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Clinically proven mtDNA mutations are not
common in those with chronic fatigue
syndrome
Elizna M. Schoeman1†, Francois H. Van Der Westhuizen1†, Elardus Erasmus1, Etresia van Dyk1,
Charlotte V. Y. Knowles4, Shereen Al-Ali2,3, Wan-Fai Ng2,5, Robert W. Taylor4, Julia L. Newton2,5 and
Joanna L. Elson1,6*

Abstract

Background: Chronic Fatigue Syndrome (CFS) is a prevalent debilitating condition that affects approximately
250,000 people in the UK. There is growing interest in the role of mitochondrial function and mitochondrial DNA
(mtDNA) variation in CFS. It is now known that fatigue is common and often severe in patients with mitochondrial
disease irrespective of their age, gender or mtDNA genotype. More recently, it has been suggested that some CFS
patients harbour clinically proven mtDNA mutations.

Methods: MtDNA sequencing of 93 CFS patients from the United Kingdom (UK) and South Africa (RSA) was
performed using an Ion Torrent Personal Genome Machine. The sequence data was examined for any evidence of
clinically proven mutations, currently; more than 200 clinically proven mtDNA mutations point mutations have been
identified.

Results: We report the complete mtDNA sequence of 93 CFS patients from the UK and RSA, without finding
evidence of clinically proven mtDNA mutations. This finding demonstrates that clinically proven mtDNA mutations
are not a common element in the aetiology of disease in CFS patients. That is patients having a clinically proven
mtDNA mutation and subsequently being misdiagnosed with CFS are likely to be rare.

Conclusion: The work supports the assertion that CFS should not be considered to fall within the spectrum of
mtDNA disease. However, the current study cannot exclude a role for nuclear genes with a mitochondrial function,
nor a role of mtDNA population variants in susceptibility to disease. This study highlights the need for more to be
done to understand the pathophysiology of CFS.
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Background
CFS is a chronic debilitating condition affecting approxi-
mately 600,000 people in the UK alone [1]. Fatigue is the
defining clinical problem, it is a fatigue that is not elimi-
nated by sleep or rest. Differences in exercise recovery in
those with CFS have been demonstrated, with patients

showing a reduced capacity to recover from acidosis on
repeat exercise [2]. Other studies in those with CFS
showed additional features suggesting a specific
exercise-related defect [3]. Together these and other
studies are suggestive that mitochondrial dysfunction
plays a role in the pathophysiology of CFS. Additionally,
a number of publications have suggested that mtDNA
variation is important in the course of CFS [4, 5]. More-
over, it has been suggested that the “symptoms of mito-
chondrial diseases and CFS frequently overlap and can
easily be mistaken”, and thus it is conceivable that some
CFS patients may harbour clinically proven mtDNA
mutations [6].
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Clinically proven mtDNA mutations are an important
cause of inherited neuromuscular disease, frequently
presenting as multisystem disorders with fatigue being
prevalent in patients with mitochondrial disease [7, 8].
Most pathogenic mtDNA mutations are heteroplasmic,
that is wild-type and mutated mtDNA co-exist in the
cells and tissues of affected patients. Typically the mu-
tant allele would have to be present at 60% or greater
for a biochemical defect to be observed, termed the
“threshold effect” [9]. The expression of different clinical
phenotypes in patients is presumed in part to relate to
heteroplasmy levels within affected tissues. The thresh-
old for a phenotype depends on the specific mtDNA
mutation, and other factors that typically modify the ex-
pression of a pathogenic variant [9]. It is unknown if clin-
ically proven mtDNA mutations at levels insufficient to
cause clinically manifesting mitochondrial disease, could
be a risk factor for a particular complex disease, or alter
the course of disease after the person has been affected.
To investigate the possibility of CFS patients harbour-

ing clinically proven mtDNA mutations, either above the
threshold required for mtDNA disease or at a sub-
threshold level, the complete mitochondrial genome of
93 CFS patients, was sequenced using next generation
sequencing as described [10]. We used two well-
characterised cohorts of CFS patients, one form the
North East of England (n = 52) and the other from the
North-West Province of South Africa (n = 41). The CFS
patients (aged 42.94 years s.d +/- 14.6, n = 93) in both
cohorts were identified following conventional clinical
screening approaches and met the Fukuda diagnostic
criteria [11]. Potentially confounding causes of fatigue,
including depression, were excluded in all patients.

Methods
Total DNA was isolated from blood samples using
QIAamp DNA Blood Mini Kits (Qiagen). Massively par-
allel DNA sequencing of the PCR fragments were per-
formed in both strands using an Ion Personal Genome
Machine® (PGM™) Sequencer. Libraries were prepared
using Ion Plus Fragment library kits (LifeTechnologies).
Ion Xpress™ Barcode Adapters were used instead of the
universal adaptors during library preparation. Primary
data analysis was performed using the CLC Genomics
Workbench 4.6.1 (CLC bio). Standard Flowgram Format
files were imported and trimmed in order to remove low
quality nucleotides, using default settings. High quality
sequencing reads for each patient were mapped against
the revised Cambridge Reference Sequence (rCRS) of
human mtDNA (GenBank NC_012920), using default
settings, in order to obtain a consensus sequence for
each individual and to enable variation detection. Single
nucleotide polymorphisms (SNPs) were automatically
detected using the high-throughput sequence SNP

detection function, which also enables the estimation of
variant allele frequency (%), as performed in van der
Walt EM et al. [10].

Results
The variants seen in each of the 93 CFS patients are
listed in Additional file 1: Table S1, the lists were com-
piled by comparison of consensus sequence to the stand-
ard reference sequence the revised Cambridge Reference
Sequence (rCRS). We compared mtDNA variants seen
in the CFS patients (Additional file 1: Table S1) to a list
of mtDNA variants reported as pathogenic or associated
with disease on the MitoMap database [12, 13]. Variants
on the list of disease associated variants also seen in the
CFS cohort were evaluated by reference to the reporting
literature and applying accepted criteria to evaluate the
evidence for pathogenicity presented in the reporting lit-
erature [14] to ensure the variants could be classified as
proven mtDNA mutations.
The average coverage was 398 reads, with heteroplas-

mies of as low as 10% being considered in preliminary
analyses when these positions met certain criteria [10],
including to be near the average coverage. Using the
sequnce data, we detected three clinically-validated
mtDNA mutations in the CFS patients substantially
below the levels required to cause mtDNA disease these
were m.7497G > A [15, 16], m.9185 T > C [17] and
m.10197G > A [18], see Additional file 1: Table S1. The
low frequency clinically-proven variants detected in the
first phase of the analysis appeared to be genuine low-
level heteroplasmies. Given clinically-proven mtDNA
variants at low frequencies below that required to cause
mtDNA disease were of particular interest in this study,
it was important to carefully consider such findings and
conduct rigorous validation. Upon further investigation
of these low frequency mtDNA variants using pyrose-
quencing, which provides the diagnostic gold standard
for quantification of mtDNA heteroplasmy, the presence
of these variants was not confirmed and they were thus
considered as artefacts of the initial NGS on the Ion
Torrent.

Discussion
This study did not find evidence that any of our 93 CFS
patients diagnosed with the Fukuda criteria were suffer-
ing from undiagnosed mtDNA disease, nor did it un-
cover low levels of clinically proven mtDNA mutations
that might be a susceptibility factor for CFS, or impact-
ing on the course of disease. Initial exploratory sequen-
cing using NGS on the Ion Torrent indicated this was
potentially the case, but subsequent investigation apply-
ing pyrosequencing did not support this assertion. This
demonstrates the need to validate such observations on
platforms accepted for quantification in the diagnostic
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context. Blood is still used in diagnostic practice, and
was used in this study. However, it is known that the
heteroplasmy levels of mtDNA mutations can vary be-
tween tissues, with some mutations in particular the
m.3243A > G mutation being known to decline in blood
with age [19, 20]. It has been shown that for the
m.3243A > G mutation urinary epithelium is a more reli-
able indicator of the level of mutations in skeletal muscle
[21]. Despite this, in the absence of evidence of the pres-
ence of any clinically proven mtDNA mutations in the
93 patients studied here, the collection of additional tis-
sues for study would be difficult to justify, especially the
collection of skeletal muscle, which would entail an inva-
sive muscle biopsy. Deeper sequencing or targeted muta-
tion detection would be capable of detecting lower levels
of mtDNA mutation than we could detect in this study.
A study using a targeted detection method has been
used previously to show as many as 1/200 healthy indi-
viduals carry very low levels of a known mtDNA muta-
tion [22]. However, given the high levels of heteroplasmy
required to see a biochemical defect in mitochondrial
patients [9] it becomes biologically less plausible that
very low levels of mtDNA mutations would be exerting
a phenotypic effect even in the context of co-occurrence
with a disease phenotype such as CFS. The data sup-
ports the view that CFS does not fall within the
spectrum of inherited mtDNA disorders, as there is an
absence of clinically proven mutations at appreciable
levels of heteroplasmy in the 93 patients sequenced for
this study.
This work does not exclude a role for mtDNA popula-

tion variation in the susceptibility to CFS as such,
mtDNA variation has been linked to other complex dis-
eases, including multiple sclerosis [23] where fatigue is
part of the clinical presentation. In investigating the pos-
sibility that mtDNA population variation might play a
role in susceptibility to CFS, or impact on the course of
disease, alternative models such as the mutational load
hypothesis should be considered [24] as well as the trad-
itional haplogroup association model, as the later model
has been the subject of increasing levels of critical com-
ment [25]. However, to make the breakthough in under-
standing the genetics of this complex condition a large
scale-sequencing project will need to be undertaken to
help discover the genes and pathways that differ in those
suffering from this complex condition. Data from such a
“big data” genomics project will help us understand how
this disease is stratified, which in turn should help to
guide the way that patients are treated, as well as provid-
ing therapeutic targets.

Conclusions
The work supports the view that CFS should not be con-
sidered to fall within the spectrum of disease caused by

or associated with clinically proven mtDNA mutations.
That is CFS patients with mtDNA mutations are likely
to be rare. This has implications for suggested treatment
modalities of CFS patients, and for the suggested clinical
follow-up of CFS patients.

Additional file

Additional file 1: Table S1. Contains the mtDNA variants from
participants. (XLSX 24 kb)
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