Towards a Complex Adaptive Systems Paradigm of Disaster Resilience: A study of Southern African subsistence agriculture communities

C Coetzee
12996513

Thesis submitted for the degree Doctor Philosophiae in Development and Management at the Potchefstroom Campus of the North-West University

Promoter: Prof D van Niekerk
Co-promotor: Dr E Raju

October 2016
COMMENTS

The reader is reminded of the following:

• The thesis is submitted in article format consisting of 4 research articles
• The student was main author on all articles with supervisors serving as co-authors in relation to the study leading input they provided.
• Two of the articles have already been published in academic journals. These are article 1 in *Disaster Prevention and Management* and article 3 in *International Journal for Disaster Risk Reduction*. Article 2 and Article 4 have been submitted to *Natural Hazards* (article 4) and *International Journal of Disaster Risk Science* (article 2)
• Attached as appendix B, a letter of conformation by co-authors that that the articles that contained here may be submitted as part of the PhD thesis
• Attached as appendix C, letters from editors of academic journals confirming the use of the articles in the thesis
ACKNOWLEDGEMENTS

• Dewald and Emmanuel thank you for in exemplary insights in this process. I can truly say that you are more than study leaders but true friends. You inspire me to keep reaching for greater heights in my career.

• Anje, before i met you i doubted that i could complete this task. However, since you have been part of my life, i have never felt for a second that any task is to big for me to conquer. You are my support and my strength. I am very blessed to have you in my life.

• To all my colleagues at the African Centre for Disaster Studies thank you for your support and motivation through out this process.

• Leandri Kruger, thank you for your work on the bibliography. Attention to detail is not always my strong suite. Thank you for your willingness to help with this important task.

• Dr. Suria Ellis, i thank you for the work on the statistical analysis for the various studies. Thank you for making statistical analysis a little less complicated for this social scientist.

• To FAO thank you for funding the original research project and allowing me to work with the data as it allowed me to realise the goals of the study

• In country FAO teams in Madagascar, Malawi and Mozambique. Thank you for being my hands and feet where i could not always be present. You professionalism and thoroughness contributed immensely to what i could achieve within the study.

• To my parents, thank you for the sacrifices made on my behalf to bring me to this point in my academic career. Growing up i did not always appreciate these sacrifices, but now i know that i could not have been where i am without you.

“Two years ago, I was afraid of wanting anything. I figured wanting would lead to trying and trying would lead to failure. But now I find I can’t stop wanting. I want to fly somewhere in first class. I want to learn about the world. I want to surprise myself. I want to be important. I want to be the best person I can be. I want to define myself instead of having others define me. I want to win and have people be happy for me. I want to lose and get over it. I want to not be afraid of the unknown. I want to grow up and be generous and big hearted, the way people have been with me. I want an interesting and surprising life. It’s not that I think I’m going to get all these things, I just want the possibility of getting them. The possibility that things are going to change. I can’t wait.” FNL
TABLE OF CONTENTS

Comments ...i
Acknowledgements ..ii
Table of contents ...iii
Abstract ..vii

Chapter 1 Introduction ...1
 1.1 Problem statement ...1
 1.2 Central theoretical statement ...4
 1.2.1 Complex adaptive systems theory ..4
 1.2.2 Synergy between CAST and Disaster resilience ...4
 1.2.3 CAST Concepts: possible contribution in explaining disaster resilience6
 1.2.3.1 Non-linearity ...6
 1.2.3.2 Aggregation ..6
 1.2.3.3 Emergent behaviour ..7
 1.2.3.4 Feedback loops and adaptation ..7
 1.2.3.5 Context-based responses ..7
 1.2.4 Resilience building in the context of Southern African subsistence agriculture ...8
 1.3 Research design and methodology ...9
 1.3.1 Research objectives ..9
 1.3.2 Research questions ..10
 1.3.3 Research process ...13
 1.3.3.1 Stage 1 ...13
 1.3.3.2 Stage 2 ...14
 1.3.3.3 Stage 3 ...14
 1.3.4 Philosophical assumption and methodology of thesis ...14
 1.3.4.1 Research context and method ...16
 1.3.4.2 Relevance of secondary data analysis in the study context17
 1.3.4.3 Application of secondary data analysis in the study...18
 1.3.4.4 Research methods and empirical data ...20
 1.3.5 Limitations of the study ...21
 1.4 Division of chapters ..22

Chapter 2: Disaster Resilience and Complex Adaptive Systems Theory – Finding common grounds for risk reduction ..23
 1. Introduction ...24
 2. Emergence and application of resilience in DRR ...25
 2.1 Stability and resilience ...26
Chapter 3: Information feedback functions within farmers associative mechanisms and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa

1. Introduction
2. Resilience
3. Information feedback loops as key driver to resilience behaviour
4. Farmers’ associative mechanisms: stimulating adaptation through information exchange and feedback
5. Methodology
6. Analysis
 6.1 The role of farmer’s associations in stimulating information feedback for disaster recovery
 6.2 Farmers’ associations members and preferred and non-preferred disaster coping strategies
7. Discussion
8. Conclusion

Chapter 4: Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture

1. Introduction
2. Understanding disaster resilience through the lens of complex adaptive systems theory
 2.1 Emergence: historical development and modern applications
 2.1.1 Emergence and its possible implications for understanding disaster resilience
 2.1.1.1 Interacting parts
 2.1.1.2 Dynamic
 2.1.1.3 Decentralised control
 2.1.1.4 Robustness and flexibility

ABSTRACT

Title: Towards a Complex Adaptive Systems Paradigm of disaster resilience: A study of Southern African subsistence agriculture communities

Keywords: Resilience, Complex Adaptive Systems Theory, Information feedback, Emergent behaviour, non-linearity

Disasters have affected human lives, livelihoods, infrastructure, biodiversity and linked socio-ecological systems since the beginning of time. These impacts have been amplified since the 1970s thereby causing society to consider pro-active approaches to reducing the threat posed by disasters. To this end, international organisations, national governments and academia have created and introduced a vast array of disaster reduction theories, concepts, models and policies to provide theoretical and practical tools for addressing disasters risk. A contemporary disaster risk management concept that has risen to prominence over the last decade is the concept of disaster resilience. However, despite its prominent position in contemporary disaster risk management discourse and practice, confusion still exists on what exactly resilience pertains to on a theoretical level, and how to go about building resilience in practice. The thesis makes the argument that resilience is often not well understood due to the mechanistic nature of most resilience theories, models and policies currently informing our understanding of the concept. This mechanistic approach of explaining disaster resilience often leads to a very linear and shallow understanding of the processes and elements that subsume disaster resilience building processes. In practice, the shallow understanding leads to a practical implementation of resilience building projects that are based upon “one size fits all” approaches which do not address the dynamic nature of resilience within different geographic contexts. The thesis contends that understanding and building disaster resilience is an infinitely more complex process than what is observable in the current discourse. To understand such complexity, the thesis introduces Complex Adaptive Systems Theory (CAST) as a possible new paradigm through which disaster resilience can be understood. CAST is an appropriate choice as it is specifically designed to understand complex human-environmentally linked processes such as disaster resilience.

The theoretical discussion on CAST and its associated concepts is tested within the context of subsistence agriculture within the Southern African countries of Madagascar, Malawi and Mozambique. The specific context was selected due to the large dependence
of these countries upon subsistence agriculture for income and food security, and the subsequent need for improved resilience in the face of disaster risk. To gain a greater insight into the underlying dynamics that encompass resilience in the different country contexts, the thesis employed a secondary data analysis methodology on the existing data set collected on behalf of the UN’s Food and Agricultural Organisation (FAO). A combined total of 1110 respondents formed part of the study, of which Mozambique represented 40.3% (N=447) of participants, Madagascar 30.4% (N=337) and Malawi 29.4% (N=326). The data collected from these respondents was scrutinised in greater depth through the application of correlation and descriptive statistical analysis. This statistical analysis gives insight into concepts of non-linearity, aggregation, emergent behaviour, feedback loops, adaptation and context-based responses and how the aid in explaining resilience within subsistence agriculture communities in the identified countries. The results of the analysis are presented in four research articles.

Results from Research Article 1 focused upon establishing whether there were theoretical synergies between the concept of resilience and CAST. It was found that there are inherent similarities between the concept of resilience and CAST, which provide ample practical and theoretical contributions to the field of disaster risk studies. Article 2 explored the role of information feedback loops in stimulating interaction between internal and external system elements, and whether these interactions lead to complex emergent system behaviours such as disaster resilience with farming communities. The paper found that information feedback loops and interaction are key drivers for disaster resilient behaviour, as information feedback stimulates improved disaster recovery and coping capacity for subsistence farmers. Through the application of the systems concept of emergence, Article 3 attempted to illustrate how complex emergent behaviours such as disaster resilience at a macro systems level are created through the interaction between micro level system components. Results showed that the use of a combination of agricultural interventions, including small-scale irrigation systems, farmers' associative mechanisms, appropriate crop varieties, and cropping techniques at a micro systems level could lead to coping strategies and hazard avoidance strategies that contribute to the overall resilience of farming communities at a macro systems level. Article 4 explored the notion that emergent behaviours such as those discussed in Article 3 are often non-linear in nature. Results from the analysis of subsistence agriculture communities illustrated that community resilience profiles are uniquely different from context to context. This has implications for the theory and practice of disaster resilience, as it would mean that
resilience and the building thereof could not be understood by means of one size fits all approaches, and that there should be a move towards more flexible and context specific resilience building tools and methodologies.

The research showed that CAST is a useful tool for understanding resilience on two levels - theory and practice. On a theoretical level the study showed that CAST is an appropriate tool to explore disaster resilience, as it is ideally suited to provide insight into systems that are subject to constant change, learning and adaption. This capability of CAST is consistent with the operational definition of resilience presented in the thesis, and the contemporary thinking of disaster resilience as a process of “building back better” or “bouncing forward”. On a practical level the thesis showed that systems tools such as information feedback loops, emergent behaviour and non-linearity provide disaster scientists with a means to explore deeper dynamics and processes that underlie resilience behaviour in at-risk communities. To this end, information feedback loops aid our understanding of interactions that drive adaptive behaviour, emergence allows us to understand micro level systems interactions and how these interactions lead to resilience in different contexts, and finally, non-linearity places an emphasis upon resilience and the building thereof as something that should be treated as a flexible concept and interventions that should be tailor-made to each community. Importantly, the system tools identified in the thesis are inherently flexible, making them generalisable to all contexts. This is because systems tools aim to understand the process of resilience building, instead of providing an idealised version of what resilience should be. A CAST perspective on resilience accepts therefore that resilience profiles will differ from context to context, but that is crucial to understand the dynamics and underlying process that drive resilience building.

The thesis also demonstrated that the CAST perspective on building disaster resilience is not only applicable to our theoretical understanding of resilience, but that it can make a contribution to understanding resilience as it pertains to different contexts and settings. As such it was shown that within the context of subsistence agriculture in Southern Africa, CAST could reveal the composition and extent of resilience profiles within different communities. Understanding the underlying dynamic associated with the resilience profiles of individual communities is crucial, as it would allow for more appropriate resilience building and development programmes to be implemented by local and international development agencies. The addition of CAST perspectives into resilience building projects
in Southern African subsistence agriculture will also contribute to introducing the notion that building resilience is not a static outcome that can be achieved within a pre-determined time scale. Instead, it should be treated as a dynamic process, independent of set time and funding schedules. This could have major implications for how governments and international donor agencies should go about formulating, funding, implementing and monitoring future agricultural resilience building and disaster risk reduction projects within the region. CAST implies that future resilience building endeavours should be more flexible in their implementation and funding procedures, and place greater emphasis upon the bottom-up formulation (community centred approaches) of resilience building in agricultural settings, rather than donor-government driven approaches that are often top-down in their implementation and understanding of community needs.

Through the application of CAST tools it is apparent that a Complex Adaptive Systems paradigm of disaster resilience is useful, as it provides a means to focus upon the underlying drivers and dynamics associated with resilient behaviour. This is a departure from traditional paradigms of resilience which often spoke only to the capacities needed to build resilience in isolation. Introducing a Complex Adaptive Systems paradigm to our understanding of resilience is a recognition of the basic systems principle of “the whole is more than the sum of its parts,” or there is more to understanding a system than merely understanding the individual components.
CHAPTER 1
INTRODUCTION

This thesis focuses on establishing a complex adaptive systems theory paradigm of disaster resilience by focussing on subsistence agriculture communities in Southern Africa.

As a point of departure chapter 1 will attempt to give an insight into the research problem that gave rise to the subject of the thesis. This contextualisation of the research problem is followed by an explanation of the research objectives and questions identified to guide the research process. A discussion on aspects pertaining to research design including, context and research sample, philosophical underpinnings of the study, secondary data analysis as research method and empirical data collection is discussed. The chapter concludes by giving an outline of the chapters the comprise the thesis.

1.1. PROBLEM STATEMENT

On an annual basis thousands lose their lives or livelihoods due to natural and human-made hazards (IFRC, 2014). According to Pelling (2003), from the 1950s to the 1990s the number of people affected by disaster globally tripled, while the economic cost of disaster increased by a factor of 14 over the same period. Additionally, during the period of 2004-2013 disaster losses have been calculated at US$ 1,669,626 billion in spite of a part of the decade (2000-2010) serving as the international decade for disaster risk reduction (IFRC, 2014:231; Pelling, 2003). The recurrent and accumulating human and capital costs of disaster, has fostered the realisation that there must be more efficient ways of managing, mitigating and preventing disasters than merely responding to impacts (UN, 1989; Oliver-Smith, 2009:13). The introduction of the concept of disaster risk management signalled the shift to a more pro-active approach to the management of disasters. The term introduced the notion that humanity can actively manage and address the risks (hazards and social vulnerabilities) that lead to disasters. The management of disaster risk would be guided by administrative directives, policy, organisational structures, operational skills and capacities to implement strategies to lessen the adverse impacts of hazards and possible disaster impacts (UNISDR, 2009; Twigg, 2015:23). Disaster risk management therefore focuses on establishing the structural means whereby governments can start to address disaster risk. As a practical implementation of the disaster risk management function, disaster risk reduction was formulated as a broad concept to encapsulate all activities to reduce or eliminate the possible impact of disaster including reducing exposure to hazards, lessening vulnerability of people and property, improved environmental and urban planning, improved preparedness and early warning systems and fostering adaptive capacity and disaster resilience of at risk communities (Twigg, 2015:24; Mercer et al, 2010:215). Thus pre-disaster planning has emerged as a practical and necessary component to compliment traditional disaster response thinking (Lewis et al., 1976:2).
Since the early 1970 time a plethora of disaster risk management theories, tools and policies have been formulated to aid our disaster risk reduction efforts. These include (but are not limited to) the disaster management cycle (Baird, O'Keefe, Westgate and Wisner, 1975), pressure and release model (PAR) (Wisner et al., 2003) and international policy measures such as the Yokohama Protocol (1994), the International Decade for Natural Disaster Reduction (1990-2000), and the International Strategy for Disaster Reduction (2001-2010), all of which aimed to contribute to curbing disaster losses. During this genesis of new ideas and protocols on proactive ways of dealing with disaster, disaster resilience also emerged into the lexicon of disaster management (Miller et al., 2010; Gellertaro et al., 2010).

The concept of resilience remains one of the most contested in the field of disaster risk studies (Manyena, 2006:433; Gaillard, 2010:220; McEntire, 2005:209). Compared to other disaster risk reduction terminology, academics and practitioners are still arguing the merits of the concept of resilience (Manyena, 2006:434; Gaillard, 2010:220; Klein et al., 2003:40; Zobel, 2011:395). Some of the confusion around the concept of resilience and how it should be applied can be said to lie with three issues: a confusion around how disaster resilience should be defined; how it can be measured and the subsequent practical orientation to how resilience should be increased (resilience is often viewed as an outcome to produce an equilibrium, and not a continuous process of adaptation) (Klein et al. 2003; Manyena, 2006; Renschler et al. 2010; Alexander, 2013, Zhou et al., 2010). These theoretical and practical complications have caused disaster risk scientists and practitioners to often take a narrow or linear view on how disaster resilience can be quantified and explained (Maru, 2010). The linear reasoning contained in both the existing theory and policies has placed a lesser importance on gaining a holistic understanding of a social contexts and interactions within the society (between group members, capacities, external stakeholders) that underlies resilient behaviour and instead emphasises is placed on the need to identify generic categories and goals that are perceived to contribute most to reducing disaster risk and building disaster resilience (Matthews et al. 1999 Turner et al. 2004). This, however, ignores the reality that very little of the world or even regions within the same country is the same (Cutter et al. 2008; Cordona 2004; Zhou et al, 2010).

Linear thinking about building disaster resilience as contained in policy and theory has been problematic because without taking into account a society’s complex context-specific variables (social, economic, political, physical, ecological) there can be very little success in building resilience and reducing disaster losses. This is supported by Cardona (2004) and Alexander (2013) who indicate that there has been limited success in building adaptive resilience within at-risk communities over the past 25 years (since the declaration of the International Decade for Natural Disaster Reduction in 1990). The limitations of current policies and theoretical tools in building disaster resilience is further reiterated in both the Hyogo Framework for Action and the Sendai Framework for DRR:
“Disaster loss is on the rise with grave consequences for the survival, dignity and livelihood of individuals, particularly the poor, and hard-won development gains. In the past two decades, on average more than 200 million people have been affected every year by disasters” (UN/ISDR, 2005).

and

“Over the same 10-year time frame (the period of implementation for the Hyogo Framework, 2005-2015), however, disasters have continued to exact a heavy toll, and as a result the well-being and safety of persons, communities and countries as a whole have been affected. Over 700 thousand people lost their lives, over 1.4 million were injured and approximately 23 million were made homeless as a result of disasters. Overall, more than 1.5 billion people were affected by disasters in various ways. Women, children and people in vulnerable situations were disproportionately affected. The total economic loss was more than $1.3 trillion. In addition, between 2008 and 2012, 144 million people were displaced by disasters “(UN/ISDR, 2015).

In light of the above Mayunga (2007:3-5) and Hufschmidt (2011) both agree that new conceptualisations of disaster resilience is needed. These should place more emphasis on the intimate connections between resilience of communities and capacities available to them, to not only cope with, but continuously adapt, learn and change their behaviour to perceived future disaster impacts. This conceptualisation of resilience opens up many possibilities for the way disasters are managed and understood. Specifically, it contributes to the idea that, as with any other social system, building community resilience to disasters is inherently a non-linear, open system process where new information can continuously flow in and out of, thereby changing the system dynamics - or in this instance, the composition of community resilience profiles. This would be a dramatic departure from the approach followed by contemporary disaster policies and theories which often treat disaster resilience and the building thereof as a linear, closed-system process (Sawyer, 2004). Importantly, the open system process of building community resilience implied by the above-mentioned definition opens up the possibility of applying theoretical tools such as Complex Adaptive Systems Theory (CAST) which is specifically designed to provide a holistic perspective on the dynamic complexity and interactions that form part of the functioning of open systems such as the building of disaster resilience (Kast and Rosenzweig, 1972; Levin, 1998. Von Bertalanfy, 1972; Skyttner, 2005).

In light of the above discussion the purpose of the thesis is therefor to provide a paradigm shift away from the notion that disaster resilience can be built within disaster affected communities by the application “one size fits all” models and policy frameworks that are based on a linear understanding of how societies function. Instead the thesis proposes moving towards a more holistic systems-based understanding of disaster resilience as a possible paradigm shift away from the traditional linear approach through the application of CAST and its associated concepts. With
this in mind the thesis identifies the potential contribution of CAST in understanding disaster resilience and identifies specific elements such as non-linearity, emergent behaviour and feedback loops as key drivers understanding in gaining a more in depth understanding of resilience in social systems.

CAST will now be elaborated on as the central theory that would guide the study.

1.2 CENTRAL THEORETICAL STATEMENT

The complexity presented by the influence of different contexts on the make-up of resilience profiles for different communities compels us to use theoretical analysis tools that could assist in examining the associated complexity. A theoretical tool that provides possible avenues for exploration is complex adaptive systems (CAST) theory.

1.2.1 Complex Adaptive Systems Theory

Systems theory has been formulated to give scientist an insight into complex systems of all types, be it human, environmental or mechanical (Boulding, 1956; Ashby, 1960; Buckley, 1968; Becker, 2009:14; Skyttner, 2005:49-108; Richardson, 2005). Systems science makes the argument that systems can only be understood by recognising that systems are shaped by their interaction with one another i.e humans by their environment and vice-versa (Skyttner, 2005:3; Von Bertalanffy, 1972:417; Whitchurch and Constantine, 1993:325). It also aims to facilitate an understanding of the emergent behaviours that result due to interactions and how these constantly change over time (Skyttner, 2005:3; Meadows, 2008:2; Boulding, 1956:197). Systems theory therefore provides an avenue for disaster scientist to explore the deeper interactions between system components that would lead to the emergence of disaster resilience (Kast and Rosenzweig, 1972:450; Von Bertalanffy, 1972:415). A specific variation of systems theory, referred to as Complex Adaptive System (CAST) theory, presents an interesting tool for studying a dynamic concept such as resilience (Holland, 1992; Hartvigsen, 1998)

CAST is a variation of traditional systems theory that emerged in the natural science fields of ecology and biology to try and explain non-linear adaptation on micro and macro scales in the natural environment (Hartvigsen, 1998:427; Holden, 2005:652; Ahmed et al., 2005:2; Levin, 1999:432). Holland (1992:17) states that CAST was created as a means to comprehend inherently non-linear systems such as economies, brain biology and immune systems that are impossible to accurately simulate using linear diagnostic tools such as computers. Railsback (2001:47) adds that at the core of CAST analysis is an attempt to show how the simple interaction between individual elements at a micro level lead to very complex behaviours at a macro level. For all its potential in explaining complexity in systems behaviour, the social sciences have been very slow to adopt CAST as possible means of analysing human behaviour and larger social systems (Innes and
Boomer, 1999: 416-417; Holden, 2005:652). This in spite of the fact as iterated by Lansing (2003:183), that CAST concepts such as systems emergence (“the idea that larger patterns with new properties can emerge from local interactions”) could contribute significantly to our understanding of how micro level decision making impacts positively or negatively on larger social system dynamics. Hartvigsen et al. (1998:428) also highlights the potential of CAST in social research in stating that CAST provides us with a means of analysing and understanding social dynamics as an aggregate of interacting and diverse set individual behaviours. The benefit of analysing society in this way is that it would give us more accurate impressions of population-level and community-level behaviour (Railsback, 2001:48; Hartvigsen, 1998).

Rammel (2007:10) conceptualises the key tenants of CAST, which are: (1) CAST aims to understand complex emergent behaviour at a macro level by looking at interactions between heterogeneous components at a micro level; (2) All CAST systems are characterised by their ability to learn from their environment; and (3) this learning aims to bring about adaptation or change to the system that helps it survive or absorb shocks to the system. Consequently, complex adaptive systems can be said to be inherently characterised by panarchy, or the ability to be dynamically influenced or adapt to changes that emerge within or from outside the system (Gunderson and Holling, 2002; Folke et al., 2004:558).

1.2.2. Synergy between CAST and Disaster resilience

The key tenants of CAST expounded above highlights the importance of studying disaster resilience through the theoretical lens of complex adaptive systems theory. Disaster resilience is currently not fully understood or even measurable because the contextually based capacities lead to communities showing differing resilience profiles, often within the same regions (Plsek, 2001:311). Holland (1999:18), Rammel (2007:10) and Innes and Booher (1999: 416) all emphasise that CAST is an excellent tool for analysing systems that are constantly changing (“functioning at the edge of chaos”) and that constitute what can be described as “moving targets” or anarchy (Cutter et al., 2008:601). Addressing disaster resilience as a CAST places the emphasis on understanding individual capacities and how these interact to generate resilience (Hartvigsen et al., 1998:427). This might provide insight into those capacities that most likely contribute to positive emergent behaviour and improved disaster resilience within a specific context (Holden, 2005:654; Rommel, 200:10; Zhou et al., 2010:29). Importantly, basing the analysis of resilience and the formulation of subsequent models for understanding resilience on CAST means that there is an inherent understanding that resilience is not the end-point for a society to achieve, but rather a journey that will lead to constant adaptive change (Norris, 2008:130; Rose, 2007:87). This philosophical orientation significantly increases our chances of gaining a holistic impression of societal resilience (Holland, 1992:20). A disaster resilient system is inherently an open system that is able to learn from previous disaster impacts and that makes creative adaptation (from information feedback loops) possible (Ahmed et al., 2005:3; Holden, 2005:656; Lansing 2003:183).
Additionally, CAST will allow the tracking of so-called "second and third order" effects brought about in a society because of improved disaster resilience (Innes and Booher, 1999:416).

On a theoretical level, the underlying principles of disaster resilience and CAST are very similar, warranting the use of CAST as the main theoretical analysis tool for the proposed study. Due to its contribution in deciphering complexity as it pertains to disaster resilience, CAST would greatly assist in gaining a better understanding of resilience in all contexts. One such context that could benefit from the application of a CAST perspective on resilience in subsistence agriculture in Southern Africa. Subsistence agriculture is a large source of income and food security for communities throughout the region. However, this crucial livelihood is constantly threatened by the impact of disasters. A greater understanding of how resilience is constituted through the application of CAST could provide practical insights on how best to build disaster resilience in order to protect livelihoods of substance farmers throughout the region.

1.2.3 CAST concepts: possible contribution in explaining disaster resilience

An extensive review of literature sources highlight certain key characteristics of complex adaptive systems theory. These key characteristics include the concepts of non-linearity, aggregation, emergent behaviour, feedback loops and adaptation and context based responses. The theoretical base of each of these elements have been extensively developed (although not applied to disaster resilience contexts) and the use of the elements is seen as indispensable to the understanding of the functioning of complex adaptive systems by (Boal and Schultz, 2007; Innes and Booher, 1999:417; Rammel et al., 2007). The integral nature of the elements to understanding the functioning of complex adaptive systems therefore serves as a rational for their use to guide the theoretical arguments and analysis within the thesis. Although the discussion is by no means an extensive listing of possible synergies between CAST and disaster resilience, some of the key characteristics and their possible application to understanding disaster resilience is listed below.

1.2.3.1 Non-linearity

The basic premise of non-linearity in CAST is that the size of inputs into a system might not be proportional to expected outputs (Boal and Schultz, 2007; Railsback, 2001). Specifically, small seemingly insignificant variables or inputs in a system might fundamentally change the operation of a system whilst major inputs or variables might have no impact in changing the system (Schneider and Somers, 2006; Plsek, 2001). This notion is in line with the work of Lorenz (1963) and Chaos Theory. By viewing disaster resilience through the lens of non-linearity it might be possible to determine or track impact of individual variables on the overall generation of disaster resilience in a society. This element is discussed in article 4 of the thesis.

1.2.3.2 Aggregation
According to Levin (1998:432), aggregation is the process whereby individuals in complex systems arrange themselves into sub-groups or hierarchal organisation that have similar interests, needs and practices they have. Once sub-groups are formed they do not remain isolated. Instead, multiple interactions are established between different sub-groups that allows for dynamic development and adaptation to changing environments (Railsback, 2001; Boal and Schultz, 2007). The concept of aggregation provides interesting avenues of exploration within the field of disaster resilience, as it would help to focus some attention on the role, correlation and total contribution of social coping mechanisms to the overall resilience of a society. This element is not discussed directly with an article of its own but does form part of the discussion role of farmers’ associative mechanism in stimulating information feedback towards generating disaster resilience. See article 2.

1.2.3.3 Emergent behaviour
According to Innes and Booher (1999, p. 417) emergent behaviour is one of key characteristics of CAST. Emergence refers to how system-level properties, characteristics and patterns emerge from interaction between individual elements at a micro level, even though the individual elements bare no similarity the final wider system characteristics (Railsback, 2001; Schneider and Somers, 2006; Hartvigsen et al., 1998). The concept of emergence could be useful in the exploration of disaster resilience as it will allow for the investigation into how an aggregation of smaller variables could lead to improving resilience profiles of disaster effected communities. This element is discussed in article 3 of the thesis.

1.2.3.4 Feedback loops and adaptation
According to Walker et al. (2012) and Holden (2005) feedback loops play a crucial role in the development of CAST by either enhancing, stimulating, detracting or inhibiting elements within the existing system. Through these processes feedback loops allow for learning and adaptation within a dynamic environment thereby preventing the extinction of a system (Begun et al., 2003; Rammel et al., 2007; Innes and Booher, 1999). The study of feedback loops allows for greater insight into how communities learn from past events to improve their overall level of disaster resilience. It could also provide insight into the second and third order knock on effects of building disaster resilience within a specific community Innes and Booher (1999). This element is discussed in article 2 of the thesis.

1.2.3.5 Context-based responses
A crucial aspect of CAST is its emphasis on the importance of context on the functioning of a system (Boal and Schultz, 2007). According to Holden (2005) and Holland (1992) any complex system is inseparable from the context and history that it finds itself in. The influence of context on CAST is so extensive that it contributes to making each CAST unique (Begun et al., 2003; Hartvigsen et al., 1998). However, the context of a CAST is not static and can also be altered due
to the dynamic interaction between interconnected elements (Holden, 2005). For instance, dramatic events at a local level (i.e. disaster in a community) does not only change of the context of the community itself, but could also cause changes at national and regional level (e.g. changes in disaster risk management policies), which in turn would impact once again on the context of the community (Zhou et al., 2010; Schneider and Somers, 2006). The emphasis on understanding of the context provides an opportunity of not only studying the aggregation of unique element’s that make a community resilient on a case to case basis but also allows form the exploration of the interconnectedness of elements and how changes at lower levels of a system can change the wider context of resilience. This element is a cross-cutting issues within the thesis. The theoretical need for considering context based responses is established in article 1 and practical applications are considered in articles 2-4.

The various characteristics highlighted above was applied to the context of subsistence agriculture communities in Southern Africa. The rational for selecting the community will be briefly highlighted.

1.2.4 Resilience building in the context of Southern African subsistence agriculture

Morton (2007:19680) characterises subsistence agriculture as a livelihood strategy where the majority of agricultural output produced is for household consumption, and only a fraction of the produced is marketed to augment household income. Subsistence agriculture is also characterised by minimal access by farmers to productive inputs such as land, equipment water and fertiliser (Cooper et al, 2008:26; Conway, 2008:31; IFAD, 2011). Consequently subsistence farmers in many parts of the globe, including those in Southern Africa, mostly depend on stability of weather patterns and rainfall to produce food to support their livelihood strategy (Davies et al, 2009:3; Cooke, 2015:37;UN ECA-SA, 2013:4). According to Clay (2003:18) this dependance on erratic and ever changing weather patterns increases the overall vulnerability of subsistence farming population, especially in terms of levels of poverty and food security. Increasing vulnerability of subsistence farming communities is concerning in the context of Southern Africa.

Currently, subsistence agriculture is one of the most common livelihood strategies in Southern Africa and contributes significantly to the regions economy (Davies et al, 2009:11; IFAD, 2011). According to Abdalla (2007:52) and UN ECA-SA (2013:2) between 80-85% of the population of the region are dependant on subsistence agriculture as their primary livelihood strategy (including for substance, income and employment). This sector is however severely threatened by two overarching constraints, i.e. weather related risk and structural constraints, both of which could increase vulnerability and reduce resilience to disasters for subsistence agricultural communities (Morton, 2007:19683). The first constraint, weather related risk, has in the past severely affect the region. According to Clay et al (2003:17) and Abdalla (2007:21) droughts are the most common hazard in the region with major drought occurring in 1991/1992 (region wide), 1993/1994 (Malawi, Mozambique, Zambia), 1997/1998. These droughts severely affected food production on household and country levels, with the greatest impact being felt by poor, subsistence farming communities (Clay et al, 2003:17; Abdalla, 2007:21). Flooding also occurred in the region with
prominent flood events occurring in 1999/2000 (region wide), 2001 (Mozambique). The impact of drought and flood events have continued to cause large scale devastation, with UNOCHA-ROSA (2015) estimating a total number of 27 million and 6.7 million people affected by droughts and floods in the region for the period between 2005-2015. Various scholars observe that the impact of droughts and floods on subsistence agriculture in the region is in all likelihood going to increase with the influence of climate change in decades to follow (Cooper et al, 2008:25; Clay et al, 2003:18; Morton, 2007:19684, Davies et al, 2009:3 IFAD, 2011). This change in the normal climate regime provides special challenges to subsistence farmers in Southern Africa as they often do not have the structural means to adapt to rapid changes in their environment. Morton (2007:19682-1683), Conway (2008:31) and Cooke (2015:37) highlights that non-climatic stressors such as poor market access, poor government and organised agriculture support (policy, extension services, limited farmers associative mechanisms), lacking or underdeveloped agriculture inputs (irrigation, crop varieties, small farm sizes) poor cropping techniques, environmental degradation and lack of insurance mechanisms hamper the overall level of adaptability of subsistence farming communities in the region.

The ability to adapt and change behaviour are crucial aspects of the concept of resilience. Therefore, the lack of adaptive capacity of Southern African subsistence agriculture communities to environmental and structural stressors could also be linked to the concept of disaster resilience. According to Stringer et al (2009:749) the study and building of resilience is crucial as it aids in reducing vulnerability and builds adaptive capacity of subsistence farming communities to multiple threats. The study will therefore primarily focus on creating a more in-depth understanding of resilience, but will use subsistence agriculture communities in Southern Africa as a relevant case study tool as they constitute a community with low levels of disaster resilience.

1.3 RESEARCH DESIGN AND METHODOLOGY

As elaborated on in section 1.2, the thesis aimed to identify the potential contribution of CAST and its specific elements such as non-linearity, emergent behaviour and feedback loops in understanding disaster resilience. To achieve the research purpose as specific research design and methodology had to be applied. This section will highlight some of the key methodological step that applied to achieve the researches overall purpose. As a point of departure the research objectives formulated to guide the study are discussed. This is followed by an in-depth discussion on the research question formulated for the study and how the researcher envisioned these questions to link together to give answers pertaining to the overall research goal.

1.3.1 Research Objectives

The research objectives formulated for the thesis are as follows:
RO 1: Determine the theoretical tenets of resilience and Complex Adaptive Systems Theory.

RO 2: Explore the theoretical linkages between Complex Adaptive Systems Theory and the concept of Resilience.

RO 3: Explain how information feedback within farmers associative mechanisms play a role in fostering disaster resilient behaviour.

RO 4: Determine the basic theoretical principles associated with systems emergence.

RO 5: Explain how systems emergence contributes to understanding and building disaster resilience in agricultural communities.

RO 6: Determine the basic theoretical principles associated with systems principle of non-linearity.

RO 7: Explain the implications of the concept non-linearity on our understanding of disaster resilience and the building thereof.

1.3.2 Research questions

This section describes the research questions and how they were formulated. The overall research question for the study was formulated as follows:

Can a Complex Adaptive Systems paradigm provide an alternate understanding of how to build disaster resilience?

This question was broken down into sub-questions that prescribes how the research was focused, in order to achieve the overall research objective. They are:

RQ 1: What are the theoretical tenets of resilience and Complex Adaptive Systems Theory?

RQ 2: What are the theoretical linkages between Complex Adaptive Systems Theory and the concept of Resilience?

The thesis had to firstly establish if there is a theoretical linkage between the concept of resilience and the theory (CAST) that would guide the subsequent analysis process. RQ1 and RQ2 were formulated to work in unison to illuminate possible areas of synergy between the two areas. RQ1 aimed to identify and separate the key tenants of the individual areas of inquiry (Resilience and
CAST). Once RQ1 had been achieved, RQ 2 endeavoured to identify similarities between the different areas and the possible application of CAST elements in understanding disaster resilience.

To test whether the theoretical conclusions reached and system based tools identified by RQ 1 and RQ 2 were applicable to understanding resilience in reality it was necessary to elaborate on and test some of systems based tools for understanding resilience. The system tools identified could be sorted into **cross-cutting issues** and **priority investigation issues**. It was found that a subject like context based responses would not need to be investigated in a separate article as different social context would effect feedback loops, emergence and lead to non-linearity. As such, context based responses would feature in all these specific articles in some form. Priority investigation issues would have to be addressed in separate articles, as these elements have extensive theoretical literature connected to them. The understanding of which would provide a clearer insight into how systems function and could stimulate system wide resilience. Priority investigation issues would focus on the elements of information feedback loops, emergence and non-linearity. These priority investigation issues would also be applied to the context of subsistence agriculture communities in three Southern African countries. The following broad(BQ) and specific (RQ) research question were formulated per priority investigation issues:

BQ: Does CAST concepts advance current resilience thinking?

RQ 3: How does information feedback within farmers’ associative mechanisms play a role in fostering disaster resilient behaviour (see article 2)

This research question served as an important point of departure for the study once the theoretical grounding was established **(RQ 1 and 2; Article 1)**. The reason for this was that within complex adaptive systems theory it is argued that adaptation and change (and by extension resilience behaviour) within systems are controlled by the presence of information feedback loops. Information feedback loops allow for interaction to take place between internal and external system elements, and from these interactions, complex emergent system behaviours such as disaster resilience can arise. Therefore, RQ 3 was formulated with the view of identifying central role information feedback in driving systems to more resilient behaviour.

Information feedback loops and interaction play a central role in the emergence of system wide behaviours including disaster resilience. The identification of emergent behaviour stimulated the question about what emergence entails on a theoretical and practical level. Therefore, RQ 4 and RQ 5 were formulated to create a more in-depth understanding of the functioning of emergence and emergent system behaviour.

RQ 4: What are the basic theoretical principles associated with systems emergence?
RQ 5: How does systems emergence contribute to understanding and building disaster resilience in agricultural communities?

RQ 4 was crucial as a means to identify the theoretical concepts associated with emergence. Identifying the key concepts related to emergence would allow the researcher to have a theoretical insight into the workings of emergence. This would also provide a theoretical parameter that would guide the practical analysis of how emergence could aid in building disaster. This practical application was be guided by answering RQ5.

RQ 5 was formulated with the view of the determining the specific benefits of using the systems concept of emergence has for the understanding of disaster resilience. The question gave guidance to the practical application of the concepts identified in RQ4. The results from RQ5 gave an indication of how micro-level interactions could escalate into macro level behaviours such as disaster resilience. This resilience could be beneficial to the system as a whole. However, a cursory literature review towards answering RQ5 established that emergent behaviour is inherently a non-linear in its outcome. This means that even though resilience could emerge due to micro-level interactions, how one would get to the macro level resilience behaviour would differ from community to community as contextual factors would greatly influence micro level interactions that subsume the emergence of resilient behaviour.

This finding was significant in that traditionally the building of resilience is treated as a very linear process, with “one size fits all” models to building disaster resilience being the norm in disaster risk science. The notion of non-linearity and its applicability was therefore crucial to explore, if there is to be a move to a systems paradigm of disaster resilience. RQ 6 and RQ 7 were formulated to give guidance on non-linearity ‘s possible contribution to understanding disaster resilience

RQ 6: What are the basic theoretical principles associated with systems principle of non-linearity?

RQ 7: What are the implications of the concept non-linearity on our understanding of disaster resilience and the building thereof?

RQ 6 and RQ 7 were formulated with the intention to work in unison. As was stipulated when exploring the concept of emergence, the theory stated that macro level behaviour such as resilience can emerge because of micro level interactions, but that that the process of how the behaviour might emerge would be different depending on the context. To test this implication RQ 6 had to be formulated to give a solid theoretical understanding of what non-linearity refers and what the implication of these theoretical tenants are to the understanding of resilience. This would be followed up by RQ 7, which would aim to practically apply the theory of non-linearity to the case of agricultural communities. From this application patterns of non-linear behaviour would be identified.
and the implication of these patterns for our traditional understanding and building of resilience would be explored.

1.3.3 Research Process

The research questions described in the preceding section were developed in a process that unfolded over a period of 2 years. Therefore, this section does not necessarily reflect the original research plan, due to dynamic changes that occurred as the research process evolved. Figure 2 shows the three stages that comprised the research process.

Figure 2: Stages of the research process

1.3.3.1 Stage 1

Paper 1 was developed during this stage. This paper provided the foundation for the research as it aimed to establish a theoretical link between the concept of disaster resilience and the theory of CAST. Stage 1 established that on a theoretical level the underlying principles of disaster resilience and CAS are very similar, warranting the use of CAST as a theoretical analysis tool for further study of resilience. Specifically, elements of non-linearity, aggregation, emergent behaviour, feedback loops, adaptation and context-based responses were found would assist researchers focusing on the issues of disaster resilience to gain a holistic view of the dynamic interaction between resilience generating factors and local, sub-national and national and sectorial context in which they function. The results motivated the more in-depth investigation of feedback loops, emergent behaviour and non-linearity. Context based responses, aggregation and adaptation would be treated as cross cutting issues across the papers produced in stage 2 and 3.
1.3.3.2 Stage 2

Figure 2 shows that paper 1 directly led to the development of paper 2. During the development of paper 1 it became clear that information feedback is the key driver to adaptive behaviour that is a prerequisite to moving to more resilient societies. This finding therefore warranted the formulation of paper 2. The development of paper 2, reviewed that due to information feedback between micro level elements could leave to macro-level behaviour through the process of emergence. This finding influenced the formulation of paper 3. Within paper 3 it was established that although macro level resilience could emerge due to micro level interactions, the emergent behaviour would be non-linear due to unique contextual factors of communities.

1.3.3.3 Stage 3

Stage 3 presented an investigation of a specific challenge. In this instance paper 4 addresses the issues that contemporary understanding and addressing of disaster resilience often approach the process in a very linear way. In this instance it is argued that linear approaches to building resilience does not talk to the reality that very little of the world or even regions within a country is the same. Paper reports the results of testing the influence on non-linearity in different agricultural context and illustrates that considering the CAST concept of non-linearity would allow for a move to more context specific resilience building interventions instead of “one size fits all approaches”.

1.3.4. Philosophical assumption and methodology of thesis

There are three dominant research paradigms namely positivism, interpretivism and transformativism that help to frame the purpose and outcomes of a research intervention (Paterson and Williams, 2005:38). Positivism and interpretivism (also referred to as anti-positivism) represent polar opposite paradigms in that positivism argues for a research intervention to be mostly quantitative, based on the world of numbers and statistics as separated from human feelings/values and beliefs (Snape and Spencer, 2013). Interpretivism focuses mostly on the realm of trying to understand the social world by deciphering human emotions, beliefs and values by means of qualitative inquiry (Ponterotto, 2005). Additional to these two paradigms is the paradigm of transformativism. This paradigm departs from the point of view that scientific inquiry should contribute to addressing structural injustices, inequalities and asymmetries within society (Mertens, 2007).

Although all these paradigms have relevant application for the proposed research study, none of them constitute an outright match to assist with addressing the research question and objectives. Instead, to accommodate the overarching positive qualities of all three these paradigms, a transdisciplinary paradigm was selected to guide the research study. On a theoretical level, transdisciplinary paradigms incorporate methods, concepts and tools from other research disciplines to bring about a holistic understanding and problem solving ability within different
research environments (Alroe and Kristensen, 2001:17; Nowotney et al, 2003:186). This characteristic of transdisciplinary research is ideally suited to understand a complex issue such as disaster resilience in agriculture. Specifically, it allowed the researcher to employ both qualitative and quantitative research concepts, theoretical frameworks and tools, to help to understand the dynamic interactions of variables that can contribute to generating resilience within societies.

Notwotney et al (2003:191), Scott (2003:78) and Gibbons (2000:159-160) highlights that a transdisciplinary approach to research is ideally suited to research context where new methodologies, theories and concepts are being designed. This characteristic is extremely relevant to the context of this study as it intends to explore the application of complex adaptive system theory to the understanding of disaster resilience, something that has not yet bee attempted. The novelty of the study therefore forces the researcher to apply a trans-disciplinary research paradigm comprising of multiple research approaches and tools in a single study.

The selection of a transdisciplinary research paradigm also allowed for an applicable research ontology, epistemology and axiology. In a research context, ontology refers to a broader philosophical paradigm that guides the study based on the researchers “beliefs about the nature of the social world and what can be known about it” (Snape and Spencer, 2013:13; Winter, 2001:587; Scholz et al., 2006: 233). The ontology of a transdisciplinary study postulates that although differences exist between studies focused on the natural and human systems, it becomes almost a logical fallacy in treating these two systems as separate. Instead, meaning and understanding of reality can only be generated in a holistic manner, searching for possible linkages between knowledge about nature and society that would provide a deeper understanding of human systems in their entirety (Snape and Spencer, 2013:13). This orientation suited the proposed study as understanding factors that contribute to generating disaster resilience in agricultural settings would require the study to take into account factors from the natural and social environments of the communities (Alroe and Kristensen, 2001:4). Finally, selecting this approach allowed for the selection of a holistic research paradigm, such as Complex Adaptive Systems Theory, which allowed for the incorporation and consideration of variables from the natural and human environment.

According to Farley et al. (2009:61) and Scholz et al. (2006:233), “epistemology is concerned with ways of knowing and learning about the social world and focuses on questions such as: how can we know about reality and what is the basis of our knowledge?”. A primary concern of epistemology is the relationship between the researcher and the researched (Snape and Spencer, 2013:13). In the case of this study, a secondary data analysis was conducted, so there is no direct relationship with the “researched”. However, the research data base from which the proposed study was generated was collected with the aim of being as inclusive as possible to ensure agreement between the researcher and the researched on key issues (Snape and Spencer, 2013:13). The questionnaire was developed by the primary research partner (African Centre for Disaster Studies), but before it was implemented in the field, the questionnaire went through
several peer review processes, and a pilot study, with FAO and in-country partners in Malawi, Mozambique and Madagascar to assure the relevance and accuracy of the questions being asked. This co-production of knowledge was extended to the research participants, as they were not only asked to answer quantitative question, but were encouraged to elaborate on the qualitative issues to provide deeper insights into aspects of the research. Once the draft report was generated, the collaborative nature of the research was continued with in-country partners who provided peer review and input towards the final project report. The collaborative approach applied to the study is indicative of the underlying axiology of the research project.

According to Jahani and El-Gohary (2012:798), if the term axiology is to be broken down to its Greek roots, two components can be identified, ‘axios’ and ‘logos’, meaning ‘value’ and ‘theory’ respectively. On a practical level, axiology relates to the underlying values at the core of the development of theory or knowledge within scientific research. Within traditional research paradigms such as positivism and interpretivism, strict adherence to disciplinary knowledge systems and research traditions form the core of why and how research is conducted. Traditionally there is very limited transdisciplinary integration of knowledge to explore a research problem. This value limitation is problematic when addressing a problem in a complex field such as disaster risk management, which inherently deals with multi-dimensional problems, such as building societal resilience to disaster risk, which is in turn the focus of the research study. Therefore, the axiology of the study drew on information and models that were not solely based in the field of disaster risk management, but made use of a diverse disciplinary and non-disciplinary models from knowledge fields such as systems theory, agriculture, sustainable development and human ecology to analyse contextual factors that are crucial in generating societal disaster resilience.

The discussion on research paradigms, ontology, epistemology and axiology has sketched the philosophical inclinations that gave guidance to the thesis. The next section focuses on the research context and methods applied within the study.

1.3.4.1 Research Context and Method
The study was based on an extended research project conducted as part of a research team on behalf of the Food and Agricultural Organization of the United Nations in three Southern African states namely Madagascar, Malawi and Mozambique (see figure 2). A combined total of 1110 respondents formed part of the study, of which Mozambique represented 40.3% (N=447) of participants, Madagascar 30.4% (N=337) and Malawi 29.4% (N=326). The main driver behind the study was the realisation that Southern Africa’s ever-changing risk profile poses a very real threat to exploiting the existing societal vulnerabilities, which could lead to catastrophic disasters in the region. Notably within the region small scale, subsistence agriculture plays a crucial role in generating livelihoods and food security for households and society as a whole. Although this sector is seen as a primary driver for social-economic development and food security, it still remains one of the most vulnerable to the impact of hazards. As such one of the proposed outcomes of the original study was to identify factors that could build resilience in the context of
livelihood systems, which when threatened by shocks, severe events and hazards, have the potential to help the system to recover from and adapt to adverse outcomes. Specifically, the study tried to track the relative contribution of the following agricultural inputs to building resilience in all three countries:

- Small-scale irrigation systems;
- Farmers’ associative mechanisms;
- Appropriate crop varieties;
- Cropping Techniques; and
- Timing of production.

The study provided a wealth of data that was not fully analysed or presented in the final report to FAO. This unexplored data set provided interesting insight into the macro level agricultural resilience in the region, and also provide an opportunity to identify contextual drivers of resilience within each country and sub-region. Due to the fact that much of the data from the project was not analysed, the thesis employed a secondary data analysis methodology on the existing data set. The section to follow will highlight the rationale for the selection of secondary data analysis methodology and why it was relevant to achieving the outcomes of the study.

1.3.4.2 Relevance of secondary data analysis in the study context

Methodologically, secondary data analysis can be defined in various ways. According to Rew et al. (2000:223), secondary analysis relates to using existing data sets, and formulating new lines of enquiry that might not have been the focus of the original study. Ritchie et al. (2003:89), Coyer and Gallo (2005:60) and Windle (2010:332) agree that secondary data analysis can be identified by the revisiting of existing data sets and applying new research objectives to illuminate different perspectives. However, each of these sources also highlights additional aspects that are key to understanding what secondary analysis is, and why it would be useful for the proposed study. For instance, according to Ritchie et al. (2003:89), secondary data analysis is a method that not only allows the researcher to conduct research with a new set of research objectives, it also allows for historical comparative studies due to the existence of multiple data sets, and for the application of new theoretical perspectives on the same data sets. Coyer and Gallo (2005:60) elaborate briefly that secondary research is an ideal tool for studies with large sets of statistical data as it allows the researcher the opportunity to apply different statistical techniques and methods to the data to generate multiple perspectives. Windle (2010:332) adds another crucial perspective on the use of secondary data analysis as an appropriate methodology in stating that:

“It allows for the analysis of an existing dataset to address a different research question or to conduct research with data that was not collected for research purposes”.

17
The quality highlighted by Windle (2010) provides an appropriate link to the relevance of the use of secondary data analysis as an appropriate method of inquiry for the study. The data set collected for the FAO project was collected primarily to gain baseline information on five resilience-generating factors in agricultural communities in Malawi, Mozambique and Madagascar. The data collection did not make provision for the application of theoretical models such as Complex Adaptive Systems Theory, as an academic audience was not the intended recipient of the final report, but disaster practitioners within the target countries. Additionally, the data were collected with a certain set of prescribed research objectives (as per the direction of FAO) that would help to establish basic indicators of resilience in farming communities. This was subsequently done, but the wealth and depth of the data collected allowed for the possibility of more in-depth analysis of resilience and for isolating those emergent systems behaviours that contribute to building resilience. A secondary analysis of the data set is therefore not only possible, but also crucial if the thesis is to give insights into the dynamic nature of resilience in agricultural settings.

From the discussion above it is clear that there was a clear theoretical grounding and benefit to applying secondary data analysis as a means of extrapolating new research focuses from existing data sets, as is the case with this thesis. The proposed application of the secondary data analysis research is touched on next.

1.3.4.3 Application of secondary data analysis in the study

According to Windle (2010:332-333), secondary data analysis can be applied to study either as an appended study or meta-analysis. A meta-analysis would refer to a study that compares data sets from different studies to identify positive or negative correlations between the different sets of data (Scandura and Williams, 2000:1251). This is opposed to an appended study, which opts to use the same data set collected for an original study, but with new research objectives to either open up new avenues of exploration, or to allow for a more in-depth analysis of existing findings (Windle, 2010:332-333). This study was framed within the provisions of an appended study. The main reasons for this is that the initial study provided only a basic impression of how small-scale irrigation systems, farmers’ associative mechanisms, appropriate crop varieties, cropping techniques and timing of production, contribute to disaster resilience in agricultural communities. The dynamic interplay between these factors in different scales and contexts was touched on only briefly and warranted further study. Consequently, the study formulated new research questions and objectives to better illustrate some of the dynamic interaction between factors in order to generate disaster resilience.

The process that was followed in conducting the appended, secondary data analysis is summarised in the table 1 below:

Table 1: Research Process: Secondary analysis in the context of the Thesis
Methodological Process

Determine data context

The general rule within secondary data analysis is that data sets with similar focuses and operational definitions should be compared to ensure relevance and accuracy of findings. Being an appended study, alignment with the original focus and context is assured as the same variables focusing on determining disaster resilience and same contexts (Malawi, Mozambique and Madagascar) formed the focus of study.

Determine research population applicability

According to Rew et al. (2000:225-226) the researcher has to “ensure that there is a resemblance between the subjects from whom data were originally collected and the population to whom the new set of research questions applies”.

This did not affect the study, as the same populations used in the original data collection was used again. This is because the purpose of the study was to gain a more in-depth understanding of the data gained from the participants in the original data collection process.

Formulation of research questions

As the research context and research population do not differ from the original study, the process of generating appropriate research questions is vested in a critical review of the total research report produced for FAO on resilience in agricultural communities. This critical review has already been completed and appropriate research questions and objectives have been produced.

Select appropriate theoretical framework

An appropriate theoretical framework, in the form of Complex Adaptive Systems Theory was applied in the study to explore the dynamic interplay of resilience-generating factors. The application of the theory is consistent throughout the four research articles.
1.3.4.4 Research methods an empirical data

For the purpose of clarity it is also necessary to outline the research and empirical data collection methods applied to the appended study (see summary in Table 2 below).

<table>
<thead>
<tr>
<th>PAPER</th>
<th>RESEARCH METHOD AND SAMPELING</th>
<th>EMPIRICAL DATA</th>
<th>GEOGRAPHICAL AREA AND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1</td>
<td>Document analysis</td>
<td>80 (academic articles; book chapters; technical reports)</td>
<td>Global</td>
</tr>
<tr>
<td>Paper 2</td>
<td>Document analysis and Secondary Data Analysis; Purposeful sampling</td>
<td>70 (academic articles; book chapters; technical reports) 593 respondents</td>
<td>Madagascar; Malawi; Mozambique</td>
</tr>
<tr>
<td>Paper 3</td>
<td>Document analysis and Secondary Data Analysis; Purposeful sampling</td>
<td>37 (academic articles; book chapters; technical reports) 891 respondents</td>
<td>Madagascar; Malawi; Mozambique</td>
</tr>
</tbody>
</table>
As discussed in section 1.3.4, a transdisciplinary paradigm was followed to guide the selection of research design and tools within the study. The selection of a transdisciplinary paradigm allowed each individual research article to have its own unique research design and tools. This however meant that the overall study did not have a single overarching research design and tools. Therefore a brief discussion can only be given on the research design and empirical data collection methods applied within each article (see summary in Table 2 below).

Article 1, being the theoretical base of the study, made use of a qualitative research design comprising of an in-depth document analysis. The document analysis made use of a wide array of document including, academic articles, book chapters and technical reports on the issues of disaster resilience and CAST. Paper 2, 3 and 4 made use of mixed method approaches. As a base Paper 2,3 and 4 all have a qualitative component in the form of a document review. In the case of Paper 2 (“Information feedback functions within farmers associative mechanisms and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa”) an additional qualitative component is added with focus group interview responses from case study countries. Paper 2,3,4 also contain significant quantitative components. Paper 2, 3, and 4 all contain correlation statistics as the primary format for statistical analysis. Correlation statistics were selected as the most appropriate statistical tool as it could indicate a relationship between agricultural inputs and resilience indicators. Paper 2 also added descriptive statistics to indicate in percentage, the level of agreement of participants with certain statements. Purposeful samples were utilised in all the papers. Importantly, only purposeful samples with valid responses (i.e respondents providing responses to the questioning being asked) were considered for analysis. This explains the difference in the amount of respondents per paper (P 2=N593; P 3= 891; P= 891).

1.3.5 Limitations of Study
A key limitation of the study is that it made use of a pre-existing data set to guide the data analysis process. Using a pre-existing data set had the implication that the data variables collected were already set and could not be added to by the researcher. This meant that the research could only use the variables of irrigation systems, farmers’ associative mechanisms; crop varieties, cropping techniques and timing of production to guide the formulation of correlation and descriptive statistics. This could create the impression that the author had not considered other factors that could impact on the resilience of subsistence agriculture communities in the case study countries. This however, is not the case and is a limitation imposed on the study by the extent of the data collected in the original study conducted by FAO.
1.4 DIVISION OF CHAPTERS

Chapter 1: Introduction

Chapter 2: Disaster Resilience and Complex Adaptive Systems Theory - Finding common grounds for risk

Chapter 3: Information feedback functions within farmers associative mechanism and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa

Chapter 4: Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture

Chapter 5: Reconsidering Disaster Resilience: A non-linear systems paradigm in agricultural communities in Southern Africa

Chapter 6: Conclusions and Recommendations

The chapter to follow will serve as the departure point for the theoretical argument to made by the thesis. Crucially, it will primarily focus on establishing the theoretical tenants of both disaster resilience and Complex Adaptive Systems Theory (CAST) as a means to findings possible areas of synergy between the two concepts. The possible application and contribution of CAST concepts to the understanding of disaster resilience are also elaborated on.

2 Coetzee,C., Van Niekerk, D and Raju, E. 2016. Information feedback functions within farmers associative mechanism and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa. Submitted to International Journal of Disaster Risk Science (April, 2016)

Chapter 2: Disaster Resilience and Complex Adaptive Systems Theory - Finding common grounds for risk reduction
Disaster resilience and complex adaptive systems theory

Finding common grounds for risk reduction

Christo Coetzee
North West University Potchefstroom Campus, Potchefstroom, South Africa

Dewald Van Niekerk
African Centre for Disaster Studies,
North West University Potchefstroom Campus, Potchefstroom, South Africa, and

Emmanuel Raju
Changing Disasters Project, University of Copenhagen, Copenhagen, Denmark

Abstract

Purpose – The purpose of this paper is to explore the emergence of resilience into the contemporary discourse of disaster risk. As a counter position to the current status quo in defining and addressing resilience, this paper introduces the theoretical lens of complex adaptive systems theory (CAS). Some of the key characteristis related to CAS are discussed and linkages are made to possible benefit that they might have in enhancing the understanding of disaster resilience.

Design/methodology/approach – An indepth review of literature pertaining to disaster resilience and CAS was conducted to find common grounds for theoretical synergies.

Findings – The inherent similarities between the concept of resilience and CAS provides ample practical and theoretical contributions to the field of disaster risk studies.

Originality/value – The paper provides a different perspective to the contemporary discourse on disaster resilience. A better understanding of disaster resilience and its underlying dynamics as illuminated by the application of CAS could in future provide an effective tool to manage disaster risks and building of resilience.

Keywords Disaster risk, Adaptation, Resilience, Complex adaptive systems theory

Paper type Research paper

1. Introduction

Disasters have been part of human existence since the beginning of time, however the impact of these events have become more pronounced in recent decades leading to increase in loss of lives, livelihoods, infrastructure, biodiversity and linked socio-ecological systems. The dramatic impact of hazards and disasters on human systems have caused society to create new scientific fields, policies and programmes to deal with their consequences. One such scientific field that has risen to prominence since the early 1990s is the field of disaster risk management (Van der Waldt, 2013). The field has used concepts such as vulnerability, and risk to explain why human systems are susceptible to disasters whilst also formulating possible explanation and tools to determine how to reduce disaster risk. A prominent contemporary issue of debate and practice in reducing disaster risk is the notion of resilience (Miller et al., 2010). Originally introduced from the field of ecology, the operational definition of resilience adopted in the paper within a disaster context is the defined as “ability of a community to respond and recover from disaster impacts through adaptive processes that facilitate the ability of the social system to re-organize, change, and learn in response to a disaster” (Timmerman, 1981; Pelling, 2003; Cutter et al., 2008).
In spite of the contemporary nature of resilience in the disaster risk reduction discourse very little agreement exists between academics and practitioners as to preferential methods to build disaster resilience in disaster and hazard affected communities (Maru, 2010; Gaillard, 2010; Zobel, 2011; Alexander, 2013). A possible avenue for exploration presented in this paper is the use of complex adaptive systems (CAS) theory. The application of systems thinking (including CAS) in the understanding of disaster resilience is not part of a completely new discourse (Cutter et al., 2008; Frerks et al., 2011). However, the use CAS as a theoretical perspective to study disaster resilience is still in its infancy. The inherent similarities between the concept of resilience and CAS could provide ample practical and theoretical contributions to the field of disaster risk studies and therefore warrants further investigation. A better understanding of disaster resilience and its underlying dynamics (as illuminated by the application of CAS and hazard) could in future provide an effective tool to manage disaster risks and build resilience.

The paper explores the emergence of resilience into the contemporary discourse of disaster risk (DRR). As a counter position to the current status quo in defining and addressing resilience, this paper introduces the theoretical lens of CAS theory. Some of the key characteristics related to CAS are discussed and linkages are made to possible benefit that they might have in enhancing the understanding of disaster resilience.

2. Emergence and application of resilience in DRR

With the recurrent and increasing human and capital costs of disasters, came the realisation that there must be more efficient ways of managing and preventing disasters than merely responding to impacts (United Nations, 1989; Oliver Smith, 2009). Pre-disaster planning seemed like a practical and necessary component to compliment traditional thinking (Lewis et al., 1976). Consequently, since the 1960s, a plethora of disaster management theories, tools and policies such as the disaster management cycle (Baird et al., 1975), the pressure and release model (PAR) (Wisner et al., 2004) and international policy measures such as the United Nations (1994), the International Decade for Natural Disaster Reduction (1990-2000), International Strategy for Disaster Reduction (2001-2010), the Hyogo Framework for Action (2005-2015) and recently the most recent Sendai Framework for DRR (Action 2015-2030), all of which aims to contribute to the curbing of disaster losses, were developed. Key to all the ideas and protocols was the emergence of definitions and practices that espouse a pro-active orientation to disasters and risk, these included: disaster risk reduction (where the orientation was always about disaster response and civil protection), vulnerability (of communities and the systems in which they function), societal capacity and resilience (Miller et al., 2010; Cimellaro et al., 2010).

The concept of resilience in its present form as it has taken prominence between 1990-2015 remains one of the most contested in the field of disaster risk studies (Manyena, 2006; Gaillard, 2010; McEntire, 2005). For instance, there is consensus that risk is a function of people’s vulnerability (social, economic, political, physical and environmental) interacting with hazards (hence the notation of risk = vulnerability x hazard) (Oliver Smith, 2009; Lopez-Calva and Ortiz-Juarez, 2009; Mechler, 2004). There is also a large degree of agreement that people’s vulnerability to natural hazards and a lack of capacity to address identified vulnerabilities makes a society more susceptible to the impact of a disaster and often amplifies the eventual damage (Oliver Smith, 2009; Wisner et al., 2004; Lopez-Calva and Ortiz-Juarez, 2009). This level of agreement does not exist when academics and practitioners argue the merits of the concept of resilience (Manyena, 2006; Gaillard, 2010; Klein et al., 2003; Zobel, 2011; Zhou et al., 2010; Hufschmidt, 2011).
According to Mayunga (2007) and Manyena (2006, p. 434) one of the greatest issues around the concept of resilience is that there is little theoretical understanding of the concept. Academics and practitioners alike are often at a loss as to how to operationalise, quantify or determine which factors, variables or indicators, make a community resilient. This creates substantial problems. Without a solid theoretical base, “resilience” almost becomes a redundant term that offers very little to improve the effectiveness of existing disaster risk reduction interventions or policy formulation (Mayunga, 2007). Therefore as a point of departure in understanding the complexities in using a term and its application in CAS, one should focus on describing the origins and original use of the term resilience.

2.1 Stability and resilience

The term resilience in the DRR domain, gained prominence in the contemporary post-2005 discourse, resulting from the devastating impact of the Indian Ocean tsunami (2004) followed by the World Conference on Disaster Reduction held in Hyogo, Japan (2005) (Shaw, 2006; Levy and Gopalakrishnan, 2005; Djalante, 2012). During the conference there was recognition that there is a need to not only build back communities once disasters occur, but also to improve their overall level of resilience with the view to eliminating the threat of future disaster or at least mitigating their impacts (Cimellaro et al., 2010, p. 3640; Manyena, 2006; United Nations International Strategy for Disaster Risk Reduction, 2005; Gaillard, 2010; Zobel, 2011; Cutter et al., 2008; Tadele and Manyena, 2009; Zhou et al., 2010). To appreciate the contemporary understanding and application of resilience in disaster risk management, it is crucial to explore the influence of the field of ecology on the theoretical development of resilience.

The term resilience (as used in the field of disaster risk management) resembles that of the definition of resilience as conceptualised within the fields of ecology, during the 1970s (Kuhlicke, 2013; Rose, 2007; Gaillard, 2010; Klein et al., 2003; Cutter et al., 2008; Zhou et al., 2010; Hufschmidt, 2011). Specifically, Holling (1973) postulated that resilience can be defined as:

\[
\text{resilience} = \text{the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameter and still persist.}
\]

Holling’s definition refers to the ability of a system to absorb changes to its basic or complex building blocks yet still manage to function following a disturbance (Tidball et al., 2010; Maru, 2010; Klein et al., 2003; Rose, 2007; Hufschmidt, 2011). In his discussion on resilience, Holling (1973) also introduced the related concept of stability. Stability refers to the ability of a system to return to equilibrium after a temporary disturbance (Holling, 1973; Alexander, 2013; Klein et al., 2003; Cutter et al., 2008). Interestingly, many contemporary definition of disaster resilience have integrated the concepts of resilience and stability as proposed by Holling thereby confusing the two concepts as parts of the same holistic definition of resilience (Rose, 2007; Paton, 2006; McEntire, 2005). Rose (2007) and Gaillard (2010), elaborate that a resilient system is often not stable, in that is constantly changing and adapting to external or internal pressures, thereby rendering it with an improved (safer) equilibrium state. Therefore stability is not needed for a system to be deemed resilient but adaptability is (Norris et al., 2008; Zhou et al., 2010; Paton, 2006; Klein et al., 2003).

According to Timmerman (1981, p. 21) the value of the original definition by Holling was exactly in that it separated the issue of stability (reaching an equilibrium state) from the issue of resilience, which serves as a function of “probability of extinction”. This separation would help to make it easier to identify only those state variables[1]
and driving variables[2] that would most likely fail and contribute to the extinction of a system (Pisano, 2012; Walker et al., 2012). Timmerman (1981) elaborates on this by stating that there are vulnerabilities (“wounding” as he calls it) that a system could have built into it that would in no way inhibit its ability to persist. This system would address these vulnerabilities through extra efforts or by using excess capacities available to it (Timmerman, 1981, p. 21). The same cannot be said when a system’s resilience characteristic is overwhelmed. When resilience fails, the system cannot compensate from its existing capacities and the system ceases to function (Timmerman, 1981, p. 21). Many subsequent definitions of resilience coming from the field of ecology have shared the basic principles postulated by Holling, and have for the most part focused on the concept of absorbing pressure without losing ability to function (or becoming extinct) (Timmerman, 1981, p. 21; Mayunga, 2007, p. 3).

The ecological definition of resilience shows a close relation to contemporary definitions of disaster resilience (as the engineering definitions focus specifically on structural integrity) Timmerman (1981, p. 21). Various disaster risk management scholars (Mayunga, 2007; Gaillard, 2010; Klein et al., 2003; Rose, 2007; Alexander, 2013; Zhou et al., 2010) agree that the term was most likely first used by Timmerman (1981) in his research on the complex interaction between society and climate. In this seminal work Timmerman, greatly influenced by the work of Holling (1973), defined resilience as: “The measure of the system’s or part of a system’s capacity to absorb and recover from an occurrence of a hazardous event” (Timmerman, 1981, p. 21).

If the definition is analysed it becomes apparent about where some of the confusion comes from when defining resilience. Specifically the definition seems to have integrated resilience functions of a system (its capacity to absorb pressure and avoid probable extinction) and the aspect of stability (ability of a system to return to equilibrium after a temporary disturbance) that allows a system to recover from a hazardous event. This integration causes confusion because it does not allow a differentiation between those components that are crucial to the continued existence of a system (resilience as per the ecological definition) and those components that, although not crucial for the continued existence of the system, still need to recover in order to restore stability (equilibrium).

The lack of differentiation between components crucial for continued resilience of human systems affected by disasters and those components that would contribute to restoring the stability and status quo of affected systems has had serious policy and practical implications. Specifically when communities are assessed for capacities (economic, social, political) they possess to reduce disaster risk, all capacities are automatically presumed to contribute to generating resilience, which is not always the case. Additionally, when a plethora of “resilience factors” are identified, it is difficult to prioritise which should be protected, which should be improved, and which are redundant.

On a theoretical level the combination of resilience and stability lead to a reactive notion of disaster resilience (Klein et al., 2003). Specifically resilience was conceived just as a means to recover from the impacts of a disaster and return to the status quo or previous level of functioning. Maru (2010), supports this by saying: “Most applications of the resilience concept on individual or social systems either explicitly or implicitly assume that a steady state (an equilibrium) is crucial to hold onto or bounce back to after perturbation”.

This notion of resilience (i.e. resisting impact and returning to a steady state), however is problematic in that returning to the status quo means that the societal systems will remain vulnerable to future disaster impacts as it has not adapted to the new conditions and imperatives to change forced on it by the disaster (Klein et al., 2003;
Manyena, 2006). The realisation that it is not enough for human systems to be resistant (ability to bounce back) after disasters, but that adaptation is crucial to resilience, has started to open a new understanding of the holistic nature of resilience (Hufschmidt, 2011; Gaillard, 2010; Rose, 2007). Some of this new understanding is illustrated through the work of Manyena et al. (2011) where they state that resilience should rather be viewed as a process of “bouncing forward” or using disaster as a platform from which local societies and the livelihoods on which they depend can be enhanced and be made more adaptable following the inevitable change brought about by disaster. Additional developments in our conceptual understanding of resilience can be seen in the evolution of resilience terminology as depicted in Table I.

Mayunga (2007, pp. 3-5) and Hufschmidt (2011) both agree that new conceptualisations of resilience are starting to place more intimate connections between resilience of communities and capacities available to them, to not only cope with, but adapt to disaster impacts (or adapt to perceived future disaster impacts). According to Hufschmidt (2011) a diverse set of adaptive capacities is key in providing humans systems with the flexibility needed to adapt to disasters and risk, and reduce its inherent vulnerabilities. Incorporating adaption in our conception of resilience also has the potential to change orientation towards resilience. Resilience is often viewed as an outcome that needs to be achieved for a community to be rendered “safe” from disaster-related impacts. However, if one views resilience as an outcome instead of a continuous process, the system can be regarded as stable. As was alluded to earlier, stable systems no longer have the ability to adapt and learn from disaster and risk situations and this would eventually lead to the total collapse of the system (Manyena, 2006).

The above argument links with systems theory notions of open vs closed systems. Closed systems, such as outcome-focused resilience, already contain the premium level of resilience that the system will attain as well as all the capacities that support it (Von Bertalanfny, 1950). This type of resilience will eventually fail in the light of new environmental and social pressures associated with changing disaster risk profiles, as the system has lost the ability to learn and to adapt. On the other hand, treating resilience as

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations International Strategy for Disaster Risk Reduction (2002)</td>
<td>“The capacity of a system, community or society to resist or change in order that it may obtain an acceptable level of functioning and structure”</td>
</tr>
<tr>
<td>Pelling (2003)</td>
<td>“The ability of an actor to cope with or adapt to hazard stress”</td>
</tr>
<tr>
<td>Cutter et al. (2008)</td>
<td>“Resilience is the ability of a social system to respond and recover from disasters and includes those inherent conditions that allow the system to absorb impacts and cope with an event, as well as post-event, adaptive processes that facilitate the ability of the social system to re-organize, change, and learn in response to a threat”</td>
</tr>
<tr>
<td>Zhou et al. (2010)</td>
<td>“Dynamic resilience can be enhanced by adjusting, adapting to hazards, and learning from the disasters according to the theory of the adaptive cycle”</td>
</tr>
<tr>
<td>Manyena et al. (2011)</td>
<td>“Disaster resilience could be viewed as the intrinsic capacity of a system, community or society predisposed to a shock or stress to ‘bounce forward’ and adapt in order to survive by changing its non-essential attributes and rebuilding itself”</td>
</tr>
</tbody>
</table>

Table I. Development of resilience terminology
open systems (process orientated resilience) will allow for social systems that achieve disaster resilience through maintaining themselves in a continuous inflow and outflow of information (learning from past events) and building up and breaking up of components (adding new capacities/losing absolute capacities) (Von Bertalanffy, 1973; Boardman and Saucer, 2008; Kast and Rosenzweig, 1972; Whitchurch and Constantine, 1993).

Apart from theoretical and philosophical differences in defining and explaining resilience, there are also practical difficulties in measuring when a community is resilient or what components or capacities they need to develop/build in order to become “more resilient” (Renschler et al., 2010).

2.2 Resilience: is it the same for everybody?
Renschler et al. (2010) and Alexander (2013) states that resilience is a particularly difficult concept to quantify. There are many reasons for this but foremost is the reality that it is not only that differing communities are faced by a multitude of different hazards (which would have had an influence on their existing capacities and coping strategies) but also the prevailing socio-cultural -economic and political intricacies would greatly affect the level of resilience in a given society (Mayunga, 2007, p. 3; Zobel, 2011). No one community has the same set of socio-cultural or economic dynamics, therefore it follows logically that their relative resilience will differ (Zhou et al., 2010). Alexander (2013, p. 2713) highlights context-specific nature of resilience by stating: “One person’s resilience may be another’s vulnerability, and one would not want the concept to be used as a means of reinforcing unethical practices or hegemonies”. This view has been supported by Cutter et al. (2008) as “[…] due to the multidimensional nature of resilience in different communities a broad model for measuring resilience should be designed and empirically tested at community levels”.

The importance of understanding context-specific resilience is also highlighted by Zhou et al. (2010) in a case study of relative resilience of farmers in the Xinghe county in Northern China. In Zhou’s study, three sets of agricultural communities operating in differing geographical contexts (highlands, plains and mountains) within the same county, were compared to determine their resilience to drought. The analysis was scaled down to a town/village level. The study found that not only did resilience differ between the larger geographic areas (i.e. the mountain and plain areas had significantly higher levels of resilience compared to the highland region) but also showed significant difference on town/town basis within similar areas as illustrated in Figure 1. Specifically Zhou et al. (2010) highlighted the fact that communities that scored higher in their ability to diversify their income, were more resilient to the effects of a prolonged drought and was less dependent on agricultural activities for income than those communities with less diversified income options. The ability to diversify income was, however, influenced by a plethora of issues such a physical location, climate topography, choice of irrigation method, agricultural type, condition of infrastructure, economic systems (markets), land use structure, time, learning capacity and cultural practices. All of these factors, or combinations thereof, could greatly change the adaptive resilience in the larger regions and sub-regions.

Therefore, there are theoretical and practical discourses about the reality that resilience differs from community to community and that it might be impossible, if not undesirable, to design a “one size fits all” model or framework to determine resilience. Mayunga (2007) and Zobel (2011) explain that reducing the measurement of resilience to a set of pre-determined parameters that is developed without taking heed of the specific contextual factors that could contribute/lessen resilience, does not allow us to
gain a holistic picture of resilience at community level. According to Zobel (2011) taking into account a holistic set of factors that impact of contextual levels of resilience can dramatically improve the ability of decision makers to support relevant resilience building projects as there would be a better understanding of the interaction between different resilience generating components and the resilience scenario’s they create.

To accommodate an analysis of the ever-changing dynamics that underlay resilience, it is necessary to apply analytical models that have been designed to facilitate the analysis of complex human-environmental systems (Cutter et al., 2008). For this purpose, theoretical models associated with systems thinking, and more specifically complex system theory might provide a means to better assess and understand constantly changing resilience profiles. Taking a holistic analysis approach through systems theory enhances our understanding of disaster risk and societal vulnerability, and also assists in improving community coping capacities and livelihood strategies (Manyena, 2006).

3. CAS theory
In deciphering complexities, scientists often consider an entity or concept as a system (Boulding, 1956; Ashby, 1960; Buckley, 1968; Becker, 2009; Skyttner, 2005; Richardson, 2005). Specifically, systems science approaches work from a point of view of understanding humans and their environment as part of interacting systems (Skyttner, 2005; Von Bertalanffy, 1972; Whitchurch and Constantine, 1993. It also aims to understand the subsequent behaviours or patterns that emerge because of these interactions between the components over time (Skyttner, 2005; Meadows and Wright, 2008; Boulding, 1956). Systems theory therefore accepts that community resilience should be treated as a system, that can only be fully understood by considering the interaction of the parts that form overall resilience (Skyttner, 2005; Kast and Rosenzweig, 1972; Von Bertalanffy, 1972). A specific variation of systems theory referred to as CAS theory presents an interesting tool for studying dynamic concepts such as resilience (Holland, 1992; Hartvigsen et al., 1998).
CAS is a variation of traditional systems theory that has emerged in natural science fields of ecology and biology aimed at explaining non-linear adaptation on micro and macro scales in the natural environment (Hartvigsen et al., 1998; Holden, 2005; Ahmed et al., 2005; Levin, 1998). Holland (1992, p. 17) states that CAS was created as means of trying to comprehend inherently non-linear systems such as economies, brain biology and immune systems that are impossible to accurately simulate using linear diagnostic tools such as computers. Railback (2001) adds that at the core of CAS analysis is an attempt to show how simple interactions between individual elements at a micro level lead to very complex behaviours at a macro level. Interestingly for all its potential in explaining complexity in systems behaviour, the social sciences have been very slow in adopting CAS as a possible means of analysing human behaviour and larger social systems (Innes and Booher, 1999; Holden, 2005). This in spite of the fact as iterated by Lansing (2003, p. 183), that CAS concepts such as systems emergence ("the idea that larger patterns with new properties can emerge from local interactions") could contribute significantly to our understanding of how micro-level decision-making impacts positively or negatively on a larger social dynamics. Hartvigsen et al. (1998) also highlights the potential of CAS in social research in stating that CAS provides us with a means of analysing and understanding social dynamics not through the lens of society as a heterogeneous set of individuals but as an aggregate of interacting diverse set of individuals. The benefit of analysing society in this way is that it would give us more accurate impressions of population-level and community-level behaviour (Railback, 2001; Hartvigsen et al., 1998). Due to the slow uptake by the social sciences most of the definitions defining CAS have been within the natural sciences, but the basic principles can be extrapolated to social settings in general and the understanding of disaster resilience specifically (see section 3.1). Some key views (as summarised in Table II) on what a CAS is includes the following.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levin (1998, p. 432)</td>
<td>"The study of complex adaptive systems is a study of how complicated structures and patterns of interaction can arise from disorder through simple but powerful rules that guide change"</td>
</tr>
<tr>
<td>Innes and Booher (1999, p. 417)</td>
<td>"Organisms are considered CAS when they can adapt and change in response to information it gathers from its environment. It develops new activities and evolves as it 'learns' about that environment"</td>
</tr>
<tr>
<td>Plsek (2001, p. 312)</td>
<td>"A complex adaptive system (CAS) is a collection of individual agents that have the freedom to act in ways that are not always predictable and whose actions are interconnected such that one agent's actions changes the context for other agents"</td>
</tr>
<tr>
<td>Railback (2001, p. 48)</td>
<td>"Complex Adaptive Systems (CAS) focuses on how the properties of aggregations of individuals can be determined by the characteristics and behavior of the individuals"</td>
</tr>
<tr>
<td>Ahmed et al. (2005, p. 1)</td>
<td>"A complex adaptive system consists of inhomogeneous, interacting adaptive agents. Adaptive means capable of learning"</td>
</tr>
<tr>
<td>Rammel et al. (2007, p. 10)</td>
<td>In general, CAS is based on "complex behavior that emerges as a result of interactions among system components (or agents) and among system components (or agents) and the environment. Through interacting with and learning from its environment, a complex adaptive system modifies its behavior to adapt to changes in its environment"</td>
</tr>
</tbody>
</table>

Table II. Defining and characterising complex adaptive systems
The definition as postulated by Rammel et al. (2007) most accurately conceptualises the key tenants of a CAS as: CAS aims to understand complex emergent behaviour at a macro level by looking at interactions between inhomogeneous components at a micro level; All CAS are characterised by their ability to learn from their environment; and, this learning aims to bring about adaptation or change to the system that helps it survive or absorb shocks to the system. Consequently, CAS can be said to be inherently characterised by panarchy, or the ability to be dynamically influenced or adapt to changes that emerge within or from outside the system (Gunderson and Holling, 2002; Folke et al., 2004).

These aspects highlight the importance of studying disaster resilience through the theoretical lens of CAS theory. Disaster resilience is not fully understood or even measurable due to the fact that the contextually based capacities leads differing resilience profile of communities often within the same regions (Plsek, 2001). Holland (2006, p. 18), Rammel et al. (2007, p. 10) and Innes and Booher (1999, p. 416) all emphasise that CAS is an excellent tool for analysing systems that are constantly changing (“functioning at the edge of chaos”) and constitutes what can be describe as “moving targets” or anarchy (Cutter et al., 2008). By addressing disaster resilience as a CAS it would place the emphasis on understanding individual capacities and how they interact to generate resilience Hartvigsen et al. (1998). This might provide insight into those capacities that most likely contribute to positive emergent behaviour and improved disaster resilience within a specific context (Holden, 2005; Rammel et al., 2007; Zhou et al., 2010). Importantly, by basing the analysis of resilience and the formulation of subsequent models for understanding resilience on CAS, means that there is an inherent understanding that resilience is not the end-point for a society to achieve, but rather a journey that will lead to constant adaptive change (Norris et al., 2008; Rose, 2007). This philosophical orientation significantly increases our chances of gaining a holistic impression of societal resilience (Holland, 1992). It has also been established that a disaster resilient system is inherently an open system that is able to learn from previous disaster impacts and make creative adaption (from information feedback loops) possible (Ahmed et al., 2005; Holden, 2005; Lansing, 2003). Additionally CAS will also allow the tracking of so-called second order and third order effects brought about in a society because of improved disaster resilience (Innes and Booher, 1999). CAS comprises of various concepts that could greatly contribute to our understanding of the dynamics associated with disaster resilience. A set of key concepts and their possible contribution understanding disaster resilience are presented below.

3.1 CAS concepts: possible contribution in explaining disaster resilience

CAS contains a multitude of characteristics and elements that could assist in attaining a more nuanced understanding of disaster resilience. Although the discussion is by no means an extensive listing of possible synergies between the CAS and disaster resilience, some of the key characteristics and their possible application to understanding disaster resilience.

3.1.1 Non-linearity. The basic premise of non-linearity in CAS is that the size of inputs into a system might not be proportional to expected outputs (Boal and Schultz, 2007; Railsback, 2001). Specifically, small seemingly insignificant variables or inputs in a system might fundamentally change the operation of a system whilst major inputs or variables might have no impact in changing the system (Schneider and Somers, 2006; Plsek, 2001). This notion is in line with the work of Lorenz (1963) and Chaos Theory. By viewing disaster resilience through the lens of non-linearity it might be possible to determine or track impact of individual variables on the overall generation of disaster resilience in a society.
3.1.2 Aggregation. According to Levin (1998, p. 432), aggregation is the process whereby individuals in complex systems arrange themselves into sub-groups or hierarchal organisation that have similar interests, needs and practices they have. Once sub-groups are formed they do not remain isolated. Instead, multiple interactions are established between different sub-groups that allows for dynamic development and adaptation to changing environments (Railsback, 2001; Boal and Schultz, 2007). The concept of aggregation provides interesting avenues of exploration within the field of disaster resilience, as it would help to focus some attention on the role, correlation and total contribution of social coping mechanisms to the overall resilience of a society.

3.1.3 Emergent behaviour. According to Innes and Booher (1999, p. 417) emergent behaviour is one of key characteristics of CAS. Emergence refers to how system-level properties, characteristics and patterns emerge from interaction between individual elements at a micro level, even though the individual elements bare no similarity the final wider system characteristics (Railsback, 2001; Schneider and Somers, 2006; Hartvigsen et al., 1998). The concept of emergence could be useful in the exploration of disaster resilience as it will allow for the investigation into how an aggregation of smaller variables could lead to improving resilience profiles of disaster effected communities.

3.1.4 Feedback loops and adaptation. According to Walker et al. (2012) and Holden (2005) feedback loops play a crucial role in the development of CAS by either enhancing, stimulating, detracting or inhibiting elements within the existing system. Through these processes feedback loops allow for learning and adaptation within a dynamic environment thereby preventing the extinction of a system (Begun et al., 2003; Rammel et al., 2007; Innes and Booher, 1999). The study of feedback loops allow for greater insight into how communities learn from past events to improve their overall level of disaster resilience. It could also provide insight into the second and third order knock on effects of building disaster resilience within a specific community Innes and Booher (1999).

3.1.5 Context-based responses. A crucial aspect of CAS is its emphasis on the importance of context on the functioning of a system (Boal and Schultz, 2007). According to Holden (2005) and Holland (1992) any complex system is inseparable from the context and history that it finds itself in. The influence of context on CAS is so extensive that it contributes to making each CAS unique (Begun et al., 2003; Hartvigsen et al., 1998). However, the context of a CAS is not static and can also be altered due to the dynamic interaction between interconnected elements (Holden, 2005). For instance, dramatic events at a local level (i.e. disaster in a community) does not only change of the context of the community itself, but could also cause changes at national and regional level (e.g. changes in disaster risk management policies), which in turn would impact once again on the context of the community (Zhou et al., 2010; Schneider and Somers, 2006). The emphasis on understanding of the context provides an opportunity of not only studying the aggregation of unique element’s that make a community resilient on a case to case basis but also allows form the exploration of the interconnectedness of elements and how changes at lower levels of a system can change the wider context of resilience.

The failure to address resilience as an open system characterised by complexity has led to unclear understanding of what resilience is, and how it can assist in a better comprehension of communities that are vulnerable to disasters. The preceding discussion has shown that societal resilience to disasters and risk is inherently a CAS comprising of a variety of capacities and non-linear interactions that could only be fully comprehended by considering the interaction of the parts that form overall resilience. By using CAS concepts such as non-linearity, aggregation, emergent behaviour,
feedback loops and adaptation and context-based responses it would be possible for disaster researchers to analyse the dynamic changes in societal resilience profiles, whilst also allowing for the tracking of micro-level interactions and the complex changes they create for macro-level disaster resilience in society. Finally CAS will also allow researchers to better understand the adaption and learning mechanisms that could contribute adaptive disaster resilience.

4. Conclusion
Generating societal resilience to disaster impacts has become a prominent issue of discussion in disaster management and humanitarian circles since the early 1990s. For much of the time period (1990-2015) there have been great differences in opinion on how to define, quantify, operationalise or determine which factors, variables or indicators make a community resilient. Much of the confusion around the concept of resilience and how it should be applied, as illustrated in the paper, lies with two issues: a confusion of what resilience pertains to as per the ecological definition (which was the primary influence on the definition of resilience in a disaster context); and the subsequent philosophical orientation to how resilience should be increased (resilience is often viewed as an outcome to produce an equilibrium, and not a continuous process of adaptation). These theoretical complications have caused disaster researchers risk scientists and practitioners to often take a narrow view on how disaster resilience can be quantified and explained. Specifically it is often thought that resilience could be generated through simply applying generalised models that aim to build linear capacities in all societies. This thinking is problematic because without taking into account a society’s complex context-specific variables (social, economic, political, physical, ecological) there will be very limited success in building adaptive resilience within at-risk communities.

The paper proposes that, as possible way to change the current theoretical and philosophical orientation to building disaster resilience it might be useful to look at the problem through the lens of CAS. CAS would allow disaster scientist and practitioners to treat the issue of resilience as an open-systems process that is constantly changing due to the inflow and outflow of information (learning from past events) and building and breaking up of components (adding new resilience capacities/removing absolute capacities) that constitute the resilience profile of a community. It has also been shown that on a theoretical level the underlying principles of disaster resilience and CAS are very similar, warranting the use of CAS as a theoretical analysis tool for further study of resilience. Specifically, elements of non-linearity, aggregation, emergent behaviour, feedback loops, adaptation and context-based responses would assist researchers focusing on the issues of disaster resilience to gain a holistic view of the dynamic interaction between resilience generating factors and local, sub-national and national and sectorial context in which they function. Adopting a CAS approach to deciphering the complexity of resilience could have practical application in reducing disaster risk and creating contextual relevant resilience building policies and programmes.

Notes
1. “Internal variables that represent the minimum amount of information that needs to be retained at any time in order to determine future behavior of a system”.
2. “External variables emerging from the ecosystem, social or economic system that positively or negatively impact on the underlying dynamics within a system” (Rammel et al., 2007).
References

Disaster resilience and CAS theory

Lopez-Calva, L.F and Ortiz-Juarez, E. (2009), “Evidence and policy lessons on the links between disaster risk and poverty in Latin America”, Regional Bureau for Latin America and the Caribbean, UNDP, Panama City, FL.

Further reading

Corresponding author
Christo Coetzee can be contacted at: christo.coetzee@nwu.ac.za

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com
Chapter 3: Information feedback functions within farmers associative mechanism and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa
Information feedback functions within farmers’ associative mechanism and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa

1. Introduction

Disaster losses continue to have substantial impacts on the lives, livelihoods and environment upon which people depend. In efforts to reduce these losses, disaster risk management practitioners, academia and the international community have joined forces in formulating policies and models to reduce disaster risk. These efforts have however enjoyed limited success in reducing losses and building resilient communities. Efforts to produce disaster resilient societies have proved to be one of the most elusive outcomes of contemporary risk reduction endeavours, as many of the traditional policies and models to build resilience are based upon a linear and oversimplified understanding of resilience. Contemporary understandings of resilience are starting to recognise that disaster resilience and the building thereof is a much more complicated process than previously anticipated. Some of the complication lies in the fact that resilient systems are the epitome of anticipation, change and adaption, making resilience not a static goal to achieve, but instead a moving target that changes constantly as the variables that make up the social system are changed during periods of stress.

The dynamic change and adaptation that is characteristic of resilience behaviour means that disaster resilience and the building thereof can be situated within the domain of complex adaptive systems behaviour. This paper will explore the possible contribution of Complex Adaptive Systems Theory (CAS) in gaining a more holistic understanding of how resilience can be fostered in at risk communities. In particular, attention will be focused upon the role of information feedback and interaction within CAS. The reason for this focus is that anticipation, adaptation and change (and by extension resilience behaviour) within systems are controlled by the presence of information feedback loops. Information feedback loops allow for interaction to take place between internal and external system elements, and from these interactions, complex emergent system behaviours such as disaster resilience can arise.

The study aims to test the hypothesis outlined above in the context of agricultural communities in Southern Africa. To this end the paper will explore the role of farmers’ associative mechanisms in stimulating information feedback and interaction amongst group members. It is argued that the information feedback and interactions between group members could have a positive effect in building resilience, as they allow members to adopt positive coping strategies or to make use of communally pooled resources (loans, seeds, labour) and eschew negative disaster coping
strategies. Overall it is found that information feedback loops and interactions could stimulate anticipation and learning opportunities, which enable farmers to change, re-organise and adapt to disaster impacts as a means to creating dynamic adaptation to disaster risk. This dynamic adaptation fostered through the interaction and feedback of farmers’ associative mechanisms could be said to make a contribution to improving the overall levels of disaster resilience in farming communities.

2. Resilience

Disasters continue to have a dramatic impact upon society in terms of lives, livelihoods and environmental losses (Aldunce et al., 2014:253). The continued struggle to reduce disaster risk is best captured in the introduction of the Sendai Framework for Disaster Risk Reduction:

“Over the same 10-year time frame (the period of implementation for the Hyogo Framework, 2005-2015), however, disasters have continued to exact a heavy toll, and as a result the well-being and safety of persons, communities and countries as a whole have been affected. Over 700 thousand people lost their lives, over 1.4 million were injured and approximately 23 million were made homeless as a result of disasters. Overall, more than 1.5 billion people were affected by disasters in various ways. Women, children and people in vulnerable situations were disproportionately affected. The total economic loss was more than $1.3 trillion. In addition, between 2008 and 2012, 144 million people were displaced by disasters” (UN, 2015:4).

In lieu of such staggering losses, new paradigms and concepts are being introduced by disaster theorists, practitioners and policy makers. Arguably, the most prominent of these concepts is the concept of resilience (Manyena, 2006; Gaillard, 2010; McEntire, 2005; Cimellaro et al., 2010:3640; Cutter et al., 2008; Tadele and Manyena, 2009). Although the concepts have been part of the disaster risk management lexicon since as early as the declaration of the International Decade for Natural Disaster Reduction in 1989, the concept has only recently been recognised as a main outcome of risk reduction efforts, as per the Hyogo Framework for Action (2005-2015) and the Sendai Framework for Disaster Risk Reduction 2015-2030 (Van der Waldt, 2013; Cutter et al., 2008:599; Cordona, 2004:3). Accordingly, much of the theoretical and practical discourse around the application of resilience in risk reduction efforts is still very much in its infancy, with some academics and practitioners still conceptualising what resilience entails and how it should be “measured” (Manyena, 2006; Gaillard, 2010; Klein et al., 2003; Zobel, 2011; Weichselgartner and Kelman, 2015:251; Prosser and Peters, 2010:8; Kelman, 2008:197). With such a proliferation of information on the concept, resilience becomes important to operationalise what resilience would mean in the context of this paper. In this regard two conceptualisations of resilience have a major bearing on how resilience is understood here.
The first influence can be traced back to the exploration of the term resilience by Holing in the field of ecology in the 1970s (Burton, 2012; Kuhlicke, 2013; Rose, 2007). Although resilience in this context was not intended to explain resilience to disasters, it did lay the foundation of what would later become resilience to disaster shocks as postulated by Timmerman in 1981 (Alexander, 2013). Holing (1973) contended that resilience can be defined as: “the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters and still persist”. Thus Holing’s definition alludes to the fact that resilient systems are systems that can undergo fundamental changes to all their critical drivers due to perturbation, yet do not go extinct (Lewis, 2013(b):300). Instead such systems are constantly adapting to their environment. What stands out from this definition is the emphasis it places upon the need for systems to be able to change instead of the function of variables (i.e. state, driving or parameter variable) that make up the system (Allen et al., 2005:958). This emphasis on constant change constitutes a secondary influence on how resilience is defined in this paper.

For many years following the works of Holing (1973) and Timmerman (1981) disaster resilience was viewed as the ability of a community to resist disaster impact and, as efficiently as possible, return to a normal level of functioning or “bouncing back” as it is colloquially referred to. However, critiques of the notion of “bouncing back” were especially wide spread throughout the academic community. The argument is made that the “notion of bouncing back” is problematic because it essentially propagates a return to a vulnerability context that put a community at risk in the first place (Klein et al., 2003; Paton, 2006:7; Aldunce et al., 2014:262; Cretney and Bond, 2014:18; Prosser and Peters, 2010:8; Kelman et al., 2015:22;). Secondly, the ability of a system to resist something is fundamentally not the same as a system being resilient. Although both concepts aim to protect a system, elements that resist perturbation are created as static interventions meant to address a known risk. If the context or the environment that underlies a specific risk changes, the intervention formulated with the intention to provide resistance is often overwhelmed as it was not designed to change with context (e.g. levies that failed during Hurricane Catrina in New Orleans) (Aldunce et al., 2014:262; Handmer and Dovers, 1996:501; McEntire, 2005:209). Resilient systems however, as indicated by the definition by Holing (described above), are characterised by their ability to adapt and change, even when all the variables that make up the system are changed during periods of stress (Paton, 2006:8; Kendra and Wachtendorf; 2003:41; Mileti, 1999:209). The realisation that it is not enough for human systems to be resistant (ability to bounce back) after disasters, but that anticipation, change and adaptation is crucial to resilience, has started to open a new understanding of the complex nature of resilience (Hufschmidt, 2011; Manyena et al., 2011; Lewis, 2013:60; Weichselgartner and Kelman, 2015:251). In this regard Kelman et al., (2015:22), Prosser and Peters (2010:8) and Paton (2006:7) postulate that it is crucial that resilience is viewed as a process of “bouncing forward” where societies learn from disaster impacts, anticipate and constantly adapt or change their coping strategies, thereby contributing to improved societal resilience. From the above influence, resilience can be operationalised as follows within the context of the paper:
The ability of a system and its underlying variables to constantly change, re-organise, adapt to and learn from disaster impacts as a means to creating dynamic adaptation to disaster risk.

The dynamic change and adaptiveness that is characteristic of resilience behaviour, means that disaster resilience and the building thereof can be situated within the domain of Complex Adaptive Systems behaviour (Keshavarz et al., 2010:1468; Allen et al., 2005:958; Rammel, et al., 2007:10). Paina and Peters (2012:366) and Anderson (1999:216) reinforce this point by stating that CAS are considered complex, not only because such systems contain a multitude of interacting parts, but more importantly, because the results of these interactions include self-organising behaviour, adaptation and learning. All of these are crucial to creating new systems configuration such as system resilience (McCarthy et al., 2006:442). These CAS, whether biological, ecological, human or economic can be typified by their ability to dynamically change and adapt to internal and external system pressures and create system resilience (Wycisk et al., 2008:110; Aritua et al., 2009:76; Muller et al., 2008:24). By recognising the CAS nature of disaster resilience, a necessity arises for new theoretical and management approaches within the field of disaster risk science (Pahl-Wostl, 2007:53; Aritua et al., 2009:76; Foster, 2005:873; Schwandt and Goldstein, 2008:86). One such approach is presented through the application of Complex Adaptive Systems Theory and its associated tools and concepts. Rhul (1997:944) and Theise and d’Inverno (2003:17) explain that CAS Theory has been adopted in various physical and social scientific fields and this has brought forth new and innovative approaches to research and policy development. It should be noted that although Complex Adaptive Systems Theory has a multitude of associated concepts that can be used to explore the issues of disaster resilience in great depth (Coetzee et al., 2016, Coetzee et al., 2016(b)), the focus of this paper will be upon the influence of information feedback loops that subsume all adaptive processes within complex systems. The study of information feedback loops, it will be argued, provides disaster researchers with an opportunity to gain deeper insights into micro (internal to the system) and macro levels (external to the system) that subsume adaption, change and ultimately resilience (Bonabeu, 1998:438; Keshavarz et al., 2010:1469).

3. Information feedback loops as key driver to resilient behaviour

All complex adaptive systems (including social resilience profiles) are inherently open systems that dynamically adapt and change between different states, due to the in and out flow of matter, energy or information (Limberg et al., 2002:410; Cheng et al., 2009:1; Holden, 2005:654; Jost, 2003:1). A central driver of change within open systems is the presence of information feedback loops. According to Anderson (1999:217) and Brun et al., (2009:56-57) these feedback loops comprise of both negative and positive feedback loops that work in unison to prevent systems from becoming too chaotic or stagnating by remaining in a state of equilibrium for too long. Thus feedback loops are key to keeping systems within the optimal zone for adaptation or what is known as the “edge of chaos” for system scientists (Schneider and Somers, 2006:356; Boal and Schultz,
2007:412). The reasoning behind this argument is that systems that function at the “edge of chaos” are characterised by optimal amounts of negative and positive information feedback loops that allow for interaction between different systems levels (internal and external) and components, which in turn facilitate adaptation and resilience building (Holden, 2005:656; McCarthy et al., 2006:451). Muller (2008:23), Innes and Booher (2007) and Levin and Lubchenco, (2008:30) add to this argument by stating that adaptation and change (and by extension resilience behaviour) within systems are controlled by the presence of information feedback loops. The information feedback loops allow for interaction to take place between internal and external system elements, and from these interactions, complex emergent system behaviours such as disaster resilience arise (Curseu, 2006:249; Liu et al., 2007:1513; Foster, 2005:874). Meso and Jain (2006:27), Goldenberg et al., (2001:212-213) and Pahl-Wostl (2007:53) elaborate that often individual elements within a system are either too simplistic in nature or too specialised to influence a system’s behaviour in its totality. To optimise or create more holistic system-wide behaviours, these individual elements have to interact with other elements (internal/external, complex/simple) to bring about more complex behaviours such as anticipation, adaption, change, transformation and system resilience (Rammel et al., 2007:11; Liu et al., 2007:1514; Theise and d’Inverno, 2003:17; Bonabeu, 1998:441). Once complex behaviours have emerged on a macro systems level through the interaction at micro levels, they provide new information feedbacks that can in turn influence individual elements at the micro systems level (Wysick et al., 2008:113; Rammel et al., 2007:12; Curseu, 2006:251).

Within the context of building disaster resilience in agricultural communities, it is the contention of this paper to prove that membership to farmers’ associative mechanisms plays a key role in stimulating information feedback in agricultural settings, which in turn could lead to households adopting positive disaster coping strategies. However, before this assertion can be tested, it is necessary to examine the role of farmers’ associative mechanisms in stimulating information feedback in agricultural settings.

4. Farmers’ associative mechanisms: Stimulating adaptation through information exchange and feedback

Since the agricultural revolution (around 10,000 B.C) farming societies have formed collective groups to manage a wide array of agricultural activities including water management, labour sharing and marketing (Pretty and Ward, 2001:209; Chirwa, 2005:5). According to Stewart (2004:13), Sabates-Wheeler (2002:1745) and Bandiera and Rasul (2003:5) farmers’ associative mechanisms are established as a means for economically and politically (lack of power) deficient farming communities to pool their individual capacities and resources to achieve collectively beneficial outcomes. Consequently farmers associative mechanisms take on a variety of shapes, including (but not limited to) either broad formation such as formal associations, or family based societies or associations formed for specific purposes such as water users associations (WUA), producers associations (e.g. sugar producers associations) or credit groups (Yercan, 2003:206; Qiao et al., 2009:823; Stewart, 2004:13-14; Lyon, 2007:100). Stringfellow et al., (1997:1)
emphasise the central role of farmers’ associative mechanisms in improving the prospects of individual farmers by stating that the formation of farming associative mechanisms provide a means for farmers to collectively bargain for greater access to agricultural services and improved market participation. Carney (1996:2) argues that a prominent reason why farmers’ associative mechanisms provide benefits to their members is that they allow member to negotiate and operate at many different levels including local, district, national and international levels (in the case of larger farmers’ unions).

Knowler and Bradshaw (2007:36) and Isham (2002:2) elaborate that the usefulness of farmers’ associative mechanisms are vested in the fact that they create social capital for agricultural communities. Social capital in this case is the notion that the social bonds between groups of people serve as an asset to achieve group goals (financial or development) or provide a safety-net during stress or disturbance (Bingen et al., 2003:408; Stewart, 2004:3-4). Bandiera and Rasul (2003:18) highlight that membership to farmers’ associative mechanisms (and co-opting the social capital created through them) holds both financial, productive and social benefits for subsistence agricultural communities. From a cursory literature review it is apparent that there are two broad benefit categories associated with the involvement in farmers’ associative mechanisms. The first of these is a direct agriculture benefits category and the second category relates to social benefits derived from membership to the farmers’ association. Some of the agricultural and social benefits derived from membership to farmers’ associative mechanisms are listed in Table 1 below:

Table 1: Benefits derived from membership to a farmers’ associative mechanism

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Agricultural Benefits</td>
<td></td>
</tr>
<tr>
<td>Improved income</td>
<td>Yercan, 2003:206; Lyon, 2007:104; Carney, 1996:2; Stewart, 2004:2</td>
</tr>
<tr>
<td>Improved access to planting and harvesting equipment</td>
<td>Sabates-Wheeler, 2002:1740; Carney, 1996:2; Stewart, 2004:2</td>
</tr>
<tr>
<td>Improved natural resources management</td>
<td>Qiao et al., 2009:823; Khalkhelli and Zamani, 2009:859; Bebbington et al., 1994:11-12</td>
</tr>
</tbody>
</table>
Apart from the broad social and agricultural benefits derived through the social capital created by membership to a farmers’ associative mechanism, social capital could also benefit the building of disaster resilience. Sligo et al., (2005:549) observe that when people are exposed to a major risk (such as natural hazards), they will often gravitate toward collective groupings that allow them to gather information and resources to mitigate or adapt to a risk. In this instance, social capital (social networks, social contacts, social cohesion, social interaction and solidarity) provided by a social structure such as farmers’ associative mechanisms, serves as a crucial adaptive capacity.
that could contribute to improving community resilience (Sherrieb et al., 2010:233; Mathbor, 2007:360). Adger (2003:389) and Murphy (2007:299) add that the social capital provided by social structures such as farmers’ association mechanisms in pastoral economies are a key determinant in these communities’ ability to cope with risk. Mathbor (2007:364) and Murphy (2007:302) elaborate that communities with social capital are often (but not always, due to the possible influence of contextual factors) found to be “better prepared and more effective in responding to natural disaster

A crucial observation about social capital associated with farmers’ associative mechanisms is that it emerges from, and enhances, the information flow between group members and external entities (e.g. government, markets, needs) that improves the likelihood of adopting innovative behaviour, relating to agricultural activities and disaster resilience building (Isham, 2002:2; Chirwa, 2005:5; Boahene et al., 1999:168; Bebbington et al., 1994:12). Carney (1996:2), Pomp and Burger (1996:425) and Khalkheili and Zamani (2009:860) reiterate this view by detailing that farmers’ associative mechanisms promote horizontal and vertical learning amongst group members and external entities through the exchange of innovation information. As noted by Adger (2003:394) the synergetic interactions stimulated by social capital between internal system groups and external groupings (state, markets and civil society) are key to reducing disaster risk and building resilience. Thus it can be argued that without the information or communications channels provided by farmers’ associative mechanisms, the emergence of innovative or adaptive behaviour (such as disaster resilience) becomes problematic for farming communities (Knowler and Bradshaw, 2007:36; Adesina et al., 2000:259).

Information feedback as directed by farmers’ associative mechanisms could play a crucial, if not definitive role in formulating social capital that is necessary for innovative and adaptive behaviours. However, much of the current research on the role of farmers’ associative mechanisms, information feedback and innovation relates purely to agricultural aspects. This paper attempts to determine whether information feedback and the social capital that arises from it could also hold benefits for the emergence of innovative disaster resilient behaviour. To achieve this, the role of farmers’ associative mechanisms and their role in the adoption of disaster coping behaviours (which serve as a proxy indicator for disaster resilient behaviour) in three countries (Madagascar, Malawi and Mozambique) in Southern Africa was investigated. For the purpose of the study a mixed qualitative and quantitative data gathering approach was followed.

5. Methodology

According to De Vos et al. (2013:443), in an embedded mixed method design “one data set provides a supportive, secondary role in a study, based primarily upon the other data type”. The need to follow a mixed design was noted because it was felt that a quantitative design alone would not be able to accurately indicate the interaction between farmers’ association group members, and its contribution to adopting better coping and recovery strategies. As such, the study
comprised one data collection method associated with each research design (two for the whole study). The primary tool for data collection was a quantitative survey which was administered to a combined total of 1110 respondents (representing the household level) in three case study countries (Mozambique - N=447, Madagascar - N=337 and Malawi - N=326). All the respondents identified through the broad study were from communities partaking in agricultural and food security activities supported by the FAO and partners from 2009-2014, under Disaster Preparedness EU Humanitarian Aid and Civil Protection (DIPECHO) funding (Kruger, 2015). From this initial 1110 respondents a purposeful sample was taken to isolate those respondents that confirmed that they are actively part of a farmers’ associative mechanism. Out of the initial 1110 participants, 593 respondents across all case study countries indicated involvement in farmers’ associative mechanisms (see Table 2).

<table>
<thead>
<tr>
<th>Are you a member of a farmers’ association?</th>
<th>Frequency</th>
<th>Valid Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>593</td>
<td>53.4%</td>
</tr>
<tr>
<td>No</td>
<td>517</td>
<td>46.6%</td>
</tr>
<tr>
<td>Total</td>
<td>1110</td>
<td>100%</td>
</tr>
</tbody>
</table>

It is recognised that in the context of the study the resilience behaviours (specifically the inclination to certain disaster coping behaviours) of members of farmers’ associative mechanisms could be influenced by a wide array of variables (i.e. increased income, increased production). Due to the fact that the purpose of the study is to determine whether the feedback and interaction within the farmers’ association contributes to stimulating more resilient behaviour, a specific analysis had to be conducted. Consequently, the original factor analysis focusing upon farmers’ associative mechanisms was broken up into its individual parts. The variables identified through this process included:

- Good cooperation between farmers’ association members;
- Farmers association members helping other members to recover from natural disasters/hazards (through donations, advice etc.);
- Increase in production since joining the farmers’ association; and
- Increase in income since joining the farmers’ association.

From this analysis the variable pertaining to farmers’ association members helping other members to recover from natural disasters/hazards (through donations, advice etc.), was selected as the key variable that is indicative of how interaction and feedback within farmers’ associative mechanisms
are key in stimulating resilient behaviour. To this end, a basic frequency analysis was conducted on
the responses of respondents to the question: “Please indicate the level to which you agree or
disagree with the following statement: Members in the farmers associations will often help other
members recover from natural disasters/hazards (e.g. donations, advice)?” The results from this
analysis are presented in Table 3 below. To complement the quantitative findings relating to the
question above, results from the quantitative questionnaire are also added in the analysis. The
qualitative data was collected through focus groups and face-to-face interviews, in order to gain a
deeper understanding of, and elaborate upon, the findings from the quantitative data. Ten (10)
focus group interviews were held per participating country. Thus thirty (30) focus groups were held
for the study overall. During these interviews the participants were asked: “Do members of the
farmers’ association help (donations, advice, support, safety nets) each other when there are
members who have incurred losses due to disasters? If so, how? If not, why not?” Additionally, a
statistical correlation analysis was conducted to determine what the preferred and non-preferred
coping strategies are that emerge in instances where members of the farmers’ associations help
other members recover from natural disasters/hazards (through donations, advice) of farmers’
association members. This analysis was carried out in order to determine whether the information
feedback and help provided by members of farmers’ associations fosters an inclination towards
positive or negative coping behaviours. The inclination of members (either positive or negative)
would serve as a proxy indicator to existing levels of resilience within the farmers’ associative
group (see Table 4).

6. Analysis
The data analysis is presented in two stages. The primary analysis focuses upon establishing
whether farmers’ associative mechanisms, and the information exchange within the association,
play a key role in members’ ability to recover from natural hazards and disasters. This analysis is
augmented by exploring whether the interactions and information feedback associated with being a
member of a farmers’ association could be a significant contributor to stimulating resilient coping
behaviour.

6.1 The role of farmers’ associations in stimulating information feedback for disaster
recovery
A basic frequency analysis was conducted on a variable relating to whether members in the
farmers’ associations help other members recover from natural disasters/hazards (e.g., donations,
advice). This variable was selected as it directly tests if there is interaction or information feedback
between members in the form of advice, donations or resource sharing that will help those affected
by disaster to cope, learn, recover and adapt following disasters. The results from the data
analysis indicate that the overwhelming majority of respondents 81% (N=476) either agree or
strongly agree that the interactions and information feedback that are part of the activities of the
farmers’ associative mechanisms make vital contributions to farmers’ ability to recover from and
cope with disaster impacts.
The quantitative results on the key role of farmers’ associations in stimulating interaction and information feedback for disaster recovery are reinforced by the summarised replies from focus group interviews:

“According to the peasants, being member of a farmers’ association made it possible for the existence of mutual aid, exchange of ideas as, generally speaking, there are mutual assistance, synergy and cohesiveness between members of farmers’ associations.” - Focus Groups Madagascar

“Members in a group learn, support, advise each other in terms of need (whether about agricultural activities or coping with hazards). Through their cooperation other people outside the group are interested to join the group” - Focus Groups Malawi

“All associations/committees help members of the community in case of emergencies or special needs, and they can do that through donations, suggestions, help in rebuilding a destroyed house, accompanying sick people to the hospital, etc. Farmers’ committees also provide early warning and evacuation functions to those living in the most exposed areas during cyclone events” - Focus Groups Mozambique

The responses provided highlight the pivotal role interaction and information feedback within farmers’ associations play in enhancing an array of disaster risk management activities including relief, response, early warning and preparedness for association members. It can be argued that the ability to perform these disaster functions more effectively could also contribute to improving...
the overall level of resilience of members, as all the activities mentioned contribute to a community's ability to constantly change, re-organise, adapt to and learn from disaster impacts by creating dynamic adaptation to disaster risk.

6.2 Farmers’ associations members and preferred and non-preferred disaster coping strategies

From the preceding analysis it was clear that participants strongly felt that the information feedback inherent to farmers’ associations aided the farmers’ ability to recover from disasters. The ability to recover from disaster impacts can however only be seen as one aspect of resilient behaviour. It was therefore necessary to investigate the coping behaviours of farmers that receive information feedback (through donations, advice) from the farmers’ association. The analysis of coping behaviour could give a clearer indication of the total level of resilience in participating farming communities. The analysis is presented in Table 4 below.

Table 4: Members of a farmers’ association helping each other to recover from disaster and preferred/non-preferred coping strategies

<table>
<thead>
<tr>
<th>Farmers’ Associative Members (N= 593)</th>
<th>Preferred Disaster Coping Strategy</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selling of household goods</td>
<td>.210**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Moving away from household’s plots for off-farm work for income</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.100</td>
</tr>
<tr>
<td></td>
<td>Member of household go to work in other people’s fields in exchange for food</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.149</td>
</tr>
<tr>
<td></td>
<td>Non-Preferred Strategies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting and gathering</td>
<td>-.173**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Reducing the number of meals per day</td>
<td>-.110**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.008</td>
</tr>
</tbody>
</table>
Mostly small statistical correlations are evident between the members of farmers’ associations helping each other to recover from disaster (through advice and donations) and non-preferred coping strategies. However, exceptions can be noted with smaller statistical correlation, but in some instances strong relationships **1 between members of a farmers’ association helping each other to recover from disaster and adopting or avoiding certain coping behaviours is evident. The data contained in Table 4 indicates that farmers, once they have received advice or donations to aid their disaster recovery efforts, only have a clear preference for selling of household goods (\(210^{**}\)) as a coping strategy, whilst moving away from household plots for off-farm work for income (\(068^{}\)) and members of households going to work in other people’s fields in exchange for food (\(059^{}\)) show only minor correlations. The availability of household goods could be indicative of a buffer coping capacity created by greater financial endowments brought about by the membership to a farmers’ associative mechanism (see Table 1). Consequently, respondents can first sell off household goods instead of immediately reverting to survival tactics such as reducing food portion sizes or hunting and gathering. The buffer coping capacity provided by the availability of household goods could give farmers’ association members time to adapt and learn from disasters, thereby contributing to their level of resilience.

Arguably, more significant for the study is what coping strategies are not considered viable. In this instance, farmers that have received help from other members to recover from disaster do not consider hunting and gathering (\(-173^{**}\)), reducing the number of meals (\(-110^{**}\)), reducing the size of food portions (\(-255^{**}\)) and eating of seed stock (\(-128^{**}\)). Although all of these correlations are small, they also display strong relationships. This could be indicative of the fact that members of the farmers’ association would first consider approaching other members of the association to help cope with a disaster/hazard, rather than resort to negative coping strategies that are indicative

<table>
<thead>
<tr>
<th></th>
<th>Reducing the size of food portions</th>
<th>Sig. (2-tailed)</th>
<th>Eating seed stock</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-.255^{**})</td>
<td>(.000)</td>
<td>(-.128^{**})</td>
<td>(.002)</td>
</tr>
</tbody>
</table>

1 Within correlation statistics ** indicate that there is a strong relationship between two factors. This correlation although small, is statistically significant, and should be reported.
survival tactics. This claim is supported by qualitative responses gathered from the focus groups. The following responses are specifically summarised from the focus group discussions:

“Mutual aid is given to members of the association in the event of disasters like inundations. A community fund is created to support members when it is required. The fund provides seeds and loans to support household members to support their livelihoods” - Focus Groups Madagascar

“Members of the farmers’ association help members who have incurred losses due to disasters by sharing of seed for replanting, food sharing and club savings” - Focus Groups Malawi

“Farmers’ associations have saving mechanisms for the members, and part of the communal yield can be destined to the social fund, to provide emergency help to its members or to fund other activities such as: seeds for the following year, purchase of equipment, community ceremonies, to build infrastructure, etc.” - Focus Groups Mozambique

Both the quantitative and qualitative responses indicate that members of farmers’ associative mechanisms tend to adopt positive coping strategies once they receive help from other group members through some type of information feedback i.e. advice. Membership to the group gives members the option of either selling surplus household goods or making use of communally pooled resources before considering adopting negative coping measures that might in the long run make them more vulnerable to the prolonged disaster impacts. Therefore adaptation and coping options provided by the information feedback innate to farmers’ associative mechanisms could have a positive impact upon the overall level of resilience of group members.

7. Discussion

The primary analysis aimed to establish whether the coping strategies that help members recover from natural disasters/hazards are a direct consequence of the interactions and information feedback between farmers’ association members. Both the quantitative and qualitative responses strongly indicated that the interactions and information feedback that are part of the activities of the farmers’ associative mechanism could make vital contributions to farmers’ ability to recover from and cope with disaster impacts. This finding is consistent with the observation of Sligo et al., (2005:549) that when people are exposed to major risk (such as natural hazards) they will often gravitate toward collective groupings that allow them to gather information and resources to mitigate or adapt to a risk. Once part of the group, a simple system component (such as an individual farmer) can alter their individual coping behaviour through interaction and information feedback with other group members. According Rammel, et al., (2007:11), Liu et al., (2007:1514), Theise and d’Inverno (2003:17); and Bonabeu, (1998:441), the interactions and information feedback enable the use of more complex behaviours that emerge on a macro systems level such as adaption, change and system resilience by the individual farmers and farmers’ associations.

The secondary analysis aimed to determine the preferred and non-preferred coping strategies that emerge once help (advice, donations) has been received from other group members. Results
indicated that members tend to adopt positive coping strategies such as selling of household goods or selling individuals’ ability to labour, instead of considering negative coping strategies such as reducing meals per day or portion sizes. In this instance the tendency to eschew negative coping behaviours could be indicative of the ability of farmers’ associative mechanisms to allow farming communities to pool their individual capacities and resources to achieve collectively beneficial outcomes, such as farmers within the group being able to avoid the need to adopt negative coping strategies. This finding is consistent with the theory presented by experts in Section 4 that farmers’ associative mechanisms create social capital for agricultural communities that in turn provide a safety net during stress or disturbance (Knowler and Bradshaw, 2007:36; Isham, 2002:2; Bingen et al., 2003:408; Stewart, 2004:3-4). Thus the social capital provided by being a group member gives members the option of either selling surplus household goods or making use of communally pooled resources before considering adopting negative coping measures, that might in the long run make them more vulnerable to the prolonged disaster impacts.

What is clear from both sets of analysis is that help provided by farmers’ associative mechanisms to their members could play a significant role in improving disaster recovery, coping and resilience behaviours of participating farming communities. The help commonly comes in the shape of advice or donations which can be described as types of information feedback within the system. Consistent with the theory presented, information feedback in the shape of advice or donations, allows for interaction between individual members (internal feedback) or the larger farmers’ association (external). This in turn facilitates the emergence of more complex behaviours such as improved disaster recovery (see Table 3) or avoidance of negative disaster coping behaviours (see Table 4). The presence of feedback loops within farmers’ associative mechanisms therefore allows for the interaction between different systems levels and components, which in turn could facilitate adaptation and eventually disaster resilience building in agricultural communities.

8. Conclusion

Building disaster resilience remains a key imperative of contemporary disaster policy and theory. Although resilience has been defined and discussed from many theoretical perspectives in the past, it was the contention of this paper that at its core, disaster resilience is vested in human systems’ ability to constantly change, re-organise, adapt to and learn from disaster impacts, as a means to creating dynamic adaptation to disaster risk. This focus upon adaptability and consistent change places resilience within the realms of Complex Adaptive System Theory. CAS are characterised by interaction between multiple system components, and the results of these interactions include self-organising behaviour, adaptation and learning. A central driver of change within open systems is the presence of information feedback loops. The information feedback loops allow for interaction to take place between internal and external system elements, and from these interactions, complex emergent system behaviours such as disaster resilience arise.
It was the contention of this paper to prove that membership to farmers’ associative mechanisms in Southern Africa could play a key role in stimulating information feedback in agricultural settings, which in turn leads to households adopting positive disaster coping strategies which is indicative of improved levels of disaster resilience. To this end it was first established that members of farmers’ associative mechanisms tend to avoid negative coping behaviours, and instead opt for positive coping strategies or making use of communal resources. The social capital provided by being a group member gave members the option of either selling surplus household goods or making use of communally pooled resources (labour, seed banks, loans) before considering adopting negative coping measures, that might in the long run make them more vulnerable to the prolonged disaster impacts. Quantitative and qualitative responses by the majority of participants (81%) pointed to the fact that the choice of positive coping behaviour or using of pooled resources was largely driven by the interaction and feedback provided by farmers’ associative mechanisms. The participants felt that the information exchange between group members makes a significant contribution to members’ ability to recover from disaster impacts. These interactions could stimulate learning opportunities which enable farmers to change, re-organise and adapt to disaster impacts as a means to creating dynamic adaptation to disaster risk. This dynamic adaptation fostered through the interaction and feedback of farmers’ associative mechanisms can be said to make a contribution to improving the overall levels of disaster resilience in farming communities.

Finally, on a much broader theoretical level, the finding presented above also points to the significance of considering the role of information feedback and interaction between system components in our endeavours to gain a more holistic understanding of disaster resilience. The introduction of information feedback and interaction into our approach to understanding resilience could be significant, as components that are aimed at building disaster resilience are often introduced in isolation. This is frequently done without a notion of resilience components that could interact with and enhance the ability of individual elements to evolve into more complex, system-wide behaviours such as disaster resilience. It can be argued that the more in-depth study of information feedback loops could provide disaster researchers with an opportunity to gain deeper insights into micro (internal to the system) and macro levels (external to the system) that subsume anticipation, adaption, change and ultimately, resilience.
Chapter 4: Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture
Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture

Christo Coetzee a,⁎, Dewald Van Niekerk a, Emmanuel Raju b

a African Centre for Disasters Studies, North West University, Potchefstroom Campus, South Africa
b University of Copenhagen, Denmark

ARTICLE INFO

Article History:
Received 10 September 2015
Received in revised form
3 February 2016
Accepted 3 February 2016
Available online 16 February 2016

Keywords:
Disaster resilience
Emergence
Adaptation
Radical novelty
Micro-macro-level interaction

ABSTRACT

Prominent international policy documents such as the Sendai Framework for Disaster Risk Reduction 2015–2030 and contemporary academic discourses on disasters reiterate the importance of understanding and prioritising building societal resilience. However, despite its prominent position in current and future disaster risk management, much confusion still exists on what exactly resilience entails and how it can be enhanced. This paper attempts to provide a perspective on this problem from the point of view of Complex Adaptive Systems Theory, with specific focus on the notion of emergence within adaptive systems. The paper explores the presence of emergent behaviour that could generate disaster resilience by reviewing statistical correlations between four agricultural interventions (small-scale irrigation system, farmers’ associative mechanisms, appropriate crop varieties, and cropping techniques) and prominent indicators of disaster resilience (coping strategies and hazard adaptation/avoidance behaviour) in subsistence agricultural activities in Mozambique, Malawi and Madagascar. The results from the analysis illustrate that emergent behaviour in the form of various coping strategies and hazard avoidance behaviour is indeed observable in agricultural communities that use all or a combination of agricultural interventions such as small-scale irrigation systems, farmers’ associative mechanisms, appropriate crop varieties, and cropping techniques. These resilience abilities are newly formed macro-level behaviours that emerge due to the interactions of agricultural interventions at a micro-level.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of resilience is becoming an increasingly important paradigm for managing risk faced by disaster affected societies. Prominent international policy documents such as the Sendai Framework for Disaster Risk Reduction 2015–2030 and contemporary academic discourses on disasters reiterate the importance of understanding and prioritising building societal resilience. However, despite its prominent position in current and future disaster risk management, confusion still exists on what exactly resilience entails and how it can be enhanced. This paper attempts to provide a perspective on this problem from the point of view of Complex Adaptive Systems Theory, with specific focus on the notion of emergence within adaptive systems. Emergence, which is defined as the concept that complex behaviours at macro-level can emerge from interaction between micro-level components, which modify, transform and create new components on a macro-level, that do not necessarily bear any resemblance to the micro-level components from which they arise, provide an interesting avenue in the exploration of how disaster resilience can be developed. Specifically, the origins and theoretical principles associated with emergence (i.e. micro–macro effect, radical novelty, interacting parts, dynamic change, decentralised control, and robustness and flexibility) are discussed and likely applications thereof in the context of understanding disaster resilience are elaborated on.

The paper aims to explore the presence of emergent behaviour that generates disaster resilience by reviewing statistical correlations between four agricultural interventions (i.e. small-scale irrigation system, farmers’ associative mechanisms, appropriate crop varieties, and alternative cropping techniques) and prominent indicators of disaster resilience (coping strategies and hazard adaptation/avoidance behaviour) in subsistence agricultural activities in Mozambique, Malawi and Madagascar. Through this analysis it becomes possible to understand the complexity associated with building disaster resilience in specific agricultural contexts.

⁎Corresponding author.
E-mail addresses: Christo.coetzee@nwu.ac.za (C. Coetzee), Dewald.VanNiekerk@nwu.ac.za (D. Van Niekerk), emmanuel.raju@ruc.dk (E. Raju).
http://dx.doi.org/10.1016/j.idrr.2016.02.001
2212-4209/© 2016 Elsevier Ltd. All rights reserved.
2. Understanding disaster resilience through the lens of complex adaptive systems theory

The debate around disaster resilience has gained prominence due to the realisation that traditional approaches towards managing disasters, such as the disaster management cycle (see Fig. 1), have largely failed in building adaptive capacity that is crucial for societal change and perseverance in the face of increasing disaster impacts [31]. This is largely due to the strong focus on disaster response often perpetuated by models such as the disaster management cycle [23]. Instead, the traditional way of managing disasters was through the application of a cycle of activities that began with disasters and ended with disaster (see Fig. 1). The inevitable return to a state of disaster espoused by such cycles created the impression that disaster and subsequent loss of lives, livelihoods, infrastructure, biodiversity and linked socio-ecological systems are inevitable outcomes [15,23].

An alternative to the traditional cyclical thinking about disasters is the concept of resilience, which was introduced to the contemporary discourse of disaster management in the early 1990s [11]. Resilience is said to refer to the ability of a community to respond and recover from disaster impacts through adaptive processes that facilitate the ability of the social system to re-organise, change, and learn from disasters [5,24,35]. This definition of resilience opens up many possibilities for the way disasters are managed and understood. Specifically, it contributes to the idea that it is with any other social system, building community resilience to disasters is inherently a non-linear, open system process where new information can continuously flow in and out of, thereby changing the system dynamics or in this instance, the composition of community resilience profiles (this is opposed to the linear, closed-system process of managing disasters as proposed by the disaster management cycle) [34]. Importantly, the open system process of building community resilience implied by the above-mentioned definition can be better understood through the application of theoretical tools specifically designed to provide clarity to the dynamic complexity and interactions of open systems [16,19,33,35]. One such tool that can be used is Complex Adaptive Systems Theory (CAST). The application of CAST in exploring disaster resilience is a dramatic departure away from the traditional approach of addressing disaster risk issues. To a large degree, traditional disaster management tools, theories and frameworks (disaster management cycle and the Hyogo Framework) are based on a mechanistic scientific paradigm that espouses linear cause and effect relationships. In practice, the traditional paradigm over simplifies our understanding of complex social behaviours such as societal resilience by reducing efforts to build and promote resilience to a few simple steps. Such an approach misses the reality that linked socio-ecological issues such as disasters and disaster resilience are inherently complex, and should be addressed as such. CAST, as a variation of General Systems Theory, focuses specifically on how interactions at micro-levels of a system lead to complex adaptive behaviours at macro-levels [9,11,18,20,25]. Additionally, Holland [13], Rammel et al. [26] and Lunes and Booher [14] determined that CAST is extremely appropriate in analysing systems that are constantly changing in accordance with their environment. The ability to analyse constantly changing systems is particularly relevant for disaster resilience, as a society’s resilience profile is not static but is constantly adding or losing capacities, or being affected (or not) by disasters and risks. Thus the introduction of CAST and other systems-thinking theories and tools into our endeavours to understand disaster resilience could serve as a paradigm shift towards more in-depth and holistic understanding of the concept.

According to Lansing [17] and Smith and Wandel [31], CAST employs a wide array of concepts such as self-organisation, emergence, attractors, feedback loops, aggregation, symmetry, and edge of chaos to assist in gaining a deeper understanding of how a systems functions and adapt to shocks. Of these concepts, emergence provides a particularly interesting avenue of investigation for disaster risk scientists in their quest to gain a deeper understanding of disaster resilience. Lansing [17] explains that emergence is a process where larger patterns with new properties can emerge from local interactions between system components. Understanding such interaction could clarify how micro-level decision-making and interactions impact positively or negatively on larger social patterns, structures and properties such as community resilience [8]. According to Goldstein [8] it is important to note that although emergence could provide a better understanding of a system, it cannot provide all the answers as to how a system functions. To gain a deeper insight into the concept of emergence it is necessary to elaborate on its development and key tenants.

2.1. Emergence: historical development and modern applications

The study of emergence has a long history of explaining the holistic nature of systems [6,8,14]. The earliest conceptualisation of emergent behaviour has been credited to one of the fathers of science and philosophy, Aristotle, when he stated: “the whole is something over and above its parts, and not just the sum of them all” [4]. The rapid development of scientific theories and methods in the 19th and early 20th centuries, especially those focusing on the fields of chemistry and evolutionary biology, re-emphasised the need to explain how new levels of organisation and behaviour emerge within systems without it displaying the nature and characteristics of the individual parts [6,25,29]. According to Goldstein [8], the study of how complex and dynamic systems organise themselves and adapt to change has extended into the modern era and provides a range of scientific fields with a tool to explore the as yet unknown impact of emergent system behaviour. The ability to understand the extent to which emergent behaviour influences systems could lead to a better understanding of complex paradigms and concepts within a variety of scientific fields. The field of disaster risk science is one such field that could greatly benefit from the study of emergent behaviour. A specific benefit is in the exploration of disaster resilience as it will allow for the investigation into how an aggregation and interaction of smaller micro-level variables and capacities in disaster risk prone communities could build macro-level disaster resilience. Crucially, emergence places an emphasis on understanding the contribution of complex system interaction in building resilience, where
traditional approaches tend to focus on the capacities in isolation. However, before considering a practical application, it is necessary to focus on the characteristics of emergent behaviour of which Table 1 contains a summary.

From the above-mentioned characteristics it becomes apparent that the emergent behaviour has its genesis primarily at a micro-level. However, its greatest influence can be seen at a macro-level where the micro-level interactions between components are transformed to entirely new components of behaviour. This creation of new macro-level behaviour is however subsumed by certain processes, which are micro-macro effects, radical novelty, interacting parts, dynamic change, decentralised control, and robustness and flexibility. These are elaborated on in more detail below.

2.1.1. Emergence and its possible implications for understanding disaster resilience

The concept of emergence has a long history of being used to describe aspects of how complex and dynamic human and ecological systems adapt their properties of behaviour, structure and patterns to prevent the extinction of a said system [6,10]. It is necessary to define what is meant by the term “emergence” so to explore the possible implications that emergent principles could have in explaining disaster resilience. Two clear properties associated with emergence can be ascertained from the definitions above. The first of these properties relates to how macro-level behaviour in a system emerge from interactions between different micro-level components within a system. This first component of emergence could allow for the attainment of a deeper understanding of resilience to track the interaction between micro-level capacities within households and understand if this interaction leads to community-wide resilience at a macro-level.

Secondly, the interaction of micro-level components causes the modification, transformation and creation of new components on a macro-level that do not necessarily bear any resemblance to the micro-level components from which they arose. Put differently, emergence is inextricably linked to the creation of radical novelty in systems. This allows a system to avoid equilibrium and constantly adapt to stress [6,8]. The aspect of radical novelty will allow researchers to select an array of capacities within a community and evaluate whether they generate behaviour that might be completely new compared to the original purpose of said capacity. Additionally, it could also allow for the measurement of the level of adaptability which a certain capacity contributes to a system.

The concept of emergence also has innate characteristics that could help researchers to indicate when it is observable in a system, and if it does indeed contribute to generating resilience. Some of the characteristics include the micro-macro effect, radical novelty, interacting parts, dynamic change, decentralised control, and robustness and flexibility. Two of these characteristics have already been discussed in the preceding paragraphs (i.e. radical novelty and micro-macro effect) and will not receive further attention, instead, the other characteristics that make up the concept of emergence will be briefly alluded to.

2.1.1.1. Interacting parts. According to Cilliers [3] and Sawyer [34], the interaction between various components in a system is needed for a system to generate emergent behaviour. Without interaction the micro-macro effect is impossible [4]. It can be argued that it is not enough to only identify all the capacities that are perceived to generate resilience; instead there should be an additional step in quantifying and qualifying the level of interaction between various components.

2.1.1.2. Dynamic. Goldstein [8] states that emergent phenomena evolve over time in a dynamic process. The dynamic evolution leads to radical novelty within a system, but it in the form of new capacities, components or behaviours [6,20]. The dynamic characteristic associated with emergence highlights it as a continuous process and not a final state of being within a system. This means that capacities within communities may be tested for their ability to contribute to the continuous change within a society as this would help to identify those capacities that are most likely to lead to dynamic changes in overall resilience profiles.

2.1.1.3. Decentralised control. De Wolf and Holvoet [6] assert that decentralised control refers to the fact that the macro-level behaviour of a system cannot be controlled or directed by a single component at the micro-level. Decentralised control is needed for a system to generate radical novelty in that there are no components in place at micro-level that serve as a control in terms of setting rules, parameters and limits for how the system could develop at a macro-level [3]. Interestingly, once an emergent behaviour evolves at macro-level it would be possible for this new emergent behaviour to influence the micro-level in what De Wolf and Holvoet [6] describe as “downward causation”.

2.1.1.4. Robustness and flexibility. According to De Wolf and Holvoet [6], emergent phenomena are extremely robust and flexible as they remain mostly intact even if there is a failure or replacement occurs of individual entities that make up the phenomena. An example of this ability of an agricultural community to still show disaster resilience in the form of macro-level coping strategies and hazard avoidance behaviour, even if there is a change in a micro-level component, like the transition from informal family/ friend-based farming networks to more formalised farmers'
associative mechanisms. This flexibility and robustness allows emergence to exhibit a dynamic quality and allows for adaptation to shock and disturbances [31]. Therefore, identifying emergence can assist in determining capacities and components within a system that could contribute to generating robustness and flexibility within systems.

It can be seen that by applying CAST and its related concept of emergence, there is a solid theoretical grounding for further research and application in creating a better understanding of how macro-level disaster resilience is generated through micro-level interaction within a wide array of communities. One such community that needs urgent attention in identifying emergent behaviour is subsistence farmers in Southern Africa. Southern Africa’s ever-changing risk profile poses a very real threat to the exploitation of existing societal vulnerabilities, which could lead to disasters in the region. Notably within the region, small-scale subsistence agriculture plays a crucial role in sustaining livelihoods and food security for households and society as a whole. Although this sector is seen as a primary driver for social-economic development and food security, it remains one of the most vulnerable to the impact of disasters. As such it is crucial to gain a clearer understanding of how resilience currently emerges within such communities by focusing on the contribution of four strategic agricultural interventions identified by the Food and Agricultural Organization of the United Nations (FAO) in the three African states of Malawi, Mozambique and Madagascar.

3. Methodology

The case study research is based on a research project conducted on behalf of FAO in Madagascar, Malawi and Mozambique (see Fig. 2). The outcome of the study was to identify factors that could build resilience in the context of livelihood systems, which when threatened by severe events and hazards, have the potential to assist the system to recover from, and adapt to, adverse outcomes. Specifically, the study attempted to track the relative contribution of the following interventions in building resilience in all three countries:

- Small-scale irrigation systems use;
- Membership of a farmers’ association;
- Crop varieties; and
- Alternative cropping techniques.

To gain greater insight into the contribution of the above-mentioned interventions to overall resilience, questionnaires aimed at household level were used. A total of 1110 respondents formed part of the study. Mozambique represented 40.3% (N=447), Madagascar 30.4% (N=337), and Malawi 29.4% (N=326) of the total respondents. Respondents were purposefully sampled from communities partaking in agricultural and food security activities supported by FAO and its partners from 2009 to 2014 under Disaster Preparedness EU Humanitarian Aid and Civil Protection (DIPECHO) funding.

A quantitative survey was administered to selected participants to test the relative contribution of natural, social, human, economic, and financial capacities in generating disaster resilience at household level. These capacities were integrated with the four main intervention areas mentioned above. Once the data was gathered, statistical analysis was conducted using descriptive statistics, exploratory factor analysis, Pearson correlation coefficient, and effect size. Correlation statistics were used to firstly determine micro-level interactions (this was done by correlating interaction between the four interventions), and secondly, to correlate the combined effect of these interventions to contributing to macro-level resilience behaviour by focusing on preferred/non-preferred coping strategies and hazard coping/adaptation behaviour. Correlation coefficients were selected as the preferred method of analysis as they provide a standardised measure of the strength of relationships between two variables [7].

Secondary data analysis was applied to the data set. According to Windle [37] and Sarensen et al. [32], secondary data analysis can be applied to a study, either as an appended study or meta-analysis. A meta-analysis refers to a study that compares data sets from different studies to identify positive or negative correlations between the different sets of data [10,28,30]. This is opposed to an appended study, which opts to use the same data set collected for the original study, but with new research objectives to either open up new avenues of exploration, or to allow for a more in-depth analysis of existing findings [2,37]. This study was framed within the provisions of an appended study. The main reason for this is that the initial study provided only a basic impression of how small-scale irrigation systems, farmers’ associative mechanisms, appropriate crop varieties, cropping techniques and timing of production, possibly contributed to disaster resilience in agricultural communities. The dynamic interplay between these factors in different scales and contexts warranted further study.

Validity in the study was ensured by two possess. Firstly, the research tools were workshopped with the research teams from the three participating countries. The research personnel were trained on the utilisation of the research tools, technology and techniques. Subsequent to the workshop a pilot study was carried out in Chikwaha district in Malawi to see if there were any unforeseeable problems with the application of the questionnaire, and to test the research technology in a live environment. During the pilot study the quantitative questionnaire was constantly adapted in line with the learning of the pilot team in the field.

\[1 \text{ including the use of treadle pumps, fuel pumps, canals, buckets, wells, and gravitational water interventions.} \]

\[2 \text{ Use of short-cycle crop varieties (reduced growing time) or traditional crop varieties.} \]

\[3 \text{ Mulching, row planting, manure and fertiliser, intercropping, pit planting, moisture retention, minimum tillage, agroforestry, crop rotation, and no-tillage.} \]
Table 2
Correlations between agricultural interventions per country.

<table>
<thead>
<tr>
<th>Country</th>
<th>Intervention</th>
<th>Irrigation Intervention (correlation)</th>
<th>Farmers’ associative mechanism (correlation)</th>
<th>Crop varieties (correlation)</th>
<th>Cropping techniques (correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malawi</td>
<td>Spearman rank order method</td>
<td>1.000</td>
<td>.580**</td>
<td>.559**</td>
<td>.577**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>.568**</td>
<td>.294**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.559**</td>
<td>.568**</td>
<td>.294**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.377**</td>
<td>.294**</td>
<td>.273**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Mozambique</td>
<td>Spearman rank order method</td>
<td>1.000</td>
<td>.523*</td>
<td>.549**</td>
<td>.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>.564**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.549**</td>
<td>.564**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.045</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.045</td>
<td></td>
</tr>
<tr>
<td>Madagascar</td>
<td>Spearman rank order method</td>
<td>1.000</td>
<td>.396**</td>
<td>.210**</td>
<td>.253**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.396**</td>
<td>.464**</td>
<td>.245**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.210**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.464**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.245**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.253**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.210**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.464**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.245**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.253**</td>
<td></td>
</tr>
</tbody>
</table>

After the workshop and pilot study the final questionnaire was compiled. Secondly, structural validity was ensured through an exploratory factor analysis on the sections pertaining to the four key technical areas of the questionnaire to identify the structure and factors of each construct.

The secondary data analysis focused on determining how micro-level interaction between the four interventions of the study could contribute to building resilience in terms of preferred coping strategies and hazard avoidance behaviour. The results of this analysis are presented below.

4. Interaction between four agricultural factors and its contribution to emergent resilience

Within the specific case study, the four interventions to building resilience were correlated with each other on a country-to-country basis to establish statistically significant interactions by examining whether there is a relationship between the four interventions, and the strength of the relationship. These interventions function on the micro-level as individual households were asked if they apply an intervention in their day-to-day agricultural activities. Table 2 illustrates the statistical correlations between the four interventions per country.

Moderate to large statistical correlations are evident between most of the interventions in the country context. However, exceptions can be noted with smaller statistical correlation (but in some instances strong relationships) between the use of cropping techniques, and all the other factors are evident in all three country contexts. Although variations exist within the correlations’ statistics, it establishes that there is a small-medium relationship between the interventions, and thus a possible interaction between the various factors. For example, in all three of the country contexts it was found that if farmers used irrigation agriculture, they were likely to belong to farmers’ associations, adopt a mixture of crop varieties (including traditional and short-cycle crop varieties), and implement innovative cropping techniques to increase production and food security. This pattern seems to repeat itself even if the perspective from which the data is read changes (e.g. from farmers’ associative mechanisms or crop varieties).

The correlation statistics also provided clarity on the strength of the relationships. For the most part, the relationships between interventions in the different countries were also found to be very strong (as indicated by **). Even in an instance such as Madagascar, where a smaller statistical correlation (.396**, .210**, .253**) exists between the interventions, the correlation is significant. In the instance of Madagascar, fewer farmers (than in the case of the other two countries) adopted irrigation, farmers’ associative mechanisms, crop varieties and cropping techniques; however, when they did adopt one type of intervention, they were very likely to integrate it with all the other interventions. The opposite scenario was observed in the Mozambican context. Although there was a moderate statistical relationship between the use of irrigation and farmers’ association (.523*), the relationship was not strong, possibly indicating that even if irrigation is used by farmers it could be done in isolation and could not be strongly linked to the activities of farmers’ associative mechanisms.

Some of the statistical anomalies described above can be linked to non-linearity within open systems and should be explored in subsequent research. However, within the context of tracking emergent behaviour for building disaster resilience, the statistics also indicate how the micro-interactions clarified above could lead to macro-level resilience indicators. These macro-level resilience indicators, including coping capacities, hazard adaptation and avoidance are highlighted in Tables 4 and 5 below.

4.1. Emergent effect created through interaction: macro-level resilience

Two major macro-level indicators of resilience were identified. These relate to the ability to cope with the impact of disasters and to avoid risk periods. These two indicators are selected because both are crucial components in generating disaster resilience through allowing a social system to absorb impacts, respond to, and cope with a disaster event. Both these indicators also contribute to re-organisation, change and learning behaviours that are associated with resilience [5].
Table 3
Mean and standard deviation: factor combined intervention use.

<table>
<thead>
<tr>
<th>Factor</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined intervention use</td>
<td>891</td>
<td>1.00</td>
<td>1.00</td>
<td>1.0000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

The results of the secondary statistical analysis of both coping strategies and hazard avoidance/adaptation are conveyed in the following section. This statistical analysis is based on the hypothesis that the use of all, or the combination of interventions at micro-level, would lead to emergent behaviour at a macro-level, specifically behaviour associated with disaster resilience. To test the hypothesis, data sifted first took place and this produced 891 instances of valid data out of 1110 participants. Valid data refers to participants who indicated that they use all or a combination (1, 2 or 3) of the interventions to assist in their agricultural activities. These valid responses were then combined into a new factor titled "Combined intervention use" (the mean and standard deviation of this factor is detailed in Table 3 below), which was used to facilitate correlations with the resilience indicators of coping capacity and hazard avoidance/adaptation using the Spearman Rank Order method of analysis.

4.1.1. Coping strategies

Correlations revealed (see Table 4) several indications towards resilient behaviour emerging in communities that use all or a combination of interventions. Specifically, medium correlations are shown with what can be regarded as positive coping behaviours, such as the selling of household goods (333**), moving away from household’s plots for off-farm work for income (332**), and working in other people’s fields in exchange for food (350**). These strategies are regarded as “positive coping strategies” because they indicate the existence of a pre-existing buffer capacity within a household that prevents it from showing a preference for strategies that are primarily focused on survival and reducing of basic physiological needs as per Maslow’s Basic Human Needs Hierarchy (1943). Therefore, households that exhibit positive coping behaviours would prefer to sell their excess household goods and their labour, agricultural skills and knowledge (that function on the safety level of human needs) before considering survival tactics associated with the physiological level to cope in times of disaster stress. This assertion is supported when the correlations on negative coping strategies are taken into account. These correlations indicate that respondents are not inclined to consider hunting and gathering (190**), reducing the number of meals (103**), or no strategies (125**). Interestingly, respondents also indicated that they would not consider support from family members (192**) as a possible coping strategy. This could be indicative of respondents considering their financial (household goods) and physical assets (labour, agricultural skills and knowledge) to be of such a magnitude that they could adequately cope with disaster periods without having to approach extended family for additional assistance.

Added to the coping capacities exhibited, it was also determined that by using combinations of intervention strategies allows for innovative hazard avoidance and adaptation for priority hazards of droughts, floods and tropical cyclones during high-risk periods (usually between January and March annually).

4.1.2. Hazard avoidance/adaptation

Correlations display (see Table 5) an adaptive capacity amongst farmers that allow them to maintain or safeguard their agricultural and income-generating strategies in high-risk periods. Specifically, farmers are shown to select either adaptation to, or avoidance of, a hazard as a means to protect their livelihood. Adaptive behaviour is shown to be prevalent in coping with droughts (363*, 379*, 189**) and floods (268*, 245*, 139*). Participants indicated with certainty that applying a combination of interventions allows them to produce agricultural outputs despite droughts and floods. Hazard avoidance behaviour is seen from participant responses in that participants who use a combination of interventions tend to avoid engaging in agricultural activities that could be affected by cyclones (170**, 202**, 272**) between January and March. This avoidance behaviour could be attributed to conscious efforts to protect existing irrigation infra-structure, crop varieties and cropping techniques from cyclone damage, and information sharing on possible cyclone intensity by farmers’ associations as a means of early warning. The ability to adapt to hazards and hazard avoidance both are crucial indicators of an existing level of disaster resilience.

Both of the resilience indicators discussed can be said to be aligned with the two basic theoretical properties of emergence. Firstly, macro-level (societal) resilience indicators (coping strategies and hazard adaptation/avoidance strategies) have emerged because of the interaction of micro-level components (four agricultural interventions). Secondly, what is clear from the correlation statistics is that what began as agricultural activities, also contributed to building disaster resilience in the agricultural communities. These primarily agricultural activities have thus transformed and created new behaviour that does not bear any resemblance to the micro-level components from which it arose. Theoretically the newly-formed resilience components could provide several benefits to the entire system, including system robustness, flexibility and dynamic change in disaster contexts.

The findings described above illustrate that it is indeed possible to identify the development of complex resilience behaviour by examining emergent system behaviour. Correlations (see Table 2) have shown that there is a correlation between the various agricultural interventions that could be indicative of interaction between these interventions. This micro-level interaction is a basic building block needed for emergent behaviour. There is also confirmation that once the agricultural interventions functioning at the micro-level are used in combination and correlated with disaster coping strategies and hazard avoidance and adaptation behaviour, macro-level resilience behaviour emerges (as illustrated in Tables 4 and 5). This could point to the presence of the process of micro-macro interaction and radical novelty as discussed in theory (see Section 2.1.1.1). Additionally, it is shown that not one of the individual agricultural interventions at the micro-level controls the process of change that leads to the emergence of resilience at the macro-level. Instead it is a combination of all or some of the interventions in unison tallow for change to occur within the system. This is indicative of decentralised control behaviour associated with the generating of radical novel behaviour, such as

6 The significance level of the Spearman correlation is calculated assuming that under the null hypothesis is distributed as r with N-2 degrees of freedom. A one-tailed significance level is printed depending on the one-selected option.

7 Physiological needs are described by Maslow as the pre-requisite need of all needs. For example, if a person is lacking food, safety, love, and esteem-hunger for food will be stronger in driving human behavior than anything else. The same can be said for all physiological needs when compared to other human needs (Maslow 1925).

8 Hunting and gathering is considered here as a negative coping strategy as the skill set required for agriculture and domestication of cattle derived from the skills required for hunting and gathering in Southern Africa about 30 000 years ago. Consequently modern farming societies might not possess the specialized skills and knowledge of hunter gatherer societies to maintain themselves for a sustained period by turning to hunting and gathering to cope with disaster impacts.
Table 4
Preferred and non-preferred coping strategies within agricultural communities in the case study countries’ correlation with the number of intervention strategies used by a respondent.

<table>
<thead>
<tr>
<th>Combined intervention use factor</th>
<th>Positive coping behaviour</th>
<th>Selling of household goods</th>
<th>Moving away from household’s plots for off-farm work for income</th>
<th>Member of household working in other people’s fields in exchange for food</th>
<th>Correlation</th>
<th>333*</th>
<th>322*</th>
<th>.350*</th>
<th>Reducing the number of meals</th>
<th>891</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined intervention use factor</td>
<td>Correlation</td>
<td>N</td>
<td>Support from family members</td>
<td>Hunting and gathering</td>
<td></td>
<td>891</td>
<td>891</td>
<td>891</td>
<td></td>
<td>891</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-182</td>
<td>-190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Correlation is significant at the .05 level (2-tailed).
** Correlation is significant at the .01 level (2-tailed).

Table 5
Preferred and non-preferred adaptation/avoidance hazard strategies within agricultural communities in case study countries’ correlation with the number of intervention strategies used by respondents.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Hazard</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>Hazard coping type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Droughts</td>
<td>.363*</td>
<td>.379*</td>
<td>.389</td>
<td>Adaptation</td>
</tr>
<tr>
<td></td>
<td>Floods</td>
<td>.268*</td>
<td>.245*</td>
<td>.139</td>
<td>Adaptation</td>
</tr>
<tr>
<td></td>
<td>Cyclone</td>
<td>- .710*</td>
<td>- .202*</td>
<td>- .272</td>
<td>Avoidance</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>891</td>
<td>891</td>
<td>891</td>
<td></td>
</tr>
</tbody>
</table>

* Correlation is significant at the .05 level (2-tailed).
** Correlation is significant at the .01 level (2-tailed).

resilience. Robustness and flexibility associated with emergent behaviour within systems is also shown to be present upon a review of the positive coping strategies and hazard avoidance and adaptation strategies adopted by farmers using all or a combination of the four interventions. The robustness and flexibility provided by disaster resilience at the macro-level could in turn have a positive effect on the sustainable use of the four agricultural interventions at the micro-level. This aligns with the notion of “downward causation” associated with the concept of decentralised control. The only theoretical aspect of emergence that proves difficult to report on within the scope of this study is the concept of dynamic adaptation. This is not because it is not present within the study, but because dynamism is a factor that is linked to development over a period of time. This study could therefore serve as a source of base data, which could be re-evaluated over time in order to track dynamic changes in the disaster resilience profiles of the communities involved.

5. Conclusion

The concept of emergence has a long history of being utilised to describe aspects of how complex and dynamic human and ecological systems adapt their properties, behaviour, structure and patterns to prevent the extinction of a said system. The article has illustrated the benefits of applying the systems concept of emergence to attain a greater understanding of disaster resilience. At a theoretical level, the concepts of micro–macro effect, radical novelty, interacting parts, dynamic change, and decentralised control will assist in setting parameters for the observation of resilience behaviour in a disaster-affected community. This in turn provides disaster risk scientists with the ability to understand the resilience paradigm in a more holistic manner and offers greater insight into how to measure existing resilience profiles in communities. It also assists in building on such profiles to ensure that a community has the ability to adapt, avoid, recover and learn from disaster impacts.

Using the two main principles associated with emergence (i.e. micro-level interactions leading to macro-level behaviour and the emergence of radically new behaviour as a guide), an analysis was conducted on whether emergent behaviour is observable in agricultural communities in Malawi, Mozambique and Madagascar. The results from this analysis illustrated that emergent behaviour (i.e. coping strategies, and hazard avoidance behaviour) is indeed observable in agricultural communities that use all or a combination of agricultural interventions such as small-scale irrigation systems, farmers’ associative mechanisms, appropriate crop varieties, and cropping techniques. These resilience abilities are newly formed macro-level behaviours that emerge due to the interactions of agricultural interventions at a micro-level. This illustrates that the practical application of emergence in measuring disaster resilience indicators could provide valuable results in improving our understanding of how resilience emerges in agricultural settings.

References

Chapter 5: Reconsidering Disaster Resilience: A non-linear systems paradigm in agricultural communities in Southern Africa
Reconsidering Disaster Resilience: A non-linear systems paradigm in agricultural communities in Southern Africa

1. Introduction

Disasters continue to have significant impacts upon human existence. The impact of disaster events has become more pronounced in recent decades, leading to an increase in the loss of lives, livelihoods, infrastructure, biodiversity and linked socio-ecological systems. To combat the impact of these events, a multitude of disaster risk reduction theories and policies have been developed. Yet many of these theories and policies still reflect the basic premise of Mechanistic Theory that has been the dominant paradigm for scientific reasoning since the Renaissance. These theories and policies propose that disaster risk can be reduced to a set of hazards, vulnerabilities or policy shortcomings. Once these different elements or policy shortcomings have been identified, it would become easier to identify problem areas and suggest linear solutions towards reducing disaster risk. However, very little progress has been made towards reducing disaster losses through the application of these mechanistic theories (such as the Pressure and Release Model, the Access Model and the Sustainable Livelihoods Model) and policies (e.g. the Yokohama Framework and Plan of Action and the Hyogo Framework for Action, and also more recently the Sendai Framework for Disaster Risk Reduction). This lack of progress opens up the possibility for the application of different theories and paradigms for understanding and reducing disaster risk. One such option is the application of Complex Adaptive Systems thinking and its linked paradigm of non-linearity.

Non-linearity is the notion that inputs into a system are not always proportional to the expected outputs. Consequently, inputs into different systems would not always yield consistent results or outputs, as a variety of context specific socio-economic, political or ecological variables dramatically change the efficacy inputs. In practice this would mean that a disaster resilience building project might be successful in one area, as it speaks to the context specific needs of the area, but attempts to use the same project parameters and methodologies would lead to project failure in the other areas, as they do not take non-linearity into account. This paper will attempt to test the presence of non-linear behavior in agricultural communities in Southern Africa. This process is facilitated through the identification of non-linear behaviour in the application of four agricultural interventions and their effect upon disaster coping strategies adopted in different districts of Madagascar, Malawi and Mozambique. The analysis highlights that certain non-linearity exists relating to coping behaviour, in particular that the size and the number of interventions used for resilience generation in these communities are not necessarily proportional to the expected outcome. Thus, communities that use more agricultural interventions are not necessarily less vulnerable or more resilient than communities that use less interventions. To the contrary, the analysis establishes that in some
contexts communities using less interventions display a greater tendency to positive coping behaviour than those using more interventions. These findings could provide a paradigm shift away from the linear approach of generating generic theories and policies for reducing disaster risk, towards more holistic and contextually adaptable theories and policies.

Before the specific results can be discussed in more detail, a theoretical background is given on traditional mechanistic scientific thought and the impact thereof on the theoretical and practical tenants of disaster risk science. The Mechanistic Approach is briefly critiqued from a Complex Adaptive Systems Approach (and its associated concept of non-linearity) as a means of highlighting a possible alternative approach to how disaster risk reduction and disaster resilience should be understood and operationalised.

2. Mechanistic thought and its influence on scientific reasoning and problem solving

Creating an understanding of how the environment and human society function within western society has been dominated by the Mechanistic Approach to scientific inquiry (Rihanna and Geyer 2001; Vallacher 2002). According to Scoones (1999) the roots of the Mechanistic Approach can be traced as far back as ancient Greece and medieval Christian Europe. However, the heyday of mechanistic thought emerged during the Renaissance (14th–17th centuries) and Enlightenment periods (16th-18th centuries) of world history with the works of Da Vinci, Copernicus Galilei, Descartes, Hobbes and Newton playing a major role in establishing mechanistic thought as the dominant approach to scientific inquiry and problem solving (Rihani and Geyer 2001237; Wulun 2007394-395; Alexander, 2013). The Mechanistic Approach as developed by these great scholars espouses three major orientations to scientific inquiry, i.e. reductionism, determinism and linear reasoning/problem solving (Wulun 2007). The combination of these orientations states that all complex human, psychological or environmental phenomena can be understood by reducing them to their base components (reductionism). Once phenomena have been reduced to their basic components, it become possible to identify or understand the “natural laws” or components that determine larger behaviour within a system (determinism). Determinism therefore helps to establish a linear relationship between micro and macro level components of a system. Thus the hypothesis that flows from this reasoning is that by altering aspects of component “A”, it will bring about a directly proportional change in component “B” (thus linear reasoning) (Hawking 1988; Rihanna and Geyer 2001; Vallacher, 2002). A typical example of this type of reasoning can be represented by Isaac Newton’s Third Law of Motion:

“To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts”.

68
If we translate the mechanistic approach to the level of systems analysis it makes the argument that “a whole is the sum of its parts” (Vallacher 2002; Wulun 2007). Therefore the Mechanistic Approach often approaches problem solving from a closed-system perspective (Rihani and Geyer 2001). Its basic tenets are that both the components that create a problem within a system and those that could solve the problem are already contained within the system boundaries (Scoones 1999). This assertion is supported by Vallacher, (2002) who states that a linear system and its accompanying behaviour is a direct reflection of the number of elements contained within the system, and the interaction between these elements to bring about equilibrium. Thus in a linear approach (by identifying a problematic component within an environmental, human or societal system) there is sufficient departure to finding a possible solution. Identifying undesirable component/status will help one move towards restoring equilibrium and harmony within a system. However, these traditional ways of reasoning were being challenged at the beginning of the 20th Century with the emergence of systems/holistic thinking.

3. Systems thinking as a paradigm shift in science

Mechanistic, linear reasoning has helped humankind to gain deeper insights into the fields of physics, biology and economics, and it reached an impasse in explaining dynamic ever-changing phenomena, especially those at the interface between society and the environment like disaster risk and the reduction thereof (Costanza et al. 1993; Wulun 2007; Levin 1998; Lichtenstein et al. 2006). The need to find solutions to dynamic and ever-changing problems within all branches of scientific inquiry lead to the formation of the Systems Movement. This movement can trace it roots back to thinking that emerged on how human, environmental and electronic systems function (following World War I and II) (Anderson 1999; Morel and Ramanujan 1999). During this period, physicists such as Schrödinger and Dirac, introduced the notion that some phenomena are probabilistic in nature (as opposed to deterministic), and therefore subject to chance variation (Rihani and Geyer 2001, Anderson 1999). The implication of this notion was the fact that all systems are not easy to understand (as per the Mechanistic Approach) because constant change leads to complexity within systems and complex systems are harder to break down to their constituent parts, as these are not constant but ever-changing (Vallacher 2002; Alexander, 2013). The basic idea that certain phenomena are probabilistic in nature stimulated the growth in fields of inquiry pertaining to Holism, General Systems Theory and Complex Adaptive System Theory (Von Bertalanffy 1972; Wulun 2007). Complex Adaptive System Theory hailed a major shift in scientific thinking away from reducing a system to a sum of its parts to the notion that “a whole is more than sum of its parts” - or that systems do not just comprise various components, but are also comprised of dynamic interaction of components, temporal and contextual influences, and feedback loops that help the systems build up or break down certain components to foster adaptation (Boulding 1956; Ashby 1960; Buckley 1968; Becker 2009; Skyttner 2005; Richardson 2005).
This holistic, systems thinking alluded to above has also prompted a change in how real world problems are approached and solved. Thus, where the orientation has always been towards linear problem solving, the Systems Approach introduced non-linear reasoning where there is a recognition that the size of inputs into a system might not be proportional to expected outputs (Boal and Schultz 2007; Railsback 2001; Wulun 2007; Vallacher 2002). Therefore perceived insignificant variables or inputs in a system might fundamentally change the operation of a system, whilst major inputs or variables might have no impact in changing the system (Schneider and Somers 2006; Plsek 2001). The end goal or problem solving has also changed with the introduction of the system perspective. Where linear reasoning aimed to achieve a certain idealised end state, characterised by stability, systems based solutions aim for solutions to complex problems that are continuously adapting to and coping with changing environments, contexts and time constraints. This approach propagates that viable solutions to complex problems can only be achieved by functioning at what is known as the “edge of chaos”, allowing for flexibility and constant change without destroying the system and allowing for resilient and adaptable system behaviour to emerge (Scoones 1999).

Systems thinking has brought about a dramatic change in the last hundred years to thinking and problem solving, especially in natural science and biology, although it is noticeable that the social sciences have been slow to adopt this theoretical framework to explain social phenomena (Scoones 1999; Rihani 2002; Mattews et al. 1999) due to the complexities of social systems (Alexander, 2013). There has, however, been an increasing realisation within the last twenty years that society, and the functioning thereof, cannot be separated from environmental, economic and temporal contexts that are constantly interacting with it and changing it (Adger 2006). Wulun (2007), Mattews et al. (1999) and Costanza et al.(1993) add that to move towards a holistic understanding of social problems and solutions thereof, there can no longer be a reduction of social issues as separate to the context in which they function, as such a separation works counter to the reality that society, environment and economy are inseparable from each other. A field of social inquiry that still struggles to some degree with incorporating systems thinking and the concept of nonlinearity is disaster risk management and disaster risk reduction.

4. Mechanistic thinking in disaster risk management and Disaster Risk Reduction Theory and practice

The dramatic impact of hazards and disasters on human systems has necessitated the creation of the new fields of enquiry of disaster risk management and disaster risk reduction. Both these fields rose to prominence subsequent to the early 1990s, when the first International Decade for Natural Disaster Reduction was declared by the United Nations General Assembly through Resolution 42/169 (Van der Waldt 2013; Cutter et al.2008; Cordona 2004). Since this time, models, tools and policies were developed aimed to facilitate an understanding of how disaster risk should be managed and reduced, such as: the Pressure and Release Model (PAR) (Wisner et al, 2004; Kelman,
2011), the Household Access Model (Wisner et al. 2004) and international policy measures such as the Yokohama Strategy (1994), the International Strategy for Disaster Reduction (2001-2010), the Hyogo Framework for Action (2005-2015) and the Sendai Framework for Disaster Risk Reduction (2015-2030) (Birkman 2006; Miller et al. 2010; Cimellaro et al. 2010; Blaikie et al. 1994, UN, 1994; UNISDR, 2005; UNISDR, 2015). A contemporary aim of these documents and tools is to build disaster resilience in disaster affected communities. Originally introduced from the field of ecology, resilience remains a contested term with some scholars viewing it as the ability of a community to “bounce back” to their normal state of functioning following a disaster and others viewing it as a more nuanced process comprising of adaptive processes that facilitate the ability of the social system to re-organize, change, and learn in response to a disaster or what is referred to by some policy makers, academics and practitioners as “bouncing back better” or “bouncing forward” (Timmerman 1981; Pelling 2003; Cutter et al. 2008; Manyena et al. 2011). Although all of the policy documents and models have been designed to reduce disaster losses and build the disaster resilience of society, evidence in creating societal resilience to disaster and reducing loss in lives, livelihoods and ecological systems has been very limited over the past 25 years (since the declaration of the International Decade for Natural Disaster Reduction in 1990) (Cardona, 2004; Alexander, 2013). Both the Hyogo Framework for Action and the Sendai Framework for DRR reiterate the limitations of current policies and theoretical tools by stating:

“Disaster loss is on the rise with grave consequences for the survival, dignity and livelihood of individuals, particularly the poor, and hard-won development gains. In the past two decades, on average more than 200 million people have been affected every year by disasters” (UN, 2005).

and

“Over the same 10-year time frame (the period of implementation for the Hyogo Framework, 2005-2015), however, disasters have continued to exact a heavy toll, and as a result the well-being and safety of persons, communities and countries as a whole have been affected. Over 700 thousand people lost their lives, over 1.4 million were injured and approximately 23 million were made homeless as a result of disasters. Overall, more than 1.5 billion people were affected by disasters in various ways. Women, children and people in vulnerable situations were disproportionately affected. The total economic loss was more than $1.3 trillion. In addition, between 2008 and 2012, 144 million people were displaced by disasters “(UN, 2015).

So although minor progress has been achieved in reducing some risk, the overall trend in terms of lives, livelihoods and economic losses due to disasters, is mostly negative. A possible reason for this could lie in the mechanistic thinking and the lack of consideration of systems concepts such as non-linearity in the formulation of models and policies that are supposed to reduce disaster risk. Examples of this are typified by the practical implementation of the Pressure and Release Model (PAR) (see Figure 1) and the recently formulated Sendai Framework for DRR (See Table 1). These will be briefly discussed and critiqued from a systems perspective.

4.1 A systems critique of DRR models and policy
The PAR Model was designed to explain how a society’s vulnerability progressed from deeply embedded root causes to more observable dynamic pressures and specific unsafe conditions and how these interact with hazards to cause disasters (Blaikie et al, 1994; Fjord and Manderson, 2009; Adger 2006; Birkman 2006). Importantly, the PAR model might not have been developed to be a simple linear discussion on the construction of vulnerability, but a broad framework explaining the construction of disaster risk and eventually how it can be reduced. However, over time the practical implementation of the model has often taken on a linear interpretation (Birkman 2006; Kelman, 2011; Cordona 2004; Oliver-Smith 2009). Consequently, in the implementation of the PAR Model the argument is made that if disaster risks are to be reduced, it is necessary to identify root causes of social vulnerability, and by doing this, one will have a departure point for addressing dynamic pressures and eventually specific unsafe conditions (Kelman, 2011). The outcome of this process is a less vulnerable community (this being the ideal end state for a society) (Cordova 2004; Turner 2003). The practical implementation of PAR Model therefore displays the process and reasoning associated with mechanistic thinking: i.e. a problem reduced to its components, applying determinism to identify the linear relationship between components, and offering a linear solution to address the problem and reaching a desired end state.

From a systems perspective, the practical implementation of PAR Model becomes problematic because it fails to take into account the important issue of non-linearity and the dynamic interaction associated with it. Thus the assumption made by the PAR Model is that perceived root causes lead to unsafe conditions in all contexts (Heijmans 2001; Adger 2006). This is problematic from a systems perspective because the principle of non-linearity states that the size of inputs into a system might not be proportional to expected outputs. Thus, in this instance, a perceived root cause may actually have a minimal effect or contribution of an eventual unsafe condition in some contexts, whilst in others it (a root cause) may have a major contribution (Birkman 2006; Kelman 2011; Cordona 2004). In other instances, a root cause might lead to a certain level of vulnerability to disas-
ters, but without the presence of root causes and dynamic interaction it fosters with other components, the system descends into chaos, making a society even more vulnerable (Heijmans 2001; Turner et al. 2003; Adger 2006). Geyer and Rihani (2010) highlight an example of the last mentioned principle within the context of modern Iraq, where the root cause of the problems in the country was identified as the political and power structure established by Saddam Hussein to oppress his countrymen. However, after his removal from power in 2003, the country has been in a constant state of chaos with millions of people being more vulnerable now than under the previous oppressive regime. Although this example comes from the realm of politics and development, the lesson still rings true within disaster science. It is not enough to reduce a problem like societal vulnerability to only root causes, dynamic pressure and unsafe conditions, without taking into account the dynamic interaction between the various components, their environment (context), temporal dimensions and the information exchange that subsumes adaptation within a system (Cutter et al. 2008; Cordona 2004). A failure to take into account the holistic nature of a problem fosters solutions that either promote stability or chaos, both of which are undesirable if the aim is to build more disaster resilient societies (Mattews et al. 1999 Turner et al. 2004).

The problematic situation of finding linear solutions to disaster risk, as established in theory, has extended into global policy. A review of the Hyogo Framework for Action and the policy that has superseded it, the Sendai Framework for DRR 2015-2030, shows the presence of linear thinking in the outcomes formulated by both these documents to reduce disaster risk (see Table 1). Both documents specifically identify a multitude of complex problems that contribute to the dramatic increase in disaster losses related to lives, livelihoods and infrastructure over the past 25 years. However, to move towards a stage where policy recommendation can be made to guide the risk reduction efforts of international and national governance structures, both policies reduce the problem of disaster risk to five (HFA) and four priorities (Sendai Framework) for action (reductionism). The assumption in both the documents is that there is a definite linear relationship between the lack of implementation of the priority areas, and the increase in disaster losses in all contexts (determinism). Thus the logical argument made by both policies is that if progress is to be made in reducing or eliminating disaster losses, the primary focus should be upon implementing the five or four step global plan (linear reasoning). Put differently, once these priority areas have been implemented, at risk communities will be rendered safer from disaster risk (or a possible state of equilibrium would have been achieved).

| Table 1: International Disaster Risk Management Policies and Linear Outcomes |
|---------------------------------|-----------------|-----------------|
| Framework | Priority Action Areas | Policy Targets |

Although both policies have at their core the noble goal of reducing disaster risk, the implementation and achievement of goals have been and will remain problematic. A key reason for this is highlighted by Oxley (2015:7) and Wisner (2015) in their critical review of the HFA and Sendai Framework. The review by Oxley highlights that one of the crucial gaps in the implementation of the HFA (2005-215) was “a lack of appropriateness in contexts of complexity, uncertainty, informality, fragility, insecurity (including conflict)”. This highlights the inability of the HFA to take into account the Systems Theory concepts of non-linear thinking and the effects which different contexts and fac-

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ensure that disaster risk reduction is a national and a local priority with a strong institutional basis for implementation</td>
<td></td>
</tr>
<tr>
<td>2. Identify, assess and monitor disaster risks and enhance early warning</td>
<td></td>
</tr>
<tr>
<td>3. Use knowledge, innovation and education to build a culture of safety and resilience at all levels</td>
<td></td>
</tr>
<tr>
<td>4. Reduce the underlying risk factors</td>
<td></td>
</tr>
<tr>
<td>5. Strengthen disaster preparedness for effective response at all levels</td>
<td>1. Understanding disaster risk;</td>
</tr>
<tr>
<td>2. Strengthening disaster risk governance to manage disaster risk;</td>
<td></td>
</tr>
<tr>
<td>3. Investing in disaster risk reduction for resilience;</td>
<td></td>
</tr>
<tr>
<td>4. Enhancing disaster preparedness for effective response, and to “Build Back Better” in recovery, rehabilitation and reconstruction.</td>
<td>• Substantially reduce global disaster mortality by 2030 aiming to lower per 100 000 global mortality between 2020-2030 compared to 2005-2015</td>
</tr>
<tr>
<td>• Substantially reduce the number of affected people globally by 2030 aiming to lower the average global figure per 100 000 between 2020-2030 compared to 2005-2015</td>
<td></td>
</tr>
<tr>
<td>• Reduce direct disaster economic loss in relation to global gross domestic product by 2030</td>
<td></td>
</tr>
<tr>
<td>• Substantially reduce disaster damage to critical infrastructure and disruption of basic services, among them health and educational facilities, including through developing their resilience by 2030</td>
<td></td>
</tr>
<tr>
<td>• Substantially increase the number of countries with national and local disaster reduction strategies by 2020</td>
<td></td>
</tr>
<tr>
<td>• Substantially enhance international cooperation to developing countries through adequate and sustainable support to complement their national actions for implementation of this framework by 2030</td>
<td></td>
</tr>
<tr>
<td>• Substantially increase the availability of and access to multi hazard warning systems and disaster risk information and assessments to the people by 2030</td>
<td>No specific policy targets outlined. The achievement of the five (5) priorities for actions serve as the main targets to be achieved</td>
</tr>
</tbody>
</table>
tors could have on achieving risk reduction goals. The lack of systems thinking has also been passed on to the Sendai Framework with a key critique of the framework being that it does not make “provision for system wide perspectives and holistic approaches”, or again that it lacks appropriateness in contexts as explained by Oxley (2015). Additionally, from a systems perspective, both policies fail to take into account the dynamic nature of disaster events by putting out desired targets to be achieved, especially in the context of the Sendai Framework. This is problematic because it creates the impression that once these “arbitrary” targets have been achieved, communities will be safe. Thus through the linear reasoning and problem solving contained in these policies, risk reduction becomes an ideal outcome of risk reduction interventions and not a constant process. This makes it difficult for these global policies to be implemented and adapted within different contexts, especially if known contexts start to change.

The critique of the Mechanistic Approach to disaster risk reduction and resilience building serves as a rationale for the focus upon selected agricultural communities in Madagascar, Malawi and Mozambique. The agricultural communities in these countries formed part of a larger Food and Agriculture Organisation (FAO) study, that aimed to determine an ideal model for building disaster resilience in agricultural communities by focusing upon the relative contribution of four agricultural interventions, namely use of small-scale irrigation systems, membership to a farmers’ association, use of crop varieties and cropping techniques. The basic premise of the original study being that the more of the various agricultural interventions are identified within the community, the more resilient they are. This premise is very much in line with contemporary disaster management thinking. However, a secondary analysis of the data from the perspective of a Complex Adaptive System Theory concept of non-linearity challenges the assumption that more capacity equals higher levels of resilience and forces us to reconsider the applicability of generic models of building disaster resilience. The methodology underlying this analysis is outlined in the following section.

5. Methodology

A quantitative survey was administered to a combined total of 1110 respondents (representing the household level), that formed part of the study. Mozambique represented 40.3% (N=447), Madagascar 30.4% (N=337) and Malawi 29.4% (N=326) of participants. These respondents were purposefully sampled from communities partaking in agricultural and food security activities supported by the FAO and partners from 2009-2014 under Disaster Preparedness EU Humanitarian Aid and Civil Protection (DIPECHO) funding (Kruger 2015). The original analysis of the information created a plethora of data categories which either did not form part of the final project report or were only analysed in a very superficial way. This has provided an opportunity to conduct a secondary analysis of data to test different theoretical constructs through the application of more in-depth statistical analysis. As such the study endeavoured to identify the presence of non-linear behaviour relating to preferred/non-preferred disaster coping strategies that emerge, in comparison to the number of agricultural interventions used to build disaster resilience in the case study countries. The pres-
ence of non-linear behaviour would provide a means to illustrate that the mechanistic assumption that more capacity (or more interventions used) equals higher levels of resilience and better coping strategies is problematic for the theoretical and practical understanding of contextually specific risk profiles.

To facilitate analysis, the district (sub-national government) demarcation of the three case study countries formed part of the original study. The sub-division into their respective districts for analysis was necessary so as to effectively capture the unique disaster coping profile of sub-national spaces and avoid distortions that might occur because of the aggregation of coping measures at a national level. Consequently, this separation also made it easier to identify agricultural interventions used in each district, and also highlight possible non-linearity in coping behaviour from district to district. Once this division was made, an initial correlation analysis was carried out between two variables i.e. district of each country and the amount of interventions used (use of small-scale irrigation systems, membership to a farmers’ associations, use of crop varieties and cropping techniques). Each respondent could indicate if they used one intervention or a combination of two, three or four interventions at any given time. The results of this initial study for each country are contained in Tables 2 (Madagascar), 4 (Malawi) and 6 (Mozambique) below.

A second correlation analysis was drawn by comparing the variables of district (per country) and preferred/non-preferred disaster coping strategies. This provided information on the tendency to adopt certain positive and negative coping strategies in times of disaster stress. A distinction is made in the study between positive coping and negative coping behavior, because certain forms of coping might actually prove harmful to resilience building efforts. In this instance positive coping strategies are considered as “positive” because they indicate the existence of a pre-existing buffer capacity within a household that prevents it from showing a preference for strategies that are primarily focused upon survival (negative coping) and reducing of basic physiological needs as per Maslow’s Basic Human Needs Hierarchy (Coetzee et al., 2016). The variable of preferred/non-preferred disaster coping strategies was also selected to serve as a proxy indicator of resilient behaviour. The reason being that coping behaviours serve as building blocks from which larger societal resilience behaviors such as adaptation and learning emerge (Coetzee et al., 2016). Within the analysis the respondents could indicate their inclination to coping behaviour by either indicating yes, no, or uncertain. The results of this analysis are reported in Tables 3 (Madagascar), 5 (Malawi) and 7 (Mozambique) below.

Once the tables were compiled it became possible to test for non-linear behaviour in coping strategies adopted by contrasting the results with the accepted linear notation of \(R = H \times V/C \). Thus it became possible to test whether the availability of more capacities (relating to the four agricultural interventions in the study) truly reduced vulnerability. This analysis highlighted certain non-linearities relating to coping behavior, specifically that the size and the number of inputs into the system are not necessarily proportional to the expected outcome, i.e. that communities that use more agri-
cultural interventions are not necessarily less vulnerable and more resilient than communities which use less interventions. To the contrary, the analysis showed in some contexts that communities using less interventions displayed a greater tendency to positive coping behaviour than those using more interventions. The findings of the analysis are discussed in more detail below.

6. Identifying non-linear relationships in agricultural communities in Madagascar, Malawi and Mozambique

The analysis exposes anomalies that do not follow a linear cause and effect relationship. It is important to take note of this, if policies or programmes to reduce disaster risk in these areas are to be effective.

6.1 Madagascar

Three study areas formed part of the study in Madagascar i.e. Vangaindrano (see Figure 2), Farafangana and Mananjary (see Figure 3). Survey data contained in Table 2 reveals that all three areas apply very diverse agricultural interventions. Vangaindrano shows the lowest adoption of agricultural interventions to build disaster resilience with mostly one (50%) or two (35%) interventions being used by participants in the area. Farafangana shows an inclination to use between two (35,1%) and three (44,3%) interventions per participant, whilst Mananjary shows a significant (80%) adoption of three interventions to build disaster resilience.

Table 2: Combined agricultural intervention use per district in Madagascar

<table>
<thead>
<tr>
<th>District</th>
<th>1.00 (Intervention used)</th>
<th>2.00 (Intervention used)</th>
<th>3.00 (Intervention used)</th>
<th>4.00 (Intervention used)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vangaindrano</td>
<td>50% (N= 52)</td>
<td>35% (N= 36)</td>
<td>10,7% (N=11)</td>
<td>3.9% (N= 4)</td>
<td>100% (N=103)</td>
</tr>
<tr>
<td>Farafangana</td>
<td>16,5%(N=16)</td>
<td>35,1% (N=34)</td>
<td>44,3 % (N=43)</td>
<td>4, 1% (N=4)</td>
<td>100% (N=97)</td>
</tr>
<tr>
<td>Mananjary</td>
<td>6,2%(N=4)</td>
<td>12,3%(N=8)</td>
<td>80%(N=52)</td>
<td>1,5% (N=1)</td>
<td>100% (N=65)</td>
</tr>
<tr>
<td>Total</td>
<td>27,2% (N=72)</td>
<td>29,4 (N=78)</td>
<td>40%=(N= 106)</td>
<td>3,4% (N=9)</td>
<td>100% (N= 265)</td>
</tr>
</tbody>
</table>

In a linear analysis of the situation in Madagascar it would follow that the more capacities a community has, the less vulnerable they are, and the less their overall level of disaster risk\(^1\). This would mean that by a cursory glance at Table 2, it would be assumed that the community of Mananjary would be the least vulnerable and more resilient than the communities of Vangaindrano and Farafangana, purely because the more capacities (in the form of interventions being used) are available to them, the greater chance they have to adapt to and resist possible disaster impacts.

\(^1\) According to the widely sighted Disaster Risk Notation - \(R = H \times V / C \) (UNISDR, 2004).
(i.e. they would be more resilient). However, this reasoning can be challenged through some non-linearities that emerge once the use of interventions are correlated with preferred/non-preferred coping strategies in each area (see Table 3).

Figure 2: Mananjary, Madagascar (Maphill, 2015)

When we look at the results of the correlation it becomes apparent that Mananjary might not be as resilient as can be assumed in Table 2. Mananjary displays some negative coping behaviours i.e. participants will strongly consider reducing size of food portions at meal times (88%), eating seed stock (59.7%), reducing number of meals per day (44.8%) and hunting and gathering (46.3%). Additionally, some positive coping measures are not considered to be viable strategies to cope with disasters i.e. support from family for food and income (65.7%), support from friends for food and income (65.7%) and to a lesser extent, the selling of household goods (55.2%). The results from Mananjary stand in contrast with the results from Vangaindrano and Farafangana. In both these instances, although they use less agricultural interventions to build disaster resilience than Mananjary, overall they show a tendency to avoid certain negative coping strategies.
In Vangaindrano and Farafangana respectively they would not consider reducing number of meals per day (62.1%; 85%) or eating seed stock (63.9%; 61.4%), something participants in Mananjary were more willing to do. This does not imply that Vangaindrano and Farafangana do not display a penchant for negative coping strategies such as hunting and gathering (62.1%; 65.3%), and do not consider positive coping strategies such as selling of household goods (84.6%; 61.4%), support from family for food and income (85.2%; 87.1%), or support from friends for food and income (87%; 85.1%), as viable options. However, it does illustrate that with less capacities (agricultural inputs) available to them, the communities in Vangaindrano and Farafangana were able to generate slightly better coping strategies and resilient behavior than those in Mananjary, using more agricultural inputs. This could be indicative of the concept of non-linearity that states that the size of the input into the system is not proportional to the expected outcome.

Table 3: Preferred/Non-preferred coping strategies per district in Madagascar
Some non-linear behaviour relating to coping strategies can also be observed in the context of communities in Malawi.

6.2 Malawi

Two districts, Chikhwawa and Nsanje (see Figure 4) formed part of the case study in Malawi (see Table 4). Both these areas have a similar profile when it comes to the use of agricultural interventions to build disaster resilience. In particular, communities in both areas have been found to use three or four of the agricultural interventions to build disaster resilience. They share a similar profile in the use of agricultural interventions, therefore the traditional assumption that could be made is that they also share the same coping strategies when it comes to disasters. However, the correlations with preferred/non-preferred coping strategies reveal certain context specific variations that can be associated with non-linear behaviour (see Table 5).

Table 4: Combined agricultural intervention use per district in Malawi
Various instances of non-linear behaviour in relation to coping strategies can be identified when Chikhwawa and Nsanje are compared. Prominent examples relate to statistics on selling of household goods, reducing number of meals a day and reducing size of food portions at meal times. Nearly half (46.4%) of the participants in Chikhwawa consider the selling of household goods as a viable coping strategy. Additionally, the residents of Chikhwawa also show a very strong tendency to avoid negative coping strategies such as reducing size of food portions at meal times, with 68.9% of respondents indicating that they would not do this and 65.6% adding that they would not reduce the number of meals a day. This is in contrast with Nsanje.

<table>
<thead>
<tr>
<th>District</th>
<th>1.00</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikhwawa</td>
<td>0.7% (N=1)</td>
<td>11.3% (N=17)</td>
<td>37.7% (N=57)</td>
<td>50.3% (N=76)</td>
<td>100% (N=151)</td>
</tr>
<tr>
<td>Nsanje</td>
<td>3.5% (N=6)</td>
<td>12.2% (N=21)</td>
<td>44.8% (N=77)</td>
<td>39.5% (N=68)</td>
<td>100% (N=172)</td>
</tr>
<tr>
<td>Total</td>
<td>2.2% (N=7)</td>
<td>11.8% (N=38)</td>
<td>41.5% (N=134)</td>
<td>44.6% (N=144)</td>
<td>100% (N=323)</td>
</tr>
</tbody>
</table>

In Nsanje the majority (65.7%) of participants do not consider the positive coping strategy of selling household goods as a means of coping with disasters. Moreover, there seems to be a tendency to more readily accept negative coping strategies such as reducing size of food portions at meal times, with 61.1% of participants considering this coping strategy and 47.4% considering the reduction of food portions during meal times.

Figure 4: Chikwawa and Nsanje, Malawi (Maphill, 2015)
Thus in the two Malawian communities, although they share exactly the same intervention use profile (three or four interventions) they differ somewhat in the coping capacities they choose to adopt. These differences could be indicative of context specific variables that limit or encourage the acceptance of certain coping behaviours. This context specific variability in the selection of coping strategies strongly relates to the basic Theory of Non-linearity discussed in Section 4.1 and also reinforces the need to understand contribution of context to individual resilience profiles.

Table 5: Preferred/ Non-preferred coping strategies per district in Malawi

<table>
<thead>
<tr>
<th>District</th>
<th>Selling of household goods</th>
<th>Hunting and gathering</th>
<th>Reducing number of meals per day</th>
<th>Labour on other persons fields in exchange for food</th>
<th>Reducing size of food portions at meal times</th>
<th>Eating seed stock</th>
<th>Support from family for food and income</th>
<th>Support from friends for food and income</th>
<th>Moving away from household plot for work and income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikhwawa</td>
<td>Possible No = 53,6% Yes = 46,4%</td>
<td>No (85,4%)</td>
<td>No (65,6%)</td>
<td>Yes (69,5%)</td>
<td>No (68,9%)</td>
<td>No (90,7%)</td>
<td>No (92,1%)</td>
<td>No (94,7%)</td>
<td>Maybe (41,7% = No; 58,3% = Yes)</td>
</tr>
<tr>
<td>Nsanje</td>
<td>No (65,7%)</td>
<td>No (79,4%)</td>
<td>Yes (61,1%)</td>
<td>Yes (60%)</td>
<td>Possible No = 52, 6% Yes = 47,4%</td>
<td>No (62,9%)</td>
<td>No (94,3%)</td>
<td>No (93,7%)</td>
<td>Maybe (48,6% = No; 51,4% = Yes)</td>
</tr>
</tbody>
</table>

6.3 Mozambique

Participants from the Mossuril and Ilha de Mocambique districts (see Figure 5) formed part of the study in Mozambique (see Table 6). Both these areas have a very homogenous profile in relation to agricultural inputs. The majority of participants in Mossuril (52,7%) and Ilha de Mocambique (47,1%) indicated that they only use one agricultural intervention to build disaster resilience. A further 32,7% (Mossuril) and 35, 3% (Ilha de Mocambique) of participants had access to at least two interventions. Compared to the other two case study countries the influence of the interventions used were less prominent (See Table 7).
The section to follow will reflect upon the presence of non-linear behaviour relating to preferred/non-preferred coping strategies per district in Mozambique.

Table 6: Combined agricultural intervention use per district in Mozambique

<table>
<thead>
<tr>
<th>District</th>
<th>1.00</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mossuril</td>
<td>52,7% (N=79)</td>
<td>32,7% (N=49)</td>
<td>14,0% (N=21)</td>
<td>0,7% (N=1)</td>
<td>100% (N=150)</td>
</tr>
<tr>
<td>Ilha de Mocambique</td>
<td>47,1% (N=72)</td>
<td>35,3% (N=54)</td>
<td>13,1% (N=20)</td>
<td>4,6% (N=7)</td>
<td>100% (N=153)</td>
</tr>
<tr>
<td>Total</td>
<td>49,8% (N=151)</td>
<td>34% (N=103)</td>
<td>13,5% (N=41)</td>
<td>2,6% (N=8)</td>
<td>100% (N=303)</td>
</tr>
</tbody>
</table>

In the case of the two Mozambican districts, the preferred/non-preferred coping strategies per district show a very close resemblance. In most instances only a few percentage points difference can be identified per coping strategy from district to district. The only notable difference in coping strategy relates to the consideration of reducing the number of meals a day to cope with disasters. As such, 54,9% of participants in Mossuril indicated that they were not inclined to reduce the number of meals per day whilst participants in Ilha de Mocambique indicated a greater inclination (53,8%) to reduce the number of meals per day to cope with disaster.

Table 7: Preferred/ Non-preferred coping strategies per district in Mozambique
Although the data from Mozambique conveys very similar results, it remains consistent with the Theory of Non-linearity. Non-linearity means that certain inputs can create major variations in a system in some instances, as was the case in Madagascar and Malawi, and in others have only minor or no influence, as is the case in Mozambique. The results from Mozambique merely reaffirm the need to take non-linearity and context into account when assessing levels of resilience in disaster prone communities, as both these related drivers can greatly impact how resilience can be built and enhanced.

7. Discussion

The analysis reveals unique cases that highlight non-linear behaviour in coping strategies within the case study countries. Firstly, districts in Madagascar revealed a very diversified profile relating to the use of agricultural interventions with the districts of Vangaindrano (one or two interventions used), Farafangana (two or three interventions used) and Mananjary (three interventions used). If conventional Disaster Theory were to be applied to these results, it would be logically assumed that Mananjary would be the least vulnerable or more resilient, by virtue of it having more capacities available to adapt and cope with disasters. However, this conventional wisdom can be challenged by the results of the analysis. In particular, the study found that of the three districts in Madagascar, Mananjary was more inclined to engage in negative coping strategies, in spite of it having more capacities available to it than the other two regions (Vangaindrano and Farafangana). Both of these regions avoid negative coping behaviours such as reducing number of meals per day.
or eating seed stock. The analysis of the districts of Chikhwawa and Nsanje in Malawi revealed that they have similar profiles relating to the use of agricultural interventions to build disaster resilience, both using three or four interventions at a time. As these districts have similar capacities available to them, a linear assumption would be that they would also share similar preferences towards coping strategies. The analysis indicated this assertion to be problematic, because although they share similar capacity profiles, the coping measures that emerge are non-linear and contextually unique. As opposed to the other two areas that formed part of the study, the districts of Mossuril and Ilha de Mocambique in Mozambique showed similar intervention uses (one or two) and mostly a similar preference in coping behaviour. However, even in this largely homogenous environment, certain non-linear behaviour emerged relating to the inclination to reduce the number of meals per day (something avoided in Mossuril, but more readily accepted in Ilha de Mocambique).

The results from the analysis reinforce the basic principle of non-linearity established in the literature review in that "the size of an input into a system might not be proportional to expected outputs". So although conventional disaster thinking and policies (such as the HFA, Sendai Framework) may dictate that the more capacities a society has at their disposal, the less vulnerable they are, this is not always the case, as illustrated by the example of Mananjary, Madagascar. It could be that the focus in assessing disaster risk reduction capacity should shift from merely counting numbers of capacities (and rendering communities with the most capacities least vulnerable) and move towards measuring the effect and contribution of each capacity to fostering resilient behaviour. The case for the consideration of non-linear behaviour in disaster risk assessment processes is also supported by the case studies from Malawi and Mozambique where the districts shared similar agricultural intervention use profiles (see Tables 4 and 6) (i.e. the inputs are similar) but the preference for coping strategies remains either significantly different, in the case of Malawi, or only slightly different in the case of Mozambique (i.e. non-proportional to the expected output). From the analysis of non-linear behaviour in the various countries, it becomes clear that it is not enough to only consider the number of capacities available to reduce vulnerabilities in a community, but also to identify the actual effect and impact of the capacities on resilience behaviour such as the adoption of coping strategies in diverse communities. This allows for a more holistic diagnosis of the possible vulnerabilities and levels of resilience prevalent in a community at any given time.

8. Conclusion

The traditional mechanistic paradigm of scientific inquiry has its limitations in explaining dynamic ever-changing phenomena such as disaster risk, the reduction thereof and resilience building. This traditional paradigm is still evident in many of the current disaster risk reduction models and policies that aim to serve as the basis for building disaster resilient societies. The presence of this linear reasoning in both the existing theory and policies places a lesser importance on understanding
contextually specific capacities and the dynamic interaction between these capacities. Instead an emphasis could be placed upon the identification of generic categories and goals that are perceived to contribute most to reducing disaster risk and building disaster resilience. This, however, ignores the reality that very little of the world or even individual regions within countries are generic because of the effect of a plethora of contextual factors. This assertion is supported by the analysis of the various districts of Madagascar, Malawi and Mozambique. All of the districts displayed their own existing capacity profile (through the agricultural inputs), that in some instances were the same and in others, dramatically different. In each instance every district displayed variations in the coping strategies compared to the agricultural inputs used, making each community uniquely resilient. The presence of such non-linearities provides an adequate basis for disaster theorists and practitioners to question the applicability of linear theories and policy interventions as a means to reduce disaster risk and build disaster resilience. A paradigm shift is needed towards a more holistic understanding of how individual communities’ resilience profiles are comprised and what the true contribution of individual capacities are to generating resilience. This process is crucial as the paper illustrates that more capacity does not necessarily equal greater resilience, as per conventional Disaster Risk Management Theory. A failure to take a more holistic systems approach (and the application of systems analysis tools such as a non-linearity analysis done here) into account will perpetuate the current status quo of theories and policies that achieve very little success in reducing disaster losses.
References

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

The main objective of the thesis has been to determine if a Complex adaptive systems paradigm of disaster resilience could provide an alternative understanding of how disaster resilience can be understood and built. The research articles that formed part of the thesis explored this question by focusing primarily on establishing a theoretical linkages between the theories of disaster resilience and CAST. Secondly the articles aimed to establish if there are practical applications for CAST tools in analysing resilience by focusing on the case of subsistence agriculture communities in Southern Africa. This application of systems tools in a practical setting was necessary as to avoid the risk of the thesis functioning only in the realm of theoretical ambiguity.

In general thesis established that there significant scope to address issues of disaster resilience through the lens of CAST, as the theory is ideally suited to explaining concepts and phenomena that are subject to constant change and variation, such as disaster resilience. The articles also illustrated, CAST tools can be used to give insight into process that subsume resilience in societies that are at risk to disaster. These general findings will be elaborated on in the subsequent sections. Specifically, the section to follow will endeavour to give a summary of the main conclusion relating to each of the articles that formed part of the thesis. This will be followed by a discussion of the research questions and the conclusion for each emanating from the research. The chapter concludes by making recommendations from the thesis and for future research.

6.1 Conclusion per research Article

The summary conclusion of each research article will include a brief discussion on the aim, design, main findings and how research questions were address in each article.

6.1.1. Article 1: Disaster resilience and complex adaptive systems theory”, Disaster Prevention and Management

The objective the article was to answer RQ 1 and RQ 2: What are the theoretical tenets of resilience and Complex Adaptive Systems Theory? (RQ1); What are the theoretical linkages between Complex Adaptive Systems Theory and the concept of Resilience? (RQ2). The article aimed to establish if there is a theoretical linkage between the concept of resilience and the theory (CAST) that would guide the subsequent research process.
A total of 80 documents were analysed as part of the background research for the article. The papers reviewed included academic articles from leading academic scholars in both fields of disaster resilience and CAST; Books and Book Chapters. Technical reports and policy documents from international organisations such as the UN/ISDR were also consulted to gain an impression of the contemporary stance and approach to building disaster resilience.

Article 1 established that current definitions and methods of building disaster resilience are often inadequate as they do not take into account real world complexity. To this end it was found that a possible way to change the current theoretical and philosophical orientation to building disaster resilience it might be useful to look at the problem through the lens of CAST. CAST would allow disaster scientist and practitioners to treat the issue of resilience as an open-systems process that is constantly changing due to the inflow and outflow of information (learning from past events) and building and breaking up of components (adding new resilience capacities/removing absolute capacities) that constitute the resilience profile of a community. In addition article 1 has shown that on a theoretical level the underlying principles of disaster resilience and CAST are very similar, warranting the use of CAST as a theoretical analysis tool for further study of resilience. Specifically, elements of non-linearity, aggregation, emergent behaviour, feedback loops, adaptation and context-based responses would assist researchers focusing on the issues of disaster resilience to gain a holistic view of the dynamic interaction between resilience generating factors and local, sub-national and national and sectorial context in which they function.

Overall article 1 showed that adopting a CAST approach to deciphering the complexity associated with understanding and building societal resilience could make theoretical and practical contributions creating contextual relevant resilience building policies and programmes.

6.1.2. Article 2: Information feedback functions within farmers associative mechanism and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa

Article 1, identified that information feedback loops drive interaction between different system components allowing as system to adapt, learn and become more resilient. It was therefore clear that information feedback could play a leading role in driving entire adaptive process. Article 2 therefore had the objective of determining if feedback loops do play a pivotal role in subsuming adaptive behaviour. To guide the article the following research question was formulated and applied to the case of Southern African subsistence agriculture: How does information feedback within farmers associative mechanisms play a role in fostering disaster resilient behaviour (RQ 3)

A mixed method design was followed within the paper The primary tool for data collection was a quantitative survey which was administered to a combined total of 1110 respondents (representing the household level) in three case study countries (Mozambique - N=447, Madagascar - N=337 and Malawi - N=326). From this initial 1110 respondents a purposeful sample was taken to isolate those respondents that confirmed that they are actively part of a farmers associative mechanism.
Out of the initial 1110 participants 593 respondents across all case study countries indicated involvement in farmers associative mechanisms. Once the study sample was determined an initial correlation statistical analysis was conducted to determine what the preferred and non-preferred coping strategies of farmers associative members are. This analysis was carried out in order to determine whether members of farmers associations are inclined to positive or negative coping behaviours. The inclination of members (either positive or negative) would serve as a proxy indicator to existing level of resilience within the farmers associative group.

Due to the fact that the purpose of the study is to determine if the feedback and interaction within the farmers association contributes to stimulating more resilient behaviour, a more specific analysis had to be conducted. Consequently, the original factor analysis focusing on farmers associative mechanism was broken up into its individual parts. The variables identified through this process included: good cooperation between farmers association members; farmers association members helping other members to recover from natural disasters/hazards (through donations, advice etc); increase in production since joining the farmers association and increase in income since joining the farmers association. From this analysis the variable pertaining to farmers association members helping other members to recover from natural disasters/hazards (through donations, advice etc.), was selected as the key variable that is indicative of how interaction and feedback within farmers associative mechanism are key in stimulating resilient behaviour. To this end, a basic frequency analysis was conducted on the responses of respondents to the question “Please indicate the level to which you agree or disagree with the following statement: Members in the farmers associations will often help other members recover from natural disasters/hazards (e.g. donations, advice)?

To compliment the quantitative findings relating results from the qualitative questionnaire are also added in the analysis. The qualitative data was collected through focus groups and face-to-face interviews, in order to gain a deeper understanding of, and elaborate on the findings from the quantitative data. Ten (10) focus group interviews were held per participating country. Thus thirty (30) focus groups were held for the study overall. During these interviews the participants were asked “Do members of the farmers association help (Donations, advice, support, safety nets) each other when there are members who have incurred losses due to disasters? If so, how? If not, why not?”

The paper established that disaster resilience should be viewed as a constant process of change, re-organisation, adaptation and learning. This focus on adaptivity and consistent change places resilience within the realms of complex adaptive system theory. Importantly, it was found that the systems concept of information feedback loops and interaction could play central role in understanding the interactions and informations exchanges that generate systemwide behaviours such as disaster resilience. This was due to the fact that that information feedback loops allow for interaction to take place between internal and external system elements, and from these interactions, complex emergent system behaviours such as disaster resilience e considered arise.
Thus information feedback and interaction can be considered to be a driving force behind emergent behaviour of a system. It is also argued that the more in-depth study of information feedback loops could provide disaster researchers with an opportunity to gain deeper insights into micro (internal to the system) and macro level (external to the system) interactions that subsume adaptive change and ultimately resilience.

Quantitative and qualitative responses from both analyses pointed out that members of farmers association could adopt positive coping strategies or make use of communally pooled resources instead of adopting negative coping strategies, that would in the long term make them more vulnerable to disasters. It was found that the tendency towards positive coping and using pooled resources was a direct result of information exchange between group members. The information feedback and interaction provided by being member of the group stimulated learning opportunities which enabled farmers to change, re-organise and adapt to disaster impacts as a means to creating dynamic adaptation to disaster risk. This dynamic adaptation fostered through the interaction and feedback of farmers associative mechanism can be said to make a contribution to improving the overall levels of disaster resilience in farming communities.

6.1.3. Article 3: Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture

Article 3 aimed to address research the following research questions: What are the basic theoretical principles associated with systems emergence? (RQ4). How does systems emergence contribute to understanding and building disaster resilience in agricultural communities? (RQ 5). To address these question the paper is presented in three parts. Firstly it establishes what emergence is by examining the characteristics of emergence. Secondly, the possible applications of emergent characteristics to understanding resilience is postulated. Thirdly, the presence of emergent behaviour is tested through an analysis of agricultural communities in Malawi, Mozambique and Madagascar. The paper finishes by providing some conclusions.

A total of 1110 respondents formed part of the data collection process conducted in the study. Mozambique represented 40.3% (N=447), Madagascar 30.4% (N= 337), and Malawi 29.4% (N=326) of the total respondents. Once the data was gathered, statistical analysis was conducted using descriptive statistics, exploratory factor analysis, Pearson correlation coefficient, and effect size. Correlation statistics were used to firstly determine micro-level interactions (this was done by correlating interaction between the four interventions), and secondly, to correlate the combined effect of these interventions to contributing to macro-level resilience behaviour by focusing on preferred/non- preferred coping strategies and hazard coping/adaptation behaviour. Correlation coefficients were selected as the preferred method of analysis as they provide a standardised measure of the strength of relationships between two variables.
Article 3 illustrated the benefits of applying the systems concept of emergence to attain a greater understanding of disaster resilience. At a theoretical level it was established that the emergence concepts of micro–macro effect, radical novelty, interacting parts, dynamic change, and decentralised control will assist in setting parameters for the observation of resilience behaviour in a disaster-affected community. This in turn provides disaster risk scientists with the ability to understand the resilience paradigm in a more holistic manner and offers greater insight into how to measure existing resilience profiles in communities. It also assists in building on such profiles to ensure that a community has the ability to adapt, avoid, recover and learn from disaster impacts.

Using the two main principles associated with emergence (i.e. micro-level interactions leading to macro-level behaviour and the emergence of radically new behaviour as a guide), the analysis testing for the presence of emergent in agricultural communities in Malawi, Mozambique and Madagascar, illustrated that emergent behaviour (i.e. coping strategies, and hazard avoidance behaviour) is indeed observable in agricultural communities that use all or a combination of agricultural interventions such as small-scale irrigation systems, farmers’ associative mechanisms, appropriate crop varieties, and cropping techniques. These resilience abilities are newly formed macro-level behaviours that emerge due to the interactions of agricultural interventions at a micro-level.

The theoretical and practical analysis conducted in article 3 illustrates that considering the concept of emergence in measuring disaster resilience indicators could provide valuable inputs to our understanding to processes that subsume the emergence of resilient behaviour in agricultural settings.

6.1.4. Article 4: Reconsidering Disaster Resilience: A non-linear systems paradigm in agricultural communities in Southern Africa

Findings pertaining to RQ 5 (paper 3) had direct bearing on the research focus of article 4 and its associated research questions. Specifically, there were indications in article 3 that emergent behaviour is inherently a non-linear in its outcome. This meant that even though resilience could emerge due to micro-level interactions, how one would get to the macro level resilience behaviour would differ from community to community as contextual factors would greatly influence micro level interactions that subsume the emergence of resilient behaviour. This finding was also consistent with theoretical critiques of contemporary disaster resilience policies and models. Article 4 therefore aimed to address the issues of non-linearity trough the following research questions: What are the basic theoretical principles associated with systems principle of non-linearity? (RQ6). What are the implications of the concept non-linearity on our understanding of disaster resilience and the building thereof? (RQ 7).

A quantitative survey was administered to a combined total of 1110 respondents (representing the household level), that formed part of the study. Mozambique represented 40.3% (N=447),
Madagascar 30.4% (N=337) and Malawi 29.4% (N=326) of participants. These respondents were purposefully sampled from communities partaking in agricultural and food security activities supported by the FAO and partners from 2009-2014 under Disaster Preparedness EU Humanitarian Aid and Civil Protection (DIPECHO) funding. The paper endeavoured to identify the presence of non-linear behaviour relating to preferred/non-preferred disaster coping strategies that emerge, in comparison to the number of agricultural interventions used to build disaster resilience in the case study countries. The presence of non-linear behaviour would provide a means to illustrate that the mechanistic assumption that more capacity (or more interventions used) equals higher levels of resilience and better coping strategies is problematic for the theoretical and practical understanding of contextually specific risk profiles.

To facilitate analysis, the district (sub-national government) demarcation of the three case study countries formed part of the original study. The sub-division into their respective districts for analysis was necessary so as to effectively capture the unique disaster coping profile of sub-national spaces and avoid distortions that might occur because of the aggregation of coping measures at a national level. Consequently, this separation also made it easier to identify agricultural interventions used in each district, and also highlight possible non-linearity in coping behaviour from district to district. Once this division was made, an initial correlation analysis was carried out between two variables i.e. district of each country and the amount of interventions used (use of small-scale irrigation systems, membership to a farmers’ associations, use of crop varieties and cropping techniques). Each respondent could indicate if they used one intervention or a combination of two, three or four interventions at any given time.

A second correlation analysis was drawn by comparing the variables of district (per country) and preferred/non-preferred disaster coping strategies. This provided information on the tendency to adopt certain positive and negative coping strategies in times of disaster stress. A distinction is made in the study between positive coping and negative coping behaviour, because certain forms of coping might actually prove harmful to resilience building efforts. In this instance positive coping strategies are considered as “positive” because they indicate the existence of a pre-existing buffer capacity within a household that prevents it from showing a preference for strategies that are primarily focused upon survival (negative coping) and reducing of basic physiological needs as per Maslow’s Basic Human Needs Hierarchy (see article 3). The variable of preferred/non-preferred disaster coping strategies was also selected to serve as a proxy indicator of resilient behaviour. The reason being that coping behaviours serve as building blocks from which larger societal resilience behaviours such as adaptation and learning emerge. Within the analysis the respondents could indicate their inclination to coping behaviour by either indicating yes, no, or uncertain. Once the analyses describe above were compiled it became possible to test for non-linear behaviour in coping strategies adopted by contrasting the results with the accepted linear notation of $R = H \times V/C$. Thus it became possible to test whether the availability of more capacities (relating to the four agricultural interventions in the study) truly reduced vulnerability.
The article established that on a theoretical level that many contemporary disaster risk reduction policies and models that aim to build disaster resilience are based on mechanistic and linear focus of problem solving. The presence of this linear reasoning in both the existing theory and policies places a lesser importance on understanding contextually specific capacities and the dynamic interaction between these capacities and how this lead to disaster resilience. Instead an emphasis is placed upon the identification of generic categories and goals that are perceived to contribute most to reducing disaster risk and building disaster resilience. This, however, ignores the reality that very little of the world or even individual regions within countries are generic because of the effect of a plethora of contextual factors. The theoretical assertion of the paper is supported by the analysis of the various districts of Madagascar, Malawi and Mozambique. All of the districts studied displayed their own existing capacity profile (through the agricultural inputs), that in some instances were the same and in others, dramatically different. In each instance every district displayed variations in the coping strategies compared to the agricultural inputs used, making each community uniquely resilient.

The paper showed that the presence of such non-linearities provides an adequate basis for disaster theorists and practitioners to question the applicability of linear theories and policy interventions as a means to reduce disaster risk and build disaster resilience. On the basis of the findings of this article and articles1, 2 and 3 that preceded it, it is argued that a paradigm shift is needed towards a more holistic understanding of how individual communities’ resilience profiles are comprised and what the true contribution of individual capacities are to generating resilience. This process is crucial as the paper illustrates that more capacity does not necessarily equal greater resilience, as per conventional Disaster Risk Management Theory. A failure to take a more holistic systems approach (and the application of systems analysis tools such as a non-linearity into account will perpetuate the current status quo of theories and policies that achieve very little success in reducing disaster losses.

The section to follow summarises the findings in terms of the research question formulated for the thesis.

6.2 Conclusion per research question

The table below briefly links the research questions formulated for the thesis with answers that emerged from the research process.

Table X: Research Questions and summary of findings
6.3 Recommendations

The thesis provided an in-depth analysis of theoretical concepts associated with disaster resilience and Complex Adaptive Systems Theory (CAST). Theoretical concepts associated to CAST was subsequently applied to subsistence agriculture communities in Southern Africa, to determine the possible contribution of CAST in fostering a holistic understanding of disaster resilience. The main recommendations are presented below:

• The thesis determined that contemporary disaster risk reduction models and policies aimed at improving disaster resilience are often formulated from traditional mechanistic paradigm of scientific inquiry. This traditional paradigm, in a quest to foster understanding of disaster resilience, often oversimplify and reduce the concept and practice of resilience building to a pre-determined set of steps or processes. This leads to resilience building policies and models that do not take cognisance of contextually specific variables and complex variations they can foster in resilience profiles of different communities. It is therefore recommended that new conceptualisation and applications of disaster resilience be based on theoretical bases such as CAST as the theory is comprised of tools that specifically takes into account variations and complexities in individual communities. Therefore allowing for community specific resilience building projects to be formulated.

• The thesis established that adaptation, learning and change, all of which are key indicators of resilient behaviour, are driven by information feedback loops and interaction between variables within a system. This finding is significant in as much as it point to the fact that resilient behaviour is not just the sum of an amount of capacities available to a community, but that there are a complex array of interactions and information exchanges present that cause individual capacities to work in unison to generate more complex behaviour such as disaster resilience. It is therefore the recommendation of the thesis that the amount of capacities available to a community should not be treated as the sole determining factor towards disaster resilience. Instead the focus should be placed on understanding the information feedback and interactive processes that could optimise the available capacities of communities towards resilience, or identifying capacities that could be added that would foster more information feedback and interaction.

• It was also shown that the interactions between variables at a micro level often lead to complex emergent behaviours such disaster resilience at a macro systems levels. Importantly it was found that the emergent behaviour that arises form the interactions at a micro level often do not bear resemblance to the variables from which it arose. This indicates that that there is a more complex process that underlies a communities resilience profile. It is recommended that disaster
resilience tools and frameworks incorporate concepts of emergence to gain a more in-depth understanding of the composition of a communities resilience profiles.

- The concept of non-linearity illustrated contrary to conventional disaster risk theory, having more capacity does not always mean greater resilience. Results from subsistence agriculture communities in Southern Africa, show that in some instance communities with less capacity have a better overall resilience profile and risk coping behaviour than communities with more capacity. This findings supports the theoretical argument made in the thesis that “one size fits all” approach to building disaster resilience, will have limited success in building resilience. The notion of non-linearity therefore points to the need to develop resilience theories and projects, that takes cognisance of contextual factors and is flexible enough to be adapt to different contexts.

- Future research should aim to develop concrete resilience building models and tools based on the system concepts outlined in the thesis

If one is to reflect back on the overall research question formulated for the study, the main focus of the study was to determine if a Complex adaptive systems paradigm of disaster resilience could provide and alternative understanding of how disaster resilience can be understood and built. The thesis endeavoured to prove the usefulness of CAST in understanding resilience on two levels, theory and practice. On a theoretical level it was evident that CAST would be an appropriate theoretical tool to explore disaster resilience, as is ideally suited to provide insight into systems that are subject to constant change, learning and adaptation. This capability of CAST is consistent with operation definition of resilience presented in the thesis and contemporary thinking of disaster resilience as a process of “building back better” or “bouncing forward” (see article 1). On a practical level the thesis showed that systems tools such as information feedback loops, emergent behaviour and non-linearity provide disaster scientist with a means to explore deeper dynamics and process that underlie resilience behaviour in disaster affected communities. To this end, information feedback loops aids our understanding of interactions that drive adaptive behaviour, emergence allows us to understand micro-level systems interactions and how these interaction lead to resilience in different contexts and finally non-linearity places an emphasis on resilience and the building thereof as something that should be treated as flexible concept and interventions that should be taylor-made to each community. Though the application of CAST tools it is apparent that a Complex Adaptive Systems paradigm of disaster resilience, is useful as it provides a means to focus on the underlying drivers and dynamics associated with resilient behaviour. This is a departure away from traditional paradigms of resilience which often spoke only to the capacities needed to build resilience in isolation. Introducing a Complex adaptive systems paradigm to our understanding of resilience, is a recognition of the basic systems principle of “the whole is more than the sum of its parts,” or there is more to understanding a systems than merely understanding the individual components. A complex adaptive systems paradigm of disaster resilience will
therefore give us a greater depth of understanding of the “more than the sum of its parts” aspects which are often the real drivers of resilient behaviour in disaster affected communities.
7. COMBINED BIBLIOGRAPHY

FAO. 2009. Climate change in Africa: The threat to agriculture. FAO. Pp. 6

IFAD. 2011. Addressing climate change in East and Southern Africa. IFAD. Pp.8

Jones, E. and Murphy, A. 2009. The political economy of hazards and disasters. Lanham, MD: AltaMira Press.

Keshavarz, N., Nutbeam, D., Rowling, L. and Khavarpour, F. 2010. Schools as social complex adaptive systems: a new way to understand the challenges of introducing the health promoting schools concept. Social science & medicine, 70(10):1467-1474.

Appendix A: Editors Letters
CERTIFICATION

To whom it may concern:

I, JC Gaillard, Editor of Disaster Prevention and Management: An International Journal, hereby grant to Christo Coetzee the permission to include the papers which details are appended below in his PhD thesis at North West University.

Towards a disaster risk assessment methodology for communities underlain by dolomite published in issue 22(4) of Disaster Prevention and Management

Disaster resilience and complex adaptive systems theory: Finding common grounds for risk reduction published in issue 25(2) of Disaster Prevention and Management

Do not hesitate to come back to me should you need any further information.

Truly yours,

JC Gaillard, Ph.D.
Associate Professor
Editor of Disaster Prevention and Management: An International Journal
18 April 2016

Mr Christo Coetzee
African Centre for Disasters Studies
North West University
Potchefstroom, South Africa

Dear Mr Coetzee,

I understand that you would like to include the following article in your doctoral thesis:-

As Editor-in-Chief of the journal I am perfectly happy to allow you to do this. However, I am not the copyright holder. For further information on copyright issues connected with this paper, you may wish to look at the following website:-

https://www.elsevier.com/about/company-information/policies/copyright/permissions

Kind regards,

[Signature]

David E. Alexander PhD FRGS FGS FRSA FICPEM
Professor of Risk and Disaster Reduction, UCL-IRDR
Editor-in-Chief, *International Journal of Disaster Risk Reduction*
david.alexander@ucl.ac.uk
Office: +44 (0)203 108 1108
Appendix B: Journal Style Requirements
(Published and Submitted articles)
Submit to the journal

Submissions to Disaster Prevention and Management are made using ScholarOne Manuscripts, the online submission and peer review system. Registration and access is available at http://mc.manuscriptcentral.com/dpm. Full information and guidance on using ScholarOne Manuscripts is available at the Emerald ScholarOne Manuscripts Support Centre: http://msc.emeraldinsight.com.

An Assistant Editor is available for those authors (especially young scholars and non-native English speakers) who may need assistance in going through the reviewing and publication process. Note that the Assistant Editor is neither a translator nor a copy editor but rather provides support in dealing with reviews, revisions and formatting along with advice (only) on how to strengthen the language of your manuscript.

The journal publishes two types of articles. Long papers (up to 7,000 words) covering conceptual and theoretical reflections, methodological contributions and case studies. Short articles (up to 4000 words) include commentaries, policy and practice briefings and field reports and book reviews. For the latter, reviewers are encouraged to send their review to the book author(s) to solicit a reply, which will be published along with the review. Upon submission please ensure your final word count includes all text including references and appendices, please allow 280 words for each figure or table.

Registering on ScholarOne Manuscripts

If you have not yet registered on ScholarOne Manuscripts, please follow the instructions below:

- Please log on to: http://mc.manuscriptcentral.com/dpm
- Click on Create Account
- Follow the on-screen instructions, filling in the requested details before proceeding
- Your username will be your email address and you have to input a password of at least 8 characters in length and containing two or more numbers
- Click Finish and your account has been created.

Submitting an article to Disaster Prevention and Management on ScholarOne Manuscripts

- Please log on to Disaster Prevention and Management at http://mc.manuscriptcentral.com/dpm with your username and password. This will take you through to the Welcome page (To consult the Author Guidelines for this journal, click on the Home Page link in the Resources column)
- Click on the Author Centre button
- Click on the submit a manuscript link which will take you through to the Manuscript Submission page
- Complete all fields and browse to upload your article
- When all required sections are completed, preview your .pdf proof
- Submit your manuscript

Review process

Each paper submitted is reviewed by at least two external reviewers and the editors to assess its suitability to the journal. All manuscripts which format does not follow the guidelines indicated below will be rejected without further consideration.

Copyright

Articles submitted to the journal should not have been published before in their current or substantially similar form, or be under consideration for publication with another journal. Please see Emerald's originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.

The editor may make use of iThenticate software for checking the originality of submissions received. Please see our press release for further details.

Third party copyright permissions

Prior to article submission, authors should clearly permission to use any content that has not been created by them. Failure to do so may lead to lengthy delays in publication. Emerald is unable to publish any article which has permissions pending. The rights Emerald requires are:
1. Non-exclusive rights to reproduce the material in the article or book chapter.
2. Print and electronic rights.
4. To use the material for the life of the work (i.e. there should be no time restrictions on the re-use of material e.g. a one-year licence).

When reproducing tables, figures or excerpts (of more than 250 words) from another source, it is expected that:

1. Authors obtain the necessary written permission in advance from any third party owners of copyright for the use in print and electronic formats of any of their text, illustrations, graphics, or other material, in their manuscript. Permission must also be cleared for any minor adaptations of any work not created by them.
2. If an author adapts significantly any material, the author must inform the copyright holder of the original work.
3. Authors obtain any proof of consent statements
4. Authors must always acknowledge the source in figure captions and refer to the source in the reference list.
5. Authors should not assume that any content which is freely available on the web is free to use. Authors should check the website for details of the copyright holder to seek permission for re-use.

Emerald is a member of the STM Association and participates in the reciprocal free exchange of material with other STM members. This may mean that in some cases, authors do not need to clear permission for re-use of content. If so, please highlight this upon submission. For more information and additional help, please follow the Permissions for your Manuscript guide.

Committee on Publication Ethics (COPE)

Emerald supports the development of, and practical application of consistent ethical standards throughout the scholarly publishing community. All Emerald’s journals and editors are members of the Committee on Publication Ethics (COPE) which provides advice on all aspects of publication ethics. Emerald follows the Committee’s flowcharts in cases of research and publication misconduct, enabling journals to adhere to the highest ethical standards in publishing. For more information on Emerald’s publication ethics policy, please click here.

Copyright forms

Where possible, Emerald seeks to obtain copyright for the material it publishes, without authors giving up their scholarly rights to reuse the work.

Assigning copyright to Emerald allows us to:

- Act on your behalf in instances such as copyright infringement or unauthorised copying
- Protect your moral rights in cases of plagiarism or unauthorised derivative works
- Offer a premium service for permission requests
- Invest in new platforms and services for the journals or book series you have published in
- Disseminate your work as widely as possible, ensuring your work receives the citations it deserves
- Recoup copyright fees from reproduction rights organisations to reinvest in new initiatives and author/user services, such as the Research Fund Awards and the Outstanding Doctoral Research Awards.

If an article is accepted for publication in an Emerald journal authors will be asked to submit a copyright form through ScholarOne. All authors are sent an email with links to their copyright forms which they must check for accuracy and submit electronically.

If authors can not assign copyright to Emerald, they should discuss this with the journal Content Editor. Each journal has an Editorial Team page which will list the Content Editor for that journal.

Emerald Editing Service

Emerald is pleased to partner with The Charlesworth Group in providing its Editing Service. The Charlesworth Group offers expert Language Editing services for non-native English-speaking authors, and is pleased to offer exclusive discounts to authors planning to submit to Emerald’s journal(s).

Final submission

The author must ensure that the manuscript is complete, grammatically correct and without spelling or typographical errors. Before submitting, authors should check their submission completeness using the available Article Submission Checklist. Proofs will be emailed prior to publication.

Open access submissions and information

Emerald currently offers two routes for Open Access in all journal publications, Green Open Access (Green OA) and Gold Open Access (Gold OA). Authors who are mandated to make the branded Publisher PDF (also known as the "Version of Record") freely available immediately upon publication can select the Gold OA route during the submission process. More information on all Open Access options can be found here.

Manuscript requirements

Please prepare your manuscript before submission, using the following guidelines:

<table>
<thead>
<tr>
<th>Format</th>
<th>Article files should be provided in Microsoft Word format. LaTex files can be used if an accompanying PDF document is provided. PDF as a sole file type is not accepted, a PDF must be accompanied by the source file. Acceptable figure file types are listed further below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Length</td>
<td>The journal publishes two types of articles. Long papers (up to 7,000 words) cover conceptual and theoretical reflections, methodological contributions and case studies. Short articles (up to 4000 words) include commentaries, policy and practice briefings and field reports and book reviews. For the latter, reviewers are encouraged to send their review to the book author(s) to solicit a reply, which will be published along with the review. This includes all text including references and appendices. Please allow 280 words for each figure or table.</td>
</tr>
<tr>
<td>Article Title</td>
<td>A title of not more than eight words should be provided.</td>
</tr>
</tbody>
</table>
| Author details | All contributing authors’ names should be added to the ScholarOne submission, and their names arranged in the correct order for publication.
- Correct email addresses should be supplied for each author in their separate author accounts
- The full name of each author must be present in their author account in the exact format they should appear for publication, including or excluding any middle names or initials as required
- The affiliation of each contributing author should be correct in their individual author account. The affiliation listed should be where they were based at the time that the research for the paper was conducted |
| Biographies and acknowledgements | Authors who wish to include these items should save them together in an MS Word file to be uploaded with the submission. If they are to be included, a brief professional biography of not more than 100 words should be supplied for each named author. |
| Research funding | Authors must declare all sources of external research funding in their article and a statement to this effect should appear in the Acknowledgements section. Authors should describe the role of the funder or financial funders in the project. |
Structured Abstract

Authors must supply a structured abstract in their submission, set out under 4-7 sub-headings (see our "How to... write an abstract" guide for practical help and guidance):

- **Purpose** (mandatory)
- **Design/methodology/approach** (mandatory)
- **Findings** (mandatory)
- **Research limitations/implications** (if applicable)
- **Practical implications** (if applicable)
- **Social implications** (if applicable)
- **Originality/value** (mandatory)

Maximum is 250 words in total (including keywords and article classification, see below).

Authors should avoid the use of personal pronouns within the structured abstract and body of the paper (e.g. "this paper investigates..." is correct, "I investigate..." is incorrect).

Keywords

Authors should provide appropriate and short keywords in the ScholarOne submission that encapsulate the principal topics of the paper (see the How to... ensure your article is highly downloaded guide for practical help and guidance on choosing search-engine friendly keywords). The maximum number of keywords is 12.

Whilst Emerald will endeavour to use submitted keywords in the published version, all keywords are subject to approval by Emerald’s in house editorial team and may be replaced by a matching term to ensure consistency.

Article Classification

Authors must categorize their paper as part of the ScholarOne submission process. The category which most closely describes their paper should be selected from the list below.

- **Research paper.** This category covers papers which report on any type of research undertaken by the author(s). The research may involve the construction or testing of a model or framework, action research, testing of data, market research or surveys, empirical, scientific or clinical research.
- **Viewpoint.** Any paper, where content is dependent on the author's opinion and interpretation, should be included in this category; this also includes journalistic pieces.
- **Technical paper.** Describes and evaluates technical products, processes or services.
- **Conceptual paper.** These papers will not be based on research but will develop hypotheses. The papers are likely to be discursive and will cover philosophical discussions and comparative studies of others’ work and thinking.
- **Case study.** Case studies describe actual interventions or experiences within organizations. They may well be subjective and will not generally report on research. A description of a legal case or a hypothetical case study used as a teaching exercise would also fit into this category.
- **Literature review.** It is expected that all types of paper cite any relevant literature so this category should only be used if the main purpose of the paper is to annotate and/or critique the literature in a particular subject area. It may be a selective bibliography providing advice on information sources or it may be comprehensive in that the paper’s aim is to cover the main contributors to the development of a topic and explore their different views.
- **General review.** This category covers those papers which provide an overview or historical examination of some concept, technique or phenomenon. The papers are likely to be more descriptive or instructional ("how to" papers) than discursive.

Headings

Headings must be concise, with a clear indication of the distinction between the hierarchy of headings.

The preferred format is for first level headings to be presented in bold format and subsequent sub-headings to be presented in medium italics.

Notes/Endnotes

Notes or Endnotes should be used only if absolutely necessary and must be identified in the text by consecutive numbers, enclosed in square brackets and listed at the end of the article.

Figures

All Figures (charts, diagrams, line drawings, web pages/screenshots, and photographic images) should be submitted in electronic form.

All Figures should be of high quality, legible and numbered consecutively with arabic numerals. Graphics may be supplied in colour to facilitate their appearance on the online database.

- Figures created in MS Word, MS PowerPoint, MS Excel, Illustrator should be supplied in their native formats. Electronic figures created in other applications should be copied from the origination software and pasted into a blank MS Word document or saved and imported into an MS Word document or alternatively create a .pdf file from the origination software.
- Figures which cannot be supplied as above are acceptable in the standard image formats which are: .pdf, .ai, and .eps. If you are unable to supply graphics in these formats then please ensure they are .tif, .jpeg, or .jpg at a resolution of at least 300dpi and at least 10cm wide.
- To prepare web pages/screenshots simultaneously press the "Alt" and "Print screen" keys on the keyboard, open a blank Microsoft Word document and simultaneously press "Ctrl" and "V" to paste the image. (Capture all the contents/windows on the computer screen to paste into MS Word, by simultaneously pressing "Ctrl" and "Print screen").
- Photographic images should be submitted electronically and of high quality. They should be saved as .tif or .jpeg files at a resolution of at least 300dpi and at least 10cm wide. Digital camera settings should be set at the highest resolution/quality possible.

Tables

Tables should be typed and included in a separate file to the main body of the article. The position of each table should be clearly labelled in the body text of article with corresponding labels being clearly shown in the separate file.

Ensure that any superscripts or asterisks are shown next to the relevant items and have corresponding explanations displayed as footnotes to the table, figure or plate.

References

References to other publications must be in Harvard style and carefully checked for completeness, accuracy and consistency. This is very important in an electronic environment because it enables your readers to exploit the Reference Linking facility on the database and link back to the works you have cited through CrossRef.

You should cite publications in the text: (Adams, 2006) using the first named author's name or (Adams and Brown, 2006) citing both names of two, or (Adams et al., 2006), when there are three or more authors. At
Frequently asked questions

Do you publish open access articles?
For questions about open access, please visit the Open Access section of the website.

Is there a submission fee for the journal?
There are no submission fees for any of Emerald’s journals.

What should be included in my paper’s word count?
The word count for your paper should include the structured abstract, references, and all text in tables and figures. Each journal has a set word count parameter for papers – this information will be on the journal’s homepage.

How can I become a reviewer for a journal?
Please contact the Editor for the journal, with a copy of your CV, to be considered as a reviewer.

Who do I contact if I want to find out which volume and issue my accepted paper will publish in?
Firstly, log in to your author centre on the journal’s ScholarOne site, click on ‘Manuscripts with Decisions’ and check the ‘status’ column of the table that will appear at the bottom of the page. If the Editor has assigned your paper to an issue, the volume and issue number will be displayed here. If this information is not present, then the Editor has not yet assigned your paper to a volume and issue. In this case you may email the Editor of the journal to ask which volume and issue your paper is most likely to feature in.

Who do I contact if I have a query about ScholarOne?
If you are having a problem on ScholarOne please email the journal’s Editor or the Emerald Content Editor for help and advice.

| For books | Surname, Initials (year), Title of Book, Publisher, Place of publication.
| e.g. Harrow, R. (2005), No Place to Hide, Simon & Schuster, New York, NY. |
| For book chapters | Surname, Initials (year), "Chapter title", Editor’s Surname, Initials, Title of Book, Publisher, Place of publication, pages.
| For journals | Surname, Initials (year), "Title of article", Journal Name, volume, number, pages.
| For published conference proceedings | Surname, Initials (year of publication), "Title of paper", in Surname, Initials (Ed.), Title of published proceedings which may include place and date(s) held, Publisher, Place of publication, Page numbers.
| For working papers | Surname, Initials (year), "Title of article", working paper [number if available], Institution or organization, Place of organization, date.
| For encyclopedia entries (with no author or editor) | Title of Encyclopedia (year) "Title of entry", volume, edition, Title of Encyclopedia, Publisher, Place of publication, pages.
| For newspaper articles (author) | Surname, Initials (year), "Article title", Newspaper, date, pages.
| For newspaper articles (non-author) | Newspaper (year), "Article title", date, pages.
| For archival or other unpublished sources | Surname, Initials, (year), "Title of document", Unpublished Manuscript, collection name, inventory record, name of archive, location of archive.
| e.g. Litman, S. (1902), "Mechanism & Technique of Commerce", Unpublished Manuscript, Simon Litman Papers, Record series 9/5/29 Box 3, University of Illinois Archives, Urbana-Champaign, IL. |
| For electronic sources | If available online, the full URL should be supplied at the end of the reference, as well as a date that the resource was accessed.

Standalone URLs, i.e. without an author or date, should be included either within parentheses within the main text, or preferably set as a note (roman numeral within square brackets within text followed by the full URL address at the end of the paper).
Is my paper suitable for the journal?

If, after reading the journal’s aims and scope (available in the ‘about the journal’ section of the website), you are still unsure whether your paper is suitable for the journal, please email the journal’s Editor and include your paper’s title and structured abstract. The journal Editor will be able to advise on the suitability of your paper.

How do I ensure anonymity of my manuscript for peer review?

- If you need to refer to your own work, please make sure that this is worded in such a way that you as author(s) cannot be identified e.g. “previous research has demonstrated” not “our previous research has demonstrated”. Should the paper be accepted, you will need to contact the Editor to revise this ahead of publication.
- If you need to refer to your own work which is currently unpublished, then please do not include this work in the reference list. Should the paper be accepted, you will need to contact the Editor to revise this ahead of publication.
- Any Acknowledgments or Author biographies should be uploaded as separate files and where asked to ‘Choose File Designation’ choose the File Type, “Acknowledgment” or “Author Biographies”, as appropriate.
- Please check the manuscript to ensure that the author names do not appear anywhere. This includes on Figures.

* 2014 Journal Citation Reports® (Thomson Reuters, 2015)
DESCRIPTION

Accepted for indexing by Thomson Reuters
First Impact Factor to be announced in 2016

The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: Earth Sciences in its entirety; Environmental Sciences; Engineering; Urban Studies; Geography; and Social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies focusing on multidisciplinary research aiming to reduce the impact of natural and technological disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.

Key topics:

• Multifaceted disaster and cascade disasters

• The development of disaster risk reduction strategies and techniques

• Discussion and development of effective warning and educational systems for risk resilience at all levels

• Climate Change and its implications in sudden disasters

• Vulnerability analysis and vulnerability trends

• Emerging risks

The journal particularly encourages papers which approach risk from a multidisciplinary perspective.

EDITORIAL BOARD

Editor In Chief
David Alexander, University College London (UCL), London, England, UK
Emergency planning and management, Disasters, Resilience, Earthquake injury epidemiology
Editorial board members

Walter Ammann, Global Risk Forum GRF Davos, Davos Platz, Switzerland
Integrative risk management, DRR, risk analysis, policy, earthquake, structural engineering

Ali Asgary, York University, North York, Ontario, Canada

Djillali Benouar, University of Bab Ezzouar, Alger, Algeria

Jörn Birkmann, Universität Stuttgart, Stuttgart, Germany
Resilience, Vulnerability and Risk-Assessment Adaptive Urban and Spatial Planning Climate Change Adaptation and Transformation Post-Disaster Reconstruction Institutional Learning Processes SPATIAL and Strategic Planning Critical Infrastructures Indicators and Climate Change adaptation

Omar- Dario Cardona, Universidad Nacional de Colombia, Bogotá, Colombia

Andrew Collins, Northumbria University, Newcastle-upon-Tyne, UK

Susan Cutter, University of South Carolina, Columbia, South Carolina, USA

John Handmer, RMIT, Melbourne, Victoria, Australia

Yasamin O. Izadkhah, Risk Management Research Center IIEES, Tehran, Iran
Disaster Education; Public Awareness of Disaster Risks; Disaster Management Training; Community-Based Risk Management; Gender and Disasters; Disaster Resilience; Vulnerability and Development; Earthquake Emergency Response; and ICT in Disaster Management.

Ilan Kelman, University College London (UCL), London, UK
climate change, coast, disaster, health, island, mountain, resilience, risk, vulnerability

Fausto Marincioni, Universita' Politecnica delle Marche, Ancona, Italy
Culture and disasters, adaptive capacity, resilience, human and natural systems, auto protective behavior, environmental geography, risk perception, information and communication technology, civil protection.

Douglas Paton, University of Tasmania, Newnham, Tasmania, Australia

Marla Petal, Risk RED, Oslo, Norway

Stefan Pickl, Universität der Bundeswehr München, Comtessa, Germany

Boris Pofiriev, Russian Academy of Sciences, Moscow, Russian Federation
natural and technological hazards, disaster policy, risk evaluation, economics of climate change, environmental impact assessment

Harun Rashid, Maple Ridge, BC, Canada

Andreas Rechkemmer, University of Denver, Denver, Colorado, USA

Stephan Schreckenber, Swiss Reinsurance Company Ltd., Zürich, Switzerland
Risk Management, Reinsurance, Integrative Risk Management, Innovation, Catastrophe Insurance

Anthony Oliver-Smith, University of Florida, Gainesville, Florida, USA

Mondastri Sudaryo, University of Indonesia, Jawa Barat, Indonesia
Researcher, lecturer, and consultant of disaster epidemiology and communicable disease epidemiology

Anawat Suppasri, Tohoku University, Sendai, Japan

Fantina Tedim, Universidade do Porto, Porto, Portugal

Dewald Niekerk, African Centre for Disaster Studies, Potchefstroom, South Africa
GUIDE FOR AUTHORS

Your Paper Your Way
We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article. To find out more, please visit the Preparation section below.

BEFORE YOU BEGIN
Ethics in publishing
Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Declaration of interest
All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. More information.

Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see 'Multiple, redundant or concurrent publication' section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of open access articles is determined by the author's choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of existing agreements are available online.

Open access
This journal offers authors a choice in publishing their research:

Open access
- Articles are freely available to both subscribers and the wider public with permitted reuse.
- An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Subscription
- Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
- No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY)
Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is **USD 1000**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 24 months.
Elsevier Publishing Campus

The Elsevier Publishing Campus (www.publishingcampus.com) is an online platform offering free lectures, interactive training and professional advice to support you in publishing your research. The College of Skills training offers modules on how to prepare, write and structure your article and explains how editors will look at your paper when it is submitted for publication. Use these resources, and more, to ensure that your submission will be the best that you can make it.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Referees

Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

PREPARATION

NEW SUBMISSIONS

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process.

As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or layout that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements

There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions.

If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes.

Divide the article into clearly defined sections.

Figures and tables embedded in text

Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file.

REVISED SUBMISSIONS

Use of word processing software

Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). See also the section on Electronic artwork.
To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure

Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.**
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
Graphical abstract

Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site. Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images and in accordance with all technical requirements: Illustration Service.

Highlights

Highlights are a short collection of bullet points that convey the core findings of the article. Highlights are optional and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder’s requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Math formulae

Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.
Electronic artwork

General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Indicate per figure if it is a single, 1.5 or 2-column fitting image.
- For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
- Please note that individual figure files larger than 10 MB must be provided in separate source files.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

- EPS (or PDF): Vector drawings. Embed the font or save the text as 'graphics'.
- TIFF (or JPG): Color or grayscale photographs (halftones): always use a minimum of 300 dpi.
- TIFF (or JPG): Bitmapped line drawings: use a minimum of 1000 dpi.
- TIFF (or JPG): Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
- Supply files that are too low in resolution.
- Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) in the on-line Journal only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Figure captions

Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links

Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.
A DOI can be used to cite and link to electronic articles where an article is in-press and full citation details are not yet known, but the article is available online. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, http://dx.doi.org/10.1029/2001JB000884i. Please note the format of such citations should be in the same style as all other references in the paper.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue

Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software

Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style

Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.

List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Reference to a website:
[4] Cancer Research UK. Cancer statistics reports for the UK, http://www.cancerresearchuk.org/aboutcancer/statistics/cancerstatsreport/; 2003 [accessed 13.03.03]. Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by 'et al.' For further details you are referred to 'Uniform Requirements for Manuscripts submitted to Biomedical Journals' (J Am Med Assoc 1997;277:927–34) (see also **Samples of Formatted References**).
Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations.

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the 'Track Changes' option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages.

Data deposit and linking
Elsevier encourages and supports authors to share raw data sets underpinning their research publication where appropriate and enables interlinking of articles and data. More information on depositing, sharing and using research data.

AudioSlides
The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Google Maps and KML files
KML (Keyhole Markup Language) files (optional): You can enrich your online articles by providing KML or KMZ files which will be visualized using Google maps. The KML or KMZ files can be uploaded in our online submission system. KML is an XML schema for expressing geographic annotation and visualization within Internet-based Earth browsers. Elsevier will generate Google Maps from the submitted KML files and include these in the article when published online. Submitted KML files will also be available for downloading from your online article on ScienceDirect. More information.

Interactive plots
This journal enables you to show an Interactive Plot with your article by simply submitting a data file. Full instructions.

Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.
Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
• E-mail address
• Full postal address
All necessary files have been uploaded, and contain:
- Keywords
- All figure captions
- All tables (including title, description, footnotes)

Further considerations
- Manuscript has been ‘spell-checked’ and ‘grammar-checked’
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)

Printed version of figures (if applicable) in color or black-and-white
- Indicate clearly whether or not color or black-and-white in print is required.

For any further information please visit our Support Center.

AFTER ACCEPTANCE

Availability of accepted article
This journal makes articles available online as soon as possible after acceptance. This concerns the accepted article (both in HTML and PDF format), which has not yet been copyedited, typeset or proofread. A Digital Object Identifier (DOI) is allocated, thereby making it fully citable and searchable by title, author name(s) and the full text. The article's PDF also carries a disclaimer stating that it is an unedited article. Subsequent production stages will simply replace this version.

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.
If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.
We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s Webshop. Corresponding authors who have published their article open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

AUTHOR INQUIRIES
Track your submitted article
Track your accepted article
You are also welcome to contact the Elsevier Contact Center.
Natural Hazards

Journal of the International Society for the Prevention and Mitigation of Natural Hazards
Editors: Th. Glade; T.S. Murty; V. Schenk
ISSN: 0921-030X (print version)
ISSN: 1573-0840 (electronic version)
Journal no. 11069

125,21 € Personal Rate e-only
Get Subscription

Online subscription, valid for one calendar year
Immediate Content Access via SpringerLink
5 Volumes with 15 issues per year
Subscription will auto-renew for another year unless duly terminated
FAQ & Policy

Instructions for Authors

MANUSCRIPT SUBMISSION

Manuscript Submission

Submission of a manuscript implies: that the work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities – tacitly or explicitly – at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Permissions

Authors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and
online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

Online Submission

Please follow the hyperlink “Submit online” on the right and upload all of your manuscript files following the instructions given on the screen.

TITLE PAGE

Title Page

The title page should include:

- The name(s) of the author(s)
- A concise and informative title
- The affiliation(s) and address(es) of the author(s)
- The e-mail address, telephone and fax numbers of the corresponding author

Abstract

Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.

Keywords

Please provide 4 to 6 keywords which can be used for indexing purposes.

TEXT

Text Formatting

Manuscripts should be submitted in Word.

- Use a normal, plain font (e.g., 10-point Times Roman) for text.
- Use italics for emphasis.
- Use the automatic page numbering function to number the pages.
- Do not use field functions.
- Use tab stops or other commands for indents, not the space bar.
- Use the table function, not spreadsheets, to make tables.
- Use the equation editor or MathType for equations.
- Save your file in docx format (Word 2007 or higher) or doc format (older Word versions).

Manuscripts with mathematical content can also be submitted in LaTeX.

LaTeX macro package (zip, 182 kB)

Headings

Please use the decimal system of headings with no more than three levels.

Abbreviations
Abbreviations should be defined at first mention and used consistently thereafter.

Footnotes

Footnotes can be used to give additional information, which may include the citation of a reference included in the reference list. They should not consist solely of a reference citation, and they should never include the bibliographic details of a reference. They should also not contain any figures or tables. Footnotes to the text are numbered consecutively; those to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data). Footnotes to the title or the authors of the article are not given reference symbols. Always use footnotes instead of endnotes.

Acknowledgments

Acknowledgments of people, grants, funds, etc. should be placed in a separate section on the title page. The names of funding organizations should be written in full.

REFERENCES

Citation

Cite references in the text by name and year in parentheses. Some examples:

Negotiation research spans many disciplines (Thompson 1990).
This result was later contradicted by Becker and Seligman (1996).
This effect has been widely studied (Abbott 1991; Barakat et al. 1995a, b; Kelso and Smith 1998; Medvec et al. 1999, 2000).

Reference list

The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list.

Reference list entries should be alphabetized by the last names of the first author of each work. Order multi-author publications of the same first author alphabetically with respect to second, third, etc. author. Publications of exactly the same author(s) must be ordered chronologically.

Journal article

Ideally, the names of all authors should be provided, but the usage of “et al” in long author lists will also be accepted:

Trent JW (1975) Experimental acute renal failure. Dissertation, University of California

Always use the standard abbreviation of a journal's name according to the ISSN List of Title Word Abbreviations, see

ISSN LTWA

If you are unsure, please use the full journal title.

For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list.

EndNote style (zip, 2 kB)

All tables are to be numbered using Arabic numerals.

Tables should always be cited in text in consecutive numerical order.

For each table, please supply a table caption (title) explaining the components of the table.

Identify any previously published material by giving the original source in the form of a reference at the end of the table caption.

Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data) and included beneath the table body.

ARTWORK AND ILLUSTRATIONS GUIDELINES

Electronic Figure Submission

Supply all figures electronically.

Indicate what graphics program was used to create the artwork.

For vector graphics, the preferred format is EPS; for halftones, please use TIFF
format. MSOffice files are also acceptable.

Vector graphics containing fonts must have the fonts embedded in the files.

Name your figure files with “Fig” and the figure number, e.g., Fig1.eps.

Line Art

Definition: Black and white graphic with no shading.

Do not use faint lines and/or lettering and check that all lines and lettering within the figures are legible at final size.

All lines should be at least 0.1 mm (0.3 pt) wide.

Scanned line drawings and line drawings in bitmap format should have a minimum resolution of 1200 dpi.

Vector graphics containing fonts must have the fonts embedded in the files.

Halftone Art

Definition: Photographs, drawings, or paintings with fine shading, etc.

If any magnification is used in the photographs, indicate this by using scale bars within the figures themselves.

Halftones should have a minimum resolution of 300 dpi.
Combination Art

Definition: a combination of halftone and line art, e.g., halftones containing line drawing, extensive lettering, color diagrams, etc.
Combination artwork should have a minimum resolution of 600 dpi.

Color Art

Color art is free of charge for online publication.
If black and white will be shown in the print version, make sure that the main information will still be visible. Many colors are not distinguishable from one another when converted to black and white. A simple way to check this is to make a
xerographic copy to see if the necessary distinctions between the different colors are still apparent.

If the figures will be printed in black and white, do not refer to color in the captions. Color illustrations should be submitted as RGB (8 bits per channel).

Figure Lettering

- To add lettering, it is best to use Helvetica or Arial (sans serif fonts).
- Keep lettering consistently sized throughout your final-sized artwork, usually about 2–3 mm (8–12 pt).
- Variance of type size within an illustration should be minimal, e.g., do not use 8-pt type on an axis and 20-pt type for the axis label.
- Avoid effects such as shading, outline letters, etc.
- Do not include titles or captions within your illustrations.

Figure Numbering

All figures are to be numbered using Arabic numerals.

- Figures should always be cited in text in consecutive numerical order.
- Figure parts should be denoted by lowercase letters (a, b, c, etc.).
- If an appendix appears in your article and it contains one or more figures, continue the consecutive numbering of the main text. Do not number the appendix figures, "A1, A2, A3, etc." Figures in online appendices (Electronic Supplementary Material) should, however, be numbered separately.

Figure Captions

- Each figure should have a concise caption describing accurately what the figure depicts. Include the captions in the text file of the manuscript, not in the figure file.
- Figure captions begin with the term Fig. in bold type, followed by the figure number, also in bold type.
- No punctuation is to be included after the number, nor is any punctuation to be placed at the end of the caption.
- Identify all elements found in the figure in the figure caption; and use boxes, circles, etc., as coordinate points in graphs.
- Identify previously published material by giving the original source in the form of a reference citation at the end of the figure caption.

Figure Placement and Size

- Figures should be submitted separately from the text, if possible.
- When preparing your figures, size figures to fit in the column width.
- For most journals the figures should be 39 mm, 84 mm, 129 mm, or 174 mm wide and not higher than 234 mm.
- For books and book-sized journals, the figures should be 80 mm or 122 mm wide and not higher than 198 mm.

Permissions

- If you include figures that have already been published elsewhere, you must obtain permission from the copyright owner(s) for both the print and online format. Please be aware that some
publishers do not grant electronic rights for free and that Springer will not be able to refund any costs that may have occurred to receive these permissions. In such cases, material from other sources should be used.

Accessibility

In order to give people of all abilities and disabilities access to the content of your figures, please make sure that

- All figures have descriptive captions (blind users could then use a text-to-speech software or a text-to-Braille hardware)
- Patterns are used instead of or in addition to colors for conveying information (colorblind users would then be able to distinguish the visual elements)
- Any figure lettering has a contrast ratio of at least 4.5:1

ELECTRONIC SUPPLEMENTARY MATERIAL

Springer accepts electronic multimedia files (animations, movies, audio, etc.) and other supplementary files to be published online along with an article or a book chapter. This feature can add dimension to the author's article, as certain information cannot be printed or is more convenient in electronic form.

Submission

Supply all supplementary material in standard file formats. Please include in each file the following information: article title, journal name, author names; affiliation and e-mail address of the corresponding author. To accommodate user downloads, please keep in mind that larger-sized files may require very long download times and that some users may experience other problems during downloading.

Audio, Video, and Animations

- Aspect ratio: 16:9 or 4:3
- Maximum file size: 25 GB
- Minimum video duration: 1 sec
- Supported file formats: avi, wmv, mp4, mov, m2p, mp2, mpg, mpeg, flv, mxf, mts, m4v, 3gp

Text and Presentations

Submit your material in PDF format; .doc or .ppt files are not suitable for long-term viability.
A collection of figures may also be combined in a PDF file.

Spreadsheets

Spreadsheets should be converted to PDF if no interaction with the data is intended. If the readers should be encouraged to make their own calculations, spreadsheets should be submitted as .xls files (MS Excel).

Specialized Formats

Specialized format such as .pdb (chemical), .wrl (VRML), .nb (Mathematica)
Collecting Multiple Files

It is possible to collect multiple files in a .zip or .gz file.

Numbering

If supplying any supplementary material, the text must make specific mention of the material as a citation, similar to that of figures and tables. Refer to the supplementary files as “Online Resource”, e.g., "... as shown in the animation (Online Resource 3)", "... additional data are given in Online Resource 4". Name the files consecutively, e.g., “ESM_3.mpg”, “ESM_4.pdf”.

Captions

For each supplementary material, please supply a concise caption describing the content of the file.

Processing of supplementary files

Electronic supplementary material will be published as received from the author without any conversion, editing, or reformatting.

Accessibility

In order to give people of all abilities and disabilities access to the content of your supplementary files, please make sure that

- The manuscript contains a descriptive caption for each supplementary material
- Video files do not contain anything that flashes more than three times per second (so that users prone to seizures caused by such effects are not put at risk)

DOES SPRINGER PROVIDE ENGLISH LANGUAGE SUPPORT?

Manuscripts that are accepted for publication will be checked by our copyeditors for spelling and formal style. This may not be sufficient if English is not your native language and substantial editing would be required. In that case, you may want to have your manuscript edited by a native speaker prior to submission. A clear and concise language will help editors and reviewers concentrate on the scientific content of your paper and thus smooth the peer review process.

The following editing service provides language editing for scientific articles in all areas Springer publishes in:

Edanz English editing for scientists

Use of an editing service is neither a requirement nor a guarantee of acceptance for publication. Please contact the editing service directly to make arrangements for editing and payment.

For Authors from China

文章在投稿前进行专业的语言润色将对作者的投稿进程有所帮助。作者可自愿选择使用Springer推荐的编辑服务，使用与否并不作为判断文章是否被录用的依据。提高文章的语言质量有助于审稿人理解文章的内容，通过对学术内容的判断来决定文章的取舍，而不会因为语言问题导致直
ETHICAL RESPONSIBILITIES OF AUTHORS

This journal is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct.

Authors should refrain from misrepresenting research results which could damage the trust in the journal, the professionalism of scientific authorship, and ultimately the entire scientific endeavour. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice, which include:

- The manuscript has not been submitted to more than one journal for simultaneous consideration.
- The manuscript has not been published previously (partly or in full), unless the new work concerns an expansion of previous work (please provide transparency on the re-use of material to avoid the hint of text-recycling (“self-plagiarism”)).
- A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g. “salami-publishing”).
- No data have been fabricated or manipulated (including images) to support your conclusions
- No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other works must be given (this includes material that is closely copied (near verbatim), summarized and/or paraphrased), quotation marks are used for verbatim copying of material, and permissions are secured for material that is copyrighted.

Important note: the journal may use software to screen for plagiarism.

Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities - tacitly or explicitly - at the institute/organization where the work has been carried out, before the work is submitted.

Authors whose names appear on the submission have contributed sufficiently to the
scientific work and therefore share collective responsibility and accountability for the results.

In addition:

Changes of authorship or in the order of authors are not accepted after acceptance of a manuscript.

Requesting to add or delete authors at revision stage, proof stage, or after publication is a serious matter and may be considered when justifiably warranted.

Justification for changes in authorship must be compelling and may be considered only after receipt of written approval from all authors and a convincing, detailed explanation about the role/deletion of the new/deleted author. In case of changes at revision stage, a letter must accompany the revised manuscript. In case of changes after acceptance or publication, the request and documentation must be sent via the Publisher to the Editor-in-Chief. In all cases, further documentation may be required to support your request. The decision on accepting the change rests with the Editor-in-Chief of the journal and may be turned down. Therefore authors are strongly advised to ensure the correct author group, corresponding author, and order of authors at submission.

Upon request authors should be prepared to send relevant documentation or data in order to verify the validity of the results. This could be in the form of raw data, samples, records, etc.

If there is a suspicion of misconduct, the journal will carry out an investigation following the COPE guidelines. If, after investigation, the allegation seems to raise valid concerns, the accused author will be contacted and given an opportunity to address the issue. If misconduct has been established beyond reasonable doubt, this may result in the Editor-in-Chief’s implementation of the following measures, including, but not limited to:

If the article is still under consideration, it may be rejected and returned to the author.
If the article has already been published online, depending on the nature and severity of the infraction, either an erratum will be placed with the article or in severe cases complete retraction of the article will occur. The reason must be given in the published erratum or retraction note.

The author’s institution may be informed.

COMPLIANCE WITH ETHICAL STANDARDS

To ensure objectivity and transparency in research and to ensure that accepted principles of ethical and professional conduct have been followed, authors should include information regarding sources of funding, potential conflicts of interest (financial or non-financial), informed consent if the research involved human participants, and a statement on welfare of animals if the research involved animals.

Authors should include the following statements (if applicable) in a separate section entitled “Compliance with Ethical Standards” when submitting a paper:

Disclosure of potential conflicts of interest
Research involving Human Participants and/or Animals
Informed consent

Please note that standards could vary slightly per journal dependent on their peer review policies (i.e. single or double blind peer review) as well as per journal subject discipline. Before submitting your article check the instructions following this section carefully.
The corresponding author should be prepared to collect documentation of compliance with ethical standards and send if requested during peer review or after publication.

The Editors reserve the right to reject manuscripts that do not comply with the above-mentioned guidelines. The author will be held responsible for false statements or failure to fulfill the above-mentioned guidelines.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

Authors must disclose all relationships or interests that could have direct or potential influence or impart bias on the work. Although an author may not feel there is any conflict, disclosure of relationships and interests provides a more complete and transparent process, leading to an accurate and objective assessment of the work. Awareness of a real or perceived conflicts of interest is a perspective to which the readers are entitled. This is not meant to imply that a financial relationship with an organization that sponsored the research or compensation received for consultancy work is inappropriate. Examples of potential conflicts of interests that are directly or indirectly related to the research may include but are not limited to the following:

- Research grants from funding agencies (please give the research funder and the grant number)
- Honoraria for speaking at symposia
- Financial support for attending symposia
- Financial support for educational programs
- Employment or consultation
- Support from a project sponsor
- Position on advisory board or board of directors or other type of management relationships
- Multiple affiliations
- Financial relationships, for example equity ownership or investment interest
- Intellectual property rights (e.g. patents, copyrights and royalties from such rights)
- Holdings of spouse and/or children that may have financial interest in the work

In addition, interests that go beyond financial interests and compensation (non-financial interests) that may be important to readers should be disclosed. These may include but are not limited to personal relationships or competing interests directly or indirectly tied to this research, or professional interests or personal beliefs that may influence your research.

The corresponding author collects the conflict of interest disclosure forms from all authors. In author collaborations where formal agreements for representation allow it, it is sufficient for the corresponding author to sign the disclosure form on behalf of all authors. Examples of forms can be found here:

The corresponding author will include a summary statement in the text of the manuscript in a separate section before the reference list, that reflects what is recorded in the potential conflict of interest disclosure form(s).

See below examples of disclosures:

Funding: This study was funded by X (grant number X).
Conflict of Interest: Author A has received research grants from Company A. Author B has received a speaker honorarium from Company X and owns stock in Company Y. Author C is a member of committee Z.

If no conflict exists, the authors should state:
Conflict of Interest: The authors declare that they have no conflict of interest.

AFTER ACCEPTANCE

Upon acceptance of your article you will receive a link to the special Author Query Application at Springer’s web page where you can sign the Copyright Transfer Statement online and indicate whether you wish to order OpenChoice and offprints.

Once the Author Query Application has been completed, your article will be processed and you will receive the proofs.

Open Choice

In addition to the normal publication process (whereby an article is submitted to the journal and access to that article is granted to customers who have purchased a subscription), Springer now provides an alternative publishing option: Springer Open Choice. A Springer Open Choice article receives all the benefits of a regular subscription-based article, but in addition is made available publicly through Springer’s online platform SpringerLink.

Springer Open Choice

Copyright transfer

Authors will be asked to transfer copyright of the article to the Publisher (or grant the Publisher exclusive publication and dissemination rights). This will ensure the widest possible protection and dissemination of information under copyright laws.

Open Choice articles do not require transfer of copyright as the copyright remains with the author. In opting for open access, the author(s) agree to publish the article under the Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Attribution-NonCommercial 4.0 International License

Offprints

Offprints can be ordered by the corresponding author.

Color illustrations

Publication of color illustrations is free of charge.

Proof reading

The purpose of the proof is to check for typesetting or conversion errors and the completeness and accuracy of the text, tables and figures. Substantial changes in content, e.g., new results, corrected values, title and authorship, are not allowed without the approval of the Editor.

After online publication, further changes can only be made in the form of an Erratum, which will be hyperlinked to the article.

Online First
International Journal of Disaster Risk Science

Instructions for Authors

The International Journal of Disaster Risk Science is an interdisciplinary English language journal that publishes research articles addressing theoretical and methodological issues in disaster risk science, emergency response technology, and risk management; disaster risk governance policies and regulations; and case studies and comparative research internationally on responses to major disasters. The journal also publishes short articles and updates on projects, conferences, and research progress.

The journal is published quarterly, in March, June, September, and December.

Manuscripts submitted to the journal are considered for publication only if they have not been published previously and are not under consideration for publication elsewhere (including on the internet). The publishers cannot be held responsible for any costs that are incurred if an author fails to adhere to these conditions.

Research papers are peer reviewed by at least two reviewers. The author should suggest three potential reviewers with full names, institutional affiliations, and current e-mail addresses. All reviews are conducted blind, and authors should insure that potential identifying data are removed from the main document and included only on the title page. The title page should be in a separate file (it should be excluded from the main document) and must contain the full name, affiliation, and mailing address of the author(s); the title of the paper; the number of words in the text; and the name of the corresponding author with mailing address, fax, telephone number, and e-mail address. Acknowledgments, if applicable, should also be included on this page.

Research papers should be no more than 8,000 words in length including references, and may contain up to five figures and three tables without special permission from the editors. Short articles and updates on projects, conferences, and research progress should be no more than 2,000 words in length.

Manuscript Format

Manuscripts must be written in American English. Research papers should be compiled in the following order: title of the paper; 200 word abstract; four to six keywords; main text; footnotes (only in limited number when absolutely necessary); and references. Appendices are not accepted. Manuscripts should be submitted as Word file for text, with one inch margins on all sides throughout a 12-point Times New Roman text.

All papers submitted should contain an abstract of about 200 words and four to six keywords. Headings should be numbered sequentially, using a decimal system for subheadings. No more than three levels of heading are acceptable.

Photos and figures should be of high quality with a minimum resolution of 300 dpi in TIFF or JPEG format. Copyright permission must be obtained for material copied from other publications, but does not need to be submitted until the paper is accepted. Explain all abbreviations used in figures and tables. Metric and Celsius units must be used in figures, tables, and text. Convert currencies to USD using appropriate exchange rates, noting the date for the rate employed. Specialized technical or scientific terms, abbreviations, and acronyms should be explained the first time they are used.

The author-date system of referencing, primarily following the Chicago Manual of Style (CMS), is used. See The Chicago Manual of Style Online at http://www.chicagomanualofstyle.org/15/contents.html. Sources are briefly cited in the text in parentheses, by author’s last name and year of publication. Provide full bibliographic information in a reference list. If a reference is written in a foreign language, give the title in both English and its original language with the latter in parentheses at the end, and, if the reference has an English summary, add “English summary.” Names of journals should be written in full, not abbreviated. Use only initials of authors’ first names. Do not put journal article titles and titles of chapters from edited books within quotation marks. The issue number of a journal should always be included when applicable. A reference list entry for a journal article should look like this:

Submission

Authors should submit their manuscripts electronically by visiting the IJDRS submission and review website at http://mc03.manuscriptcentral.com/IJDRS. Please follow instructions on the website. All submissions must be accompanied by a disclaimer indicating that the paper in whole or in part has not been previously published and is not under consideration elsewhere.

After Acceptance

Page proofs will be sent to the corresponding author for response to questions and solution of problems identified by the editors and for final author approval. After the final proofreading, open access will be made available at link.springer.com.

Editorial Office

Appendix C: Proof of Language Editing
18 May 2015

To Whom It May Concern

CONFIRMATION OF LANGUAGE EDITING OF ARTICLE: DISASTER RESILIENCE AND COMPLEX ADAPTIVE SYSTEMS THEORY- FINDING COMMON GROUNDS FOR RISK REDUCTION

Herewith confirmation that the abovementioned article, by Coetsee, Van Niekerk & Raju has been language edited.

Sincerely

K.N. Groenewald
FOR ATTENTION: Focus area: Social Transformation – Simone Roos

CLIENT: NWU

DATE: 7 September 2015

<table>
<thead>
<tr>
<th>Description</th>
<th>Rate</th>
<th>Word count</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing of doctoral paper</td>
<td>R20/100 words</td>
<td>6624 words</td>
<td>R1325</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>R1325</td>
</tr>
</tbody>
</table>

BANKING DETAILS:
Bank: ABSA
Branch: Brandwag
Branch code: 334 334
Account type: Cheque account
Account no: 405 801 3386
Account holder: M.E. Linström
7 March 2016

To Whom It May Concern

CONFIRMATION OF LANGUAGE EDITING OF ARTICLE: Reconsidering Disaster Resilience: A non-linear systems paradigm in agricultural communities in Southern Africa

Herewith confirmation that the abovementioned article, by Christo Coetzee has been language edited.

Sincerely

K.N. Groenewald
Katherine Nicole Groenewald: Language Editing
E-mail: nikki.groenewald@up.ac.za
I.D: 6909240271086

22 Marais Street
Brooklyn
Pretoria
0181
Tax No: 0705/834/64/6
Tel: (012) 4203927
Cell: 0829366250

Client Information:
Christo Coetzee
North West University
11 May 2016

Description:

LANGUAGE EDITING OF 4 DOCUMENTS: Establishing a Complex Adaptive Systems Theory paradigm of disaster resilience by focusing on subsistence agriculture communities in Southern Africa.

1. Abstract
2. Article
3. Chapter 1
4. Chapter 6

Cost in Rand:
R4,400.00

Bank Details:
Bank: Standard Bank
Account name: K.N. Groenewald
Account number: 017574528
Branch: Brooklyn
Branch code: 011245
Appendix D: Letters of Permission from Co-authors
PERMISSION CONFIRMING USE OF CO-AUTHORED ARTICLES IN PHD THESIS

This letter serves as confirmation that my PhD student, Mr Christo Coetzee (12996513) may submit the following co-authored research articles as part of his PhD thesis entitled, “Towards a complex adaptive systems paradigm of disaster resilience: A study of Southern African subsistence agriculture communities”:

- Disaster Resilience and Complex Adaptive Systems Theory - Finding common grounds for risk reduction
- Information feedback functions within farmers’ associative mechanisms and their role in fostering disaster resilient behaviour: Selected cases from Southern Africa.
- Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture

My co-authorship in the above mentioned articles was mostly focused around study leading duties and the student, Mr. Coetzee, remains the main contributor to the academic work contained in the articles.

Kind regards and best wishes

Prof. Dewald van Niekerk
Director: African Centre for Disaster Studies