Characterisation of air masses passing over the Vredefort Dome world heritage site

M Dunn
22120017

Dissertation submitted in fulfilment of the requirements for the degree *Magister Scientiae* in *Environmental Sciences (Specialising in Chemistry)* at the Potchefstroom Campus of the North-West University

Supervisor: Prof JP Beukes
Co-supervisor: Dr PG van Zyl

November 2015
Acknowledgements

I would firstly and most importantly like to thank my Father in Heaven for granting me the opportunity, the strength and the knowledge to complete my MSc.

Isaiah 40:31. “but those who hope in the LORD will renew their strength. They will soar on wings like eagles; they will run and not grow weary, they will walk and not be faint.”

I would also like to thank:

- My husband, Andrew, for his willingness to help me with my MSc, his encouragement and his loving support.
- My mother and my brother, Ilze and Henri, for making me what I am today and their love, encouragement and support.
- My supervisors, Prof Paul Beukes and Dr Pieter van Zyl, for their support, guidance, encouragement and assistance.
- My friends and family for their prayers, support and love.
Preface

Introduction

This dissertation was submitted in article format, as allowed by the North-West University (NWU). This entails that the article is added into the dissertation as it was submitted for review to the journal. The conventional “Results and discussions chapter” was therefore replaced by the article. Separate background and motivation (Chapter 1), literature (Chapter 2), experimental (Chapter 3) and project evaluation (Chapter 5) chapters were included in the dissertation, although some of this information was summarised in the article. This will result in some repetition of ideas/similar text in some of the chapters and in the article. The numbering of Chapter 4 (that contains the article) is also not consistent with the rest of the dissertation, since it was added in the exact format as it was submitted to the journal. The figures and tables of Chapter 4 are also added at the end of the text, as prescribed by the journal.

Rationale in submitting dissertation in article format

It is currently a prerequisite at the NWU for submission of an MSc dissertation that a draft article must be prepared. Many of these draft papers are never submitted to national and international accredited peer reviewed journals. However, the candidate decided to submit this MSc dissertation in article format, since it required that the candidate prepare a paper that was submitted to an ISI-accredited journal. Therefore, the prerequisite of the NWU was exceeded.
The co-authors of the above-mentioned article (Chapter 4) were:

Marcell Venter¹, Johan Paul Beukes*¹, Pieter Gideon van Zyl¹, Andrew Derick Venter¹, Kerneels Jaars¹, Miroslav Josipovic¹, Markku Kulmala², Ville Vakkari³, Lauri Laakso¹,³

¹ Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
² Department of Physics, P.O. Box 64, FIN-00014, University of Helsinki, Finland
³ Finnish Meteorological Institute, Helsinki, Finland

Contributions to article

Contributions of the various co-authors were as follows. The bulk of the work was done by the candidate, Marcell Venter, with conceptual ideas and recommendations by the study leaders JP Beukes and PG van Zyl. AD Venter, K Jaars and M Josipovic assisted in data collection at the Welgegund measurement station, while M Kulmala, V Vakkari and L Laakso assisted in creating the infrastructure at Welgegund, as well as making conceptual contributions.

Formatting and current status of article

The article was formatted in accordance with the journal specifications, i.e. South African Journal of Science. The author’s guide that was followed in preparation of the article was available at http://www.sajs.co.za/guidelines-authors (Date of access: 12 April 2016).

Consent by co-authors

All the co-authors on the article (Chapter 4) have been informed that the MSc dissertation will be submitted in article format and have given their consent.
Abstract

In 2007, it was announced that the Vredefort Dome will be proclaimed South Africa’s seventh UNESCO (United Nations Educational, Scientific and Cultural Organisation) world heritage site. It is the largest and second oldest meteorite impact structure in the world and is situated in the Witwatersrand basin (containing ~40% of the world’s gold resources). In addition to the economic importance of the Vredefort Dome, it is of great geological (e.g. large meteorite crater with inverted sedimentary structures); cultural and historical (e.g. stone age caves with tools and human remains, Khoi-San rock art, remnants of the Anglo-Boer war and old gold mines); conservational (e.g. diverse indigenous plant, animal and bird species, as well as water quality associated with the Vaal river); and aesthetic (e.g. providing unique scenery with associated ecotourism opportunities) significance in South Africa.

Air quality in the Vredefort Dome can potentially be affected by the nearby declared air pollution priority areas, i.e. the Vaal Triangle Airshed Priority Area (VTAPA), the Highveld Priority Area (HPA) and the Waterberg Priority Area (WPA), as well as the Johannesburg-Pretoria (Jhb-Pta) megacity, which is well-known for high levels of atmospheric pollution. Notwithstanding the national and international importance of the Vredefort Dome, as well as the proximity of the afore-mentioned polluted source regions, currently, no air quality data is available for this area. The management plan, as required by the UNESCO declaration, also highlighted this deficiency.

In an effort to partially address the air quality knowledge gap, air masses from 1 June 2010 to 28 February 2014 passing over the Vredefort Dome were isolated and analysed at the Welgegund atmospheric measurement station as a proxy for ground-level air quality over the Vredefort Dome. Atmospheric species reported on in this thesis are in accordance with the National Ambient Air Quality Standards (NAAQS). The proxy method applied had some
limitations, since the frequency of such back trajectories was limited and those that did comply passed mostly over the cleaner south-western sector from the Vredefort Dome. Additionally, dilution during transport and aging of air masses after passing over the Vredefort Dome before arriving at Welgegund could also affect the pollutant levels observed.

By comparing the results with South African air quality standards, it is evident that O$_3$ and PM$_{10}$ exceeded the South African air quality standard limits. O$_3$ is a regional problem, while PM$_{10}$ mostly originates from industries, household combustion and savannah/grassland fires. Although there were no exceedances recorded for SO$_2$ and NO$_2$ in air masses complying with the selection criteria, it is highly likely that such exceedances will occur over the Vredefort Dome. It is suggested that emission interventions for industrial activities, the vehicular fleet, as well as savannah and grassland fires be done in order to address species of regional concern. In order to address household combustion emissions, social and economic transformations in South Africa need to be accomplished, which are linked to the economic success and growth of the country.

Keywords: Vredefort Dome, World heritage site, Air quality, Welgegund, South Africa
Index

Acknowledgements.. i

Preface .. ii

Abstract ... iv

List of figures .. ix

List of tables .. xi

Chapter 1: Background, motivation and objectives.. 1
 1.1. Background and motivation .. 1
 1.2. Objectives ... 2

Chapter 2: Literature survey .. 3
 2.1. Air pollution .. 3
 2.1.1. Types of air pollutants .. 4
 2.1.2. Pollutant sources ... 5
 2.2. Selection of species studied .. 7
 2.2.1. Nitrogen oxides .. 7
 2.2.2. Sulphur dioxide ... 9
 2.2.3. Ozone ... 12
 2.2.4. Carbon monoxide ... 14
 2.2.5. Particulate matter .. 15
 2.2.6. Black carbon (BC) ... 17
 2.3. Air quality standards and priority areas ... 18
 2.4. The Vredefort Dome World Heritage Site ... 22

Chapter 3: Experimental procedures .. 25
 3.1. Measuring site location ... 25
 3.2. Sampling methods and data processing .. 27
 3.3. Analysis of air mass histories and associating with in situ measurements 28
 3.4. Sampling equipment .. 30
 3.4.1. Meteorology ... 30
 3.4.2. NOx ... 30
 3.4.3. SO$_2$.. 31
 3.4.4. O$_3$... 31
 3.4.5. CO .. 32
List of abbreviations

BC: Black Carbon
CCN Cloud Condensation Nuclei
EPA Environmental Protection Agency
HPA Highveld Priority Area
IN Ice Nuclei
IPPC Intergovernmental Panel on Climate Change
MAAP Multi-Angle Absorption Photometer
NAAQS National Ambient Air Quality Standards
OC Organic Carbon
PGM Platinum Group Metals
PM Particulate Matter
PMT Photomultiplier Tube
SHARP Synchronized Hybrid Ambient Real-time Particulate Monitor
UNESCO United Nations Educational Scientific and Cultural Organisation
VTAPA Vaal Triangle Airshed Priority Area
WHO World Health Organisation
WPA Waterberg Priority Area
List of figures

Chapter 2

Figure 2.1: Tropospheric NO cycle (Atkinson, 2000) 8
Figure 2.2: The global sulphur emission trends from several studies (Smith et al., 2011) 10
Figure 2.3: Total SO$_2$ emissions in southern Africa (2004) based on the SAFARI2000 emissions inventory (Laakso et al., 2012; Fleming & van der Merwe, 2004) 11
Figure 2.4: An illustration of the chemical cycle of O$_3$, HO$_x$, NO$_x$ and RO$_2$. RO$_2$ refers to the mixture of organic peroxy radicals (Jacob, 2000) 13
Figure 2.5: The cycle of atmospheric aerosols (Pöschl, 2005) 16
Figure 2.6: A schematic overview of the interactions between BC and the Earth’s system (Bond et al., 2013) 18
Figure 2.7: A scenic picture of the Vredefort Dome hills, indigenous plant species and flowing Vaal River (http://www.southafricatrawels.com/103/the-vredefort-dome/) 22

Chapter 3

Figure 3.1: (a) The location of the Vredefort Dome within a regional context. (Countries: Nam – Namibia, Bot – Botswana, Zim – Zimbabwe, Moz – Mozambique, Sz – Swaziland, Les – Lesotho, South African provinces: WC – Western Cape, EC – Eastern Cape, NC – Northern Cape, FS – Free State, KZN – KwaZulu-Natal, NW – North West, MP – Mpumalanga, LP – Limpopo Province). (b) The positioning of the Welgegund monitoring station and spatial extent of the declared priority areas and the Jhb-Pta megacity, as well as very large point sources in the South African interior are indicated on the zoomed-in map. (c) A Google Earth image of the area clearly indicating the rings that form part of the Vredefort Dome impact structure 26
Figure 3.2: (a) An example of a back trajectory that had passed over the Vredefort Dome before arriving at Welgegund, but that did not pass over either Potchefstroom or the LPS region after passing over the Dome. (b) and (c) are examples of the back trajectories that had passed over the Vredefort Dome, but that did not comply with the selection criteria indicated in (a)
List of tables

Chapter 2

Table 2.1: NAAQS established according to the National Environmental Management: Air Quality Act, 2004 (SA, 2009) 19
Chapter 1

Background, motivation and objectives

1.1. Background and motivation

In 2007, it was announced that the Vredefort Dome will become South Africa’s seventh UNESCO world heritage site (UNESCO, 2015; SA, 2007). The Vredefort Dome is located on the boundary between the North West and the Free State Provinces. It is known as the largest (diameter of 160 km) and the second oldest (~2023 Ma) meteorite impact structure in the world (Spray, 2015). The Vredefort Dome is situated in the Witwatersrand basin of the Kaapvaal Craton (Harris et al., 2013). The Witwatersrand basin contains ~40% of the world’s gold resources, which were made accessible for exploitation by the uplifting of the mineral rich geological structures that took place as a result of the meteorite impact (Reimold, 2014; Gibson & Reimold, 1999; Minter et al., 1993). Apart from the economic value added by the Vredefort Dome, it is of great geological (e.g. large meteorite crater with inverted sedimentary structures), cultural and historical (e.g. stone age caves with remains of tools and humans, Khoi-San rock art, remnants of the Anglo-Boer War and old gold mines), conservational (e.g. diverse indigenous plant, animal and bird species, as well as water quality associated with Vaal River) and aesthetic (e.g. providing unique scenery with ecotourism opportunities) value in South Africa (UNESCO, 2015). Notwithstanding the national and international importance of the Vredefort Dome, currently no air quality data is available for this region. The recently compiled management plan, as required by the UNESCO declaration, also highlighted this knowledge gap (Engelbrecht, 2013). However,
currently it is not financially feasible to establish a state-of-the-art air quality monitoring station in this area. In order to partially address this knowledge gap, air masses that had passed over the Vredefort Dome were isolated and analysed in this study to provide an indication of the air quality over it. It is likely that the air quality in the Dome will be affected by the nearby declared priority areas, i.e. the Vaal Triangle Airshed Priority Area (VTAPA) (SA, 2006), the Highveld Priority Area (HPA) (SA, 2007) and the Waterberg Priority Area (WPA) (SA, 2012), which are well known for high levels of atmospheric pollution due to various anthropogenic activities. Furthermore, the Vredefort Dome could also be impacted by air masses passing over the Johannesburg-Pretoria conurbation (Lourens et al., 2012).

1.2. Objectives

The general aim of the study was to characterise air masses and determine proxies for air quality in the Vredefort Dome and to compare these proxies with the relevant ambient air quality standards.

For this general aim, the specific objectives were:

i) Identifying back trajectories passing over the Vredefort Dome;

ii) Linking in situ atmospheric measurements of pollutant species conducted at the Welgegund monitoring station with the identified back trajectories;

iii) Comparing the measured pollutant concentrations that were linked with the appropriate back trajectory arrival times with National Ambient Air Quality Standards (NAAQS);

iv) Identifying possible trends in pollutant concentrations and relate these to possible sources; and

v) Presenting an assessment of the air quality over the Vredefort Dome based on the above-mentioned air quality proxies indicating what interventions are required in future.
2.1. Air pollution

Air pollution can be defined as air containing gaseous, liquid or solid particles in sufficient concentrations, which can be harmful to human/animal health, welfare or comfort, as well as causing damage to materials and plants (Business Dictionary, 2015).

The earth’s atmosphere consists of five layers in which the pressure and temperature change with altitude (Atkinson, 2000), i.e. the troposphere, stratosphere, mesosphere, thermosphere and the exosphere. The troposphere is the layer closest to the earth and is most significant for living organisms and meteorological events. The height of the troposphere is at the widest ~16 km and it contains 78.09% nitrogen (N₂), 20.95% oxygen (O₂), 0.93% argon (Ar), 0.03% carbon dioxide (CO₂), varying amounts of water (H₂O) vapour (depending on the temperature and altitude) and small amounts of other gases (Lourens, 2008; Connell, 2005; Atkinson, 2000). A majority of chemical species are emitted into the tropospheric layer from the surface, which undergo various chemical and physical transformations (Monks & Leigh, 2009).

Air pollution influences the troposphere and stratosphere differently. The earth-atmosphere radiation budget and the influence of gas species can be considered, with stratospheric ozone (O₃) and tropospheric CO₂ as examples. Stratospheric O₃ protects the biosphere from ultraviolet (UV) radiation by absorbing short-wave solar radiation (Connell, 2005), whereas tropospheric CO₂ retains infrared radiation within the troposphere (Fishman, 2003), i.e. the
greenhouse effect. Measurements over the past decades show that stratospheric O$_3$ has decreased and tropospheric CO$_2$ has increased (Fishman, 2003). A decrease in O$_3$ will result in damage to biota on the ground, while an increase in CO$_2$ will lead to warming of the earth’s surface (Fishman, 2003). Greenhouse gas concentrations (e.g. CO$_2$ and methane (CH$_4$)) have increased significantly since the pre-industrial era and have contributed to global climate change. These gases absorb and reemit thermal infrared radiation from the sun that causes the earth’s temperature to increase (Connell, 2005). Should the greenhouse gas emissions continue, increases in long lasting changes, warming of the climatic system, and severe impacts on the ecosystem and humans can be expected. The fifth assessment of the Intergovernmental Panel on Climate Change (IPCC) reports that the atmosphere and ocean have warmed since the 1950s, the lower troposphere has warmed and the lower stratosphere has cooled; extreme temperature changes and climate change have widespread impacts on human and natural systems (IPCC, 2014).

In addition to climate change, air pollution also has an effect on general air quality and human health. Kampa and Castanas (2008) state that air pollutants, depending on the dose and time of exposure, can lead to diverse impacts on human health. The different effects of air pollution can range from nausea, skin irritation or asthma to serious health effects such as cancer, birth defects and reduced activity of the immune system (Kampa & Castanas, 2008).

2.1.1. Types of air pollutants

A large number of air pollutant species are present in the atmosphere. These species have different chemical compositions, sources, reaction properties, transformations, impacts on human/animal health and the environment, persistence in the environment, and abilities to be transported over long or short distances (Venter, 2011; Kampa & Castanas, 2008). Air pollutants are generally grouped into two categories, i.e. gaseous species and aerosols.
Gaseous species

Gaseous pollutants are organic and inorganic compounds (Kampa & Castanas, 2008). Volatile organic compounds (VOCs), methane (CH$_4$), non-methane hydrocarbons and halogenated organic species are examples of typical atmospheric organic compounds (Kampa & Castanas, 2008; Daly & Zannetti, 2007). The most important inorganic species are nitrogen oxide (NO), nitrogen dioxide (NO$_2$), nitrous oxide (N$_2$O), sulphur dioxide (SO$_2$), ozone (O$_3$) and carbon monoxide (CO) (Kampa & Castanas, 2008). Greenhouse gas species that contribute significantly to climate change include CO$_2$, CH$_4$, O$_3$, N$_2$O and halogenated hydrocarbons (Daly & Zannetti, 2007; Connell, 2005).

Aerosols

Atmospheric aerosols or particulate matter (PM) are small solid or liquid particles that are suspended in the atmosphere that differ in size, morphology, number and shape (Kampa & Castanas, 2008). Aerosol particles originate from a mixture of natural (e.g. dust storms, volcanoes, sea spray) and anthropogenic (e.g. open cast mines, household combustion and industry) sources (Laakso et al., 2012; Vakkari et al., 2011; Venter, 2011; Ross et al., 2003; Jayaratne & Verma, 2001). These particles can be characterised according to their aerodynamic particle diameter, e.g. ultra-fine (PM$_{0.1}$, < 0.1 µm), fine (PM$_1$, 0.1 µm > 1 µm) and coarse particles (PM$_{2.5}$ and PM$_{10}$, > 1 µm) (Kampa & Castanas, 2008).

2.1.2. Pollutant sources

Pollutant species are further classified as primary and secondary pollutants. Pollutants can be directly emitted into the atmosphere that are termed primary pollutants (Daly & Zannetti, 2007), while secondary pollutants are formed in the atmosphere from primary pollutants (precursors). Examples of typical primary pollutants, presented by Dally and Zannetti (2007), include:
• CO, CO₂, CH₄ and VOCs;
• NO, N₂O and NH₃;
• hydrogen sulphide (H₂S) and SO₂;
• halogen compounds; and
• particulate matter.

Some of the above-mentioned species can also be secondary pollutants, e.g. CO₂ formed from CO oxidation, SO₂ formed from H₂S oxidation and less volatile VOCs formed from more volatile species. Typical secondary pollutants presented by Dally and Zannetti (2007) are:

• nitric acid (HNO₃) and NO₂ formed from NO;
• O₃ formed from photochemical reactions of VOCs and nitrogen oxides;
• HNO₃ droplets formed from NO₂;
• sulphuric acid (H₂SO₄) droplets formed from SO₂;
• nitrate (NO₃⁻) and sulphate (SO₄²⁻) aerosols formed from reactions between H₂SO₄ and HNO₃ droplets and ammonia (NH₃), respectively; and
• organic aerosols formed from VOCs in gas-to-particulate reactions.

Atmospheric pollutants can originate from natural or anthropogenic sources. Natural sources include vegetation, soil surfaces, ocean and other aqueous surfaces, volcanic eruptions, dust storms, decompositions of animal and plant material and sea spray from oceans (Williams & Baltensperger, 2009). Typical anthropogenic sources include the combustion of fossil fuels, household combustion, vehicle emissions, chemical and petrochemical industries, agricultural activities, mining activities and high temperature combustion processes (Williams & Baltensperger, 2009).
2.2. **Selection of species studied**

Since this study was in principle an air quality study, species related to the National Ambient Air Quality Standards (NAAQS) were specifically considered, as well as some ancillary species. The NAAQS will be discussed in greater detail in Paragraph 2.3.

2.2.1. **Nitrogen oxides**

The important atmospheric nitrogen-containing species (with the exception of N\textsubscript{2}) are NO, NO\textsubscript{2}, N\textsubscript{2}O, NH\textsubscript{3} and HNO\textsubscript{3} (Seinfeld & Pandis, 2006). These species are primarily emitted into the atmosphere from anthropogenic activities such as vehicular emissions, coal-fired power plants, household combustion and agricultural activities (EPA, 2015; Shallcross, 2009), as well as naturally from microbial activity in soil by the reduction and oxidation of nitrogen compounds, e.g. reduction of NO\textsubscript{3}– and oxidation of NH\textsubscript{4}+ (Smith, 1982; Robinson & Robbins, 1970). The total nitrogen oxides, NO\textsubscript{x}, (NO + NO\textsubscript{2}), are approximately 30 % of the global budget (Monks & Leigh, 2009; Fabian & Pruchniewicz, 1977). NO\textsubscript{2} is the most prominent nitrogen-containing species and is emitted along with NO from combustion activities (Seinfeld & Pandis, 2006). In urban areas, the highest NO\textsubscript{2} concentrations are found in the morning and late afternoon due to increasing motor vehicle activities (Lourens et al., 2012; Venter et al., 2012). South Africa is well known for the NO\textsubscript{2} hotspot over the Highveld Priority Area, where coal-fired power stations and petrochemical plants are the major sources (Lourens et al., 2011). NO\textsubscript{2} takes part in chemical reactions (photolysis) that can lead to the formation of tropospheric O\textsubscript{3} (Connell, 2005). NO\textsubscript{2} can be regarded as a precursor for all the chemistry occurring in the atmosphere, if the photolysis of O\textsubscript{3} is considered the start of tropospheric chemistry (Pienaar & Helas, 1996). Once NO or NO\textsubscript{2} is released in the atmosphere, it undergoes a series of reactions (Venter, 2011; Shallcross, 2009; Atkinson, 2000) to form O\textsubscript{3}.
NO + O₃ → NO₂ + O₂

NO₂ + hv → NO + O(³P)

O(³P) + O₂ + M → O₃ + M (M = N₂ or O₂)

These reactions interconvert NO, NO₂ and O₃, as is indicated in Figure 2.1.

![Figure 2.1 Tropospheric NO cycle (Atkinson, 2000)](image)

The oxidation of NO₂ by O₃ can also lead to the formation of the nitrate radical, NO₃⁻ through the following reaction:

$$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3^- + \text{O}_2$$

NO₃⁻, together with the hydroxyl radical (HO⁺) and O₃, is responsible for the majority of the oxidation reactions occurring in the troposphere. NO₃⁻ rapidly reacts (~ 5 seconds) with NO in the presence of sunlight to form NO again, as well as NO₂:

$$\text{NO}_3^- + \text{hv} \rightarrow \text{NO} + \text{O}_2 (~10 \%)$$

$$\text{NO}_3^- + \text{hv} \rightarrow \text{NO}_2 + \text{O}(³\text{P}) (~90 \%)$$

Other important reactions of nitrogen oxides in the troposphere include:

$$\text{HO}^+ + \text{NO} \rightarrow \text{HONO}$$
HO’ + NO₂ → HNO₃

NO₃’ + NO₂ → N₂O₅

N₂O₅ + H₂O → 2HNO₃

NO₂ + NO + H₂O → 2HNO₂

The reaction between OH’ and NO₂ is a major depleting chemical process for NOₓ during the daytime (Atkinson, 2000). As indicated above, NOₓ can also influence aerosol and wet deposition acidity, through the formation of nitrous acid (HNO₂) and HNO₃. Approximately 0.03% of CO₂ occurs in the troposphere, which in equilibrium with H₂O will result in precipitation with a pH of approximately 5.7 according to the Henry’s Law (Connell, 2005). Additional acidity is usually ascribed to the presence of three inorganic acids, i.e. H₂SO₄, HNO₃ and HCl (Connell, 2005). Generally, H₂SO₄ dominates (which will be discussed in Paragraph 2.2.2) with less contribution from HNO₃ and comparatively low proportions of HCl (Connell, 2005).

2.2.2. Sulphur dioxide

The main atmospheric sulphur-containing compounds are SO₂, sulphur trioxide (SO₃), carbon disulphide (CS₂), carbonyl sulphide (OCS), H₂S and dimethyl sulphide (CH₃SCH₃) (Shallcross, 2009; Williams & Baltensperger, 2009). SO₂ is a highly reactive colourless gas emitted by anthropogenic fossil fuel burning (power plants) and other industrial processes (e.g. ore smelters and refineries) (EPA, 2015; Shallcross, 2009), as well as natural sources including volcanic eruptions and wildfires (EPA, 2009; Shallcross, 2009). In Figure 2.2, the global anthropogenic SO₂ trends as presented by various authors from 1900 up to 2000 are presented. Since the 19th century (1850), SO₂ emissions have increased rapidly due to increasing anthropogenic activities associated with the industrial revolution and power generation (Smith et al., 2011). In the late 20th century, atmospheric SO₂ levels declined due
to the increase of global awareness of air quality that resulted in the introduction of technologies to remove SO$_2$ from industrial off-gas (Smith et al., 2011).

Figure 2.2 The global sulphur emission trends from several studies (Smith et al., 2011)

The total SO$_2$ emissions in 2004 from southern Africa are presented in Figure 2.3 (Laakso et al., 2012). The red star in this figure indicates the measurement location that Laakso et al. (2012) reported on and is not directly relevant to this study. As is evident from Figure 2.3, high SO$_2$ levels can be observed over the Mpumalanga Highveld (discussed in detail in Paragraph 2.3.), where there are industries associated with fossil fuel combustion such as coal-fired power stations and petrochemical industries (Lourens et al., 2011).
Oxidation of SO₂ leads to the formation of H₂SO₄ aerosols in the atmosphere (Shallcross, 2009). In this process, SO₂ reacts with O₂ to form SO₃ (Seinfeld & Pandis, 2006):

\[
2\text{SO}_2 + \text{O}_2 \rightarrow 2\text{SO}_3
\] \hspace{1cm} 2.12

The rate of the reaction between SO₂ and O₂ is very slow in atmospheric conditions. Therefore, SO₃ is more readily produced via the favourable OH⁻-radical abstraction reaction (Seinfeld & Pandis, 2006):

\[
\text{OH}^- + \text{SO}_2 + \text{A} \rightarrow \text{HOSO}_2^- + \text{A}
\] \hspace{1cm} 2.13

\[
\text{HOSO}_2^- + \text{O}_2 \rightarrow \text{HO}_2^- + \text{SO}_3
\] \hspace{1cm} 2.14

A reaction between SO₃ and H₂O then forms sulphuric acid (Seinfeld & Pandis, 2006):

\[
\text{SO}_3 + \text{H}_2\text{O} + \text{A} \rightarrow \text{H}_2\text{SO}_4 + \text{A}
\] \hspace{1cm} 2.15

(A = vibrational exchange of species)
Other sulphur-containing compounds can also form SO$_2$. For instance, H$_2$S undergoes a reaction with OH$^-$ to form a SH$^-$-radical and a series of other reactions to form SO$_2$ (Seinfeld & Pandis, 2006):

$$H_2S + OH^- \rightarrow SH^- + H_2O \rightarrow SO_2$$ \hspace{1cm} 2.16

CH$_3$SCH$_3$ also undergoes reactions to form SO$_2$ (Seinfeld & Pandis, 2006):

$$CH_3SCH_3 + HO^- \rightarrow CH_3SCH_2O_2^-$$ \hspace{1cm} 2.17

$$CH_3SCH_2O_2^- \rightarrow CH_3S^- + HCHO \rightarrow SO_2 + CH_3$$ \hspace{1cm} 2.18

2.2.3. Ozone

Tropospheric O$_3$ is a secondary pollutant that is formed by photochemical reactions with NO$_2$ as indicated in Figure 2.1. Additionally, CO and VOCs can serve as precursor species for the formation of intermediates that lead to tropospheric O$_3$ formation (Jain, 2009; Jacob, 2000).

Previous studies (Thompson et al., 2014; Venter et al., 2012; Lourens et al., 2011; Josipovic et al., 2010; Laakso et al., 2008) have indicated that the interior of South Africa has elevated O$_3$ levels that are promoted by high concentrations of O$_3$ precursor emission, an abundance of sunlight and the recirculation of air masses of the interior that allows aging and photochemistry to take effect.

Figure 2.4 presents a schematic illustration of the chemical cycle of O$_3$, HO$_x$, NO$_x$ and RO$_2$, which is a good example of the manner in which O$_3$ interacts with other species in the atmosphere (Jacob, 2000).
Figure 2.4 An illustration of the chemical cycle of O₃, HOₓ, NOₓ and RO₂. RO₂ refers to the mixture of organic peroxy radicals (Jacob, 2000)

Tropospheric O₃ production can be described as the HOₓ-catalysed chain oxidation of CO and hydrocarbons in the presence of NOₓ. As Seinfeld and Pandis (2006) presented, photolysis of O₃ (at wavelengths < 319 nm) produces both ground state (O) and excited singlet (O(¹D)) oxygen atoms:

\[
O_3 + \text{hv} \rightarrow O_2 + O(¹D) \quad \text{(2.19)}
\]

\[
O(¹D) + M \rightarrow O(³P) + M \quad (M = N_2 \text{ or } O_2) \quad \text{(2.20)}
\]

\[
O(³P) + O_2 + M \rightarrow O_3 + M \quad \text{(2.21)}
\]

The singlet (O(¹D)) oxygen atom can react with water to form 2 OH⁻-radicals:

\[
O(¹D) + H_2O \rightarrow 2\text{HO}⁻ \quad \text{(2.22)}
\]

As indicated previously, OH⁻ is one of the most important chemicals in the atmosphere. It is short lived and reacts with most trace species present in the troposphere (Seinfeld & Pandis,
O2 and O3 are the most abundant oxidants in the troposphere, but are less reactive because of their large bond energies, which implies that OH• is the primary oxidising species in the troposphere (Seinfeld & Pandis, 2006).

2.2.4. Carbon monoxide

Carbon monoxide (CO) is the main pollutant emitted into the atmosphere due to incomplete combustion of carbon-based fuels (IPCC, 2013). In urban areas, motor vehicle emissions are the main pollutant source for CO and contribute approximately 70% of CO (Fenger, 2009). In South Africa, CO is also emitted in large amounts from savannah and grassland fires in winter and early spring (Swap et al., 2003; Jayaratne & Verma, 2001; Maenhaut et al., 1996), as well as from household combustion in low income informal settlements (Venter et al., 2012; Laakso et al., 2008; Novelli, 2003).

The two main impacts associated with tropospheric CO are related to its toxicity (Kampa & Castanas, 2008; Ernst & Zibrak, 1998) and its contribution to O3 formation (Connell, 2005). Photolysis of O3 leads to the formation of OH• that oxidises CO to form HO2•-radicals in the troposphere that catalyse tropospheric O3 formation (Seinfeld & Pandis, 2006; Novelli, 2003):

\[\text{OH}^\cdot + \text{CO} + \text{O}_2 \rightarrow \text{CO}_2 + \text{HO}_2^\cdot \]

\[\text{HO}_2^\cdot + \text{NO} \rightarrow \text{NO}_2 + \text{OH}^\cdot \]

\[\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O}(^3\text{P}) \]

\[\text{O}(^3\text{P}) + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \]

Novelli (2003), and references therein, indicated that trends in CO levels are expected to have an effect on climate through the regulation of OH• concentrations, which affect the levels of several greenhouse gases. HO2•-radicals produced through CO oxidation can lead to the formation of O3 through a series of photochemical reactions in areas with high NO levels.
(Novelli, 2003). If the NO concentration is low, O$_3$ may be destroyed by the HO$_2^•$-radical produced by the oxidation of CO (Novelli, 2003):

$$O_3 + HO_2^• \rightarrow 2O_2 + OH$$

2.2.5. **Particulate matter**

Atmospheric aerosols consist of a mixture of organic and inorganic compounds. They can differ in size ranges from a few nanometres to micrometres in diameter (Seinfeld & Pandis, 2006). Tropospheric aerosols can contain NO$_3^-$, SO$_4^{2-}$, sodium (Na$^+$), chloride (Cl$^-$), ammonium (NH$_4^{2+}$), black (elemental) carbon (BC), organic compounds (OC), water and crustal elements (Seinfeld & Pandis, 2006). The lifetime of aerosols can range from a few hours up to weeks, depending on the aerosol properties (e.g. size) and metrological conditions (Pöschl, 2005). Aerosols can be emitted from natural or anthropogenic sources. Primary aerosols can be from natural sources, e.g. volcanic eruptions, wind-blown dust, sea spray and biological materials, as well as from anthropogenic sources, e.g. industrial activities such as incomplete combustion of fossil fuels (Pöschl, 2005). Secondary aerosols are formed by gas-to-particle conversions in the atmosphere. Gaseous precursors lead to new particle formation by condensation and nucleation in the atmosphere (Pöschl, 2005). Recent studies (Gierens *et al.*, 2014; Hirsikko *et al.*, 2013; Vakkari *et al.*, 2013; Hirsikko *et al.*, 2012; Vakkari *et al.*, 2011; Laakso *et al.*, 2008) have indicated that the rate and frequency of new particle formation in South Africa are among the highest in the world.

Figure 2.5 illustrates that airborne aerosols can undergo chemical and physical transformations and interactions (Pöschl, 2005). Aerosols can change in composition, structure and size by coagulating with other particles, through chemical reactions, and by condensation of vapour species or evaporation that can become fog and cloud droplets through the activation in the presence of water supersaturation (Seinfeld & Pandis, 2006;
Pöschl, 2005). They also affect the distribution and abundance of atmospheric trace gases by heterogeneous chemical reactions and other multiphase processes (Pöschl, 2005).

![Diagram of atmospheric aerosols lifecycle](image)

Figure 2.5 The cycle of atmospheric aerosols (Pöschl, 2005)

Depending on the size and chemical composition, aerosols can have health effects ranging from allergic diseases to respiratory and cardiovascular diseases (Pöschl, 2005; Bernstein et al., 2004). Aerosol particles also have direct (scattering or absorption of solar radiation) and indirect (acting as cloud condensation nuclei, CCN, and mimicking the properties of clouds) radiative effects on the earth’s climate system (Laakso et al., 2012; Vakkari et al., 2011; Penner et al., 2001). Aerosol scattering has a cooling effect on the climate and makes the earth more reflective, while aerosol absorption has a warming effect on the climate (IPCC, 2014). The fifth assessment report of the IPCC indicated that most studies agree that anthropogenic aerosols’ net radiative effect is cooling the earth.

Pöschl (2005) described how clouds form from the condensation of water vapour on pre-existing aerosol particles (CNN and ice nuclei, IN). Atmospheric aerosols can be removed by two mechanisms, i.e. wet deposition and dry deposition (Figure 2.5) (Seinfeld & Pandis,
2006). Wet deposition takes place when modified aerosol particles are released from evaporating cloud droplets or ice crystals during the formation of precipitation that reaches the earth’s surface (Pöschl, 2005). Aerosol particles that reach the earth’s surface without precipitation, but by diffusion, convective transport and adhesion, are called dry deposition (Pöschl, 2005).

2.2.6. **Black carbon (BC)**

BC is a primary aerosol that is directly emitted from incomplete combustion of fossil fuels, biomass burning and pyrolysis of carbonaceous matter (IPCC, 2007). BC contributions to the global budget are estimated to be ~ 42 % from biomass burning, ~ 38 % from fossil fuels and ~ 20 % from biofuel (Sahu et al., 2011; Bond et al., 2004). Due to BC’s graphitic type structure, it can absorb radiation in visible, near UV and near infrared regions (Sahu et al., 2011; Rosen et al., 1978). Figure 2.6 presents typical BC sources and the role they play in the atmosphere (Bond et al., 2013). The IPCC’s fourth assessment report and references therein indicated that BC particles can reduce solar radiation from reaching the earth’s surface and tend to warm the atmosphere at regional scales affecting the vertical temperature profile and hydrological cycle. Deposited BC particles can accelerate melting of snow, glaciers and sea ice by reducing the surface albedo, which makes the arctic climate vulnerable (McConnel et al., 2007; Jacobson, 2001). BC gets mixed with other particles/gases in the atmosphere, which can alter it (Sahu et al., 2011; Lazaridis, 2008; Rosen et al., 1978). When SO$_4^{2-}$ and less volatile organic compounds are deposited as a coating on BC particles, it can enhance absorption and/or scattering, and additionally activate it as CCN (IPCC, 2014). Most atmospheric BC particles comprises mainly of fine particles (90 % in the PM$_{2.5}$ fraction) (Sahu et al., 2011). Similar to other aerosols, BC can act as CCN that affects the cloud cover and -lifetime, which also may have warming and cooling effects on clouds (Koch & Del Genio, 2010).
2.3. **Air quality standards and priority areas**

In order to prevent direct and indirect adverse effects on human health and the environment associated with atmospheric pollution, it is necessary to measure and report air quality on a local, regional and global scale. State and federal agencies (e.g. World Health Organisation (WHO) and the Environmental Protection Agency (EPA)) have developed guidelines and standards to improve air quality worldwide and reduce harmful emissions in order to protect the public.

Air quality measurements and the improvement thereof are considered priorities in developed countries. In developing countries, less emphasis is placed on environmental problems. South Africa can be regarded as a developing country with elements of a developed country. Due to biomass burning emissions (Swap et al., 2003) and the NO$_2$ (and SO$_2$ to a less degree)
hotspot over the Highveld (Lourens et al., 2011), South Africa is considered as a globally important source region for atmospheric pollutants.

In 2009, South Africa established the National Ambient Air Quality Standards (NAAQS) according to the National Environmental Management: Air Quality Act, 2004 (SA, 2009). The NAAQS regards \(\text{SO}_2 \), \(\text{NO}_2 \), \(\text{O}_3 \), \(\text{CO} \), benzene (\(\text{C}_6\text{H}_6 \)), lead (\(\text{Pb} \)) and \(\text{PM}_{10} \) (particulate matter with an aerodynamic diameter less than or equal to 10µm) as criteria pollutants. These species were selected since they were regarded as the most important and most commonly monitored in the atmosphere due to their influence on human health and the environment. In Table 2.1, the NAAQS and associated limits are presented.

Table 2.1 NAAQS established according to the National Environmental Management: Air Quality Act, 2004 (SA, 2009)

<table>
<thead>
<tr>
<th>Averaging period</th>
<th>Concentration</th>
<th>Frequency of exceedance</th>
<th>Compliance date</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Ambient Air Quality Standards for sulphur dioxide (SO(_2))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 minutes</td>
<td>500µg/m(^3) (191 ppb)</td>
<td>526</td>
<td>Immediate</td>
</tr>
<tr>
<td>1 hour</td>
<td>350µg/m(^3) (134 ppb)</td>
<td>88</td>
<td>Immediate</td>
</tr>
<tr>
<td>24 hours</td>
<td>125µg/m(^3) (48 ppb)</td>
<td>4</td>
<td>Immediate</td>
</tr>
<tr>
<td>1 year</td>
<td>50µg/m(^3) (19 ppb)</td>
<td>0</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

The reference method for the analysis of sulphur dioxide shall be ISO 6767

National Ambient Air Quality Standards for nitrogen dioxide (NO\(_2\))			
1 hour	200µg/m\(^3\) (106 ppb)	88	Immediate
1 year	40µg/m\(^3\) (21 ppb)	0	Immediate

The reference method for the analysis of nitrogen dioxide shall be ISO 7996

| **National Ambient Air Quality Standards for particulate matter (PM\(_{10}\))** | | | |
| 24 hours | 120µg/m\(^3\) | 4 | Immediate – 31 December 2014 |
The reference method for the determination of the particulate matter fraction of suspended particulate matter shall be EN 12341

National Ambient Air Quality Standards for ozone (O₃)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Standard</th>
<th>frontend Count</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 hours</td>
<td>120μg/m³ (61 ppb)</td>
<td>11</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

The reference method for the analysis of ozone shall be UV photometric method as described in SANS 13964

National Ambient Air Quality Standards for benzene (C₆H₆)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Standard</th>
<th>frontend Count</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>10μg/m³ (3.2 ppb)</td>
<td>0</td>
<td>Immediate – 31 December 2014</td>
</tr>
<tr>
<td>1 year</td>
<td>5μg/m³ (1.6 ppb)</td>
<td>0</td>
<td>1 January 2015</td>
</tr>
</tbody>
</table>

The reference methods for the sampling and analysis of benzene shall either be EPA compendium method TO-14 A or method TO-17

National Ambient Air Quality Standards for lead (Pb)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Standard</th>
<th>frontend Count</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>0.5μg/m³</td>
<td>0</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

The reference method for the analysis of lead shall be ISO 9855

National Ambient Air Quality Standards for carbon monoxide (CO)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Standard</th>
<th>frontend Count</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td>30μg/m³ (26 ppm)</td>
<td>88</td>
<td>Immediate</td>
</tr>
<tr>
<td>8 hours (calculated on 1-hourly averages)</td>
<td>10μg/m³ (8.7 ppm)</td>
<td>11</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

The reference method for analysis of carbon monoxide shall be ISO 4224

South African legislation also makes provision for recognising areas with high levels of air pollution, which are termed priority areas. These areas have elevated pollution concentrations that frequently exceed the limit values for criteria pollutants in the NAAQS. Three priority areas have been declared by the South African government, i.e. the Vaal Triangle Airshed Priority Area (VTAPA) (SA, 2006), the Highveld Priority Area (HPA) (SA, 2007) and the
Waterberg Priority Area (WPA) (SA, 2012) to improve air quality in these regions. The VTAPA was the first priority area to be declared in 2006. This area mostly contains large petrochemical operations, pyro-metallurgical smelters, a coal-fired power station, mining operations and domestic fuel burning, with none of the afore-mentioned industrial sources removing sulphur- and nitrogen-containing compounds from their off-gas (de-SO$_x$ and de-NO$_x$) (SA, 2009). The HPA was declared in 2007. The large emission sources of this area include eleven coal-fired power stations (responsible for the majority of electricity generation in South Africa), several pyro-metallurgical smelters, open cast mining, a very large petrochemical operation and domestic fuel burning, again all industrial sources without de-SO$_x$ and de-NO$_x$ technologies (Laakso et al., 2012; SA, 2011; Lourens et al., 2011). An NO$_2$ hotspot, of which the tropospheric NO$_2$ column density is comparable to some of the most polluted areas in the world, is clearly visible over this area from satellite observations (Lourens et al., 2011). The WPA was declared in 2012. This area contains a large fraction of the South African mineral assets. In this area, eleven pyrometallurgical smelters occur within approximately 55 km radius, two large coal-fired power stations and domestic fuel burning activities (Van Zyl et al., 2014; Hirsikko et al., 2012). The platinum group metals (PGMs) smelters in this area apply de-SO$_x$ technology (e.g. Westcott et al., 2007), but not de-NO$_x$, while none of the other smelters (e.g. ferrochrome and ferrovanadium) and the coal-fired power stations apply de-SO$_x$ or de-NO$_x$ technologies.

SO$_2$, NO$_2$, O$_3$, CO and PM$_{10}$ are the criteria pollutants that were selected for monitoring in this study, since these species were already monitored at the Welgegund research station that will be introduced later (Chapter 3, Paragraph 3.1).
2.4. **The Vredefort Dome World Heritage Site**

The Vredefort Dome is of great geological, cultural, historical, conservational and aesthetic value in South Africa. It contains historical evidence of former human activities, such as Stone Age caves with remains of tools and humans, Khoi-San rock art, remnants of the Anglo-Boer War and old gold mines, all of which contribute to the South African cultural heritage (UNESCO, 2015). The Vaal River, one of the longest (1 105 km) rivers in South Africa and tributary of the Orange River, flows through the Dome and is the key water source for Johannesburg and east-central South Africa, providing unique scenery and aesthetic value within the Dome. It is also rich in diverse indigenous plants (more than 99 plant species), animals (more than 50 small mammal species) and birds (more than 200 bird species) (UNESCO, 2015). In Figure 2.7, the hills within the Vredefort Dome with indigenous plant species and Vaal River can be observed that contribute to its unique scenery.

![A scenic picture of the Vredefort Dome hills, indigenous plant species and flowing Vaal River](http://www.southafricatravels.com/103/the-vredefort-dome/)
In 2007, the Vredefort Dome was proclaimed to be South Africa’s seventh world heritage site and was added to the United Nations Educational, Scientific and Cultural Organization (UNESCO) world heritage site list (UNESCO, 2015; SA, 2007). Examples of other national world heritage sites in South Africa are Robben Island, the Cape Floral Regions and the Fossil Hominid Site of South Africa, while international sites include the Grand Canyon National Park in the United States of America (USA) and Stonehenge in the United Kingdom (UK) (UNESCO, 2015). According to the Online Oxford English Dictionary (2015), a world heritage site is a man or natural made structure, area or site of outstanding universal value and is therefore worthy of protection. The World Heritage Committee inscribes the protection of the site in the World Heritage List in terms of the World Heritage Convention (an organisation of UNESCO) (Online Oxford English Dictionary, 2015). There are currently approximately 150 known meteorite impact structures on earth, all between the size of <1 to > 250 km in diameter (Reimold & Gibson, 1996; Grieve et al., 1995). Among two other large meteorite impact structures, i.e. the Sudbury impact structure (diameter of ~130 km) in Canada (UNESCO, 2015; Deutsch et al., 1995) and the Chicxulub impact structure (diameter of ~150 km) in Mexico (UNESCO, 2015; Earth Impact Database, 2011; French, 1998), the Vredefort Dome (diameter ~160 km) in South Africa is the world’s largest, one of the oldest (~ 2023 million years) and one of the most visible meteorite impact structures in the world (UNESCO, 2015; Brink et al., 2000; Reimold & Gibson, 1996). Although the Vredefort Dome has been exposed to thousands of years of erosion and most of it is covered by sedimentary rocks of the Karoo Supergroup, its features are still visible today, which further adds to its rare and unique qualities (UNESCO, 2015).

The Vredefort Dome World Heritage Site is ~ 120 km south-west from Johannesburg and is located on the boundary between the North West Province and the Free State Province. The heritage property, including the outcrops that indicate meteorite impact structure phenomena,
has a total size of 30 111 ha and consists of the main area and three geological outcrops (UNESCO, 2015; SA, 2007). The main area has a total surface area of 30 108 ha and the three geological (outcrop) satellite sites are 1 ha each (UNESCO, 2015). The Vredefort Dome region is protected against external developments by the implementation of a 5 km buffer zone around the property area, which makes the property area a total of 44 530 ha (UNESCO, 2015). It consists of 146 privately owned properties (farms), of which 89 are located in the North West Province and 57 in the Free State Province, while approximately 600 ha are state owned (UNESCO, 2015). Land use on the privately owned properties includes agriculture, game farming, resort accommodation, youth camps, team building activities and tourism activities (UNESCO, 2015).

The Vredefort Dome is situated in the Witwatersrand basin of the Kaapvaal Craton (Harris et al., 2013). The Gauteng province of South Africa is known as the world’s largest gold-producing province (Harris et al., 2013). The Witwatersrand basin that extends as far as Johannesburg in the north-east and Welkom in the south-east is the remnant of the outer parts of the impact structure and contains ~40% of the world’s gold resources (Reimold, 2014; Gibson & Reimold, 1999; Minter et al., 1993). A geological cross section in the central area of the Vredefort Dome illustrates that deep situated rocks, i.e. the Witwatersrand basin, have been uplifted by the meteorite impact that exposed the mineral rich geological structures for exploitation and contributes to our knowledge of the earth’s inner structure (Reimold, 2014).
Chapter 3

Experimental procedures

3.1. Measuring site location

Measurements were conducted at the Welgegund monitoring station (www.welgegund.org) (26°34'10"S, 26°56'21"E, 1480 m above mean sea level) situated ~100 km west of Johannesburg and 25 km north-west from Potchefstroom in the North West Province of South Africa. The location of the Welgegund monitoring station (black star) is presented in Figure 3.1. The station is located on a commercial farm and surrounded by grassland savannah with moderate temperatures and dry winters with precipitation occurring mainly in the spring and summer seasons (Jaars et al., 2014; Tiitta et al., 2014; Beukes et al., 2013). A more detailed description of the Welgegund measuring station is presented in previous papers (Beukes et al., 2015; Booyens et al., 2015; Kuik et al., 2015; Jaars et al., 2014; Tiitta et al., 2014; Vakkari et al., 2014; Beukes et al., 2013). The Welgegund monitoring station is considered a regional background site with no major nearby direct impacts of anthropogenic pollution sources. Relatively clean background air originates from the western sector (from north to south-east) that contains no major point sources (Jaars et al., 2014; Tiitta et al., 2014; Beukes et al., 2013). However, pollution plumes can be observed from the declared priority areas (Paragraph 2.3) and Johannesburg-Pretoria (Jhb-Pta) megacity (Jaars et al., 2014; Tiitta et al., 2014; Beukes et al., 2013; Lourens et al., 2012), as well as from the regional savannah and grassland fires that occur in the dry season in South Africa (Vakkari et al., 2014; Tiitta et al., 2014; Jayaratne & Verma, 2001). The Welgegund measurement site is ~60 km from the
centre of the Vredefort Dome World Heritage Site and is most likely the closest comprehensively equipped long-term continuously operating atmospheric monitoring station.

Figure 3.1: (a) The location of the Vredefort Dome within a regional context. (Countries: Nam – Namibia, Bot – Botswana, Zim – Zimbabwe, Moz – Mozambique, Sz – Swaziland, Les – Lesotho, South African provinces: WC – Western Cape, EC – Eastern Cape, NC – Northern Cape, FS – Free State, KZN – KwaZulu-Natal, NW – North West, MP – Mpumalanga, LP – Limpopo Province). (b) The positioning of the Welgegund monitoring station and spatial extent of the declared priority areas and the Jhb-Pta megacity, as well as very large point sources in the South African interior are indicated on the zoomed-in map. (c) A Google Earth image of the area clearly indicating the rings that form part of the Vredefort Dome impact structure.
3.2. **Sampling methods and data processing**

Atmospheric measurements were conducted at Welgegund for a sampling period from 1 June 2010 to 28 February 2014, which were only interrupted when instruments were serviced or calibrated when general maintenance was performed and during power failures. The Welgegund monitoring station hosts a comprehensive set of continuous measurements as presented in previous papers (Beukes *et al.*, 2015; Booyens *et al.*, 2015; Jaars *et al.*, 2014; Tiitta *et al.*, 2014; Vakkari *et al.*, 2014; Beukes *et al.*, 2013).

The Welgegund monitoring station was visited at least once a week for maintenance. This weekly maintenance consisted of inspection and adjustment of instrument flows, inlet cleaning and other *ad hoc* procedures. Once a month, the filters on the gaseous instruments were changed, radiation sensors were cleaned and the PM$_{10}$ measurement equipment was calibrated. Comprehensive gas calibrations were conducted quarterly. For quality assurance, the data was downloaded and visually inspected every day. Additional site visits were arranged if irregularities appeared in the data or in diagnostic data (e.g. cell temperatures and flows). An electronic diary, recording all site visits and actions taken, was also kept.

The raw high resolution atmospheric 1-min data from the site was processed to account for power failures, recovery periods after power failures, as well as calibrations or maintenance of instruments. The data was visualised and corrected with a fit-for-purpose MATLAB program set based on diary entries and periods of uncertain data quality were automatically eliminated. The data was then automatically corrected based on calibrations (zero and span), as well as flow checks. Finally, the data was visually inspected. After the afore-mentioned quality assurance procedures were applied, the 1-min high resolution data was converted to 15 min averages. A 15 min average was only calculated if at least two thirds of the 1-min data were available. The conversion of measured gaseous mixing ratio (in parts per billion by volume, ppbv) to μg/m³ was conducted at standard temperature and pressure (0 °C and 101.3
kPa). All particle concentrations were also converted to standard temperature and pressure conditions.

3.3. Analysis of air mass histories and associating with in situ measurements

HYSPLIT 4.8 (HYbrid Single-Particle Lagrangian Intergrated Trajectory) was used to calculate 96-hour back trajectories, arriving hourly, throughout the entire measurement period with an arrival height of 100 m (Air Resources Laboratory, National Oceanic and Atmospheric Administration, 2015). An arrival height of 100 m was chosen because the orography in HYSPLIT is not very well defined, and therefore lower arrival heights could result in increased error margins on individual trajectory calculations. Considering the above, 24-hourly arriving back trajectories for each day were obtained for the entire sampling period.

In order to obtain a statistical overview of air mass history, overlay back trajectory maps were generated. This was performed by superimposing individual back trajectories generated in HYSPLIT with a fit-for-purpose MATLAB script on maps that were divided into 0.2 X 0.2° grid cells (Venter et al., 2012). Colour was used to indicate the percentage of trajectory passing over specific grid cells, with red and dark blue representing the highest and lowest percentages, respectively. Additionally, individual back trajectories were sorted to obtain trajectories that had passed over the Vredefort Dome area before arriving at Welgegund, but did not pass over significant sources after passing over the Dome. This was accomplished by first defining polygons representing the surface areas of the proclaimed Vredefort Dome area, the city of Potchefstroom that lies in between the Dome and Welgegund, as well as the surface area that included the Jhb-Pta megacity and all the very large point sources (e.g. coal-fired power stations, metallurgical smelters and large
petrochemical operations) occurring within the previously mentioned priority areas. Individual back trajectories were then sorted to find those that had passed over the Vredefort Dome before arriving at Welgegund, but that did not pass over either Potchefstroom or the priority areas after passing over the Dome. Figure 3.2a indicates an example of an appropriate trajectory, while Figures 3.2b and 3.2c indicate examples of trajectories that had passed over the Vredefort Dome that subsequently passed over either the large point source region or over Potchefstroom, respectively, before arriving at Welgegund.

Figure 3.2: (a) An example of a back trajectory that had passed over the Vredefort Dome before arriving at Welgegund, but that did not pass over either Potchefstroom or the LPS region after passing over the Dome. (b) and (c) are examples of the back trajectories that had passed over the Vredefort Dome, but that did not comply with the selection criteria indicated in (a).

The 15 min average data of the *in situ* pollutant species measured at Welgegund was linked to the air mass history by associating every selected hourly arriving back trajectory, with the two 15 min average before the hourly arrival time, as well as the two 15 min averages after the hourly back trajectory arrival time. This implies that each selected back trajectory was associated with four 15 min averages of the *in situ* measurements.
3.4. **Sampling equipment**

3.4.1. **Meteorology**

The ambient temperature and relative humidity were measured with a Rotronic MP 101A instrument, while wind speed and direction were measured with a Vector A101ML and A200/L, respectively. Precipitation was measured with a tip bucket rain intensity meter (Vaisala QMR102).

3.4.2. **NO\textsubscript{x}**

NO\textsubscript{x} measurements were conducted with a Teledyne 200AU NO/NO\textsubscript{2}/NO\textsubscript{x} analyser. The instrument measures the concentration of NO and NO\textsubscript{x} from which NO\textsubscript{2} is calculated. It has an upper detection limit of 2 000 ppb and measures at intervals of 1 ppb. As described in the manual, the analyser measures the light intensity of the chemiluminescent gas phase reaction between NO and O\textsubscript{3}. The reaction follows:

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2^* + \text{O}_2 \tag{3.1}
\]

\[
\text{NO}_2^* \rightarrow \text{NO}_2 + \text{hv} \tag{3.2}
\]

Electronically excited NO\textsubscript{2} forms from the reaction between NO and O\textsubscript{3} where the excited molecules (Equation 3.1) return to the ground state and the excess energy is released (Equation 3.2) (API, 1999). The light intensity is directly proportional to the NO concentration. The analyser samples the gas stream and measures the NO concentration by digitising the signal from the analyser’s photomultiplier tube (PMT) (API, 1999). A valve then routes the sample stream through a converter containing heated (315°C) molybdenum (Mo) to reduce any NO\textsubscript{x} present to NO (API, 1999). The reaction follows:

\[
3\text{NO}_x + \text{Mo} \rightarrow 3\text{NO} + \text{MoO}_3 \tag{3.3}
\]

The analyser then measures the total NO\textsubscript{x} concentration. The NO\textsubscript{2} concentration is calculated by automatically subtracting NO concentrations from NO\textsubscript{x} concentration values (API, 1999).
The instrument then measures sample gas that has been mixed with O_3 outside of the reaction cell. This pre-reactor allows the measurement of any hydrocarbon interferences present in the sample gas stream. The three concentration results NO, NO_x, and NO_2 are then further processed and stored by the computer yielding several instantaneous and long-term averages of all three components (API, 1999).

3.4.3. SO_2

A Thermo-Electron 43S SO_2 analyser from Thermo Environmental Instruments Inc. was used to measure ambient SO_2 concentrations. The detection limit is 0.1 ppb and a flow rate of 0.5 l/m was maintained. The analyser provides continuous, real-time measurements of ambient SO_2 by pulsed fluorescence. In this technique, the SO_2 molecules absorb fluorescent energy, producing an electronically excited SO_2 molecule with a known spectral decay rate. As the excited SO_2 molecules state decay, the molecules emit characteristic radiation. A photo multiplier tube detects the fluorescence emitted and the signal is proportionally converted to an electronic output signal. The signal is then filtered and amplified to appropriate display levels. There are many wavelengths that can be used; however, for this analyser, a wavelength of 230-190 nm was utilised. This wavelength has the lowest signal noise, is the most stable and is not influenced by any other pollutant species (Thermo Environmental Instruments, 1989).

3.4.4. O_3

The Environment SA 41M analyser was used to measure O_3. The detection is based on the absorption of ultraviolet light (253.7 nm) by O_3. This instrument allows for continuous operation for long periods and has a detection limit of 1 ppb with a sample flow rate of 1.6l/min (Environment, 1999). A full measurement cycle consists of the following several steps. The gas passes through the O_3 selective filter and ventilation in the measurement chamber occurs. UV energy is measured through the chamber without the O_3 sample. The gas
is then routed to a block made up of a three-way solenoid valve. The switching of the solenoid valve allows the sample to pass directly into the measurement chamber and UV energy is measured through the chamber with the O$_3$ sample where the O$_3$ molecules selectively absorb the UV rays. The amount of UV absorbed by the O$_3$ molecules is in proportion to the concentration (Environment, 1999).

3.4.5. **CO**

CO was measured with a Horiba APMA-360 analyser. It uses cross-flow modulated non-dispersive mono-beam infrared absorption to measure CO that eliminates the need for optical adjustments. This ensures sensitive and stable measurements. Sample air and reference air are alternately sent to a measurement cell by three-way solenoid valve operating at a constant duty cycle at a constant flow rate. The infrared beam passes through the gas in the measurement cell. CO concentration is calculated by subtracting the sample air and reference air concentrations. The reference gas is generated by oxidising the CO to CO$_2$ in the sample air (Venter, 2011). This prevents the interference of other elements, resulting in extremely accurate measurements. Energy absorbed by the detector displaces the membrane in the cell. The displacement is converted into an electrical signal, amplified and read processor (South Coast Air Quality Management District, 2012).

3.4.6. **PM$_{10}$**

A synchronised hybrid ambient real-time particulate (SHARP), model 5030, analyser was used to determine the total mass of atmospheric PM$_{10}$ particles. The analyser consists of a C14 source, detector and a light scattering Nephelometer. The SHARP utilises proprietary digital filtering to continuously mass calibrate the nephelometric measurement of PM$_{10}$ to ensure that the mass measured concentration remains independent of changes in the particle population being sampled (Thermo Fisher Scientific, 2007). The humidity levels are regulated by the intelligent moisture control system using a heating system that is linked to a
relative humidity sensor located upstream of the sample. This provides a representative measurement of the relative humidity at the particulate measurement (Thermo Fisher Scientific, 2007). The SHARP has a span drift of less than 0.02 % per day with an hourly precision of ± 2 μg/m³ for ambient concentrations lower than 80 μg/m³ and ± 5 μg/m³ for values greater than 80 μg/m³ (Thermo Fisher Scientific, 2007).

3.4.7. BC

A multi-angle absorption photometer (MAAP), model 5012, analyser was used to measure atmospheric black carbon (BC) concentrations. The MAAP is based on the principle of aerosol-related light absorption and the corresponding atmospheric BC mass concentration (Thermo Fisher Scientific, 2007). The sample is drawn through the inlet and deposits onto a glass-fibre filter tape. The filter tape will accumulate an aerosol sample towards a threshold value, whereupon the filter tape will automatically advance prior to reaching saturation. A 670 nm visible light source is aimed at the deposited aerosol and filter tape matrix. Photo-detectors measure the transmitted and reflected light individually. The light beam is attenuated from an initial reference reading from a clean filter spot during the sample accumulation. Real-time data output is reached by continuous integration of the reduction of light transmission, multiple reflection intensities and air sample volume over the sample run period (Thermo Fisher Scientific, 2007). Additionally, all data was corrected based on the algorithm published relatively recently by Hyvärinen et al. (2013), which compensates for high atmospheric BC loading, which is commonly experienced at Welgegund when savannah and grassland fire plumes are sampled (Vakkari et al., 2014; Hyvärinen et al., 2013).
Chapter 4

Article

Chapter 4 consists of the article that was added into the dissertation in the exact format according to the journal’s specifications.
A proxy for air quality over the Vredefort Dome world heritage area, South Africa

Running head: Air quality over the Vredefort Dome

Keywords: Vredefort Dome, World heritage site, Air quality, Welgegund, South Africa

Marcell Venter¹, Johan Paul Beukes*¹, Pieter Gideon van Zyl¹, Andrew Derick Venter¹, Kerneels Jaars¹, Miroslav Josipovic¹, Markku Kulmala², Ville Vakkari³, Lauri Laakso¹,³

1 Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
2 Department of Physics, PO Box 64, FIN-00014, University of Helsinki, Finland
3 Finnish Meteorological Institute, Helsinki, Finland

Correspondence to: JP Beukes; e-mail: paul.beukes@nwu.ac.za; Postal address: Private Bag X6001, South Africa, Potchefstroom, 2520; Tel: +27 18 299 2337; Fax: +27 18 299 2350 (fax)
Abstract

The Vredefort Dome world heritage site in South Africa is the largest and second oldest meteorite impact structure in the world. Air quality in the Vredefort Dome can potentially be affected by the nearby declared air pollution priority areas and the Johannesburg-Pretoria megacity, which is well-known for high levels of atmospheric pollution. Notwithstanding the national and international importance of the Vredefort Dome, as well as the proximity of the afore-mentioned polluted source regions, currently, no air quality data is available for this area. In an effort to partially address the air quality knowledge gap, air masses passing over the Vredefort Dome were isolated and analysed at the Welgegund atmospheric measurement station as a proxy for ground-level air quality over the Vredefort Dome. The method had some limitations, since the frequency of such back trajectories was limited and those that did comply passed mostly over the cleaner south-western sector from the Vredefort Dome. Additionally, dilution during transport and aging of air masses after passing over the Vredefort Dome before arriving at Welgegund could also affect the pollutant levels observed. By comparing the results with South African air quality standards, it is evident that O$_3$ and PM$_{10}$ exceeded the South African air quality standard limits. O$_3$ is a regional problem, while PM$_{10}$ mostly originates from industries, household combustion and savannah/grassland fires. Although there were no exceedances recorded for SO$_2$ and NO$_2$ in air masses complying with the selection criteria, it is highly likely that such exceedances will occur over the Vredefort Dome.
Introduction

In 2007, it was announced that the Vredefort Dome will be proclaimed South Africa’s seventh UNESCO (United Nations Educational, Scientific and Cultural Organization) world heritage site. The Vredefort Dome is located on the boundary of the North West and the Free State Provinces of South Africa. The location thereof, within a regional context, is indicated in Figure 1a. It is the largest (diameter of 160 km) and the second oldest (~2 023 million years) meteorite impact structure in the world. The Vredefort Dome is situated in the Witwatersrand basin of the Kaapvaal Craton. The Witwatersrand basin contains ~40% of the world’s gold resources, which was made accessible for exploitation by the uplifting of the mineral rich geological structures that took place as a result of the meteorite’s impact. The geological outcrops (‘rings’) of the Vredefort Dome can be observed in satellite images, as indicated in Figure 1c. As will be indicated in more detail later, the Vredefort Dome is also of particular significance from agricultural, tourism, historic, environmental, water supply and aesthetic perspectives.

The Vredefort Dome is in relatively close proximity to several large atmospheric pollution source regions, i.e. the Vaal Triangle Airshed Priority Area (VTAPA), the Highveld Priority Area (HPA), the Waterberg Priority Area (WPA) and the Johannesburg-Pretoria (Jhb-Pta) megacity, as indicated in Figure 1b. The afore-mentioned three priority areas were declared by the South African government as air pollution hotspots, which indicates recognition by the national government that improvements in air quality within these regions are required. The VTAPA mostly contains large petrochemical operations, pyro-metallurgical smelters and a coal-fired power station, with none of the afore-mentioned industrial sources removing sulphur dioxide (SO₂) and nitrogen oxides (NOₓ) from their off-gas (de-SOₓ and de-NOₓ). The large emission sources in the HPA include eleven coal-fired power stations (responsible for the majority of South Africa’s electricity generation), several pyro-metallurgical smelters, char plants and a very large petrochemical operation, also without de-SOₓ and de-NOₓ technologies at all these sources. An NO₂ hotspot, of which the tropospheric NO₂ column density is comparable to some of the most polluted areas in the world, is clearly visible over this area from satellite observations. The WPA contains a large fraction of South Africa’s mineral assets. In this area, 11 pyrometallurgical smelters occur within approximately 55 km radius, as well as two large coal-fired power stations. The platinum...
group metal (PGM) smelters in this area apply de-SO\textsubscript{x} technology (e.g. Westcott18), but not de-NO\textsubscript{x}, while none of the other smelters (e.g. ferrochrome and ferrovanadium) and the coal-fired power stations apply de-SO\textsubscript{x} or de-NO\textsubscript{x} technologies. Venter19 indicated that air quality of certain areas within the WPA is poor. Furthermore, the Vredefort Dome could also be affected by air masses passing over the Jhb-Pta conurbation, which is one of the 40 largest metropolitan areas in the world with a population of over 10 million.15 Lourens15 indicated that the air quality in the Jhb-Pta megacity is in some aspects even worse than air quality in the HPA.

Because of the relatively close proximity of the perimeter of the VTAPA (~16 km), the HPA (~73 km), the WPA (~69 km) and the Jhb-Pta megacity (~64 km), it is likely that the air quality in the Vredefort Dome area will be influenced by these source regions. Additionally, the WPA lies upwind of the Vredefort Dome on the dominant anti-cyclonic recirculation path that traps and recirculates pollutants over the South African interior.20,21 Notwithstanding the national and international importance of the Vredefort Dome, as well as the proximity thereof to major atmospheric pollution source regions in the South African interior, there are currently no air quality measurements being conducted within this proclaimed heritage area. The recently compiled management plan, as required by the UNESCO declaration, also highlighted this deficiency.22 In an effort to partially address this knowledge gap, an air quality assessment, based on air masses that had passed over the Vredefort Dome before arriving at the Welgegund atmospheric measurement station, is presented in this paper as a proxy for ground-level air quality over the Vredefort Dome.

Site descriptions

The Vredefort Dome World Heritage Site is ~120 km south-west from Johannesburg. This heritage site includes the main area of the meteorite impact structure phenomenon that has a total surface area of 30 108 ha, as well as three geological (outcrop) satellite sites of 1 ha each.1,2 The Vredefort Dome region is protected against external developments by a 5 km buffer zone surrounding the area.1 It consists of 149 privately-owned properties that cover most of the surface area, with 600 ha being state owned. Land use on the private properties includes agriculture, game farming, resort accommodation, youth camps, team building and other tourism activities.2 The Dome contains historical evidence of former human activities, such as stone age caves with tools and human remains, Khoi-San (Bushman) rock art, remnants of the Anglo-Boer War and old gold mines, all of which contribute to the South African cultural heritage.5 The Vaal River, one of the longest rivers in South Africa and tributary of the Orange River, flows through the Vredefort Dome. It is the key water source for Johannesburg and east-central South Africa, and provides unique scenery and aesthetic
value within the Dome. The Dome area is also rich in diverse indigenous plants, animals and bird species.

Atmospheric measurements were conducted at the Welgegund monitoring station (black star in Figure 1a) (www.welgegund.org) (26°34′10″S, 26°56′21″E, 1480 m above mean sea level) situated ~100 km west of Johannesburg and ~25 km north-west from the city of Potchefstroom. Numerous previous papers have described the Welgegund measurement station, its surroundings and measurements conducted; therefore, only a synopsis is presented. The station is located on a commercial farm and surrounded by grassland savannah. The Welgegund monitoring station is representative of a regional background site with no nearby significant anthropogenic pollution sources. Clean background air originates from the western sector (from north to south-east) that contains no major point sources. However, pollution plumes can be observed from the priority areas and the Jhb-Pta megacity, as well as from regional savannah and grassland fires that are common in the dry season in South Africa. The Welgegund measurement station is ~66 km from the centre of the Vredefort Dome World Heritage area and is most-likely the closest comprehensively equipped atmospheric monitoring station.

Methods

Measurement methods

Measurements were conducted for a sampling period from 1 June 2010 to 28 February 2014. As presented in previous papers, the Welgegund monitoring station holds a comprehensive set of continuous measurements. Of relevance to this paper were the measurements related to atmospheric SO$_2$, nitrogen oxide (NO), nitrogen dioxide (NO$_2$), ozone (O$_3$), carbon monoxide (CO) and particulate matter (PM) with an aerodynamic diameter ≤ 10 µm (PM$_{10}$). These species were measured with the following instruments: a Thermo-Electron 43S SO$_2$ analyser (Thermo Fisher Scientific Inc., Yokohama-shi, Japan), a Teledyne 200AU NO/NO$_x$ analyser (Advanced Pollution Instrumentation Inc., San Diego, Cam USA), an Environment SA 41M O$_3$ analyser (Environment SA, Poissy, France), a Horiba APMA-360 CO analyser (Horiba, Kyoto, Japan), and a synchronised hybrid ambient real-time particulate (SHARP) monitor (model 5030, Thermo Fisher Scientific Inc.). Ancillary data utilised included atmospheric black carbon (BC) concentrations measured with a multi-angle absorption photometer (MAAP) (model 5012 Thermo Fisher Scientific Inc.), PM light scattering measured simultaneous at three wavelength (450, 525 and 635 nm) (Ecotech Aurora 3000) and meteorology measurements such as rain depth, temperature and relative humidity (RH), wind speed and direction, as well as fire occurrences (derived from satellite measurements). Rain intensity and depth was measured with a tip bucket rain intensity
meter (Vaisela QMR102); temperature and RH were measured with a Rotronic MP 101A instrument; and wind speed and direction were measured with the Vector A101ML and A200/L.

The Welgegund monitoring station was visited at least once a week for maintenance and for other *ad hoc* procedures. For quality assurance, the data was downloaded and visually inspected daily. If irregularities were observed in the data or in the instrumental diagnostic signals, the site was visited on the same day to rectify the problem. An electronic diary, recording all site visits and actions taken, was also kept. As previously described, the raw high resolution atmospheric data collected at Welgegund was visualised and corrected with a fit-for-purpose MATLAB program set. Firstly, periods of poor or uncertain data quality, e.g. during power failures and recovery thereafter or during site visits when work was conducted that could have influenced the data, were rejected. The data was then automatically corrected based on calibrations (zero and span), as well as flow checks. The measured 1-min high resolution data was converted to 15 min averages after the afore-mentioned quality assurance procedures were applied. A 15 min average was only calculated if at least two thirds of the 1-min data were available. The conversion of measured gaseous mixing ratio (in parts per billion by volume, ppbv) to μg/m³ was conducted at standard temperature and pressure (0 °C and 101.3 kPa).

The identification of savannah and grassland fire burn scar pixels was based on remote-sensing observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5 burned area product.

Analysis of air mass histories and association with in situ measurements

HYSPLIT 4.8 (HYbrid Single-Particle Lagrangian Integrated Trajectory) was used to calculate 96-hour back trajectories, arriving hourly at the Welgegund measurement station, for the entire measurement period with an arrival height of 100 m. An arrival height of 100 m was chosen because the orography in HYSPLIT is not very well defined, and therefore lower arrival heights could result in increased error margins on individual trajectory calculations. Considering the above, 24 hourly-arriving back trajectories for each day were calculated for the entire sampling period.

In order to obtain a statistical overview of air mass history, overlay back trajectory maps were generated. This was conducted by superimposing individual back trajectories generated in HYSPLIT with a fit-for-purpose MATLAB script on maps that were divided into 0.2 X 0.2°grid cells. Colour was used to indicate the normalised percentage of trajectories...
passing over specific grid cells, with red and dark blue representing the highest and lowest percentages, respectively.

In addition to the above-mentioned overlay back trajectory maps, individual back trajectories were also sorted in order to identify back trajectories that had passed over the Vredefort Dome area before arriving at Welgegund, but did not pass over significant sources after passing over the Dome. This was accomplished by firstly defining polygons representing the surface areas of the proclaimed Vredefort Dome area, the city of Potchefstroom that lies between the Vredefort Dome and Welgegund, as well as an area that included the Jhb-Pta megacity and all the large point sources (e.g. coal-fired power stations, metallurgical smelters and large petrochemical operations) occurring within the previously mentioned declared airshed priority areas. The latter area is subsequently referred to as the Large Point Source (LPS) region. Figure 2a indicates an example of trajectory considered to be appropriate, while Figure 2b and 2c indicate examples of trajectories that had passed over the Vredefort Dome that subsequently pass over either the LPS region or over Potchefstroom, respectively, before arriving at Welgegund.

Insert Figure 2

The 15 min average data of the in situ pollutant species measured at Welgegund was linked to the air mass history by associating every selected hourly-arriving back trajectory, with the two 15 min averages before the hourly arrival time, as well as the two 15 min averages after the hourly back trajectory arrival time. This implies that each selected back trajectory was associated with four 15 min averages of the in situ measurements.

Results
General meteorological characterisation and savannah/grassland fire frequencies
In Figures 3a to 3c, variations in monthly precipitation, temperature and relative humidity (RH), as measured at Welgegund for the entire monitoring period (1 June 2010 – 28 February 2014), are presented. A wind rose, indicating wind direction and speed, also for the entire monitoring period at Welgegund, is indicated in Figure 3d. Although these meteorological parameters were measured at Welgegund and not in the Vredefort Dome area, the proximity of Welgegund to the Dome makes these parameters relevant, at least
within a general atmospheric perspective, in order to explain possible seasonal influences on the Vredefort Dome’s air quality. Additionally, Figure 3e presents the monthly variations in fire burn scar pixel counts within a 500 km radius, as measured from the centre of the Vredefort Dome area.

Insert Figure 3

Air mass history

Figure 4a indicates a normalised overlay back trajectory map for air masses arriving at the centre of the Vredefort Dome during the entire monitoring period, without any selection criteria applied. The LPS region is also shown on this map in order to indicate its possible influence on air quality in the Dome area. From this figure, it is evident that air quality in the Vredefort Dome will be influenced by air masses that have circulated in an anti-cyclonic manner around the LPS region or air masses that had passed over the LPS region, where it has been shown that air quality is problematic.

The overlay back trajectory map for air masses that had passed over the Vredefort Dome before arriving at the Welgegund measuring site (black star), according to the selection criteria (Section 3.2 and Figure 2), for the entire sampling period, is presented in Figure 4b. Figure 4b indicates that most of the general air flow of the selected air masses was from the relatively cleaner south-western sector from the Vredefort Dome, while in reality the Vredefort Dome’s air quality is more influenced by the LPS region and by air masses that are recirculated around this source region, as indicated by Figure 4a, where no selection criteria were applied.

Insert Figure 4

The numbers (N) of trajectories that complied with the selection criteria (Section 3.2 and Figure 2) per month and the percentage that it represented of all the hourly-arriving back trajectories calculated for a specific month, are indicated in Figure 5. As is evident from these results, the percentages of trajectories that complied with the selection criteria were relatively low and varied between 0.4 and 13.5% of all calculated trajectories per month. There was no seasonal pattern in Figure 5, which is good, since it implies that the back
trajectory selection criteria will not bias the associated *in situ* measurement data that was used to determine proxies for air quality in the Vredefort Dome.

Insert Figure 5

In order to further differentiate between air masses that had passed over the LPS region and those that did not, two additional normalised overlay trajectory maps were generated. This was achieved by considering the back trajectories that complied with the initial selection criteria (Section 3.2 and Figure 2) as indicated in Figure 4b and additionally dividing these selected back trajectories into two groups, i.e. those that had passed over the LPS region (Figure 4c) and those that had not passed over the LPS region (Figure 4d).

All the normalised overlay back trajectory maps (Figure 4a to 4d), together with the previously presented measured meteorological data and fire pixel counts (Figures 3a to 3e), will be considered in subsequent discussions to contextualise the air quality data.

Air quality assessment

The South African National Ambient Air Quality Standards (NAAQS), with associated limits, are presented in the first four columns of Table 1. From these standards, it is evident that certain averaging periods should be calculated for certain pollutant species in order to assess whether pollutant concentrations exceed standard limits. For legislation relating to a 10-min averaging period, i.e. for SO$_2$, each of the four 15-min average SO$_2$ values measured at Welgegund that was associated with the selected back trajectory arrival time could be compared to the legislative requirement. Similarly, for the one-hour legislatively averaging periods, i.e. for SO$_2$, NO$_2$ and CO, the selected back trajectory arrival times could be correlated directly with the average of the four 15-min values associated with the back trajectory arrival time. However, for the longer legislative averaging periods, e.g. eight and 24 hours, it was not that straightforward, since the frequency of back trajectories that complied with the first selection criteria (Section 3.2 and Figure 2) was not very high (Figure 5) and therefore the probability of identifying eight or more consecutive hourly-arriving back trajectories that complied was low. In order to at least estimate possible exceedances of these longer legislative averaging periods, the 15-min average data that was correlated to the arrival times of the selected back trajectories was linearly interpolated and the averages were calculated from the interpolated data. Figures 6a to 6e represent the 15-min average *in situ* SO$_2$, NO$_2$, O$_3$, CO and PM$_{10}$ data associated with the selected back
trajectory arrival times, as well as the linearly interpolated data for the entire sampling period. The NAAQS limits for the afore-mentioned atmospheric species, as presented in Table 1, are also indicated on these figures in order to facilitate further discussion with respect to air quality. The frequency of exceedances derived from this data is also presented Table 1.

Insert Table 1

Insert Figure 6

According to the proxies determined for concentrations of SO$_2$ and NO$_2$ in the Vredefort Dome, Table 1 and Figures 6a and b indicate that there were no exceedances observed for SO$_2$ and NO$_2$ for any of the averaging periods of the NAAQS. This absence of exceedances for these species can at least partially be attributed to the limitations of the method applied in this study, i.e. isolating back trajectories according to the selection criteria. Figure 4a clearly indicates that the LPS region has an effect on the Vredefort Dome, and it is well known that the LPS region has relatively high SO$_2$ and NO$_2$ ambient concentrations. In addition to the afore-mentioned the median, 25th and 75th percentile times it takes for air masses to arrive at Welgegund after passing over the Vredefort Dome were calculated as 9, 5 and 16 hours, respectively. This indicates that SO$_2$ and NO$_2$ will further dilute, since no air mass overpass over additional point or area sources were allowed according to the selection criteria (Section 3.2 and Figure 2). During the afore-mentioned additional travelling time, SO$_2$ and NO$_2$ will also further oxidise to sulphate and nitrate. The mean concentrations, calculated from in situ data associated with air masses complying with the selection criteria and gap filling with linear interpolation, for SO$_2$ and NO$_2$, were determined to be 3 and 5 ppb, respectively (Table 1). In Figure 7, a comparison of these means, with mean values reported for other continental sites in South Africa, is presented. From these comparisons it is evident that SO$_2$ concentrations in air masses that had passed over the Vredefort Dome exceeded the SO$_2$ concentrations reported for two background sites, i.e. Botsalano and Louis Trichardt with a factor of ~4.6 and ~4.1 respectively. However, SO$_2$ concentrations were lower than SO$_2$ levels reported for sites within the LPS region. The mean NO$_2$ concentration in the selected air masses passing over the Vredefort Dome also exceeded levels thereof at the two cited background sites (Botsalano and Louis Trichardt) with a factor of ~3.4 and ~6.4, respectively, and was comparable to several sites within the LPS region.
The NAAQS for O$_3$ only has an eight-hour moving averaging limit that allows 11 exceedances per year. According to Table 1 and Figure 6c, the eight-hour moving average was exceeded 141 times per year. As indicated earlier the air masses isolated according to the selection criteria spend additional travelling time before being analysed at Welgegund, which could result in additional photochemical formation of O$_3$. However, O$_3$ is a regional southern African problem. Therefore it is likely that O$_3$ will exceed the NAAQS limit as indicated by the air quality proxy determined here. The mean concentration for O$_3$ for the entire measurement period, also calculated from the linear interpolated data, was 30 ppb (Table 1). It is evident from the comparison presented in Figure 7 that the proxy for mean O$_3$ concentrations over the Vredefort Dome calculated in this study was comparable to O$_3$ mean values for sites within the LPS region and the two cited background sites. Tropospheric O$_3$ concentrations over South Africa have been increasing, most probably due to increasing Southern Hemisphere pollution. In addition, daytime radiation from sunlight required for O$_3$ formation is not likely to be a limiting factor in sunny South Africa, while concentrations of O$_3$ precursor species (NO$_2$, volatile organic compound (VOCs) and CO) are relatively high in many regions in South Africa. As previously mentioned, almost no industries in South Africa de-NO$_x$ and, in addition, the vehicle fleet is relatively aged, leading to high NO$_2$ concentrations in the HPA and the Jhb-Pta megacity. In contrast to, for instance, the boreal forest region and the Amazon, aromatic hydrocarbon VOC concentrations are in general higher than biogenic VOC concentrations in South Africa. Furthermore, ambient CO concentrations, even in background areas, are elevated due to large-scale savannah and grassland fires in southern Africa. Normalised O$_3$ concentrations, for air masses that complied with the first selection criteria (Section 3.2 and Figure 2) as indicated in Figure 4b, and additionally also had passed over the LPS region (Figure 4c) or not over the LPS (Figure 4d) are presented in Figure 8. From these results it is evident that the O$_3$ in air masses that had passed over the LPS region was marginally higher than the concentrations in air masses that had passed over the background region, but not significantly so. This confirms the earlier statement that O$_3$ is a regional southern African problem and that the Vredefort Dome area will most certainly be affected by O$_3$ pollution. One of the most probable impacts is related to O$_3$-induced vegetation damage. The recommended approach to assess this risk is based on stomatal O$_3$ flux data and the corresponding determination of the dose-response relationships of different plant species. However, no such data exist.
for South Africa. A less accurate, but widely used method is based on the application of AOT40, which is defined as the accumulated O₃ exposure above a threshold of 40 ppb during daylight hours of the growing season.⁴² Although AOT40 is a European derived risk indicator, it has been applied in southern Africa.⁴³,⁴⁴,⁴⁵ Over the approximately four years of data considered in this study, the AOT40 calculated from in situ O₃ data associated with air masses complying with the selection criteria and gap filling with linear interpolation varied between 990 to 5781 ppb h/a during the growing season (October – February) and daylight hours (06:00 – 18:00 local time). This indicates that AOT40 can vary significantly from year-to-year and that considerable exceedances of the 3000 and 5000 ppb h/a European guidelines for crop and tree damage, respectively, can occur.⁴³,⁴²,⁴³

Insert Figure 8

No exceedances were observed for CO (Table 1 and Figure 6d) for any of the averaging periods. Comparing the mean CO concentration, calculated from in situ data associated with air masses complying with the selection criteria and gap filling with linear interpolation, i.e. 148 ppb, with the CO mean concentrations reported for a background site at Botsalano (104 ppb) and a site in the WPA (230 ppb), it is evident that the CO concentration in the Vredefort Dome is approximately 1.4 times higher than the background site, but is approximately 1.6 times lower than the site in the LPS region (which was located in the WPA).

Considering PM₁₀, Table 1 and Figure 6e indicate that there were 17 exceedances of the 24-hour NAAQS average limit and no exceedances for the annual NAAQS average limit per year. It can be assumed that even more PM₁₀ exceedances occurred over the Vredefort Dome than what the calculated proxies indicate due to two reasons. Firstly, the data gap observed in Figure 6e was not gap filled (linear interpolation) and therefore no exceedances were reported in this time period. The gap was due to PM₁, instead of PM₁₀, measurements conducted between September 2010 and August 2011 at Welgegund in order to correlate PM₁ mass with PM₁ aerosol chemical composition.²⁷ Secondly, the additional travelling time of air masses passing over the Vredefort Dome before being analysed at Welgegund will result in additional atmospheric removal of PM₁₀.

Data from the three-wavelength nephelometer was used to confirm that the PM₁₀ exceedances reported were not as a result of localised dust emissions, but really due to
more distant sources. Additionally, as will be indicated later, the seasonal pattern observed for PM$_{10}$ in air masses that complied with the selection criteria was very similar to those of CO and BC. This indicates that the PM$_{10}$ exceedances were mostly due to combustion sources, e.g. industrial fossil fuel use, household combustion, and savannah and grassland fire.

The PM$_{10}$ mean concentration obtained from the interpolated data (Table 1 and Figure 6d) was 28 µg/m3, which was lower with a factor of ~1.5 than the mean concentration observed at a site in the WPA in the LPS region,19 but higher with a factor of ~1.5 than the background site at Botsalano.31 A comparison of the normalised mean concentration for air masses that had passed over the background region (Figure 4d) with air masses that had passed over the LPS region (Figure 4c) in Figure 8 indicates no substantial differences between the mean concentrations. However, more LPS overpass trajectories have significantly larger PM$_{10}$ concentrations, as indicated by the larger spread in normalised concentrations. This indicates that the Vredefort Dome is on occasion impacted by air masses that had passed over the LPS regions that have very high PM$_{10}$ concentrations.

The monthly concentrations of SO$_2$, NO$_2$, O$_3$, CO, PM$_{10}$ and black carbon (BC) for the entire sampling period, in air masses selected according to the selection criteria (Section 3.2 and Figure 2) were also considered. No distinct seasonal patterns were observed for SO$_2$ and NO$_2$. The lack in seasonality can in all likelihood be attributed to the relatively low frequencies of air masses that were identified according to the selection criteria, as was indicated in Figure 5. Additionally, SO$_2$ and NO$_2$ in the South African interior mostly originate from continuous operating industrial sources, e.g. metallurgical smelters,19 as well as from coal-fired power stations and petrochemical operations.12,13 As is indicated in Figure 9, O$_3$, CO, PM$_{10}$ and BC indicated more distinct seasonal patterns in air masses selected according to the selection criteria (Section 3.2 and Figure 2). The highest levels of O$_3$ concentrations occurred during the late spring and early summer months (Figure 9a), which corresponds with observations by Venter19 and Laakso31. CO and BC mostly peaked during the drier (Figure 3a and 3c) months, with higher fire frequencies (Figure 3e), as well as during the colder months (Figure 3b), when household combustion for space heating is prevalent.19 PM$_{10}$ also peaked during similar periods than CO and BC, indicating similar sources.
Conclusions

As far as the authors could assess, this is the first air quality assessment of the Vredefort Dome world heritage site published in the peer-reviewed public domain. The air quality was assessed by identifying back trajectories that had passed over the Vredefort Dome and that had not passed over significant source areas thereafter, before arriving at the Welgegund atmospheric monitoring station. The method had some limitations, since the frequency of such back trajectories was limited, while those that did comply passed mostly over the cleaner south-western sector of the Vredefort Dome. Additionally, dilution during transport and aging of air masses after passing over the Vredefort Dome before arriving at Welgegund could also affect the pollutant levels observed. Overlay back trajectory maps indicated that the Vredefort Dome was impacted much more by more polluted areas in the LPS region compared to the back trajectories adhering to the criteria applied that were used in the air quality assessment of the Vredefort Dome. Therefore, the air quality proxies presented in this study can be considered as an underestimation of pollutant levels. By comparing the results obtained in this study with the NAAQS, it is evident that O$_3$ and PM$_{10}$ exceeded the NAAQS limits. O$_3$ is a regional problem, while PM$_{10}$ mostly originates from industries, household combustion and savannah/grassland fires. Even though there were no exceedances recorded for SO$_2$ and NO$_2$ in air masses complying with the selection criteria, it is highly likely that such exceedances will occur over the Vredefort Dome. However, the afore-mentioned limitation in the method prevented observations thereof.
References

35. Martins, J.J. Concentrations and deposition of atmospheric species at regional sites in southern Africa [MSc thesis]. Potchefstroom: North-West University; 2009.

Figure 1: (a) The location of the Vredefort Dome within a regional context. (Countries: Nam – Namibia, Bot – Botswana, Zim – Zimbabwe, Moz – Mozambique, Sz – Swaziland, Les – Lesotho, South African provinces: WC – Western Cape, EC – Eastern Cape, NC – Northern Cape, FS – Free State, KZN – KwaZulu-Natal, NW – North West, MP – Mpumalanga, LP – Limpopo Province) (b) The positioning of the Welgegund monitoring station and spatial extent of the declared priority areas and the Jhb-Pta megacity, as well as very large point sources in the South African interior are indicated on the zoomed-in map. (c) A Google Earth image of the area clearly indicating the rings that form part of the Vredefort Dome impact structure.
Figure 2: (a) An example of a back trajectory that had passed over the Vredefort Dome before arriving at Welgegund, but that did not pass over either Potchefstroom or the LPS region after passing over the Dome. (b) and (c) are examples of the back trajectories that had passed over the Vredefort Dome, but that did not comply with the selection criteria indicated in (a).
Figure 3: (a) Cumulative monthly precipitation, (b) temperature, (c) relative humidity, and (d) wind speed and direction measured at Welgegund for entire the sampling period. (e) Monthly variations in fire burn scar pixel counts within a 500 km radius, as measured from the centre of the Dome area. In (a), (b), (c) and (e), the dots indicate the median and the whiskers the 25th and 75th percentiles.
Figure 4: Overlay back trajectory map of (a) all back trajectories arriving at the centre of the Vredefort Dome for the entire monitoring period, (b) only back trajectories that complied with the selection criteria arriving at Welgegund, (c) only back trajectories that complied with the selection criteria arriving at Welgegund, which had also passed over the the LPS region, and (d) only back trajectories that complied with the selection criteria arriving at Welgegund, which did not pass over the LPS region.
Figure 5: The total number (N) of trajectories per month that complied with the selection criteria for the entire sampling period. The percentages above each bar indicate the afore-mentioned N as a percentage of all the back trajectories calculated per month.
Figure 6: The 15-min average *in situ* pollutant concentration data that was correlated with the arrival times of the selected back trajectories and linear interpolation of this data for (a) SO_2, (b) NO_2, (c) O_3, (d) CO and (e) PM$_{10}$ for the entire sampling period. The NAAQS limits for the afore-mentioned atmospheric species are also indicated.
Figure 6 continues: The 15-min average in situ pollutant concentration data that was correlated with the arrival times of the selected back trajectories and linear interpolation of this data for (a) SO$_2$, (b) NO$_2$, (c) O$_3$, (d) CO and (e) PM$_{10}$ for the entire sampling period. The NAAQS limits for the afore-mentioned atmospheric species are also indicated.
Figure 7: Comparison of mean pollutant concentrations in air masses that passed over the Vredefort Dome, with mean values reported for other continental sites in South Africa.
Figure 8: Differentiation of O_3 and PM_{10} normalised concentrations in air masses that complied with the selection criteria of passing over the Vredefort Dome, in terms of trajectories that had passed over the LPS region and those that had not passed over the LPS region.
Figure 9: Monthly concentrations for (a) O_3, (b) CO (c) PM$_{10}$ and (d) BC in air mass back trajectories that complied with the selection criteria during the sampling period.
Figure 9 continues: Monthly concentrations for (a) O₃, (b) CO (c) PM₉.₉ and (d) BC in air mass back trajectories that complied with the selection criteria during the sampling period.
Table 1: Observed criteria pollutant concentrations compared with the current South African National Ambient Air Quality Standards (NAAQS)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging period</th>
<th>Concentration, ppb (µg/m3)</th>
<th>Frequency of exceedances per year</th>
<th>Frequency of exceedances per year</th>
<th>Mean concentration ppb (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>10 min</td>
<td>191 (500)</td>
<td>526</td>
<td>0</td>
<td>3.22 (8.43)</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>134 (350)</td>
<td>88</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>48 (125)</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 year</td>
<td>19 (50)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>1 hour</td>
<td>106 (200)</td>
<td>88</td>
<td>0</td>
<td>4.81 (9.05)</td>
</tr>
<tr>
<td></td>
<td>1 year</td>
<td>21 (40)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O$_3$</td>
<td>8 hour (moving average)</td>
<td>61 (120)</td>
<td>11</td>
<td>141</td>
<td>30.24 (59.37)</td>
</tr>
<tr>
<td>CO</td>
<td>1 hour</td>
<td>26 000 (30 000)</td>
<td>88</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8 hour (calculated from 1 hour averages)</td>
<td>8700 (10 000)</td>
<td></td>
<td></td>
<td>147.91 (170)</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>24 hours (2015)</td>
<td>(75)</td>
<td>4</td>
<td>17</td>
<td>(28.91)</td>
</tr>
<tr>
<td></td>
<td>1 year (2015)</td>
<td>(40)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Conclusions and evaluation of study

5.1. Conclusions

This study is the first air quality assessment for the Vredefort Dome world heritage site. By identifying back trajectories that had passed over the Dome and thereafter not passing over significant source areas before arriving at the Welgegund atmospheric monitoring station, proxies for air quality could be determined over the Vredefort Dome. The following main deductions could be made from the results:

- The method had some limitations, since the frequencies of back trajectories that complied with the selection criteria were limited and those that did comply, mostly passed over the cleaner south-western sector from the Vredefort Dome. Additionally, dilution during transport and aging of air masses after passing over the Vredefort Dome before arriving at Welgegund could also affect the pollutant levels observed. Overlay back trajectory maps indicated that air quality in the Vredefort Dome is likely to be impacted significantly by the known priority areas and the Johannesburg-Pretoria (Jhb-Pta) megacity. Therefore, the air quality proxies presented in this study can be considered as an underestimation of pollutant levels.

- By comparing the results obtained during this study with the National Ambient Air Quality Standards (NAAQS), it is evident that O_3 and PM_{10} exceeded the NAAQS limits. O_3 is a regional problem, while PM_{10} mostly originates from industries, household combustion and savannah/grassland fires.
• Although there were no exceedances recorded for SO$_2$ and NO$_2$ in the air masses complying with the selection criteria, it is highly likely that such exceedances will occur over the Vredefort Dome, but that the afore-mentioned method limitation prevented observations thereof.

5.2. **Project evaluation**

Each objective is subsequently considered and the successes and/or shortcomings are discussed:

Objective i) Identifying back trajectories passing over the Vredefort Dome

The 96-hour back trajectories, arriving hourly, were generated with HYSPLIT 4.8 (HYbrid Single-Particle Lagrangian Intergrated Trajectory) for the entire measurement period with an arrival height of 100 m. Overlay back trajectory maps were generated by superimposing individual back trajectories generated in HYSPLIT with a fit-for-purpose MATLAB script on maps that were divided into 0.2 X 0.2°grid cells (Chapter 4, Figure 4). Additionally, individual back trajectories were sorted according to specific selection criteria that allowed the identification of trajectories that had passed over the Vredefort Dome area before arriving at Welgegund, but did not pass over significant sources after passing over the Dome (Paragraph 3.4 and Figure 3.2).

Objective ii) Linking in situ atmospheric measurements of pollutant species conducted at the Welgegund monitoring station with the identified back trajectories

The 15 min average data of the *in situ* pollutant species measured at Welgegund was linked to every selected hourly arriving back trajectory with the two 15 min average before the hourly arrival time, as well as the two 15 min averages after the hourly back trajectory arrival time.
Therefore, each selected back trajectory was associated with four 15 min averages of the in situ measurements.

Certain averaging periods (associating with the NAAQS (Paragraph 2.3, Table 2.1) were calculated from the measured data for each of the pollutant species, i.e. SO\textsubscript{2}, NO\textsubscript{2}, O\textsubscript{3}, CO and PM\textsubscript{10}. For the legislation relating to a 10 min averaging period, i.e. only for SO\textsubscript{2}, each of the four 15 min average SO\textsubscript{2} values measured at Welgegund that were associated with the selected back trajectory arrival time could be compared to the legislative requirement. Similarly, for the one-hour legislatively averaging periods for SO\textsubscript{2}, NO\textsubscript{2} and CO, the selected back trajectory arrival times were correlated directly with the average of the four 15 min values associated with the back trajectory arrival time. However, for the longer legislative averaging periods, e.g. eight and 24 hours, it was not that simple, since the frequency of back trajectories that complied with the first selection criteria was not very high. In order to at least make estimates of such possible exceedances, the 15 min average data that was correlated to the arrival times of the selected back trajectories was linearly interpolated and the averages for each specie was calculated from the interpolated data.

Objective iii) Comparing the measured pollutant concentrations that were linked with the appropriate back trajectory arrival times with National Ambient Air Quality Standards (NAAQS)

The comparison between the measured concentrations and the NAAQS showed that SO\textsubscript{2}, NO\textsubscript{2} and CO did not exceed any limits. Although there were no exceedances for SO\textsubscript{2} and NO\textsubscript{2} it is likely that such exceedances will occur, but these were not detected due to the method limitations. In contrast, O\textsubscript{3} and PM\textsubscript{10} exceeded the limit values. O\textsubscript{3} exceeded the eight-hour moving average standard of 61 ppb on average 141 times per year and PM\textsubscript{10} exceeded the 24-hour average standard of 75µg/m3 17 times per year.
Objective iv) Identifying possible trends in pollutant concentrations and relate these to possible sources

There were no distinctive seasonal patterns observed for SO\(_2\) and NO\(_2\). This can be attributed to the relatively low frequencies of air masses that were identified according to the selection criteria. Additionally, SO\(_2\) and NO\(_2\) in the South African interior mostly originate from continuous operating industrial sources. For O\(_3\), CO, PM\(_{10}\) and BC, more distinct seasonal patterns were observed. The highest levels of O\(_3\) concentrations occurred during the late spring and early summer months. The main contributing factors were identified to be higher levels of O\(_3\) precursors from savannah and grassland fires, as well as the onset of longer daylight hours during this time of the year. O\(_3\) was identified as a regional problem, not restricted to the Vredefort Dome area. CO and BC peaked mostly during the drier and colder months, which coincided with savannah and grassland fire frequencies, as well as household combustion for space heating. PM\(_{10}\) also peaked during similar periods than CO and BC, indicating similar sources.

Objective v) Presenting an assessment of the air quality over the Vredefort Dome based on the above-mentioned air quality proxies indicating what interventions are required in future

From the results presented in this study (Chapter 4, Paragraph 4), it is evident that the back trajectories that complied with the selection criteria mostly passed over the cleaner southwestern sector from the Vredefort Dome. The overlay back trajectory map of trajectories arriving at the Vredefort Dome indicated that air quality in the Dome is likely to be impacted significantly by the known priority areas and the Jhb-Pta megacity. Therefore, the air quality proxies presented in this study can be considered as an underestimation of pollutant levels. Notwithstanding these limitations, the study indicated that there are air quality problems in the Vredefort Dome area. In order to quantify this better and to track possible future
improvements, a continuously operated air quality station needs to be established within the proclaimed area.

For the species that exceeded the NAAQS limits, i.e. O₃ and PM₁₀, certain interventions are required to address the problems in future. O₃ remains a regional problem in South Africa. In order to reduce O₃ concentrations, O₃ precursor (NO₂, VOCs and CO) concentrations must be reduced. This implies interventions for industrial activities, the vehicular fleet, as well as savannah and grassland fire emissions. In this study, it seemed that PM₁₀ over the Dome was significantly influenced by household combustion, as well as savannah and grassland fire emissions. In order to address household combustion emissions, social and economic transformations in South Africa need to be accomplished, which are linked to the economic success and growth of the country.

5.3. **Future perspectives**

- In order to obtain a better air quality assessment and track possible future improvements over the Vredefort Dome, it would be recommended to measure atmospheric species within the Vredefort Dome.
- Instead of using the linear interpolation method applied for the missing values due to the low frequency of back trajectories that complied with the selection criteria, a multi-linear regression analysis can be used to determine the missing values more accurately.
Bibliography

Intergovernmental Panel on Climate Change, Cambridge, UK, & NY, USA: Cambridge University Press. 298-348 p.)

SMITH, M.S. 1982. Dissimilatory Reduction of NO$_2$ to NH$_4^+$ and N$_2$O by a Soil Citrobacter sp. Applied and Environmental Microbiology, 43:854-860.

