship of body fat % per se with PAI-1. When dividing the study population according to body fat % quartiles, body fat % contributed, in both single and multiple regression models to the PAI-1_{act} variance in quartile 3 only. This suggests that other factors than body fat % itself, which are associated with increased fat mass, are likely responsible for the increased PAI-1_{act} levels in quartile 4. This notion is supported by our data indicating a correlation between PAI-1_{act} and body fat % in the non-sarcopenic, normal body fat % women only while no associations were found in the excessive body fat % of the SO groups. It has also been suggested that PAI-1 is not closely dependent on fat mass, but rather reflects fat redistribution patterns [17,48].

In order to compare the contribution of body fat % per se to other factors associated with obesity on plasma PAI-1_{act}, we also investigated the role of insulin, triglycerides, menopausal status, CRP (as a marker of inflammation), skinfold:WC ratio, age, alcohol consumption, smoking and the albumin:creatinine ratio (as a marker of endothelial dysfunction). Insulin levels entered the stepwise multiple regression as a contributor to PAI-1_{act} variance in model 1 and 2 only, suggesting that it contributes proportionally more to PAI-1_{act} variance in women with a lower body fat %. Triglycerides did not differ across the body fat % quartiles, but it was the most significant contributor to PAI-1_{act} variance in the 2nd and 3rd body fat % quartile. The association between PAI-1 and triglyceride has been previously explained by the fact that very low density lipoproteins (VLDL) triglycerides increase PAI-1 levels [49,50], through a mediation of VLDL-induced PAI-1 transcription in endothelial cells [51]. Menopausal status entered the stepwise regression models as contributor to PAI-1_{act} variance, but its contribution was also not significant, explaining about 2.8% only. C-reactive protein contributed to the variance in PAI-1_{act} in women with high fat mass (quartile 4) only, although the contribution was relatively minor at 3.7%. Additional analysis confirmed a positive relationship between CRP and body fat %, indicating that inflammation increases as body fat % increase, as is known from the literature [52,53]. We also found a negative association between CRP and the skinfold:WC ratio, suggesting that inflammation is increased in the presence of proportionally increased abdominal VAT.

Next we investigated the possible contribution of the abdominal VAT / SCAT distribution and found that there was a significant proportional increase in the abdominal VAT compartment as body fat % increased, and that it served as a significant contributor to the PAI-1_{act} variance in the most obese women. This proportional increase in VAT is in agreement with the literature indicating that post-menopausal women experience a redispersion of fat distribution with increased visceral fat accumulation, which is thought to be related to the female sex hormone oestrogen [54]. The largest (and only statistically significant) contributor to PAI-1_{act} in the obese individuals was endothelial dysfunction (albumin:creatinine ratio). Evidence exists for the presence of endothelial dysfunction in obesity [37], which is thought to be induced by obesity-associated metabolic abnormalities such as insulin resistance, adipokines, oxidative stress, increased free fatty acids, TNF-α as well as activation of innate immunity [55,56]. At the same time, increased PAI-1 is recognised as an early marker of endothelial dysfunction (albumin:creatinine ratio). Evidence exists for the presence of endothelial dysfunction in obesity [37], which is thought to be induced by obesity-associated metabolic abnormalities such as insulin resistance, adipokines, oxidative stress, increased free fatty acids, TNF-α as well as activation of innate immunity [55,56]. At the same time, increased PAI-1 is recognised as an early marker of endothelial dysfunction [57,58] suggesting endothelial dysfunction as a mechanistically plausible modulator of PAI-1_{act} in obesity. It is also important to note that in the most obese individuals, the above mentioned known PAI-1 associates, explained the smallest percentage of total PAI-1 variance, compared to the other body fat % quartiles, suggesting that other, as of yet unidentified factors, additionally contribute to the increased PAI-1 in obesity. Our results indicate that in African women with increased fat mass, body fat % per se contributes to a lesser extent to plasma PAI-1_{act} than other obesity-related metabolic derangements such as inflammation and endothelial dysfunction.

A limitation of the study was that causality could not be determined for PAI-1_{act} being cross-sectional in design. While every attempt has been made to prevent possible selection bias, it is not impossible that it may have occurred in some form. A further limitation of the study was the inability to estimate VAT and SCAT directly using DXA software as this is not available in our laboratory. Also, we acknowledge that the skinfold:WC ratio is a novel and rather crude method to distinguish between abdominal fat distribution patterns. The fact that associations with PAI-1_{act} were found, suggest however that it could potentially be used in settings where access to more sophisticated techniques is limited and it deserves further investigation.

In conclusion, our data indicates that PAI-1_{act} is not higher in SO African women who do not display increased insulin resistance, compared to obese, non-sarcopenic women. Furthermore, fat distribution patterns and degree of obesity were found to influence the association of PAI-1_{act} with insulin, triglycerides, ASM and body fat %. Our data also suggests
S.A. Barnard et al. / Thrombosis Research 146 (2016) 95–102

that in centrally obese women, abdominal VAT no longer contributed
more than abdominal SCAT to plasma PAI-1act, where no differences
were found between the two adipocyte compartments and that abdominal SCAT should be considered a signiﬁcant contributor to plasma PAI-1
in obese women. Lastly in obese African women, the known PAI-1 associates explained a smaller percentage of total PAI-1act variance compared to the other body fat % quartiles suggesting additional, as of yet
unidentiﬁed mechanistic pathways in obesity. Also the increased PAI1 observed in obesity in African women, is more strongly inﬂuenced
by other obesity-related metabolic abnormalities such as inﬂammation
and endothelial dysfunction than by body fat % per se. Whether these
varying associations between PAI-1 and body fat distribution patterns
in Africans will result in different disease risk proﬁles of the diseases
contingent upon PAI-1 needs to be established in future research.
Conﬂict of Interest
None of the authors have any conﬂict of interest to declare.
Author contributions
Sunelle A. Barnard – analysis and interpretation of data; critical writing of manuscript.
Marlien Pieters - analysis and interpretation of data, critical writing
of manuscript.
Cornelie Nienaber-Rousseau – interpretation of data and critical
reviewing the manuscript.
Herculina S. Kruger – interpretation of data, critical reviewing the
manuscript and PI of the SONDRAA study.
Acknowledgements
This work was supported by services of the SONDRAA research team
and the Centre of Excellence for Nutrition of the North-West University,
South Africa. Funding was through the National Research Foundation
(NRF) of South Africa (Grant UID: 94213). Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed
to the NRF.
References
Biryukov, C. Abbafati, S.F. Abera, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis
Parker, E. Hoosain, P. Naidoo, C. Hongoro, Z. Mchiza, N.P. Steyn, N. Dwane, M.
Makoae, T. Maluleke, S. Ramlagan, N. Zungu, M.G. Evans, L. Jacobs, M. Faber, S.-.
Team, The South African National Health and Nutrition Examination Survey:
plasminogen activator inhibitor 1 by human adipose tissue: possible link between
M.C. Alessi, Stromal cells are the main plasminogen activator inhibitor-1-producing
vivo synthesis of plasminogen activator inhibitor-1 in human adipose tissue,
waist and hip circumference with coagulation and ﬁbrinolysis in postmenopausal
[10] A. Greyling, M. Pieters, T. Hoekstra, W. Oosthuizen, A.E. Schutte, Differences in the

101

Among inﬂammation and coagulation markers, PAI-1 is a true component of the
Pannacciulli, R. Giorgino, Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal women: relationship with body fat distribution, Int. J.
Hamsten, P. Arner, S. Reynisdottir, Regional variation in plasminogen activator inhibitor-1 expression in adipose tissue from obese individuals, Thromb. Haemost.
Stegnar, I. Juhan-Vague, Subcutaneous abdominal, but not femoral fat expression
of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss, Diabetologia 44 (11) (2001) 2025–2031.
J.H. Goedecke, Dual-energy X-ray absorptiometry and anthropometric estimates of
visceral fat in black and white south African women, Obesity 18 (3) (2010)
619–624.
visceral adipose tissue is associated with plasminogen activator inhibitor type 1
levels in overweight and obese premenopausal African-American women, Int. J.
Lenchik, S.L. Palla, W.T. Ambrosius, R.P. Tracy, M. Pachor, Sarcopenia, obesity, and inﬂammation: results from the trial of angiotensin converting enzyme inhibition and
factor linking ﬁbrinolysis and age-related subclinical and clinical conditions,
J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinkova, M. Vandewoude, M. Zamboni,
Sarcopenia: European consensus on deﬁnition and diagnosis, Age Ageing 39 (4)
[26] I. Juhan-Vague, M.C. Alessi, A. Mavri, P. Morange, Plasminogen activator inhibitor-1,
inﬂammation, obesity, insulin resistance and vascular risk, J. Thromb. Haemost. 1
[28] G.H. Toﬂer, J. Massaro, D. Levy, M. Mittleman, P. Sutherland, I. Lipinska, J.E. Muller,
R.B. D'Agostino, Relation of the prothrombotic state to increasing age (from the Framingham Offspring study), Am. J. Cardiol. 96 (9) (2005) 1280–1283.
[31] A. De Lorenzo, P. Deurenberg, M. Pietrantuono, N. Di Daniele, V. Cervelli, A. Andreoli,
[32] M. Heo, M.S. Faith, A. Pietrobelli, S.B. Heymsﬁeld, Percentage of body fat cutoffs by
sex, age, and race-ethnicity in the US adult population from NHANES 1999–2004,
Ferrucci, J.M. Guralnik, M.S. Fragala, A.M. Kenny, The FNIH sarcopenia project: rationale, study description, conference recommendations, and ﬁnal estimates, J.
[34] H. Kruger, L. Micklesﬁeld, H. Wright, L. Havemann-Nel, J. Goedecke, Ethnic-speciﬁc
as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5
[36] G. He, O. Andersen, S.B. Haugaard, A. Lihn, S.B. Pedersen, S. Madsbad, B. Richelsen,
Plasminogen activator inhibitor type 1 (PAI-1) in plasma and adipose tissue in



ANNEXURE F: PUBLISHED ARTICLE - THE CONTRIBUTION OF DIFFERENT ADIPOSE TISSUE DEPOTS TO PLASMA PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) LEVELS (CHAPTER 5)
The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels

Sunelle A. Barnard 1, Marlien Pieters *,1, Zelda De Lange

Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa

ARTICLE INFO

Keywords:
Plasminogen activator inhibitor-1
Visceral adipose tissue
Subcutaneous adipose tissue
Body fat distribution

ABSTRACT

Increased plasma plasminogen activator inhibitor-1 (PAI-1) level is considered a mechanistic pathway through which obesity contributes to increased cardiovascular disease risk. Abdominal adipose tissue specifically, is a major PAI-1 source with visceral adipose tissue (VAT), an ectopic fat depot, generally considered to produce more PAI-1 than subcutaneous adipose tissue. However, this does not necessarily lead to increased plasma PAI-1 levels. This review provides an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It discusses factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels, placing the relative contribution of adipose tissue into perspective. In conclusion, the relationship between VAT and plasma PAI-1 levels is not fixed but can be modulated by a number of factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Plasminogen activator inhibitor-1 (PAI-1), the main inhibitor of fibrinolysis, contributes to increased cardiovascular risk in overweight and obese individuals [1]. Elevated plasma PAI-1 levels are considered to be a biochemical marker of obesity [2] and also as one of the components of the metabolic syndrome (MetS), which is characterised by dyslipidemia, hypertension, glucose intolerance and increased abdominal fat distribution [3,4]. The association between PAI-1 and obesity, especially central obesity, has been well established in both animal and human studies [5–11] and is largely considered to be the result of PAI-1 production by adipose tissue [5,6,12,13]. PAI-1 is produced by a variety of cells contained in adipose tissue; these include pre-adipocytes, mature adipocytes, stromal cells, endothelial cells, smooth muscle cells and monocytes/macrophages [14].

Abdominal fat deposition takes place in two main fat depots [subcutaneous adipose tissue (SCAT) and intra-abdominal or visceral fat tissue (VAT)], which is considered to be an ectopic fat depot. Ectopic fat refers to the storage of fat in non-adipose tissue like the liver, skeletal muscle, viscera, pancreas and the heart [15,16]. Although, it is not yet certain how ectopic fat accumulation takes place, it is postulated to be related to an overflow of triglycerides into other organs as SCAT loses the ability to expand and to store excess energy [17]. According to this theory, the expandability of SCAT protects other organs against ectopic fat deposition [18]. In support thereof, SCAT does not seem to be associated with a linear increase in cardiovascular risk factors in obesity [19]. Furthermore, when compared to VAT, abdominal and thigh SCAT were observed to be protective against obesity-associated metabolic complications such as insulin resistance [20,21].

It is generally accepted that ectopic fat, and for the purpose of this review, VAT specifically, produces more PAI-1 than SCAT [5,22]. Consistently, computed tomography (CT) data from obese individuals have shown higher PAI-1 levels in VAT than SCAT [8,23]. Also, PAI-1 gene expression, determined by means of adipose biopsies, has been shown to be higher in the omental adipose tissue compared to SCAT during acute systemic inflammation which was also accompanied by increased plasma PAI-1 levels [9]. However, contradicting evidence also exists, as some studies have shown comparable PAI-1 antigen [PAI-1 ag] secretion from VAT and SCAT [24], or even higher PAI-1 messenger ribonucleic acid (mRNA) expression and increased rate of PAI-1 ag synthesis in SCAT than in VAT [25]. Although adipose tissue PAI-1 concentration and production have important local effects, it is the concentration of PAI-1 in the blood that contributes to the development of CVD
With regards to ex vivo studies, it should be kept in mind that the results can be influenced by the data collection and analytical method used. For example, data employing cultured human adipose tissue explants suggest a direct contribution of visceral adipose tissue to plasma PAI-1 levels [8,28,36], while studies using native human adipose tissue found similar or even lower PAI-1 mRNA expression in VAT compared to SCAT [5,36,37]. Lindeman et al. [30] suggest that the increased PAI-1 release from adipose tissue explants is likely related to an incubation artefact rather than being a true reflection of the in vivo situation.

Furthermore, an increased adipocyte PAI-1 content does not necessarily relate to increased plasma PAI-1 levels. As an example, in SCAT, elevated PAI-1 gene expression was found to be present during very low-calorie diets in obese participants, while plasma PAI-1 levels were decreased [38]. Furthermore, when comparing differences between VAT and SCAT depots, no correlation was found between PAI-1 mRNA and plasma PAI-1 (antigen and activity) in either one of the two fat depots [39]. On the other hand, Morange et al. [28] investigated the correlation between plasma PAI-1 and PAI-1 measured in adipose tissue explants by means of real-time polymerase chain reaction (PCR). They found a correlation between plasma PAI-1 (antigen and activity) and the PAI-1 ag level measured in cultured SCAT explants. This relationship was not investigated in VAT explants.

Due to the fact that ex vivo investigations are performed under controlled conditions outside the human body, it is also difficult to assess the total contribution adipose tissue might make to plasma PAI-1 levels when compared with other PAI-1 producing cells such as hepatocytes, platelets and endothelial and vascular smooth muscle cells. It is also possible that VAT and PAI-1 levels are concurrently related to abnormal fat metabolism, rather than the one bringing about the other [30]. Notwithstanding the fact that PAI-1 has a strong association with body fat distribution, these results suggest that assumptions regarding plasma PAI-1 levels based on adipose tissue PAI-1 content and gene expression should not be made.

3. In vivo studies

In vivo human studies support the strong association between PAI-1, obesity and body fat distribution and provide more evidence for the influence of adipose tissue depots on plasma PAI-1 levels [9,23,40–43]. In vivo studies often use anthropometric indicators [such as body mass index (BMI), waist-hip ratio (WHR), waist circumference (WC), weight loss programs etc.] and CT scan to assess the association of body fat distribution or differences in fat depots (SCAT and VAT) with plasma PAI-1 levels. However, ex vivo studies use methods such as mRNA quantification or freshly collected or cultured adipose tissue samples, with or without stimulating factors. When considering the methodological differences between in vivo and ex vivo studies, it is not surprising that some studies have indicated that ex vivo results do not always lead to in vivo changes in PAI-1 plasma levels [38,39].

Several studies have used anthropometrical indicators like WC, BMI and WHR to investigate possible associations between plasma PAI-1 levels and body fat distribution [43–45]. BMI, as a general marker of body fat, was found to be strongly associated with PAI-1 [6,29,46] confirming the association of PAI-1 with total obesity. BMI does, however, not reflect body fat distribution and waist circumference, as a measure of central obesity, was demonstrated to be a significant contributor to plasma PAI-1 levels [44,43,44] independent of BMI [41], supporting the strong association between plasma PAI-1, VAT and central obesity. Consistently, when compared with CT scan and ultrasound, WC has been regarded as a useful surrogate for the measurement of visceral fat [47], whereas WHR and BMI seem to be associated with VAT or plasma PAI-1 to a lesser extent [47,48].

On the other hand, a stronger correlation between BMI and plasma PAI-1, as compared with WC has also been demonstrated [42]. However, in this study WC and WHR correlated with plasma PAI-1 to a similar degree. Furthermore, after adjusting for WC, an inverse association
Table 1
Summary of studies investigating the association of PAI-1 production and mRNA levels in adipose tissue (VAT versus SCAT).

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Aims</th>
<th>Participant characteristics (mean ± SD)</th>
<th>Adipose tissue measured</th>
<th>PAI-1 measured</th>
<th>Relevant finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastelica et al., 2000 [12]</td>
<td>Compare the localisation of PAI-1 synthesis between human VAT and SCAT.</td>
<td>(n = 26) Twenty-two white women and four men BMI 41 ± 6.3 kg/m² Age 41 ± 12 yrs.</td>
<td>Cryosections of freshly collected human adipose tissue (in culture). Samples were collected during gastrropathy.</td>
<td>Supernatant PAI-1ag plasma PAI-1m and PAI-1mRNA in adipocytes.</td>
<td>↑ PAI-1 synthesis in VAT compared with SCAT. PAI-1 production is related to the presence of stromal cells, which are more numerous in VAT than in SCAT.</td>
</tr>
<tr>
<td>Gottschling-Zeller et al., 2000 [13]</td>
<td>Compare PAI-1 expression and secretion in omental fat and SCAT from obese and non-obese participants.</td>
<td>(n = 11) obese individuals (eight women and three men) BMI 45 ± 8.7 kg/m² Age 39 ± 13.8 years. (n = 7) non-obese individuals (two women and five men) BMI 24 ± 2.7 kg/m² Age 41 ± 13.9 years. All participants were of Caucasian origin.</td>
<td>Isolated SCAT and omental abdominal adipocytes (in suspension culture) from severely obese (who underwent vertical gastric banding for weight reduction) and non-obese individuals.</td>
<td>PAI-1m and PAI-1 mRNA in adipose tissue.</td>
<td>↑ PAI-1 synthesis in VAT compared with SCAT. Omental adipocytes release significantly more PAI-1 in vitro compared to subcutaneous adipocytes from obese and non-obese individuals. Did not find endothelial cells (present in adipose tissue) to contribute to the production of PAI-1. Observed that TGF-β1 contributes to the regulation of PAI-1 secretion.</td>
</tr>
<tr>
<td>Cigolini et al., 1999 [22]</td>
<td>Aimed to determine whether TNF-α influence PAI-1 production in human adipose tissue.</td>
<td>(n = 35) non-neoplastic, overweight individuals BMI 28 ± 5 kg/m² Seven individuals were surgical patients, for whom both SCAT and VAT were obtained. Twenty-eight individuals were outpatients from which SCAT was obtained by needle biopsies.</td>
<td>Oriental and SCAT biopsies (incubated, isolated adipocytes) from obese non-diabetic individuals.</td>
<td>PAI-1m and PAI-1 mRNA in adipose tissue.</td>
<td>↑ PAI-1 production in VAT compared with SCAT. Supports the important contribution of VAT in determining plasma PAI-1 levels.</td>
</tr>
<tr>
<td>Alessi et al., 1997 [5]</td>
<td>Investigated PAI-1 expression by human adipose tissue and its different cellular fractions, in particular PAI-1m mRNA production from VAT (omentum) versus SCAT.</td>
<td>(n = 13) women BMI 26–29 kg/m² Only in seven participants comparison between VAT and SCAT was performed (four men and three women) BMI 18–28 kg/m² Age 39–79 years.</td>
<td>Tissue was obtained during elective abdominoplasty (incubated).</td>
<td>PAI-1m and PAI-1 mRNA in adipocytes.</td>
<td>↑ PAI-1 expression in VAT compared with SCAT. Supports the important contribution of VAT in determining plasma PAI-1 levels.</td>
</tr>
<tr>
<td>Lindeman et al., 2007 [30]</td>
<td>Systematically evaluate the molecular basis of the association between VAT and plasma PAI-1 in humans.</td>
<td>Men and women were included and grouped according to BMI. BMI 20–32 kg/m² in one group and morbid obese participants (BMI > 40 kg/m²) in the other group.</td>
<td>Tissue was obtained during elective aneurysm repair (normal weight and overweight individuals) or during gastric banding for morbid obesity.</td>
<td>Plasma PAI-1m and PAI-1 mRNA from adipose tissue explants.</td>
<td>Data corroborates a strong relationship between VAT and plasma PAI-1 levels. However, lower and similar PAI-1 mRNA expression in SCAT and VAT excluded VAT as a relevant source of plasma PAI-1. The authors conclude that VAT and plasma PAI-1 are co-correlated rather than causatively related. Indicates similar PAI-1 mRNA expression in both SCAT and VAT that seems to be influenced by lipid metabolism. No correlation was found between plasma PAI-1 and VAT or SCAT PAI-1 mRNA.</td>
</tr>
<tr>
<td>Polac et al., 2001 [39]</td>
<td>To substantiate the link between intra-abdominal VAT and circulating PAI-1 by performing analysis of PAI-1 expression in human VAT and SCAT.</td>
<td>(n = 28) postmenopausal women BMI 28.29 ± 4.32 kg/m² Age 53.59 ± 6.35 years.</td>
<td>Samples of VAT and SCAT were obtained in the beginning of a gynaecological operation.</td>
<td>Plasma PAI-1m and PAI-1 mRNA in adipose tissue.</td>
<td>↑ PAI-1 expression in both VAT and SCAT. Observes a correlation between fasting and postprandial PAI-1 levels and the important contribution of TNF-α and TGF-β1 in stimulating PAI-1 production.</td>
</tr>
<tr>
<td>Morange et al., 1999 [28]</td>
<td>Aimed to investigate the relation between the production of PAI-1 by adipose tissue, plasma PAI-1 levels and variables related to insulin resistance.</td>
<td>(n = 30) participants (three men and 27 women). Age 16-70 years. (mean = 47) BMI 21–42 kg/m² (mean = 27) VAT and SCAT were compared in a sub-group of 16 participants that included seven men and nine women Age 35 to 79 years. BMI 18–39 kg/m² (mean = 27).</td>
<td>Tissue were obtained during elective abdominal surgery (incubated explant).</td>
<td>Plasma PAI-1m and PAI-1m mRNA in adipose tissue.</td>
<td>↑ PAI-1 expression in both VAT and SCAT. Observes a similar correlation between PAI-1 production from VAT and SCAT. Further suggested a similar regulatory pathway of PAI-1 in the two fat depots. Supports the role of adipose tissue in determining plasma PAI-1 levels and the important contribution of TNF-α and TGF-β1 in stimulating PAI-1 production.</td>
</tr>
</tbody>
</table>
| Dusserre et al., 2000 [17] | Investigated the difference in gene expression of six proteins secreted by adipocytes obtained from abdominal VAT and SCAT. | \(n = 9 \) Five women and four men BMI 34 ± 4 kg/m² Age 42 ± 5 years. | Adipose tissue biopsies were collected during elective open abdominal surgery. | PAI-1 mRNA in adipose tissue. | (continued on next page)
between hip circumference and markers of coagulation was found, which possibly indicated a protective effect of gluteal fat distribution as opposed to android obesity [42]. These anthropometrical differences associated with PAI-1 could be related to the inclusion of different study populations as will be discussed in more detail below. Nevertheless, the use of increased WC, as an indication of visceral fat mass, seems to be a marker of elevated PAI-1 plasma levels. However, such interpretations should be made with caution, particularly in terms of non-European populations as WC was not regarded as a suitable surrogate for assessing visceral fat mass in African women, following a weight loss diet [49].

The main focus of the following section will therefore be to discuss in vivo studies investigating the relationship between plasma PAI-1 levels and body fat distribution in relation to factors, identified from the literature, that may influence this relationship namely gender, ethnicity, level or degree of obesity, weight loss, the 4G/5G PAI-1 polymorphism and other PAI-1 producing tissue in obesity.

3.1. Gender

It is known that body fat distribution is highly sex specific and that plasma PAI-1 levels differ between men and women [40,50]. Women generally have gluteal-femoral or peripheral depots (lower body obesity consisting of SCAT) compared with the android fat distribution of men (excess of body fat accumulation in the abdominal area that is associated with increased VAT) [51,52]. In layman’s terms, these are referred to as pear (lower body obesity) and apple (abdominal obesity) shape figures. Furthermore, adipocytes in the VAT depot are considered to be more metabolically active than adipocytes in the SCAT [32]. When considering the strong association between plasma PAI-1 and VAT, men would be expected to have higher plasma PAI-1 levels than women. Previous studies have confirmed this notion by demonstrating a direct correlation between VAT and plasma PAI-1 concentration in obese men, but not in women [53]. VAT has also been suggested to be an

Table 1 (continued)

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Aims</th>
<th>Participant characteristics (mean ± SD)</th>
<th>Adipose tissue measured</th>
<th>PAI-1 measured</th>
<th>Relevant finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastard et al., 2000 [38]</td>
<td>Aimed to determine if the changes in SCAT PAI-1 expression influence plasma PAI-1 levels during weight loss in obese humans following a VLCD.</td>
<td>n = 15 Fourteen women and one male participant, all of Caucasian descent. BMI = 30 kg/m² Age 48 ± 3 years.</td>
<td>Samples were obtained from the abdominal skin of participants by a liposuction mini-cannula attached to a syringe.</td>
<td>Plasma PAI-1 ag and PAI-1 mRNA in adipose tissue.</td>
<td>↑ PAI-1 mRNA and PAI-1 concentration in SCAT during VLCD. Suggest therefore that the changes in SCAT PAI-1 expression are not related to the decrease of plasma PAI-1 levels observed during VLCD in obese participants.</td>
</tr>
<tr>
<td>Eriksson et al., 2000 [25]</td>
<td>To determine differences in adipose gene expression and protein secretion rate of PAI-1 between SCAT and VAT.</td>
<td>n = 22 obese individuals Fourteen women and eight men BMI 43.1 ± 13 kg/m² All participants were of Caucasian descent and born in Sweden.</td>
<td>Abdominal SCAT and VAT were obtained during weight-reduction surgery (adjustable gastric banding).</td>
<td>PAI-1 ag and PAI-1 mRNA in adipose tissue. Also expressed results as PAI-1 concentration/10⁷ cells.</td>
<td>↑ Secretion of PAI-1 and PAI-1 gene expression were found in SCAT compared with VAT. PAI-1 secretion rate correlated with cell size in SCAT and SCAT cell size was larger than VAT cell size. The depot-specific difference in PAI-1 secretion was confined to obese women and not to men.</td>
</tr>
<tr>
<td>Mavri et al., 2001 [29]</td>
<td>To determine if the changes in PAI-1 mRNA content in two SCAT depots (abdominal and femoral) are associated with changes in plasma PAI-1 after weight loss.</td>
<td>n = 40 obese individuals Twenty-six women and four men BMI = 25 kg/m² Age 40 ± 10 years. Also sixteen lean participants, 17 women and seven men. BMI = 25 kg/m²</td>
<td>SCAT biopsies were obtained from the sub-umbilical abdominal region and lateral femoral region by means of a needle.</td>
<td>Plasma PAI-1 ag and PAI-1 mRNA in adipose tissue.</td>
<td>Obese participants had ↑ plasma PAI-1 and PAI-1 gene expression (in abdominal SCAT) compared to lean participants. Plasma PAI-1 levels were associated with PAI-1 expression in the abdominal adipose tissue, whereas femoral SCAT showed similar PAI-1 mRNA in obese and lean participants. The authors concluded that only abdominal and not femoral SCAT PAI-1 expression is a contributor to increased plasma PAI-1 levels in obesity. Both plasma PAI-1 and PAI-1 mRNA in abdominal SCAT also decreased following weight loss.</td>
</tr>
<tr>
<td>Shimomura et al., 1996 [8]</td>
<td>To investigate the relationship between plasma PAI-1 levels and the amount of fat tissue (VAT versus SCAT) and changes in PAI-1 gene expression in adipose tissue during development of obesity in humans and animals.</td>
<td>n = 101 Sixty-one obese participants (31 men and three women) BMI 31 ± 5 kg/m² Age 43 ± 13 years. Forty non-obese participants (37 men and 13 women) BMI 23 ± 2 kg/m² Age 44 ± 14 years. SCAT and VAT from humans were assessed by means of computerized tomography.</td>
<td>RNA was extracted from the intra-abdominal SCAT and VAT from control rats and rats with a ventromedial hypothalamus lesion.</td>
<td>Plasma PAI-1 ag and PAI-1 mRNA in adipose tissue from rats.</td>
<td>Although both VAT and SCAT expressed PAI-1 mRNA, PAI-1 expression ↑ in VAT but not in SCAT during the development of obesity in rats. In both obese and non-obese humans, plasma PAI-1 correlated to VAT, but not SCAT. The authors concluded that enhanced PAI-1 gene expression from VAT might contribute to increased plasma PAI-1 levels.</td>
</tr>
</tbody>
</table>

BMI, body mass index; mRNA, messenger ribonucleic acid; PAI-1, plasminogen activator inhibitor-1; PAI-1 ag, PAI-1 antigen; SD, standard deviation; SCAT, subcutaneous adipose tissue; TGF-β1, transforming growth factor-beta 1; TNF-α, tumour necrosis factor-alpha; VAT, visceral adipose tissue; VLCD, very low calorie diet; ↑, increased PAI-1 synthesis and/or production.
important adipose depot for PAI-1 secretion in obese individuals [25]. On the contrary, when comparing abdominal VAT in healthy non-obese, overweight men and women, greater PAI-1 \(\text{act} \) levels were found in women than men [48]. In agreement, others have also reported a stronger association between WHR and plasma PAI-1 levels in women than men [24,50]. A possible explanation for the stronger relationship between PAI-1 and WHR in women could be related to a tendency of women with a preferential gluteal fat distribution to accumulate fat also in the abdominal area when becoming overweight/obese, leading to a greater WHR (and VAT) and consequently increased PAI-1 levels [40].

Previous research undertaken by our group, involving African participants, found PAI-1 \(\text{act} \) levels to be higher in women than in men, despite adjusting for differences in body composition. Plasma PAI-1 \(\text{act} \) furthermore associated not only more strongly, but also with more anthropometric variables in the men than the women [43]. Plasma PAI-1 \(\text{act} \) had a linear positive relationship with BMI and skinfold thickness in men, whereas in women, PAI-1 \(\text{act} \) plateaued at higher BMI levels and did not change across skinfold categories. Due to the preferential peripheral fat distribution (SCAT) in women and the preferential visceral (abdominal) fat accumulation in men, an obese man will have proportionally more VAT than an obese woman. Consequently, despite the higher PAI-1 \(\text{act} \) levels observed in women, the proportionally lower VAT may explain the overall lower correlations with anthropometric variables compared to the men. Furthermore, since women deposit gynoid fat preferentially, peripheral SCAT likely increased more than VAT in these obese African women, explaining the plateau in plasma PAI-1 \(\text{act} \) at higher BMI. While in men with a preferentially increased VAT deposition in the abdominal area, PAI-1 \(\text{act} \) levels continued to increase in conjunction with the increase in VAT. Similarly, skinfolds represent SCAT and in men, more VAT would have been deposited before an increase in SCAT is observed explaining the rise in PAI-1 levels across skinfold quintiles. Since women preferentially store peripheral SCAT, this adipose compartment will continue to increase in accordance with an increase in skinfold, while their VAT compartment remains proportionally smaller explaining the lack of difference across the skinfold quintiles. There also seems to be important differences in the size of adipocytes between VAT and SCAT depots in women, as women were found to have larger SCAT adipocytes compared to VAT adipocytes [54] while no differences were observed for men.

According to Eriksson et al. [25] obese females seem to have a significant depot-specific PAI-1 secretion, with the SCAT depot producing higher levels of PAI-1 than the VAT depot, while this was not observed in men. Additionally, the authors suggested that SCAT is the most important adipose depot for PAI-1 secretion in obese individuals [25], since it is regarded to be a considerably larger fat depot than VAT [52] (see section on degree of obesity below). In support of this, measurements of abdominal VAT by means of CT scan have shown that VAT explained 28% only of the variance in plasma PAI-1 \(\text{act} \) in premenopausal women [23].

The menopausal status of women may also influence the relationship between different adipose tissue depots and plasma PAI-1. Compared to premenopausal women, postmenopausal women experience a redistribution of fat distribution (increased visceral fat accumulation) that is related to the female sex hormone oestrogen [55]. It should also be noted that therapeutic administration of oral oestrogen has been reported to reduce plasma PAI-1 levels [56]. Therefore, the inclusion of pre- and/or postmenopausal women in a study may influence the outcome of the association of body composition with plasma PAI-1 levels.

3.2. Ethnicity

When comparing the association between body composition and plasma PAI-1 levels between different ethnic groups, dissimilarities have been found. For instance, significant associations between plasma PAI-1 \(\text{act} \) and VAT have been observed in white women, but not in African American women, despite similar PAI-1 levels and BMI ranges [57]. African women have also been found to have significantly lower PAI-1 \(\text{act} \) levels as well as a weaker association with markers of the MetS in comparison with white South African women [44]. Previous studies have indicated that white Americans compared with black Americans have less VAT in spite of similar WC and BMI measurements [45,58]. Similar findings were also observed in studies that included black and white South Africans [59,60]. In a black and white South African sample, black women were found to have less VAT in comparison with white women after adjusting for age, height, weight and fat mass, despite the fact that there were no ethnic differences in WC, WHR or dual-energy X-ray absorption measurement of the abdominal regions [61]. Similar to the VAT distribution in women, in a study by Hill et al. [45], significantly lower VAT was found in black than in white men after adjustment for percentage body fat, total body fat, BMI, WC, WHR or sagittal diameter. However, it is difficult to draw conclusions regarding the relationship of PAI-1 and body fat composition in African populations as such information is limited and most research investigating these issues has been undertaken in populations of European descent [6,13,25,38,45]. Owing to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in Africans may differ from that observed for other population groups and, therefore, merits further investigation.

3.3. Level or degree of obesity

The general notion that increased plasma PAI-1 levels are associated with central obesity or android fat distribution does not seem to hold true in all circumstances. As mentioned previously, in severely obese individuals, PAI-1 expression from abdominal SCAT was found to be approximately two times higher than from abdominal VAT, and it was proposed that the degree of obesity influences regional differences in PAI-1 secretion [25]. As previously explained, this might however also have been the result of the way in which Eriksson et al. [25] reported their results i.e. in terms of cell size.

In support of this finding, when grouping participants according to different body composition patterns, the degree of obesity seems to have a significant influence on regional differences in PAI-1 secretion. African women with a proportionally higher abdominal VAT compartment have been found to have significantly higher plasma PAI-1 \(\text{act} \) levels than women with a proportionally higher abdominal SCAT compartment (unpublished results). However, in women who were classified to be centrally obese, this was no longer the case. Within reason, it would seem therefore that the degree of obesity have an influence on the association between different body fat depots and plasma PAI-1 levels.

3.4. Weight loss

Weight loss that is associated with the loss of adipose tissue mass has been shown to be effective in lowering plasma PAI-1 levels in obese individuals [29,38,62–65]. Following gastric bypass in severely obese individuals, plasma PAI-1 levels were observed to normalise one month after surgery and PAI-1 expression, in both SCAT and VAT, was found to be lower than that of non-obese individuals within one year after surgery [62]. Mavri et al. [29] found that a 3-month weight reduction program resulted in a decline in plasma PAI-1 levels, which was only associated with loss of abdominal SCAT and not loss in the femoral adipose tissue. On the contrary, other studies have observed changes in plasma PAI-1 levels that correlated with changes in VAT and not SCAT after weight reduction in healthy premenopausal women [23]. Such findings are supported by other studies that observed VAT and plasma PAI-1 levels to decrease significantly after weight loss, in both men and women [53,66]. Yet the relationship between VAT and PAI-1 disappeared in women after adjustment for total body fat mass [53]. Weight
reduction due to surgical treatment or dieting seems to be an effective means to help lower plasma PAI-1 levels and promote a favourable haemostatic profile although whether this reduction is adipose depot specific remains a topic of investigation.

3.5. 4G/5G PAI-1 polymorphism

Throughout the literature, several PAI-1 polymorphisms have been identified, which may influence plasma PAI-1 levels; of these, the 4G/5G PAI-1 polymorphism has been shown to exert the greatest impact [67,68] and is also thought to be associated with obesity and increased adipose tissue [11,69–72]. The 4G/5G is a single-nucleotide insertion/deletion polymorphism located at position –675 in the promoter region of the PAI-1 gene that leads to either a 4G or 5G sequence [67]. In the 5G allele, a repressor protein binds to the promoter area of the PAI-1 gene, resulting in relatively reduced transcription of PAI-1, and therefore in lower plasma PAI-1 levels [67,73,74]. Not all studies, however, found a significant association between the 4G/5G genotypes and the plasma PAI-1 levels, and it is postulated that obesity may influence this relationship. The 4G/5G polymorphism is considered a response polymorphism meaning that the difference in PAI-1 levels between 4G and 5G becomes more obvious in the presence of environmental and/or disease factors that stimulate PAI-1 expression [75], such as obesity. In agreement with this, some studies [11,72,76] found a stronger relationship between plasma PAI-1 levels and the 4G/5G polymorphism in obesity, although there were also some studies that did not find a difference in the strength of the relationship [77–79].

Results regarding the relationship of this polymorphism with obesity are also contradicting, as some studies [11,71,72,80] found carriers of the 4G allele to be more common among obese individuals while others did not [81–84]. Although, the mechanism of action explaining the possible association between the 4G/5G PAI-1 gene and obesity is not yet known, Demiralp et al. [85] suggested that overexpression of PAI-1 in 3T3-L1 cells (mouse cell line of fibroblasts that can differentiate into adipocytes) can increase adipocyte differentiation and that the 4G allele was significantly more active than the 5G allele in driving PAI-1 gene transcription, thus contributing to adipogenesis.

Despite possible interaction of plasma PAI-1 levels and the 4G/5G PAI-1 polymorphism with obesity, little is known regarding the relationship with body fat distribution, in particular the difference in VAT versus SCAT. In one study investigating the genetic variations within the PAI-1 gene that are related to the amount of body fat and regional fat distribution, the 4G/5G PAI-1 polymorphism was found to be associated with VAT in postmenopausal women [70]. Homozygotes for the 5G allele had 50% more VAT compared to carriers of the 4G allele. This suggests that it may be involved in modulating adipose tissue distribution at menopause [70]. In agreement with this, Sartori et al. [11] found the 4G/5G polymorphism to influence PAI-1 expression in central obesity (VAT) but not in peripheral obesity (SCAT). Van Harmelen et al. [86] furthermore found no effect of the 4G/5G polymorphism on PAI-1 secretion from abdominal SCAT adipose tissue. Although not enough evidence is available to draw firm conclusions, these results suggest that the 4G/5G PAI-1 polymorphism may potentially influence the relationship between plasma PAI-1 levels and body fat distribution and warrants further investigation.

3.6. Other PAI-1 producing tissue in obesity

As mentioned earlier, Janand-Delenne et al. [23] found VAT to explain only 28% of the variance in plasma PAI-1 levels in postmenopausal women. Also in a recent study (unpublished results) we found inflammation, endothelial dysfunction and triglycerides to contribute more to PAI-1 levels in obese African women than body fat % per se. These results reiterate the concept that plasma PAI-1 levels, in obesity, are influenced by many different factors of which increased adipocyte mass is only one and that plasma PAI-1 in obesity seems to increase owing to a systemic response [87]. Other factors that can influence plasma PAI-1 levels include insulin resistance, inflammatory cytokines, oxidative stress as well as increased triglycerides, which can regulate PAI-1 production in all PAI-1 producing tissue and not adipose tissue only [3,88,89]. The association between PAI-1 and triglyceride has been previously explained by the fact that very low density lipoproteins (VLDL) triglycerides increase PAI-1 levels [6,90], through a VLDL response element identified in the promoter region of the PAI-1 gene that mediates VLDL-induced PAI-1 transcription in endothelial cells [91].

The largest contributor to PAI-1 levels in our recent study was endothelial dysfunction (unpublished results). Evidence exists for the presence of endothelial dysfunction in obesity [92], which is thought to be induced by obesity-associated metabolic abnormalities such as insulin resistance, adipokines, oxidative stress, increased free fatty acids, tissue TNF-α as well as activation of innate immunity [93,94]. At the same time, increased PAI-1 is recognised as an early marker of endothelial dysfunction [95,96], suggesting endothelial dysfunction as a mechanistically plausible modulator of PAI-1 levels in obesity. Others have also identified hepatocytes and endothelial cells as underlying sources of elevated PAI-1 levels in obese individuals [36,62].

The association between inflammation and PAI-1 has been firmly established with a variety of cytokines such as TNFα, TGF-β1, IL-1 and IL-6, acting as inflammatory mediators of PAI-1 [7,12,13,30,46,97–100]. Therefore, the chronic low-grade pro-inflammatory environment in obesity can significantly contribute to plasma PAI-1 levels via the presence of several PAI-1 inducers [2]. These PAI-1 stimulating effects of pro-inflammatory cytokines are not only limited to adipocytes but are also present in hepatocytes, smooth muscle cells and endothelial cells [101,102]. In a recent study, the ability of the acute systemic inflammatory response to activate gene expression and PAI-1 production in VAT was demonstrated. According to Ekström [9], during open heart surgery, PAI-1 mRNA expression was found to increase 27-fold in the omental (visceral) adipose tissue, compared with a threefold increase in the SCAT, followed by an increase in plasma PAI-1 levels. TGF-β1 seems to regulate PAI-1 expression as part of an autocrine and paracrine function [99]. Particularly in subcutaneous adipocytes, TGF-β1 has been proposed as a main inducer of PAI-1 mRNA synthesis [25,99], although others have reported no significant difference in the effect of TGF-β1 on PAI-1 secretion between the two fat depots (VAT and SCAT) [13].

Apart from adipocytes, adipose tissue furthermore contains endothelial cells as well as fibroblasts, smooth muscle cells and macrophages, which are all involved in the expression of PAI-1 mRNA [8]. Other factors associated with obesity that can influence plasma PAI-1 levels, include oxidative stress, circadian clock proteins, cortisol and angiotensin-converting enzyme [reviewed by 103].

4. Conclusion

While ex vivo evidence indicates VAT to be the main PAI-1 producing adipose depot due to structural and functional differences compared to SCAT, this does not always relate to increased plasma PAI-1 levels as depicted in Fig. 1. Particularly in obesity and in females where the SCAT depot is often significantly larger than the VAT depot, SCAT becomes a significant contributor to plasma PAI-1 levels and therefore also to increased cardiovascular disease risk. Also owing to ethnic differences in body fat composition and fat deposition, the relationship of PAI-1 with body composition in non-European populations may differ from that observed for Europeans and, therefore, merits further investigation. Furthermore, genetic variation such as the 4G/5G PAI-1 polymorphism may influence the relationship between VAT and plasma PAI-1 although more evidence is needed to confirm this. As PAI-1 is produced by many different tissues, the contribution of other tissue such as endothelial cells, particularly in the case of endothelial dysfunction, to plasma PAI-1 levels in obesity should also not be neglected and should be considered as a major contributor to plasma PAI-1 levels.
The relative contribution of endothelium dysfunction to plasma PAI-1 levels has important pathophysiological consequences for the development of obesity-related CVD risk. Despite VAT being the main PAI-1 producing adipose depot, due to structural and functional differences compared to SCAT, this does not always relate to increased plasma PAI-1 levels. PAI-1 production in adipose tissue explants studied ex vivo should not be directly related to the in vivo situation due to the possible occurrence of incubation artefact effects, leading to the misinterpretations of results. Factors such as gender, ethnicity, possibly genetics, level or degree of obesity and other PAI-1 producing tissues are important when considering the relative contribution of different fat depots to plasma PAI-1 levels since these factors not only influence the plasma PAI-1 levels, but also the relative associated CVD risk.

Research agenda

- More studies are needed to understand the relationship of PAI-1 with body composition in non-European populations, as most studies included European populations only and data pertaining to non-European populations are limited.
- The relative contribution of endothelium dysfunction to plasma PAI-1 levels in obesity is often overlooked, though could assist in our understanding of the relationship between obesity and PAI-1, and therefore warrants more detailed investigation.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgements

This work was funded through the National Research Foundation (NRF) of South Africa (grant UID: 94213). Opinions expressed and conclusions arrived at are those of the authors and are not to be attributed to the NRF.

References

34. Eriksson P, Lihn AS, Richelsen B, Madsen SR. Non-mammalian primate PAI-1 release is higher in visceral than subcutaneous human adipose tissue (AT-

Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 2010;2010:513948.

