
An investigation of the suitability of agile system

development methodologies for the development of

data warehouses

J Grey Hons BSc

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science at the Potchefstroom Campus of the North-West University

Supervisor: Prof HM Huisman

Co-su pervisor: Dr R Goede

November 2006

The aim of this study is to investigate whether agile system development

methodologies (ASDMs) are suitable for the development of data warehouses.

To reach this aim, a literature study was conducted on the relatively settled

ASDMs by firstly defining a system development methodology (SDM) and an

ASDM. Each ASDM explanation contains the identified key factors, unique

process model, and method of use. The seven ASDMs investigated in this

study, are: Dynamic System Development Methodology (DSDM), Scrum,

Extreme Prograrr~ming (XP), Feature Driven Development (FDD), Crystal

ASDMs - especially Crystal Clear (CC), Adaptive Software Development (ASD),

and Lean Development (LD).

In addition, a literature study is conducted on the data warehouse approaches

of lnmon (1996) and Kimball et a/. (1998). Each data warehouse approach is

explained using the architecture, lifecycle and four distinct phases within the

lifecycle. The four distinct phases include: collectirlg requirements, data

modelling, data staging, and data access and deployment. After this was done,

lnmon and Kimball's approaches were compared.

After studying the ASDMs and data warehousing approaches, theoretical

deductions were made regarding the suitability of ASDMs in data warehouse

development. General deductions (including the applicability of agile

processes) for all ASDMs as well as unique deductions for each of the seven

ASDMs mentioned above were formulated in theory. The theoretical deductions

lead to the limitation of the empirical section of the study to the suitability of

ASDMs within the ,framework of Kimball's approach.

Theoretical deductions were empirically tested by conducting an interpretive

experiment where seven data warehouse development teams used an

assigned ASDM to develop a data warehouse. The data warehouse consisted

of one data mart. Each team was expected to develop their data mart

incrementally, one sub-data mart at a time. Every sub-data mart was developed

iteratively to form the data mart. The data mart was then deployed as a whole

(including everything from collecting requirements to report generation) to the

users.

The findings of the study are a combination of the theoretical deductions and

interpretive results (propositions) of the interpretive experiment conducted.

These findings indicate that ASDMs are suitable to develop data warehouses in

a constantly changing environment.

Die hoofdoel van hierdie studie was om te bepaal of ASDMs (vinnig

aar~pasbare stelselontwikkelingsmetodologiee) toepaslik is vir die ontwikkeling

van 'n datapakhuis. Om dit te kon vasstel, is 'n literatuurstudie gedoen in 'n

poging om h SDM (stelselontwikkelingsmetodologie) en ASDMs te definieer.

Dit sluit 'n beskrywing van elke ASDM se sleutelidentifiseringsfaktore, unieke

prosesmodel en metode van gebruik in. Die sewe ASDMs wat in hierdie studie

bestudeer is, is: Dynamic System Development Methodology (DSDM), Scrum,

Extreme Programming (XP), Feature Driven Development (FDD), Crystal

ASDMs - veral Crystal Clear (CC), Adaptive Software Development (ASD), en

Lean Development (LD).

Tweedens is literatuur oor lnmon (1996) en Kimball et al. (1998) se

datapakhuisontwikkelingbenaderings bestudeer. Elke datapakhuisbenadering

se boustyl (architecture) komponente, lewenssiklus (lifecycle) en vier

afsonderlike fases (in die lewenssiklus) is beskryf. Die vier fases wat beskryf is

vir elke datapakhuisbenadering, is: behoeftebepaling, datamodellering, data-

opstelling, en datatoegang en ontplooiing. Daarna, is lnmon (1996) en Kimball

et al. (1998) se datapakhuis benaderings met mekaar vergelyk.

Na al'loop van die teoretiese ondersoek na ASDMs en datapakhuisontwikkeling,

is teoretiese afleidings gemaak rakende die geskiktheid van ASDMs binne

datapakhuisontwikkeling. Algemene afleidings oor alle ASDMs, insluitend die

toepaslikheid van vinnig aanpasbare (agile) prosesse, en spesifieke afleidings

oor elkeen van die bogenoemde ASDMs, is uit die teorie geformuleer. Na

aanleidivg van hierdie teoretiese al'leidivgs is die empiriese gedeelte van die

studie beperk tot die geskiktheid van ASDMs in datapakhuisontwikkeling binne

die raamwerk van Kimball et al. (1 998) se datapakhuisbenadering.

Die teoretiese afleidings is empiries getoets deur 'n interpretatiewe eksperiment

uit te voer, waar sewe datapakhuisspanne 'n toegekende ASDM gebruik het

om 'n datapakhuis te ontwikkel. Die datapakhuis het slegs uit een "data mart"

bestaan. Van elke span is verwag om 'n "data mart" inkrementeel te ontwikkel,

een "sub-data mart" op 'n keer. Elke "sub-data mart" is iteratief ontwikkel om

uiteindelik in geheel 'n "data mart" te vorm. Die "data mart" is dan as 'n geheel

(van behoeftebepaling tot verslag generasie) aan die gebruikers ontplooi.

Die bevindings van die studie is 'n kombinasie van die teoretiese afleidings en

die interpretatiewe resultate (proposisies) van die interpretatiewe eksperiment.

Die bevindinge toon dat ASDMs geskik is om datapakhuise in 'n konstante

veranderende omgewing te ontwikkel.

A S N F

"A Son Never Forgets"

I want to give thanks to my father and mother who taught me to be the man that

I am today. I want to thank them for their love and support and for the example

they set as parents.

I want to thank my fiancee for her encouraging words and ongoing support

during the past year.

A special thank you goes out to Prof Magda Huisman, for her insight and

guidance in the work that I have been doing, and for always assuring me that I

have done good work.

I would also like to thank Dr Roelien Goede for the role that she fulfilled as co-

sponsor and Thalyta Swanepoel for revising grammar and spelling.

Most importantly, I want to give praise to the Lord Jesus Christ for blessing me

with wonderful people in my life and for giving me the opportunity to use the

talents that He has given me.

TABLE OF CONTENTS

CHAPTER I

INTRODUCTION

1.1 Proposed title

1.2 Key words

1.3 Background and problem statement

1.4 Reasons for the study

1.5 Research aims and objectives

1.6 Research approach

1.7 Chapter Outline

1.8 Limitations

CHAPTER 2

AGILE SYSTEM DEVELOPMENT METHODOLOGIES (ASDMs)

2.1 Introduction 14

2.2 Definition of a system development methodology (SDM) 14

2.3 Definition of an agile system development methodology (ASDM) 17

2.4 The seven ASDMs 19

2.4.1 Dynamic System Development Methodology (DSDM) 20

2.4.2 Scrum 26

2.4.3 Extreme Programming (XP) 3 1

2.4.4 Feature Driven Development (FDD) 39

2.4.5 Crystal ASDMs 45

2.4.6 Adaptive Software Development (ASD) 49

2.4.7 Lean Development (LD) 56

2.5 The effectiveness of ASDMs 63

2.6 Summary 67

vii

CHAPTER 3

DATA WAREHOUSING

3.1 lntroduction

3.2 Business intelligence

3.3 What is a data warehouse?

3.4 Definitions associated with data warehousing

3.5 Kimball's approach towards data warehouse development

3.5. I High-level technical architecture

3.5.2 Kimball's data warehouse development lifecycle

3.5.3 Collecting requirements

3.5.4 Data modelling

3.5.5 Data staging

3.5.6 Data access and deployment

3.6 Inmon's approach towards data warehouse development

3.6. I Hub-and-spoke architecture

3.6.2 Inmon's data warehouse development lifecycle

3.6.3 Collecting requirements

3.6.4 Data modelling

3.6.5 Data staging

3.6.6 Data access and deployment

3.7 Kimball versus lnmon

CHAPTER 4

THEORETICAL DEDUCTIONS: SUITABILITY OF ASDMs FOR
DATA WAREHOUSE DEVELOPMENT

4.1 Introduction 121

4.2 Kimball's approach 121

4.2. I Agile system development methodologies (AS DMs) 122

viii

4.2.1 . I Collecting requirements

4.2.1.2 Data modelling

4.2.1.3 Data staging

4.2.1.4 Data access and deployment

4.2.2 Dynamic Systems Development Methodology (DSDM)
4.2.2.1 Collecting requirements

4.2.2.2 Data modelling

4.2.2.3 Data staging

4.2.2.4 Data access and deployment

4.2.3 Scrum
4.2.3.1 Collecting req~iirements

4.2.3.2 Data modelling

4.2.3.3 Data staging

4.2.3.4 Data access and deployment

4.2.4 Extreme Programming (XP)

4.2.4.1 Collecting requirements

4.2.4.2 Data modelling

4.2.4.3 Data staging

4.2.4.4 Data access and deployment

4.2.5 Feature Driven Development (FDD)
4.2.5.1 Collecting requirements

4.2.5.2 Data modelling

4.2.5.3 Data staging

4.2.5.4 Data access and deployment

4.2.6 Crystal Clear (CC)
4.2.6.1 Collecting requirements

4.2.6.2 Data modelling

4.2.6.3 Data staging

4.2.6.4 Data access and deployment

4.2.7 Adaptive Software Development (ASD)

4.2.7.1 Collecting requirements

4.2.7.2 Data modelling

4.2.7.3 Data staging

4.2.7.4 Data access and deployment

4.2.8 Lean Development (LD)

4.2.8.1 Collecting requirements

4.2.8.2 Data modelling

4.2.8.3 Data staging

4.2.8.4 Data access and deployment

4.3 Inmon's approach

4.3.1 Collecting requirements

4.3.2 Data modelling

4.3.3 Data staging

4.3.4 Data access and deployment
4.3.4.1 Dynamic System Development Methodology (DSDM)
4.3.4.2 Scrum

4.3.4.3 Extreme Programming (XP)

4.3.4.4 Feature Driven Development (FDD)
4.3.4.5 Crystal Clear (CC)
4.3.4.6 Adaptive Software Development (ASD)

4.3.4.7 Lean Development (LD)

4.4 Choice of data warehouse approach

CHAPTER 5

APPLICATION OF ASDMs ON DATA WAREHOUSE
DEVELOPMENT

5.1 Introduction

5.2 Research design

5.2.1 Research plan

5.2.2 Data warehouse description

5.2.3 Participant profile

5.2.4 Interpretive experiment description

5.3 Data collection

5.3.2 Project documentation

5.3.3 Evaluation sessions

5.4 Data analysis

5.4.1 DSDM team

5.4.2 Scrum team

5.4.3 XP team

5.4.4 FDD team

5.4.5 CC team

5.4.6 ASD team

5.4.7 L D team

5.5 Data warehouse success

CHAPTER 6

CONFIRMED FINDINGS

6.1 Introduction 220

6.2 Research findings

6.2.1 Findings regarding the suitability of ASD Ms in data warehouse

development 221

6.2.1 .I Collecting requirements 22 1

6.2.1.2 Data modelling 222
6.2.1.3 Data staging 223
6.2.1.4 Data access and deployment 224

6.2.2 Findings regarding the suitability of DSDM in data warehouse

development 224

6.2.2.1 Collecting requirements 225

6.2.2.2 Data modelling 226

6.2.2.3 Data staging 226
6.2.2.4 Data access and deployment 227

6.2.3 Findings regarding the suitability of Scrum in data warehouse

development 228

6.2.3.1 Collecting requirements

6.2.3.2 Data modelling

6.2.3.3 Data staging

6.2.3.4 Data access and deployment

6.2.4 Findings regarding the suitability of XP in data warehouse

development

6.2.4.1 Collecting requirements

6.2.4.2 Data modelling

6.2.4.3 Data staging

6.2.4.4 Data access and deployment

6.2.5 Findings regarding the suitability of FDD in data warehouse

development

6.2.5.1 Collecting requirements

6.2.5.2 Data modelling

6.2.5.3 Data staging

6.2.5.4 Data access and deployment

6.2.6 Findings regarding the suitability of CC in data warehouse
development

6.2.6.1 Collecting requirements

6.2.6.2 Data modelling

6.2.6.3 Data staging

6.2.6.4 Data access and deployment

6.2.7 Findings regarding the suitability of ASD in data warehouse
development

6.2.7.1 Collecting requirements

6.2.7.2 Data modelling

6.2.7.3 Data staging

6.2.7.4 Data access and deployment

6.2.8 Findings regarding the suitability of LD in data warehouse

development

6.2.8.1 Collectirrg requirements

6.2.8.2 Data modelling

6.2.8.3 Data staging

6.2.8.4 Data access and deployment

xii

6.2 Conclusions and future work

6.2.1 Contribution of the study

6.2.2 Limitations

6.2.3 Future research

REFERENCES

...
X l l l

CHAPTER I

INTRODUCTION

I .I Proposed title

An investigation of the suitability of agile system development methodologies

for the development of data warehouses

9.2 Key words

System development methodology (SDM); agile system development

methodology (ASDM); data warehouse; business intelligence (BI); Dynamic

System Development Methodology (DSDM); Scrum; Extreme Programming

(XP); Feature Driven Development (FDD); Crystal ASDMs (specifically Crystal

Clear (CC)), Adaptive Software Development (ASD); Lean Development (LD)

I .3 Background and problem statement

Information technology projects tend to change due to elements of uncertainty

such as constant changing requirements, project time and budget instability,

intelligence and the team's ability to respond to new demands (Chin, 2003)'. As

a result of the evolving business environment, the requirements set by business

users, change. Consequently, there will be a demand for SDMs with the ability

to adapt to a changing environment. SDMs are collections of phrases,

procedures, rules, techniques, tools, documentation, management and training

used to develop information systems (Avison and Fitzgerald, 2003:80)~.~he

primary objective of using ASDMs in organisations is to deliver information

systems quickly, change quickly and to change as frequently as possible

' References containing no page numbers are website publications (norrnaUy in html or .pdf format) that
contain no page numbers.
References containing page numbers are used for referencing full text internet articles, journal articles,
newspaper articles, magazine articles and books.

(Highsmith, 2002b).

livari and Maansaari (1998502) classify conceptual problems related to the use

of the term SDM into two types of inconsistency namely; scope and category.

Avison and Fitzgerald (2003:528) state that an SDM is more than just a

method; it has certain characteristics that emphasises the inclusion of a

philosophical view. Therefore, according to Huisman and livari (2006:32) an

SDM can be defined as a combination of the following:

A system development approach is the philosophical view on which a

methodology is based. It is the set of goals, fundamental concepts, guiding

principles and beliefs of the system development process that drive

interpretations and actions in system development (livari et a/. , 1998:165-

166; livari et a/. , 1999:Z). Examples of system development approaches

include the process-oriented approach, object-oriented approach, and

information modelling.

A system development process model: Wynekoop and Russo (1993:182)

define a process model as a representation of the sequences of stages

through which a system evolves. Examples of process models are the

waterfall model, linear lifecycle, and the spiral model.

A system developmenf method, according to Brinkkemper (I 996:275), is "an

approach to perform a system development project, based on a specific way

of thinking, consisting of definitions and rules, structured in a systematic

way in development activities with corresponding development products".

He also states that it is a 'hay of investigation". Wynekoop and Russo

(1993:182) describes a method as a systematic approach to conduct at

least one complete phase of system development, consisting of a set of

guidelines, activities, techniques and tools, based on a particular philosophy

of system development and the target system. Examples include

Information Engineering, Structured Systems Analysis and Design Method

(SSADM) and Jackson System Development.

A system development technique: Techniques can be described as a

procedure, possibly with a prescribed notation, to perform a development

activity (Brinkkemper, 1996:276). Examples include entity relationship

diagrams (ERD), decision tables, and data flow diagrams.

This study will investigate seven relatively settled new ASDMs. These

respective methodologies are, in the order that they were developed by system

designers and developers; Dynamic System Development Methodology [I 9941,

Scrum [I 9951, Extreme Programming [1998], Feature Driven Development

[1998], Crystal ASDMs (specifically Crystal Clear [1999]), Adaptive Software

Development [2000] and the most recent Lean Development [from 20001, which

started as Lean Manufacturing. Lean Manufacturing was used in 1980 by

Japanese automobile companies (Honda and Toyota), to compete with

American automobile companies.

It appears ASDMs are recent developments and practitioners (other than the

authors of the ASDMs) do not specifically know in what environments and

circumstances it will function successfully. For example, Extreme Programming

(XP) may work for a project tested by its author in a specific environment, while

in some organisations XP is partially adopted in projects (Aveling, 2004:94).

According to Abrahamsson et a/. (2002:26) XP is growing, Crystal ASDMs uses

only the two methods for the smallest teams (Control Chaos, 2006) and Scrum,

which has the ability to integrate with XP, is gaining popularity. Dynamic

System Development Methodology (DSDM), on the other hand, is widely used

in the United Kingdom. Adaptive Software Development (ASD) seems to have

no research reported in literature. Feature Driven Development (FDD) is still

evolving (Abrahamsson et al., 2002%). Lean Development (LD), which was

only documented recently, receives growing attention in product development,

but not much is published about the success of using LD in a project.

Data warehousing is another relatively new field in Computer Science and

project development. Bill Inmon, the father of data warehousing (Inmon, 1996),

and the dimensional data warehousing expert Ralph Kimball (Kimball et al.,

1998), have different approaches and architectures concerning the

development of a data warehouse. lnmon uses the hub & spoke architecture,

while Kimball prefers high-level technical architecture. There is a great

difference in implementation between lnmon (1996) and Kimball's (1998)

architecture's when examining the five roles of a data store namely, intake,

integration, distribution, access, and delivery (The Data Warehousing Institute,

2004:3-7). These approaches will be investigated to determine which has the

potential to develop a data warehouse using ASDMs. In order to determine

which data warehouse approach has the potential and characteristics to

develop a data warehouse using ASDMs, theoretical deductions will be

explained. The explained theoretical deductions will bring data warehousing

and ASDMs together by evaluating the suitable and unsuitable characteristics

of every ASDM for the different phases of data warehouse development of

lnmon and Kimball's approaches. After the evaluation the most suitable data

warehousing approach will be chosen to develop seven data warehouses using

the seven different ASDMs (in team formation).

There is little evidence showing that an ASDM has the ability to be used in the

development of data warehouses. ASDMs (particularly FDD and XP) do,

however, have characteristics that could contribute to the successful

development of data warehouses (Graziano, 2005). The data warehouse

development lifecycle and phases also show opportunity for ASDMs to be

successful. Graziano (2005) furthermore argues that data warehouses could be

developed using the twelve specific principles of the Agile Manifesto.

The Agile Alliance is "a non-profit organisation that supports individuals and

organisations that use agile approaches to develop software" (Agile Alliance,

2006). The Agile Alliance use the priorities in the Manifesto for Agile Software

Development to deliver a product of value and of high quality faster to users

and organisations. The Manifesto for Agile Software Development consists of

four values and twelve principles on which the seventeen founding members

agree upon. The seventeen founding members agree that there are better ways

discovered for developing software. While investigating these ways and helping

others to implement them, they have come to value (Fowler & Highsmith,

200 1):

"Individuals and interactions over processes and tools

Working software over comprehensive documentation

a Customer collaboration over contract negotiation

Responding to change over following a plann

The seventeen founding members of the Manifesto for Agile Software

Development follow the following twelve principles (Fowler & Highsmith, 2001):

"Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

Business people and developers work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors,

developers and users should be able to maintain a constant pace

indefinitely.

Continuous attention to technical excellence and good design enhances

agility.

Simplicity - the art of maximizing the amount of work not done--is essential.

The best architectures, requirements and designs emerge from self-

organizing teams.

At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behaviour accordingly."

The seventeen founding members of the Manifesto for Agile Software

Development, include: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair

Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland and Dave Thomas.

Against the above background the main research question is as follows:

Can ASDMs be used in the development of data warehouses?

I .4 Reasons for the study

ASDMs focus on incremental development, people and user requirement

satisfaction during system development to deliver a product that is up to date in

a constant changing environment.

Changing SDMs

Avison and Fitzgerald (2003:79-82) refer to four era's in system development to

explain the constant changing environment:

The pre-methodology era: Early computer systems (1960 - 1970) were

designed without formal methodologies (Avison and Fitzgerald, 2003:79). User

requirements were rarely well defined and this resulted in user as well as

business discontentment.

The early methodology era: Computer-based applications were developed by

identifying phases that would improve the management of system development

to introduce a model commonly known as the waterfall model. According to the

waterfall model, a new phase can only start once the previous phase has been

completed. The unstable and inflexible computer systems did however fail to

meet business needs during this era (Avison & Fitzgerald, 2003:79).

The methodology era: Methodologies were introduced with the aim to assist

computer systems to move beyond these above mentioned limitations. The

methodologies that appeared during this era can be classified as structured,

data oriented, prototypical, object oriented, participative, strategic or systematic

(Avison and Fitzgerald, 2003:80).

The post-methodology era: In the late 1990's researchers started questioning

the worth of concepts used in earlier methodologies. Consequently some

methodologies were abandoned, others adapted and new methodologies were

used in organisations (Avison & Fitzgerald, 2003:80). The reason for studying

ASDMs is because they are part of the most recent era of SDMs.

Studying new and relatively settled ASDMs

ASDMs are part of the "post-methodology era" that started in the late 1990's. In

this study the researcher will be unable to explain all ASDMs. The reason for

choosing these seven ASDMs are because they are new but relative settled

ASDMs in practice. According to Highsmith (2002a:6) these ASDMs are the

core group, as set out in the Agile Software Development Manifesto (Highsmith

2002a:6; Lindstrom & Jeffries, 2004:44). Although Lindvall et al. (2002:199)

mentioned six popular ASDMs, this study will focus on all, expect Agile

Modelling. Furthermore, ASD and LD will be included in this study. Another

reason for only choosing these seven ASDMs is because they were developed

in a sequence starting in 1994 (DSDM) and ending with the most recent ASDM,

LD.

Changing environment and requirements

According to Lindvall et at. (2002:197) some practitioners in the mid-1990's

found requirements documentation and design development steps frustrating,

and in some circumstances even impossible. The plan-driven methods, like the

waterfall model and iterative approaches may show difficulties when change is

expected (Boehm, 2002:69).

Technology is an ever changing reality of which practitioners and developers

must take notice. Customers have become unable to explain their definite

requirements and needs because of the changing requirements (Lindvall et a/.,

2002:198). Lindvall ef a/. (2002:198) states that as a result, consultants

developed methodologies and practices to "embrace and respond to inevitable

change they were experiencing". Today, these methodologies according to

Lindvall et al. (2002:198) are known as ASDMs with characteristics of

incremental development and the ability to adapt to change. Thus, in an ever

changing environment with shifting requirements, ASDMs allow teams to adapt

quickly.

New methodologies applied to data warehousing

In Kent Graziano's (2005) opinion, ASDMs can be used in the development of

data warehouses. Referring to principle eight of the agile manifesto (Agile

processes promote sustainable development and the sponsors, developers and

users should be able to maintain a constant pace indefinitely), Graziano (2005)

argues that a standard repeatable ASDM should be used.

According to Graziano (2005) FDD seems to be most applicable to data

warehouses that can use a feature as one data mart report, and a feature set

as a star-schema data mart or a data warehouse subject area. The primary

goal of FDD is to deliver the model in smaller components (increments).

Team huddles, a method used in FDD and Scrum, is effective. This method

entails a daily meeting (stand-up meetings) to discuss problems and set new

objectives (Graziano, 2005). It also motivates the group and improves team

work. XP, on the other hand, uses pair programming which results in a faster,

more accurate ETL (extract, transform and load) programming. Pair

programming involves two programmers programming on one PC.

Graziano chose these two ASDMs as candidates to develop his data

warehouse based upon his knowledge of data warehousing and ASDMs. In this

study however the seven chosen ASDMs will be tested in an interpretive

experiment where seven data warehouses will be developed to determine

whether ASDMs can be applied to data warehouse development. The

interpretive experiment will be conducted using seven teams that will use a

randomly assigned ASDM to develop a data warehouse in a changing

environment. It will then be investigated whether some of the theoretical

deduction made is confirmed and whether additional information could be

attained from the data warehouse development processes.

I .5 Research aims and objectives

The main research question of this study is to investigate the suitability of

ASDMs for the development of data warehouses. In order to investigate this

research question, the following research objectivestaims will be addressed:

Investigate the suitability that ASDMs can be used in data warehouse

development.

Study seven new and relatively settled ASDMs.

Study lnmon (1996) and Kirnball's (1998) approaches towards data

warehouse development.

Evaluate the suitable and unsuitable characteristics of every ASDM for the

different phases of data warehouse development of lnmon and Kimball's

approaches.

Conduct an interpretive experiment to test whether ASDMs can be applied

to data warehouse development, by using seven teams, where every team

has to use a randomly assigned ASDM to develop a data warehouse in a

changing environment.

Investigate whether the theoretical deductions made was confirmed by the

interpretive experiment.

Combine the confirmed theoretical deductions and interpretive results to

present findings on the suitability of ASDMs towards data warehouse

development.

1.6 Research approach

The research is conducted in the interpretive research paradigm as described

by Lee (1999:17). "In contrast to the world of positivism, the world of

interpretativism gives explicit recognition to the 'life world'. Not originating in the

natural sciences, interpretativism involves research procedures such as those

associated with ethnography (from anthropology), participant observation (from

sociology), history, and hermeneutics, all of which give explicit recognition to

the world of consciousness and humanly created meanings. In most

interpretative approaches, a central idea is 'mutual understanding' - the

phenomenon of a person understanding (i.e. 'interpreting') what another person

means - whether it is a person engaged in everyday life taking a natural

attitude to understanding another person in everyday life, or it is a person

engaged in scientific research taking a calculated scientific attitude to

understanding everyday people in their everyday lives."

An interpretative experiment is conducted with cross-case analysis (as

described by Seaman, 1999:567-569) as data analysis method. The researcher

will study seven relatively settled ASDMs as well as the different data

warehouse approaches of lnmon (1996) and Kimball et al. (1998) in order to

establish whether ASDMs can be used to develop data warehouses in a

constant changing environment. The suitable and unsuitable characteristics of

every ASDM will be explained (using deductions) in the different phases of data

warehouse development for lnmon and Kimball's approaches. A suitable data

warehousing approach will be decided upon based on these deductions. The

deductions will be tested by conducting an interpretive experiment were seven

teams will develop data warehouses using the seven chosen ASDMs. After the

interpretive experiment is conducted, cross-case analysis will be used to

analyse the findings of the seven data warehouses that was developed with the

seven different ASDMs. Thus, propositions will be listed that is applicable to all

the ASDM data warehousing projects using cross-case analysis.

The unique individual characteristics for every ASDM will be explained as

theoretical deductions after cross-case analysis is completed. Lastly, new

findings will be explained by combining the theoretical deductions with the

results of the interpretive experiment (propositions) for all ASDMs, as well as

every individual ASDM.

I .7 Chapter Outline

Chapter I : Introduction.

Chapter 2: Agile System Development Methodologies (ASDMs): In this

chapter a SDM will be defined as well as an ASDM. Secondly, the new and

relatively settled seven ASDMs used in practice will be explained. Lastly the

effectiveness of ASDMs used today will be described.

Chapter 3: Data Warehousing: In chapter 3 the term BI as well as the BI

framework will be discussed. Secondly, a data warehouse and definitions

associated with data warehousing are defined. Thirdly, lnmon (1996) and

Kimbail's (1 998) approaches will be discussed using their architectures and

lifecycles. Both lifecycles will be explained using four phases that includes,

collecting requirements, data modelling, data staging, and data access and

deployment. Lastly, lnmon and Kimball's approaches will be compared.

Chapter 4: Theoretical deductions: Suitability of ASDMs for data warehouse

development. In this chapter, the suitability of the use of ASDMs in data

warehousing will be investigated from a theoretical point of view. The

general findings associated with the characteristics of all ASDMs in data

warehouse development will be explained, including the applicability of the

nine core values of all agile process. Next, the explanation of each ASDM's

suitability towards data warehouse development will follow. The theoretical

deductions will be explained under each ASDM for Kimball et a/. (1998) and

Inmon's (1 996) approaches.

Chapter 5: Application of ASDMs for data warehouse development. In

chapter 5 the theoretical deductions made in chapter 4 will be interpretively

tested. In this chapter it will be explained how the interpretive experiment

was designed, how the data was collected, and how the data was analysed

(using cross-case analysis) for the seven different development teams.

Seven teams of equal strength developed a data warehouse using Kimball's

data warehouse development lifecycle. Each team used their assigned

ASDM to guide their activities during the data warehouse development

process. Furthermore, it will be explained how the interpretive experiment

was conducted. Lastly, the researcher will determine whether the data

warehousing projects of the seven teams was successful.

Chapter 6: Confirmed Findings: After examining the theoretical deductions

made in chapter 4 and the interpretative experiment results in chapter 5,

these deductions and interpretive results (propositions) will be combined in

chapter 6. This will be done by presenting findings where certain ASDM

areas, steps, properties or principles can be applied to the data warehouse

development phases, based on the experience gained from chapter 4 and

chapter 5.

I .8 Limitations

Size of the team: ASDMs need a team to function efficiently during

development. The team for this study will only consist of three to four

members. Some ASDMs are only proven to work for large projects.

Therefore a small team may limit the interpretive experiment.

Software: Finding software that enables the researcher to use a specific

ASDM for the development of a data warehouse can be a timely process.

Tools: The use of unreliable tools may result in losing important data during

the cleaning process. The researcher will either write a programme, or use

reliable tools to manage and clean the data.

CHAPTER 2

AGILE SYSTEM DEVELOPMENT METHODOLOGIES

(ASDMs)

2.1 Introduction

In this chapter the definition of a system development methodology (SDM) will

be investigated since no universally accepted definition exists. Secondly, an

agile system development methodology (ASDM) will be described, and what it

means for an organisation to be agile will be discussed. Furthermore, the seven

core set ASDMs, which are commonly used in practice, will be explained.

These are:

Dynamic Systems Development Methodology (DSDM)

Scrum

Extreme Programming (XP)

Feature Driven Development (FDD)

Crystal ASDMs

Adaptive Software Development (ASD)

Lean Development (LD)

The explanation of every ASDM will contain the identifying key factors as well

as its unique process model and method of use. Lastly, the effectiveness of

ASDMs at implementation level will be discussed using papers and surveys

conducted by experts in agile project development. Organisations have a

growing interest in ASDMs because of their adaptive behaviour, which holds

that they have the ability to adapt to change frequently, and speedily.

2.2 Definition of a system development methodology (SDM)

Trying to define an SDM is a difficult task. There is no universally accepted,

concise definition of information SDM (Avison & Fitzgerald, 2003527;

Wynekoop & Russo, 1997:48; livari et al., 1999:l).

The first problem trying to define an SDM is the "method versus methodology"

debate. Researchers have different views. Some argue that the term

"methodology" has no place in information systems, because it literally means a

"science of methods" (Schach, 1997:23), while others argue that the terms can

be applied interchangeably (Hardy ef a/., 1995:467-468; Saeki, 998:925).

Others argue that methodologies encompass methods or that methods

encompass methodologies (Palvia 8 Nosek, 1993:73).

There are conceptual problems related to the use of the term "system

development methodlmethodology". livari and Maansaari (1998:502-503)

classify these problems as "scope problems" and "category problems". Scope

problems include instances where a system development method/methodology

covers the system's development process, or where there is concern about the

aspects that should cover the system development method/methodology.

Category problems include difficulty distinguishing between techniques and

system development methodslmethodologies.

Despite category problems and scope problems, four elements can be

identified in the various definitions of a system development

methodlmethodology (Huisman & livari, 2006:32):

The system development rnethodlmethodology itself

A system development methodlmethodology is based on some

philosophical view or approach

A system development methodlmethodology includes a set of techniques

A system development rnethodlmethodology follows a process model

Avison and Fitzgerald (2003:20,527) argue that the term "methodology" is a

much wider concept than the term "method", because a methodology has

certain characteristics that are not implied by method, and a methodology

includes a philosophical view. In this study, the researcher uses the term

'methodology" to cover all four elements, because it's a much larger concept

than the term "method", and does not aim to contribute to the method versus

methodology debate. Therefore the term "system development methodology

(SDM) will be used, instead of "system development method".

Consequently, an SDM can be defined as a combination of the following

(Huisman & livari, 2006:32):

A system development approach is the philosophical view on which a

methodology is based. It is the set of goals, fundamental concepts, guiding

principles and beliefs of the system development process that drive

interpretations and actions in system development (livari et al. , 1998:165-

166; livari et a/. , 1999:2). Examples of system development approaches

include the process-oriented approach, object-oriented approach, and

information modelling.

A system development process model: Wynekoop and Russo (1 993:182)

define a process model as a representation of the sequences of stages

through which a system evolves. Examples of process models are the

waterfall model, linear lifecycle, and the spiral model.

A system development method, according to Brinkkemper (1996:275), is "an

approach to perform a system development project, based on a specific way

of thinking, consisting of definitions and rules, structured in a systematic

way in development activities with corresponding development products".

He also states that it is a "way of investigation". Wynekoop and Russo

(1993:182) describes a method as a systematic approach to conduct at

least one complete phase of system development, consisting of a set of

guidelines, activities, techniques and tools, based on a particular philosophy

of system development and the target system. Examples include

Information Engineering, Structured Systems Analysis and Design Method

(SSADM) and Jackson Systems Development.

A system development technique: Techniques can be described as a

procedure, possibly with a prescribed notation, to perform a development

activity (Brinkkernper, -l996:276). Examples include entity relationship

diagrams, decision tables, and data flow diagrams.

By understanding the building blocks of an SDM, an agile system development

methodology (ASDM) can now be defined.

2.3 Definition of an agile system development methodology

(AS DM)

The primary goal of any ASDM is to make an organisation agile, in other words,

giving the organisation the ability to adapt to change. However, the question

rises: what does it mean to be agile? Highsmith (2002b) states that it means

being able to deliver quickly, change quickly, and to change as often as

necessary. Cockburn and Highsmith (2001a:120) explain what is new about

ASDMs is not the practices they use, but their recognition of people as the

primary drivers of project success, coupled with a primary focus on

manoeuvrability, change and effectiveness. Fowler (2006) calls ASDMs the

"new methodologies" because, due to their adaptive nature and people-first

orientation, they have blossomed during the past 10 years.

Conboy and Fitzgerald (2004:108) explain that agility consists of two

components namely flexibility and speed. Terms such as "fast", "rapid",

"speed", and "quick" are commonly found in definitions of agility, thus for an

organisation to practice agility, it must be able to respond "speedily and

flexibly". An ASDM is more "adaptive than predictive", more "people-oriented

than process-oriented" (Fowler, 2001).

The principles and guidelines of ASDMs are continuously being described and

defined; and some of these principles include (Mendonca, 2002:505):

"Agile processes that continuously respond to changes in the environment

Appropriate selection of process components that reflect efficiency in

addition to effectiveness

An adaptive approach (frameworks) rather than adherence to predefined

process rules

Frequent, rapid delivery of smaller software components to achieve faster

feedback

A collaborative approach to development

An expectation of change during the development process

Outcomes are emergent, rather than fixed

Creativity in problem solving

Dynamic re-prioritization"

ASDM share common characteristics, including communication, incremental

development and people. Their practices and emphases do vary, but the goal

of all ASDMs is to make the organisation agile. An agile project can identify and

respond to changes more quickly than a project following a more traditional

approach (Cohen et a/., 2003).

According to Hislop et al. (2002:177) and DSDM Consortium (2005), there are

nine principles that reflect the common core values of all agile processes:

"Users must be actively involved throughout the development process

Teams (including both users and developers) must be empowered to make

decisions without explicit approval from higher management

Frequent delivery of products has highest priority

Deliverables are evaluated primarily with respect to their fitness for business

purposes

Rapid iterations and incremental delivery are key to converging on

acceptable business solutions

No changes are irreversible - backtracking to or reconstructing previous

versions must be possible

High-level requirements are frozen early to allow for detailed investigation of

their consequences

Testing is integrated throughout the development live cycle

Collaboration and cooperation among all stakeholders is the key to success"

Focusing on communications means project teams can make decisions and act

on them immediately, rather than wait for correspondence. Development in

iterations allows the team to quickly adapt to the changing environment and

requirements.

According to Lindvall et a/. (2002:201), ASDMs are:

Iterative: A full system is delivered at the beginning of the project, before

changes on each sub-system is done. A sub-system is released after its

functionality has been changed because of new requirements.

Incremental: The system is delivered in pieces. This means that the

requirements are partitioned into small subsystems where after the new

requirements and functionality is added.

Self-organizing: The team is obliged to manage and organise themselves in

order to complete the system within budget and time constraints.

Emergent: Technology and requirements are allowed to emerge throughout

the product development cycle. ASDMs have the ability to adapt to change

so that new requirements can emerge and be implemented.

Organisations are increasingly adopting ASDMs within their projects (Good,

2003:28;). The effectiveness of ASDMs is still being studied, but the

functionality in certain circumstances of most has been proven, and deserves

system developers' attention (Mendonca, 2002:505; Ambler, 2002:9).

2.4 The seven ASDMs

In this segment of the study only the seven core ASDMs used in practice will be

explained. According to Highsmith (2002a:6) these ASDMs are the core group,

as set out in the Agile Software Development Manifesto (Highsmith 2002a:6;

Lindstrom 81 Jeffries, 2004:44). Lindstrom and Jeffries (2004:44) explain that

this group is seen as the early initial ASDMs. Furthermore, the core set of

ASDMs are relatively settled in practice, and were developed in sequence

starting with DSDM in 1994 and ending with the most recent popularised

ASDM, LD.

2.4. I Dynamic System Developmen f Methodology (DSDM)

The DSDM was defined in January I994 when the sixteen founding members

of the DSDM Consortium met for the first time (Hislop et a/., 2002:176; DSDM

Consortium, 2005). Their goal was to jointly develop and promote an

independent Rapid Application Development (RAD) framework, and to expand

the proven successes of RAD. A high-level framework was produced that was

approved unanimously by the 36 members.

DSDM is not so much a method as it is a framework, and the basic concepts

have remained the same although the framework has been refined over time

(DSDM Consortium, 2005). According to this source, DSDM "has been found to

be applicable in nearly every technical and business environment where

systems are needed quickly". Abrahamsson et al. (2002:63) state that the main

idea behind DSDM is to keep time and resources fixed while adjusting

functionality accordingly, and keeping requirements in mind (see Figure 2.1).

The fundamental idea of DSDM differs from the traditional approach where the

extent of functionality of a product is fixed, and time and resources must be

adjusted to reach this fixed level of functionality. While functionality is allowed

to vary, time boxes are used to maintain control. In this way systems can be

brought online speedily and without hassle. In this environment, these systems

can serve as the basis for further evolution. DSDM is an extension to RAD

practices and it at least boasts the best-supported documentation and training

of any other ASDM (Highsmith, 2002x8).

Functionalitv Resources Time A- Fixed -
Traditional

Variable -
Time Resources Functionality

Figure 2.7: Tradifional approach vs. DSDM approach (DSDM Consortium,

2005)

The philosophy behind the DSDM framework that drives the thinking process of

DSDM developers (DSDM Consortium, 2005) involves the following: Firstly,

development can be incremental, which means that the whole development

process can be defined in increments (pieces). Each increment can then be

designed, developed, tested and deployed. Secondly, development is seen as

a team effort where the knowledge of IT professionals and customers are

combined. Thirdly, the available resources must initially be spent to develop the

most important business requirements. Lastly, to deliver a product of high

quality, the organisation must be technically advanced and quick to meet

demands.

The DSDM is "lightweight", meaning that it does not focus on documentation.

One of the principles of this methodology is the importance of collaboration, i.e.

the use of prototypes to capture information rather than numerous

documentation (Highsmith, 2002a:B).

The DSDM offers a more complete, defined development process like the most

known ASDMs.

The DSDM identifies five distinct phases: feasibility study, business study,

functional model iteration, design and build iteration, and implementation.

These are preceded by the pre-project phase and concluded with the post-

project phase, as seen in figure 2.2.

Pre-project: This phase ensures that everything is in place and set up

correctly, that funding is available, and that the project is ready to begin

successfully.

The feasibility and business study: Both these studies are time boxed and

done sequentially. The business study usually takes a month where the

feasibility study usually takes a few weeks. During the feasibility study the

primary goal is to determine, whether the DSDM is the right approach for

developing a specific project (Hislop et a/.,2002:176; Cohen et at., 2003:19).

Figure 2.2: The DSDM Lifecycle (adapfed from DSDM Consortium, 2005)

In evaluating the type of project, with people and organisational issues as

primary concerns, a decision should be made whether the DSDM should be

used to develop the project (Abrahamsson et a/., 2002:64). According to these

authors, the feasibility study is also concerned with the technical and

technological possibilities of developing the project, and the risks that may be

involved.

In the business study phase the essential business and technological

characteristics are analyzed and prioritized (Abrahamsson et a]., 2002:65). This

phase consists of working together, using facilitated workshops attended by

"empowered and knowledgeable staff who can quickly pool their knowledge

and gain consensus as to the priorities of the development" (Cohen et a/.,

2003:19).

As a result, the business area is defined, describing the affected business

processes with their information needs, markets and identified users. Early

client identification ensures early customer involvement. Another output in the

business study phase is the systems architecture definition, which is the "first

system architecture sketch" that has the ability to change as the project

develops (Abrahamsson et a/., 2002:65). The last output is the outline

prototyping plan, which describes the "prototyping strategy for the following

stages, and plan for configuration management" (Abrahamsson et al., 2002:65).

If the DSDM is appropriate for the proposed project, the business study scopes

the overall activity and sets the framework for both technical and business

activities (Hislop et a/., 2002:176). After these two phases the high-level

requirements are base lined, system architecture is outlined and the functional

and information models are produced (Hislop et a/., 2002:177).

Functional model integration: The primary concern is to build on the high

level of processing and information requirements explained and identified in the

business study phase (DSDM Consortium, 2005). Abrahamsson et a/.

(2002:65) explain this phase as the first "iterative and incremental phase".

During every iteration, the approach is firstly planned, reviewed and then

analysed in order to be applicable in subsequent iterations. The experience

gained through coding, analysis and prototype building is used to improve the

analysis model. The functional model is produced containing the analysis

models and prototype code.

The functional model provides four outputs (Abrahamsson et a!., 200265):

Prioritized functions: Is the prioritized list of functions delivered at the end of

each iteration.

Functional prototyping review documents: Collecting comments from users

about the current increment that can be used for other increments.

Non-functional requirements: Requirements that should be met during the

next phase.

Risk analysis for further development: Important document for the functional

model iteration phase, because problems will be more difficult to correct

from the next phase onwards.

Cohen et a/. (2003:ZO) states that this phase as well as the design and build

phase have a common process:

Identify what is to be produced

Agree on how and when to do it

Create the product

Check if it has been produced correctly

Design and build iteration: The prototypes from the functional model iteration

are completed, combined and tested to create a system of sufficient internal

and external quality to be safely released to the users (Cohen et a]., 2003:20).

The output of the design and build phase is a tested system that meets at least

the most important requirements set by users. The design and build iteration is

iteratively. After the users reviewed the design and functional prototypes, all

further development is based on the user's comments and requirements

(Abrahamsson ef a/., 2002:66). Just like other agile approaches, testing is not a

distinct phase, but very important and woven throughout the DSDM Lifecycle

(Hislop et a!., 2002:177).

Implementation: In this phase, the system is implemented within the user

organisation, and responsibility for operation is transferred to the users (Hislop

et a/., 2002:177). An increment review document is created during this phase in

which the state of the system is discussed. At this stage the system can be

either complete, meeting all requirements, or incomplete where some

functionalities may be missing, or only some requirements (not even primary

requirements) are met. If the system has not been complete, the functional

model iteration, design and build iteration, and implementation phases are

repeated until the system has been fully completed (Cohen et a/., 2003). If the

implementation is done over a period of time, this phase may also be iterated

(Abrahamsson et a/. , 2002:66).

The output of the implementation phase is a user manual, explaining how to

gain maximum usage of the system, and a project review document, which

summarizes the outcome of the project and explains the reason of potential

further development based on the project results.

Abrahamsson et a/. (2002:66) defines four possible courses of development for

the DSDM. Firstly, if the system meets all requirements, no further work needs

to be done. Secondly, if some requirements were not met because they were

only discovered during the development stage, the process may be repeated.

Thirdly, if some less-critical function has to be omitted, the process may be

repeated from the functional model iteration phase. Lastly, if some technical

issues had to be ignored due to time constraints, they may be addressed by

iterating again, starting from the design and build iteration phase.

The key is delivering what the business needs when it needs it. This is done by

using the various techniques in the framework and flexing requirements. The

aim is always to address the current and imminent needs of the business rather

than to attack the perceived possibilities (DSDM Consortium, 2005).

Post-project: The main concern is maintenance of the system that has been

implemented. According to the DSDM Consortium (2005), maintenance is done

by keeping the project solution operating effectively.

The DSDM has been applied in small and large projects, and also used in

combination with other ASDMs (DSDM consortium, 2005). While the DSDM is

continuously evolving within the consortium, no identifiable external research is

done by other people except the DSDM authors (Abrahamsson et a/., 2002:68).

2.4.2 Scrurn

Ken Schwaber and Jeff Sutherland developed Scrum in 1995, but it was firstly

described in 1996 (Cohen et al., 2003:13) as a process that accepts the

unpredictability of the development process with a "do what it takes mentality",

and it has been implemented successfully by numerous independent software

vendors.

Scrum, just like XP, is a relatively settled ASDM and a more widely used ASDM

in practice. The name "Scrum" is borrowed from the game of rugby. A scrum

takes place when eight players of each team, called the forwards, bundle

together, and push and shuffle against the opponents for possession of the ball.

To get the bail, the one team must displace the other from its current location.

The primary idea of Scrum is that system development involves requirements,

resources, technology as well as time constraints, which are likely to change

during development. This changing environment makes the development

process very complex and unpredictable. The system development process

requires flexibility and adaptability to suitably respond to the changes during

development (Abrahamsson et al., 200227).

According to Abrahamsson et a/. (2002:27), Scrurn is an "empirical approach

applying the ideas of industrial process control theory to system development

resulting in an approach that reintroduces the ideas of flexibility, adaptability

and productivity". Scrum focuses on producing a system that is flexible by using

a team to produce such a system within a constantly changing environment.

Scrum is primarily concerned with a few key management tasks and not so

much on how the product is actually constructed (Good, 2003:18). Projects are

divided into iterations called "sprints", that take 30 days or less, in which a set

of features is delivered. The management of the projects progress takes place

in the method called "scrum" also known in some cases as "brain storming",

where a daily meeting is held for 15 minutes by the management team (Good,

2003:20).

Abrahamsson et al. (2002:28) explains the Scrum process by using three

distinct phases, i.e. the pre-game, development and post-game phase as

described in Schwaber and Beedle's book Agile Soffware Development with

Scrum written in 2002. In this study, the researcher will explain the Scrum

lifecycle by using the figure on Control Chaos (2005) as sited on the World

Wide Web. This figure is the same as the figure in the book by Schwaber and

Beedle (see figure 2.3).

The product backlog (see figure 2.3) contains the body of work required during

the entire project. This includes requirements gained from software developers,

customers and experts. All requirements are prioritized in a descending order of

importance. Due to the ever-changing environment, the product backlog must

be constantly updated and prioritized as new requirements are identified.

Abrahamsson et al. (2002:29) explains the product backlog as part of planning

- a sub phase of the pre-game phase. -The planning "includes the definition of

the system being developed, project team, tools and other resources, risk

assessment and controlling issues, training needs and verification management

approval". The other sub-phase of the pre-game phase according to

Abrahamsson et a/. (2002:29) is the architecture phase, which includes the

changes as well as those problems the changes may cause in implementing

the product backlog if the implemented system requires enhancement. A

design review meeting is held to implement these changes.

Scrum- 15 minute dally meeting
Team members respond to
basics:
1) What d ~ d you do since last
Scrurn Meeting?

Backlog Items 2) Did you have any obstacles?
Features(s) 30 Days 3) What will you do before next
assigned

%I- Product Backlog: New Functional~ty 1s

Priorrtized product features desrred by demonstrated at end

customer of sprint

Figure 2.3: The Scrum Lifecycle (Control Chaos, 2005)

A "sprint" is a period of up to 30 days where sectioned tasks will be performed

to create deliverables which satisfy the requirements set by users, managers

and experts (Huijbers et a/., 2004:17). Because development is incremental,

each sprint includes traditional phases of software development namely

requirements, analysis, design, evaluation and delivery (Abrahamsson et al.,

2002:30). There can be as many as eight prints when Scrum is used to develop

a system.

Before a sprint is undertaken, the team should do some pre-sprint planning,

which includes identifying the tasks necessary to reach the defined sprint goal.

These identified requirements and tasks are moved from product backlog to

sprint-backlog to be completed during the next sprint (Cohen et a/. , 2003:'l4).

The sprint backlog is the starting point for every sprint, which contains all the

tasks and requirements that ought to be completed during the current sprint

(Cohen et a!. , 2003:14). The tasks that should be performed during the current

sprint are selected by the Scrurn team, the Scrurn master and product owner

during pre-sprint planning (also known as the sprint planning meeting), using

the prioritized list of the product backlog (Abrahamsson et a]., 200233). The

Scrurn master is responsible for the project's success. This includes sticking to

the rules, values, process and practices of Scrurn. According to Abrahamson

et a/. (2002:28) the sprint backlog and sprint are seen as part of the

development phase during which environmental and technical variables, which

may change during the development process, are observed and controlled.

This keeps the team focused on the tasks.

Every morning, a short meeting of approximately 15 minutes is held to keep

track of the development process. During each meeting, the Scrum team

specifies what has been done since the last meeting, and discuss what should

be done before the next meeting takes place (Abrahamsson el a!., 200234).

During these meetings problems are identified and solutions suggested to keep

the team focused on the goal. These meetings can also take the form of short

and powerful stand-up meetings where definite problems can be discussed and

fast solutions found.

After each sprint, a post-sprint meeting or sprint review meeting (Abrahamsson

et a!., 2002:34) is held to analyze the progress and to demonstrate the system

to management, customers and the product owner. This meeting may result in

new requirements to improve the system. These new requirements are added

to the prioritized product backlog and sprint backlog. The next sprint is then

planned, based on using the prioritized product backlog and sprint backlog.

Cohen et a/. (2003:14) summarize the key principles of Scrurn:

"Small working teams that maximize communication, minimize overhead,

and maximize sharing of tacit, informal knowledge

Adaptability to technical or marketplace (user/customer) changes to ensure

the best possible product is produced

Frequent builds, or construction of executables, that can be inspected,

adjusted, tested, documented, and built on

Partitioning of work and team assignments into clean, low coupling

partitions, or packets

Constant testing and documentation of a product as it is built

Ability to declare a product done whenever required"

According to Schwaber and Beedle (2002:59), Scrum can be adopted in

existing projects and new projects. Delivering a new project using Scrum, the

authors explain that a product backlog must firstly be built by working with the

team and customers for several days. The first sprint will then involve key

pieces in system development. These key pieces include an initial system

framework, technological requirements and business functionality. The sprint

will contain the tasks setting up the team roles, building management practices

as well as tasks that will fulfil the sprint goal. As the Scnrm team members work

with the sprint backlog, the product owner works with the customers to build a

more comprehensive product backlog. This will enable them to plan the next

sprint after the first post-sprint meeting. The post-sprint meeting(s) is seen as

part of the post-game phase (Abrahamsson et a/., 2002:28).

Scrum can be adopted in an environment where a project with its own

technology already exists and in cases where teams are struggling to cope with

growing technology and requirements. During the first sprint, user functionality

should be demonstrated on the existing system technology (Schwaber &

Beedle, 2002:59). During the short meetings, stand-up meetings or scrurns held

every day, problems are identified or solved. This helps the team to believe in

its own abilities, and the customer to believe in the team (Abrahamsson et a/.,

2002:35). After the first sprint, a post-sprint meeting is held where a decision is

made whether the team should continue with the project. If this is agreed upon,

a pre-sprint meeting is held to identify tasks to be completed during the next

sprint.

2.4.3 Extreme Programming (XP)

XP was first introduced in 1996 by Kent Beck while serving as project leader on

Chrysler Comprehensive Compensation (C3) - a long term project to rewrite

Chrysler Corp's payroll application - and was further popularised by Kent's

book Extreme Programming Explained: Embrace Change, written in 1999

(Copeland, 2001). Numerous articles published subsequently further

popularized XP. It is by far the most popular ASDM to emerge in resent years

(Highsmith, 2002a:7; Cohen et at., 2003:12; Lindstrom & Jeffries, 2004:43). XP

owes most of its popularity to developers' disenchantment with traditional

methods that do not work in certain environments. Developers started looking

for something new, something extreme, and something that will work in a

constantly changing environment.

Figure 2.4: The XP Structure (Hislop et a/., 2002: f 73)

XP can best be explained in terms of its structural components, as shown

above in figure 2.4. The four values, communication, simplicity, feedback, and

courage, yield fifteen principles that are unique to XP project development. The

four basic activities, coding, testing, listing, and designing, can be viewed as

XP's "backbone", which forms the basis of the twelve core practices.

Four values of XP

According to Ljndstrom and Jeffries (2004:50), the values of XP can be used to

test if the methodology fits the project, team and organisation. The teams'

actions are guided by these values. Lindstrom and Jeffries (2004:45) state that

XP is the only ASDM that is "explicit in its values" - that yields principles - and

it's practices, as seen in figure 2.4. This explicit combination gives guidance on

how to react if the practices do not work (using the values), and what to do

(using the practices) (Lindstrom & Jeffries, 2004:45).

Communication: XP is considered "lightweight" because it focuses exclusively

on communication between team members, as well as between the team and

its customers. The communication should be of high quality for both team

members and customers. Development is guided by clients communicating

functional requirements as "stories" written on small file cards (Hislop et a/.,

2002:172), named "story cards".

Simplicity: This requires that system developers and designers build the

simplest system that will satisfy the requirements set by sponsors and business

users. As the requirements are implemented in the evolving system, system

designers and developers must be cautious not to make the design to complex

while implementing the necessary modifications. System modification includes

the improvement of code structure while preserving system functionality (Hislop

et a/., 2002:173).

Feedback: Feedback depends on time, because it can take a few minutes or

even days. Constant involvement of customers, system designers and

developers causes immediate feedback on the status and progress of the

system being developed (Hislop et a!., 2002:173). Feedback plays a large role

in XP, e.g. where customers define their requirements on story cards, and

developers estimate the correct approach to give immediate feedback that will

be of value for customers on the work they will do to satisfy these customer

requirements. Continuous testing provides programmers with rapid feedback of

errors within the design code. Pair programming is also a continuous feedback

loop (Hislop et a/., 2002:174).

Courage: The developers are responsible for developing a system that is

simple, user-friendly, and fulfils most requirements. Creating the simplest

design may require courageous decisions, such as throwing out large chunks of

code or re-engineering the system to eliminate duplicate code (Hislop et a/. ,

2002:174).

Hislop et al. (2002:173) mentions fifteen principles that support XP's

values:

Assuming simplicity

Incremental change

Embracing change

Quality work

Teaching learning

Small initial investments

Playing to win

Concrete experimentation

Open, honest communication

Working with people's instincts

Accepted responsibility

Local adaptation

Travelling light

Honest measurement

Rapid Feedback

The four basic activities of XP

Coding: In XP coding is seen as a learning activity. Pair programming is one of

the unique practices identified by XP, where two programmers work on the

same PC while learning from each other to develop accurate code in less time.

"Coding helps the developer to test hisiher thinking process, because if the

thinking process is correct the code will do what it is designed to do." (Hislop et

a/. , 2002: I 74).

Testing: Testing is a continuous process throughout system development, as

new requirements are implemented into the evolving system. Developers must

listen to clients in order to know which requirements should be tested (Hislop et

a/., 2002:174). Testing every completed task insures that the system design is

correct and that all tasks are up to date.

Listening: If system designers and developers do not know how to listen to

users, they will not know how to design the system. XP simplifies listening by

the use of story cards. It is important for developers to listen to customers'

stories so they can help refine these in order to know what should be tested

and developed (Hislop et a/., 2002:174)

Designing: In XP designing is a continuous activity of incorporating new tasks

and requirements into the evolving and already existing system. According to

Hislop et a/. (2002:174), X P relies on a metaphor (brief description that conveys

the system's main function attributes) to guide its design.

The twelve core practices of XP

XP practices can be grouped into three different cycles (see figure 2.5). The

outer cycle reflects the practices that affect all the project participants, the

middle cycle relates to the work of the development team, and the innermost

cycle relates to the work of the developers (Lindstrom & Jeffries, 2004:46).

Whole Team
(On-site /2;Tr) -l,,

-
Collective Coding

standard

\.

/' Owners hip Test-Driven \,
I

Customer
/

Pair \ Refactoring
\

Planning
Tests Programming Game

(Acceptance
Tests) \ Simple ,/'

Continuous Design Sustainable
I

'\ Integration Pace
(40 Hour Week) /

Metaphor

i

Small

Figure 2.5: Practices and the main cycles of XP (adapted from Jeffries, 2001;

Lindstrom & Jeffries, 2004:46)

The XP lifecycle (see figure 2.6) include the twelve core practices, which will be

explained. In order to gain a better understanding of the XP lifecycle and how

the twelve practices of XP integrate into it, refer to figure 2.6.

Test Scenarios

s User Stories rn
Spike

Requirements New User Story
Project Velocity

System
,

Customer
Metaphor Metaphor Latest Version Approval

Confident
Estimates Estimates

Figure 2.6: The XP Lifecycle (adapted from Wells, 2000)

3 5

The Planning Game: As each iteration starts, managers, customers, and

developers meet to flesh out, prioritize and predict what should be

accomplished before the next release, and estimate the requirements for

the next release (Cohen et al., 2003:12; Lindstrom & Jeffries, 2004:47).

Lindstrom and Jeffries (2004:47) explain the two key planning steps, namely

release planning (the customer presents the desired requirements to system

programmers, and the programmers estimate their difficulty) and iteration

planning (the team is given direction every few weeks as the system

develops). A release is broken into iterations of one to three weeks each.

The requirements are called user stories that are captured on story cards in

a language all parties will understand (Cohen et a/., 2003:12). In this

practice the user basically lists the requirements of the system.

Small Releases: According to Lindstrom and Jeffries (2004:47), XP teams

practice releases in two ways. Firstly, in every iteration the team produce

tested, running software that is of value to customers. Secondly, XP teams

release software of business value to their end users as frequently as

possible. Development is incremental, which means that a basic system is

put into production quickly, where new releases are implemented at least

every month until the required (whole) system is up and running

(Abrahamsson et a/., 200223; Good, 2003:23).

Metaphor: Managers, customers and programmers define a metaphor or a

set of metaphors which guides all development by describing how the

system works (Abrahamsson et al., 2002:24; Cohen et al., 2003:lZ;

Lindstrom & Jeffries, 2004:49). In short, it guides developers through the

development process via requirements, and it explains the system's

behaviour.

Testing (customer tests and test driven development): There are two types

of tests that are carried out. Firstly, unit tests are done where programmers

ensure that the code written does what they expect it will do. In this way,

programmers get immediate feedback on their progress (Lindstrom &

Jeffries, 2004:48). Secondly, acceptance tests are done by developers. This

involves written acceptance tests for coding the application to ensure that

the system does what the user expects it to do (Cohen et al., 2003:12).

Simple Design: Developers are urged to start simple and keep it simple,

although new requirements are identified and modifications should be made

during development (Lindstrom & Jeffries, 2004:48). The system should be

designed and implemented as simple as possible. The reason for using

simple design is to create a system that is easy to use, maintain and

manage.

Refactoring: When a design is no longer appropriate and of value, it should

be changed. Refactoring involves improving the design by keeping the

system simple through removing duplication, improving communication and

adding flexibility (Abrahamsson et a/., 2002:24; Lindstrom & Jeffries,

2004:48).

Pair programming: This involves two programmers programming in front of

the same PC (Abrahamsson et a/., 200224; Lindstrom & Jeffries, 2004:48).

This practice ensures effective coding with fewer errors in a shorter time,

while the one programmer learns from the other. This practice is also

effective if one programmer becomes sick, because the other can continue

without time being lost. While one programmer programmes, the other

"thinks more strategically" about where the approach will work, and about

ways to simplify the design (Avison & Fitzgerald, 2003:444).

Collective ownership: Every developer has ownership of all development

documents, and can make modifications anywhere and at any time while

system development takes place (Abrahamsson et a/., 2002:24; Cohen et

al., 2003:lZ). The benefits of using collective ownership are increased code

quality and reduced defects, as well as elimination of code duplication by

different programmers (Lindstrom & Jeffries, 2004:49).

Continuous integration: Developer integrate a new piece of coding as soon

and as often as possible (Abrahamsson et al., 2002:24; Cohen et a/.,

2003:12). Every time a task is completed, the completed task is integrated

into the system after which tests are ran, that must be past, in order for the

new changes in the code to be accepted (Abrahamsson ef a/., 200224;

Cohen et a]., 2003:12; Lindstrom & Jeffries, 2004:48).

Forty hour week: Developing software is very demanding. Therefore, as a

rule XP states that team members work no more than 40 hours per week.

Overtime is allowed, but not for more than two subsequent weeks

(Abrahamsson ef a/., 200224; Cohen ef a/., 2003:12). This prevents

programmers and developers burning out, as well as negligent work that

may harm the project.

On-site Customer Using XP, the customer is on-site at all times,

contributing to development, answering questions, performing acceptance

tests, and ensuring that the development progresses as expected

(Abrahamsson et a/., 2002:24; Good, 2003:23; Cohen et a/., 2003:lZ). The

on-site customer ensures that the developers stay focused on the

requirements. If they do lose focus, the customer is there to get the

developers back on track to satisfy requirements.

Coding standards (open workspace): The programmers of an XP project

follow a common coding standard so that all code that emphasize

communication, looks as if it is written by one individual (Abrahamsson et

a!. , 2002:24; Cohen et a/., 2003:12).

The rhythm of an XP project

According to Lindstrom and Jeffries (2004:45), an XP project has a rhythm that

proceeds in iterations of two weeks. During each iteration a set of

requirements is developed and tested. Figure 2.7 shows the activities of the

programming team and customers during the iterations of an XP project. As

the project steadily progresses, the customer chooses when the entire project

(with maximum functionality) is delivered (Lindstrom & JefFries, 2004:45).

Exploration
Story writing
Alignment

Customer tests
.---a

Agree on
process

exploration

.......
Spikes

Development
Environment
Preperalions

>..a*+

Prep for next iteration
Manage release schedule

Communicate with end
userslstakeholders

Customer tests -------
Daily stand up
Sit together

Discuss detailed requirements
Run customer tests

continuously* - ..+-*.-.- *"-.**.m--.*. . -

Tasks
Continuous buitds

Some spikes
Estimation of new stories for

later iterations - - ------

Prep for next iteration
Manage release schedule

Communicate with end
userslstakeholders

Customer tests
-----A-

Daily stand up
Sit together

Discuss detailed requirements
Run customer tests

continuously ..--.."..-.- *.--*...*... \
Tasks

Conlinuous builds
/

Some spikes
J

Estimation of new stories for I
later iterations

2

Week 0
Preparing for
first lteratlon ..-...------ --......-

Figure 2.7: Rhythm of an XP project (Lindstrom & Jeffries, 2004:46)

Week 1 and 2 I Week 3 and 4 Week n

lteratlon 1 Iteration 2 The rhythm
Continues..

.------" -,..---..-.--.---..---"-. ---.a-.E---m......---.-.-,..--... D

Lindstrom and Jeffries (200450) state that the most commonly debated

question regarding XP is whether it can be applied successfully to a particular

type (different environments) of project. Experience proves that system

development is effected and limited by the "characteristics of the project, the

people on the team, and the organisation in which they work" (Lindstrom &

Jeffries, 200450). To evaluate whether the XP practices can help a team

achieve greater success, consideration must be given to these limitations.

2.4.4 Feature Driven Development (FDD)

Feature Driven Development (FDD) was created by Jeff De Luca and Peter

Coad in 1997 and later popularized in their book written in 1999, Java

Modelling in Colour with UML. This ASDM was created when De Luca and

Coad were brought in as consultants on a project in trouble (the large lending

system project at United Overseas Bank in Singapore). Coad applied feature-

oriented development techniques on the project while De Luca used a

streamlined, lightweight process framework (Hislop et a/., 2002:175). Coad and

De Luca merged their concepts into an ASDM that became known as FDD to

save their highly complicated Singapore project from failing (Hislop et a/.,

2002:175; Cohen et al., 2003:17). The previous developers spent two years on

the same project, writing over 3 500 pages of documentation without any code

(Highsmith, 2002a:5) and declared the project undoable (Hislop ef a/.,

2002:175; Cohen et a/., 2003:17). FDD was applied to the failing project and

began delivering a product in increments to a surprised customer within two

months (Hislop et a/., 2002:175; Highsmith, 2002a:5).

FDD relies on a basic architecture that is represented as UML class diagrams,

which are developed early in the project. The FDD ASDM primarily focuses on

the design and building phases of the software development process and it

does not need a specific process model to be successful (Abrahamsson et a/.,

2002:47). According to Palmer and Felsing (2002:35), FDD is built around a

core set of "best practices" that compliment and reinforce each other.

Best practices in FDD include (Palmer & Felsing, 2002:35):

Domain object modelling: The problem domain is explained and explored to

deliver a framework where features can be added.

Developing by feature: The progress is tracked via a list of small

functionally decomposed and client-valued functions.

Individual class (code) ownership: The responsibility of performance,

consistency and conceptual integrity of a class is assigned to an individual.

Feature team are small, dynamic teams.

inspection is done by using the best-known defect detection mechanisms.

Regular builds ensure that there is always a running basic system available

to which new features can be added.

Configuration management: The latest versions of each source code file are

identified and tracked through configuration management.

Progress reporting involves reporting on all completed sections at

organisational level.

The lead designers decompose these business practices into feature to plan,

design and code these features (Abrahamsson et a/., 2002:47). Features are

small items useful for users, just like story cards used in XP, written in an

understandable language for all parties that should not take longer than two

days (Cohen ef a/., 2003:18). FDD encapsulates best practices and incremental

development to manage and monitor the development process and, when

completed, deliver features to customers in two week cycles (Abraharnsson et

a/., 2002:47; Hislop et a/., 2002:175).

Cohen ef al. (quoted in Highsmith, 2002c:273) explain some core values that

would work best for developing a project using FDD. These values are:

A system for building systems is necessary in order to scale to larger

projects.

A simple, well-defined process works best.

Process steps should be logical, and their value immediately obvious to

each team member.

"Process pride" (developers believing that their process will work, although a

process exist that will work much better in the current situation) can keep

the real work from happening.

Good processes move to the background so team members can focus on

results.

Short, iterative, feature-driven lifecycles are best.

The FDD ASDM consists of five sequential processes, including techniques,

guidelines, rolls, goals, artefacts, timelines and methods that can be used in

FDD project development. The five processes are illustrated in figure 2.8:

I I I + I
'I 'I 'I 7

(more shape A categorized A development A design Package Completed
than content) list of features plan (sequences) client-valued

function
An object model c (more content
+informal features list than shape)
+notes and alternatives

Figure 2.8: FDD process (adapted from De Luca, 2005: 10)

Develop
an

Overall
Model

Develop an overall model: In figure 2.8, the FDD process begins with

developing a model where any user, client, sponsor, business analyst, or a

combination of these role-players already know what the requirements, scope

and goals for developing the system will be. These domain experts present a

"walkthrough" version of the project in which the chief architect, who is

responsible for the overall system design, and members of the team are

informed of the primary requirements and system description (Abrahamsson et

a]., 2002:48, 52).

I 1 I

The overall domain is divided into different domain areas. A detailed

"walkthrough" is held where every domain is concerned to produce object

models for each domain area (Abrahamsson et a/., 2002:48). An overall model

is constructed by choosing the appropriate object models for each domain.

--t

Build a feature list: During the next step the team identifies features that

represent the system. A feature list can easily be built based on the

"walkthroughs", identified requirements and object models identified by the

development team.

-

Plan
by

Feature
y

According to Abrahamsson et a/. (2002:48), the development team list client

valued functions in the feature list. These functions (or function group) consist

-

Design
by

Feature

Build
a

Features
List

F '
Build

by
Feature

of major feature sets that represent each of the domain areas. The major

feature sets are further divided into feature sub-sets, that "represent different

activities within specific domain areas" (Abrahamsson et a/., 2002:49) (see

figure 2.9). Features longer than ten days are divided into sub-features (Cohen

et a/., 2003:18). The sponsors and users review the feature list, after division, to

determine whether the list is complete and valid.

Plan by feature: The next step is to prioritize the collected feature list into

design packages and assign them to chief programmers (Cohen et a/.,

2003:18). Chief programmers are experienced developers who lead small

teams in the analysis design and development of new features. Chief

programmers also assign class ownership and responsibility to other individual

developers.

Design by feature and build by feature: This iterative process begins when

the chief programmer selects a small group of features from the feature set(s)

(see figure 2.9). The selected features are planned in more detail; built, tested

and integrated iteratively within two weeks (Abrahamsson et a/., 2002:49;

Cohen et a/., 2003:18).

After the successful completion of each iteration, which includes tasks of

coding, testing, and integrating, the current iteration becomes part of the main

system and the next iteration is started. During this iteration the chief

programmer chooses new features from the feature set(s).

To better understand features, feature sets and a feature list as a whole,

examine figure 2.9:

Feature Set
Subject
Area Feature Set

Feature Set

Subject
Area

Feature Set
Subject
Area Feature Set

Feature Set

Figure 2.9: Component assembly in FDD (Anderson, 2004:5)

Figure 2.9 explains the component assembly of FDD very simply, where a

feature list consist of several subject areas. A subject area consists of several

feature sets and a feature set consists of individual features.

The FDD ASDM promises early and frequent delivery of working code in

increments with almost no documentation to satisfy customers. Unlike XP, FDD

needs an architectural design in the form of class diagrams and analysis of

features using sequence diagrams (Hislop et a/., 2002:176). Similar to other

ASDMs, this ASDM promises early and continuous customer involvement

throughout the project (Hislop ef a/., 2002:176).

FDD has a high success rate with large projects if diverse talent exist within the

project, i.e. competent domain experts, developers and chief programmers

(Highsmith, 2002a:6). According to Abrahamsson et a/. (2002:54), FDD is also

suitable for new projects, projects in need of code upgrading, and projects that

require the development of a second version. It will be wise to adapt this

ASDM in small increments as development progresses (Abrahamsson et a/.,

200254).

2.4.5 Crystal ASDMs

Crystal ASDMs (Crystal Clear) were developed by Alistair Cockburn in 1999,

because he believed that one of the major obstacles in product development is

poor communication. He aimed to address different kinds of project

requirements with different kinds of Crystal ASDMs. Highsmith and Cockburn

(2001:120) explains this philosophy as follows: if you replace written

documentation with face-to-face interaction, you could improve the likelihood of

delivering a system in frequent running pieces and reduce its reliance on

documentation. Crystal ASDMs focus on people, the interaction between

people and the community, talents and skills, and the process, but primarily on

communication (face-to-face interaction).

Crystal project development is incremental with a maximum increment length of

four months, but preferably between one and three months (Abrahamsson et

a/., 2002:37). Crystal ASDMs consist of a family of ASDMs, which gives

developers the choice of choosing the most appropriate methodology for a

specific project.

In figure 2.10, the Y-axis represents the criticality of the system or the project

that must be completed, while the X-axis represents the number of people

involved in a project team. In a large team (501 -1000 people), life's criticality of

the system is prioritized as the most difficult according to figure 2.10. By adding

people to the project, you move to the right on the framework to a darker

version of a Crystal ASDM. As the project's criticality increases, the

methodology becomes more difficult, and you move upwards on the Y-axis.

According to Cohen et al. (2003:16), Crystal ASDMs can also be adapted to

other priorities such as productivity or legal liability.

Life
(L)

Essential
money

(El
Discretionary

money
(D)

Comfort
(C)

1-6 7-20 21-40 41-100 101-200 201-500 501-1000

Number of people involved k20°h

Figure 2.7 0: Crystal ASDMs framework (Cockburn, 2001; Highsmith, 2002b)

In figure 2.10 the symbols C, D, E and L are an indication of potential loss

caused by a system failure (Abrahamsson et a/., 2002:36). The critical level

symbols stand for: Comfort (C), Discretionary (D), Essential Money (E), and

Life (L). Abrahamsson et a/. (200236) explain that the criticality level C

indicates a system crash because of defects that cause a loss in comfort for

users, whereas L indicates a defect in the critical system that may literally mean

a loss of life. Every block within the graphic (X- and Y-axis) of figure 2.1 0

represents a project category symbol. Abrahamsson et a/. (2002:37) takes D6

as an example and explain it as a project with a maximum of six people

delivering a system of maximum criticality of Discretionary Money (D).

Each Crystal ASDM has a colour that describes its difficulty (heaviness); the

darker the colour, the more difficult the ASDM. There are seven main colours;

Clear, Yellow, Orange, Red, Maroon, Blue, and Violet. According to

Abrahamsson et a/. (2002:36) Crystal ASDMs suggest choosing the most

applicable colour for a project based on its criticality and size

The most commonly used Crystal ASDM is Crystal Clear, followed by Crystal

Yellow, Crystal Orange, Crystal Red, etc. (Cohen et a/., 2003:16). The Crystal

ASDM used, depends on the degree of importance of communication and the

number of people involved.

According to Cohen et a/. (2003:16) this known set of Crystal ASDMs expands

as the ASDM becomes more difficult (hardens) or the project team grows. In

this literature study, the researcher will only explain Crystal Clear, because the

team that will develop the data warehouse in Chapter 5, will not contain more

than six members. Another reason for explaining CC is that, according to

Abrahamsson ef a/. (2002:38), CC and Crystal Orange are the two Crystal

ASDMs that have been experimented with in practice.

Crystal Clear (CC)

CC is designed for a very small project (category D6 projects) with a maximum

team member count of six people, sharing office space because of the

importance of communication. However, Abrahamsson et a/. (2002:38) explain

that if communication (face-to-face) and testing is extended, CC can also be

applied to E8/DIO projects. According to Cockburn (2005:307), "CC is a highly

optimized way to use a small, collaborate team prioritizing for safety in

delivering a satisfactory outcome, efficiency in development, and habitability of

the working conventions."

CC is part of the family of Crystal ASDMs where every ASDM is identified and

characterized by a colour as stated earlier. The more people the team consist

of, the darker the colour gets and the harder (heavier) the project becomes.

Seven properties should be accomplished in every project. The first three

properties are mandatory, while the last four will allow the project to succeed.

However, all seven are desired in a project.

Seven properfies of Crystal Clear

I . Frequent delivery. CC is an ASDM (explained in par. 2.3), i.e. development

is iterative; it is tested every few months (periods should be no longer than

four months), and working code must be delivered and implemented into the

system. This causes continuous customer involvement, resulting in

feedback on the implemented requirements, as well as satisfied sponsors

and developers.

2. Reflective improvement: Users identify flaws in the system while iterative

development and implementation takes place. Requirements that have not

been met, are identified and the project team is given time to improve on

deficiencies.

3. Osmotic communication: CC focuses on face-to-face communication. It

would be wise to keep the team working closely together, if possible in the

same room, so that all questions and problems can be answered and

solved. This will cause a neutral work environment where team members

can acquire relative information, just like osmosis.

4. Personal safety: Team members and users should have the confidence to

offer constructive criticism on the work of other team members, and take

responsibility for their own mistakes. This will lead to trust among team

members because they are honest with one another.

5. Focus: There should not be any distractions that can cause team members

to lose concentration, such as long meetings and other activities that require

multitasking. This will cause team members to be more focused on their

primary objectives and work will be completed much quicker. Focus should

be maintained for "two hours a day and for two consecutive days every

week" (Huijbers et al., 2004:20).

6. Easy access to expert users: Questions associated with quality and design

could be answered by available experts who assist the team during system

development.

7. Technical environment with automated tests, configuration management

and frequent integration: It is critical to have a proper technical environment

where testing and controlling tasks, e.g. making backups and merging

changes, do not have to be done manually in order to make life easier for

developers. This will cause the project to be completed in less time.

Policy standards can be derived from the seven properties of CC. The six policy

standards are (Abrahamsson et at., 2002:39):

Incremental delivery on a regular basis (one-three months)

Progress teaching by milestones based on software deliveries and major

decisions rather than written documentation

Direct user involvement

Automated regression testing of functionality

Two user viewings per release

Workshop for product and methodology timing at the beginning and halfway

through each increment

CC has a restricted communication structure and is only suitable for a single

team working in one office space. According to Abrahamsson et a/. (2002:46),

CC lacks system validation elements that cause it to not be applicable to life-

critical projects. Huijbers et a/. (2004:Zl) state that CC values "properties over

techniques". This causes team members to use their own techniques to satisfy

the seven CC properties. Therefore, there is not a specific list of techniques

that need to be used in order to ensure CC's success.

2.4.6 Adaptive Software Development (ASD)

ASD was developed by Jim Highsmith and first documented in his book,

Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems, written in 2000. ASD focuses on iterative software

development, with constant prototyping to develop complex, large systems

(Abrahamsson ef al., 2002:68). ASD also focuses on results, not tasks, which

are identified as application components. According to Highsmith (2000:23),

ASD is designed for extreme projects where high speed, frequent change and a

high level of uncertainty is the order of the day. This ASDM emphasises

change, and change is positive because it prepares customers and developers

for the future. There are many projects that are not extreme, but for those who

are complicated and extreme, ASD works better than the original and traditional

software development approaches (Highsmith, 2000:23).

The traditional project management Plan-Design-Build lifecycle is replaced with

the Speculate-Collaborate-Learn lifecycle in ASD (see figure 2.1 1). In the

traditional approach, uncertainty in the planning phase is seen as a weakness

that can evolve in failure. Highsmith (2000:23) states: "The new ASD lifecycle is

dedicated to continuous learning that is geared to constant change, re-

evaluation, peering into an uncertain future, and intense collaboration among

customers, developers and testers." The phases in the ASD lifecycle are

named in a way to emphasise the "role of change" in the development process

(Highsmith, 2000:23).

Or Can
Diverge

//
Or Can

I L *
e- Or Can

Diverge

Figure 2. I 7 : The Adaptive Lifecycle (Highsmith, 2000: 23)

Highsmith (2000:24) explains speculation as the recognition of the uncertain

nature of complex problems and encourages experimentation and exploration.

It gives developers and designers room to explore, and lets them realize that

they are unsure, which will allow them to change their plans without fear.

Speculation means to keep delivery cycles short and encourage iteration, it

merely acknowledges the reality of uncertainty and it does not mean that

planning is abandoned. Deviations must not be seen as mistakes, but as a

learning opportunity. "Speculating allows us to admit that we don't know

everything - and once we admit to ourselves that we are fallible, then learning

becomes more likely." (Highsmith, 2000:24).

Living in an environment where technology is an ever-changing process, a

group of developers cannot possibly know everything. Developers work

together using collaboration skills, whereas designers make decisions or

produce results (Highsmith, 2000:24), to solve complex problems much easier.

In designing large and complex problems, a large volume of information must

be collected (too large for one developer), analysed and applied to solve the

problem.

In order to become adaptive, the organisation and developers must focus on

learning. They will then have the ability to respond to change that may occur in

almost every project. "Learning about oneself - whether personally, at a project

team level or at an organisation level - can be painful" (Highsmith, 2000:24). A

post mortern is an example document that could be used to determine

successes and failures, but it could also become a reason to blame someone

instead of a learning tool.

A problem is not a big issue. Developers should learn from their mistakes and

problems. Learning is an ongoing process, and mistakes are inevitable.

Highsmith (2000:27) identifies four categories of lessons to be learned by the

end of each development cycle:

Quality of results from the customer's perspective

Quality of results from a technical perspective

The functioning of the delivery team and the practices they utilise

The project status

",,,,,.,,,, * " 2 , ,

Learning Loop
1

initiation review release

Figure 2.1 2: Adaptive Lifecycle A cfivities (Highsmith, 2000:26)

The ASD lifecycle is explained in more detail in figure 2.1 2.

Speculate

There are seven steps of adaptive cycle speculation (Highsmith, 2000:24):

1. Conduct the project initiation phase

2. Determine the project timebox

3. Determine the optimal number of cycles and the timebox for each

4. Write an objective statement for each cycle

5. Assign primary components to cycles

6. Assign technology and support components to cycles

7. Develop a project task list

Most of the data should be gathered in Joint Application Development (JAD)

sessions. A JAD session is a workshop where developers and customers meet

to "brainstorm" ideas, discuss product deliverables (features), and to enhance

communication (Abrahamsson et a/., 2002:71). Initials for small projects can

take a week, while large projects may require a "Cycle 0", which involves

delivering preparatory deliverables to the customer, but no sections of the

application (Highsmith, 2000:26).

According to Highsmith (2000:26), project initiation (stepl) involves:

Setting up the project mission and objectives

Understanding and documenting constraints

Establishing the project organisation and key players

Identifying and outlining requirements

Making initial size and scope estimates

Identifying key project risks

The timebox (step 2) should be based on the resources from project initiation,

scope, requirements set by users, feature set(s), and time and budget

estimates.

The individual cycle length (step 3) depends on two factors: the overall project

schedule and the degree of uncertainty. For a small to medium sized project, a

cycle length from four to eight weeks is required.

"Each cycle should have its own theme." (Highsmith, 2000:26). Every cycle

(sfep 4) has its own milestones to fulfil. It is important to force product visibility

that will show all the mistakes, problems and defects in the project. A cycle

delivers a workable presentation set of components to the customer, and it

makes the product visible to the development team (Highsmith 2000:26). It is

also important to remember that testing takes place continuously.

The main concern of component assignment is that every cycle should deliver a

visible, acceptable result. Factors that should be taken in consideration when

assigning components to cycles (sfep 5 and 6) are (Highsmith, 2000:26):

Making sure each cycle delivers something useful to customers

Identifying and managing high-risk items early in the project

Scheduling components to accommodate natural dependencies

Balancing resource utilisation

Developers who feel uncomfortable without a task list, could make each

component the task target (Highsmith, 2000:27). Additional tasks with no

relation to components can also be added. The primary plan of component

assignment is a "component breakdown structure" and not a "work breakdown

structure" (Highsmith, 2000:27).

Collaborate

Managers are more worried about dealing with collaboration and concurrency

than about the details of designing, coding and testing. "Concurrent component

engineering delivers the working components." (Highsmith, 2000:27).

Concurrency in a project is a critical issue. In large projects, concurrency could

be managed by using an advanced adaptive lifecycle, while in small projects it

could be managed informally, because team members work closely together.

Collaborative development in small teams could be enhanced by using some

XP practices like collective ownership and pair programming.

Learn

In order to deliver a project of quality, review practices should be fulfilled. The

following review practices should be fulfilled in the learning phase (Highsmith,

2000127-28):

Providing visibility and feedback from the customers: this can be achieved

by using customer focus groups, which are designed to review the

application, explore a working model of the application and record client

requirements.

Reviewing technical quality: Focuses on the technical quality assessment

of the product.

Monitor the team's performance: This can be called the people-and-

process review where post-mortems are needed. There are four basic post-

mortem questions (Highsmith, 2000:28):

o What is working?

o What is not working?

o What do we need to do more of?

o What do we need to do less of?

Post-mortems force developers to learn about themselves and explains an

organisation's ability to learn.

Review of project status: The basic questions asked for reviewing the

status of a project (Highsmith, 2000:28):

o What is the status of the project?

o What is the status compared to our plans?

o What should that status be?

At the beginning of each cycle, this review replans the project effort. In a

component-based approach, the project status reflects multiple components

at different stages of completion.

According to Abrahamsson ef a/., (2002:70), the learning loop (as seen in figure

2.1 2), which is gained from repeated quality reviews, forms the basis of further

cycles. The quality reviews (quality practices) demonstrate the functionality of

software being developed during each cycle. Quality reviews are performed at

the end of each cycle and it is important to keep customers involved using JAD

sessions.

Characteristics of an adaptive lifecycle (Highsmith, 2000:25)

Mission focused: A mission provides boundaries rather than a fixed

destination. Without a good mission statement and refinement process,

iterative lifecycles will become a lifecycle with no progress (oscillating

lifecycle). Mission statements act as guides that encourage exploration,

while mission artefacts provide direction and critical decisions (Highsmith,

2000:25).

Component based: Defines a group of features that is developed during an

iterative cycle.

iterative: "Iterative cycles emphasize 're-doing' as much as 'doing"'

(Highsmith, 2000:25)

Timeboxed: Timeboxing means setting fixed delivery times for iterative

cycles and projects. Timeboxing forces a project team and customers to

overlook and constantly re-evaluate the project's mission profile (consisting

of scope, schedule, resources, and defects). It is about focusing on hard

trade-off decisions (Highsmith, 2000:25).

Risk driven: The adaptive lifecycle plans are driven by analysing the risks

critical to the project (Highsmith, 2000:25).

Change tolerant: It is the ability to incorporate change as a competitive

advantage.

As stated earlier, technology is ever changing and change will be a definite fact

during system development. Using adaptive approaches like ASD can make

large projects that need extreme development a success by managing change

and delivering an up to date product.

2.4.7 Lean Development (L D)

Bob Carette's Lean Development (LD) is derived from the principles of lean

manufacturing used during the restructuring of the Japanese automobile

manufacturing industry, such as Honda and Toyota, in the 1980's to compete

with American motor vehicle manufacturers. LD was later popularised by Mary

Poppendieck's book, Lean Software Development: An Agile Toolkit, written in

2003.

Lean Manufacturing still used in the automobile industry is concurrent rather

than sequential. Decisions are made as late as possible with as much

information as possible. Critical decisions are made by the developers

themselves. One leader states what the automobile should look like, and

constantly explains that to the engineers and developers (Lindberg, 2003).

In Poppendieck's book, she provides 22 tools for converting lean principles into

agile system development practices. In this literature study, only the seven

lean principles will be discussed and the 22 tools will only be mentioned.

Just like other ASDMs, LD focuses on customers (people), iterative

development, value flow and of accelerating application development speed,

but not at the expense of higher defect or cost rates (Highsmith, 2002a:6).

According to Cohen ef a/. (2003:18), other ASDMs try to change the

development process. To be truly agile, LD should change the way

organisations work from the top down. The authors also state that LD is a

management philosophy rather than a development process.

Using LD as an ASDM, the key for any organisation is to be more agile than

their competitors. This means an organisation that is change tolerant and

focuses on risk entrepreneurship. The latter enables companies to turn risk

into opportunity and to use the opportunity to their own benefit. A change

tolerant organisation causes changes that keep competitors off balance and out

of the way (Highsmith, 2002a:6). Every business should build a high tolerant

organisation in order to deal with changes. According to Highsmith (2002a:6)

there are mainly three goals in LD:

Complete the project in:

One-third of the time

One-third of the budget

One-third of the defect rate

To be lean, the organisation has to think lean. According to Poppendieck

(2003:2), "lean thinking" is to "let customers delay their decisions about exactly

what they want as long as possible, and when they ask for something, give it to

them so fast they don't have time to make up their minds".

The seven principles of LD are guideposts to convert them into agile system

development practices.

The seven LD principles include (Poppendieck, 2003.9-7):

I . Eliminate waste

Anything that is not of value to customers are seen as waste. If waste is

identified, a campaign should be launched to eliminate it immediately. The

seven wastes in software development are (Poppendieck, 2003:3):

o "Partially done work (the 'inventory' of a development process)

o Extra processes (easy to find in documentation-centric development)

o Extra features (develop only what customers want right now)

o Task switching (everyone should do one thing at a time)

o Waiting (for instructions and information)

o Handoffs (tons of tacit knowledge gets lost)

o Defects (at least defects that are not quickly caught by a test)"

LD focuses on the elimination of waste by looking at the flow of value from

the request to implementation. In order to let value flow, teams should be

formed to take each requirement from start to finish as fast as possible.

Tools: Seeing Waste, Value Stream Mapping (Steindl, 2004; Norton, 2005).

2. Amplify learning

"Great designers understand that designs emerge as they develop a

growing understanding of the problem." (Poppendieck, 2003:Z).

Development is a learning process. Developers discuss what should be

done; ways to make it work and they try it. If it does not work, they learn

from their mistakes and try again. According to Poppendieck (2003:4), a

development is no place for slogans such as:

o "Plan the work and work the plan

o Do it right the first time

o Eliminate variability"

The idea is to adapt to variation by constant feedback to customers and not

to eliminate variety as a whole. Because of iterative development,

developers can measure the difference between what the customer wants

and what the software can do in order to make the correct adjustments. LD

focuses on feedback, using short (a week to a month) and full cycle (tested,

integrated and deployed code) iterations. According to Poppendieck

(2003:4), "Iterative (evolutionary) development is the best approach for

software development."

Tools: Feedback, iterations, synchronization, set-based development

(Steindl, 2004; Norton, 2005).

3. Delay commitment

To delay commitment means to keep all options open as long as system

development allows it. The fundamental concept of LD is to "delay

irreversible decisions until they can be made based on known events rather

than forecasts" (Poppendieck, 2003:4). Having options, make customers

delay decisions until they have enough accurate information to make a right

(not predicted) decision.

Ways to keep options open in system development (Poppendieck, 20035):

o "Share partially complete design information

o Organise for direct, worker-to-worker collaboration

o Develop a sense of when decisions must be made

o Develop a sense of how to absorb changes

Avoid repetition

Separate concerns

Encapsulate variation

= Defer implementation of future capabilities

o Commit to refactoring

o Use automated test suites"

7001s: Option thinking, the last responsible moment, making decisions

(Steindl, 2004; Norton, 2005).

4. Deliver fast

The goal here is to create value as fast as possible, once the customer

decided what hejshe wants. This means (Poppendieck, 20035):

o no delay in deciding which requests to approve

o no delay in staffing and immediate clarification of requirements

o no time consuming handoffs

o no delay in testing

o no delay in integration

o no delay in deployment

In mature software development organisations "all of this happens in one

smooth, rapid flow" in response to customer requirements (Poppendieck,

2003:5).

Tools: Pull system, queuing theory, cost of delay (Steindl, 2004; Norton,

2005).

5. Empower the team

Using LD as an SDM, things are done fast and fast decisions should be

made by people doing the work. In LD, the team makes its own process

designs, commitments, goals and decisions on how to complete these

specified goals. A team can only be allowed to make its own decisions if it

is empowered through expertise, training and leadership.

Once a team is empowered, it can make better decisions. It is

management's responsibility to supply the project teams with the necessary

training, expertise and leadership as well as information to make the best

decisions in order to deliver a successful project. Working directly with

customers in order to understand ,their requirements, and working with other

developers to figure out how these requirements c o ~ ~ l d be satisfied, res~~lts

can be presented frequently to customers to determine whether

development processes are on track.

Tools: Self-determination, motivation, leadership, expertise (Steindl, 2004;

Norton, 2005).

6. Build integrity in

Two kinds of integrity exist, namely perceived integrity and conceptual

integrity. Perceived integrity is exactly what the customer wanted, although

helshe did not ask for it. In order to achieve perceived integrity, the

organisation should have a continuous and detailed flow of information from

the users to the developers. This is achieved where the master designer

(architect) understands the detail of the domain and ensures that

developers always have user requirements at hand to make correct

decisions that will be of value to customers.

Conceptual integrity presents software to customers with a single metaphor

of how the tasks are completed to satisfy requirements. "Conceptual

integrity means that all parts of a software system work together to achieve

a smooth, well functioning whole." (Poppendieck, 2003:6). The flow of detail

information between team members and technical members of a project will

achieve conceptual integrity within a balanced system. Everyone, from

supplier to customer, should be involved in the progress of development

from the beginning of the project. Many believe that integrity conies from a

documentation-centric approach, but according to Poppendieck (2003:7),

organisations should rather use a test-centric approach. The author further

states that organisations should "test early, test often, test exhaustfully, and

make sure an automated test suite is delivered as part of the product."

Tools: Perceived integrity, conceptual integrity, refactoring, testing (Steindl,

2004; Norton, 2005).

See the whole

Overall success of the project is more important to LD than the traditional

sub-optimisation of individual tasks. The most appropriate way to

encourage collaboration and avoid sub-optimisation is to make the team

accountable for their control and influence. This means measuring the

team's performance and defect count, and not that of the individual team

member. It may seem unfair to hold the whole team accountable for an

individual team member's performance but this cause teams to work

together, sort themselves 01-lt, and take responsibility to plan their own

processes.

Tools: Measurements, contracts (Steindl, 2004; Norton, 2005).

Accordirlg to Highsmith (2002a:6), Bob Charette's LD sends three messages

to developers using ASDMs:

"The wide adoption of ASDEs (Agile Development Software Ecosystems)

will require strategic selling at senior levels within organisations

The strategic message that will sell ASDE's is the ability to pluck opportunity

from fast-moving, high-risk exploration situations

Proponents of ASDEs must understand and communicate to their

customers the risks associated with agile approaches and, therefore, the

situations in which they are and are not appropriate"

Maturity (deliver fast) is measured by operational excellence, i.e. the speed with

which customers can be served repeatedly and reliably (Poppendieck, 2003:3).

Maturity is not measured by the manner in which plans are followed or the

"comprehensiveness of process documentation" (Poppendieck, 2003:3).

These lean principles identified by Poppendieck (2003:3-7) have lead to

extraordinary improvements in several areas such as healthcare delivery,

logistics, building construction, product development and military logistics.

Highsmith (2002a:6) also states that LD has been successful in a number of

large telecommunication projects in Europe.

2.5 The effectiveness of ASDMs

ASDMs are gaining popularity and many organisations are adopting ASDMs

since the creation of ASDMs in the early 1990's (Good, 2003:27). The

questions asked by organisations and developers are: Do ASDMs really work?

How effective are these ASDMs? Do they work in all circumstances or only in

specified circumstances?

In general, there is little information about the effectiveness of some of the

settled ASDMs explained in this literature study. Some of them are only tested

by the authors themselves, but a methodology truly works when other

developers (not the authors) test it and find it to be of value. In recent years,

there have been more intensive analysis of ,the effectiveness of ASDMs, but

gathering hard empirical data about ASDMs are difficult because of the na t~~re

of software production (Good, 2003:29).

Organisations do not actually specify if the ASDMs they used, have failed. The

first question that should be asked is: Was the methodology chosen used

correctly according to the specifications (e.g. principles, practices, rules,

guidelines)? If not, organisations and role-players cannot say the chosen

ASDMs do not work.

Ironically, developers always hear success stories about ASDMs. Where are

the bad and sad stories of failure? Some have been documented, but most are

not even mentioned. ASDMs have some "bad smells", which can only be

identified by people using these methodologies (excluding the authors), who

will test them in different environments. There is no perfect methodology that

will work in all kinds of environments and under any circumstances. Many of

these ASDMs work only for small teams and projects while others were proven

successful in both small and large projects.

Because of research, many lessons have been learned about ASDMs.

However, more success stories about small projects have been documented,

and fewer about large projects (Lindvall et a/., 2002:206; Cohen et a/.,

2003:31). This could be because managing a large project is much more

difficult. Team size does not matter in the most ASDMs, although

communication in larger teams are more corr~plex.

Lindvall et a/. (2002:206) explain some lessons learned from using ASDMs in

organisations:

Experience in agile projects is very important for it to succeed, although

experience in the actual building of the system is more important. It is

estimated that 25% - 33% of project personal must be experienced, but in

cases where pair programming is practiced in teams where they monitor

each other, it might be as low as 10%.

ASDMs can be used to conduct safe-critical and reliable projects. Critical

issues are easily addressed in ASDMs, because customers give

requirements, state the importance of each requirement and provide input

through system development. The key is that the performance requirements

are made explicit early, and that proper levels of testing are planned.

ASDMs need less formal training than traditional SDMs. Training is

minimized by the fact that pair programming is used where team merr~bers

monitor each other. This is more important than regular training, because of

the experience gained from learning from one another. There is training

material available for XP, Scrum, FDD and Crystal ASDMs.

The most important success factors are culture, people and communication.

ASDMs need cultural support otherwise the methodology applied will not

succeed. ASDMs use fewer but more competent people than traditional

SDMs. Comm~rnication is enhanced by using pair programming, and

constant interaction with customers who give frequent feedback.

Using ASDMs in projects, warning signs can be detected early in project

development. Warning signs include low interest in meetings and production

of "useless documentation".

Refactoring should be done on a regular basis with code of reasonable size,

keeping the scope down and local. ASDMs make large scale refactoring

more feasible than traditional SDMs. If a set of automated tests is

maintained, changes to big architectural designs do not have to be risky.

Documentation makes the design "heavy" and should be assigned as a

cost. Organisations normally ask for more than is needed. In order to give

value and satisfy requirements, the main goal should be commurrication,

and useless documentation should be avoided.

In 2002, Reifer (2002:16-17) surveyed 32 development organisations of which

fourteen were using ASDMs on 31 individual projects. The result of his study

was that seven of the fourteen organisations that used ASDMs captured hard

cost, productivity and quality data. Five of the seven had benchmarks that they

could use for comparison purposes (Reifer, 2002: 1 7). Reifer (2002: 1 7) came to

the following conclusion about organisations using ASDMs:

Productivity Improvement: 15% to 25% average gain based on published

industry benchmarks.

Cost Reduction: 5% to 7% on average based on published industry

benchmarks.

Time-to-market compression: 25% to 50% less time compared to previous

projects in participating firms.

Quality improvement: Five firms had data showing that their defects rates

were on par with their other projects when products or applications were

released.

Good (2003:27-28) documented another global survey of experience using

ASDMs carried out by an Australian company. -The results of this study are

summarised as follows:

88% of organisations cited improved productivity

84% reported irr~proved quality of software production

46% of respondents reported that development costs were unchanged

using ASDMs, while 49% stated that costs were reduced or significantly

reduced

83% stated that business satisfaction was higher or significantly higher

48% cited that the most positive feature of agile methodologies was their

ability to respond to change rather than follow a predefined plan

Cockburn and Highsmith (2001 b:133) quotes a survey of ASDMs and rigorous

methodologies conducted by the Cutter Consortium in 2001 to which nearly 200

people from a wide range of organisations in North America, Australia, India,

Europe and other locations responded. This survey showed the following

results (Cockburn & Highsmith, 2001 b:133):

Many organisations said that they were using at least one ASDM.

ASDMs show better delivery performance than rigorous methodologies in

terms of quality, client satisfaction and business performance.

ASDMs scored better in terms of employee morale than rigorous

methodologies (54% of respondents were IT and executive managers and

only 12% were developers).

An electronic workshop was held by Scott Ambler (independent consultant

specializing in object-oriented development), Dr Barry Boehm (well known for

his spiral software development lifecycle and COCOMO II estimating

technique), Kent Beck (originator of XP), Alistair Cockburn (author of Agile

Software Development) and Randy Miller (co-author of Advanced Use Case

Modelling). The workshop focused on three points, and they were estimated to

be true for ASDMs (Ambler, 2002:9):

1. Agile development works better for smaller teams (up to 20 or 30 members).

2. ASDMs work best when the future is unknown (designed for current, not

future needs).

3. ASDMs fit applications that can be built quickly and do not require extensive

quality assurance. ASDMs work less well for critical, reliable, and safe

systems.

Even the United States Department of Defence specifies that ASDMs will be

used in their software development (Good, 2003:29). Ambler (2002:9) states

that "agile processes are 'real': they're here to stay and every IT professional

needs to take them seriously".

These results shows a very positive attitude towards ASDMs and many

significant software development companies wanted to implement these

ASDMs (Good, 2003:28). Companies started to utilise ASDMs, and a number

of large software customers demanded their software must be developed using

ASDMs.

These results and success stories are evidence that supports the conclusion

that ASDMs deliver software of business value to the customer, on time and

within budget, if implemented correctly.

2.6 Summary

In this chapter, the researcher firstly identified an SDM using four main aspects

identified by Huisman and livari (2006:32). According to these aspects, an SDM

consists of a:

System development approach(s)

System development process model(s)

System development method(s)

System development technique(s)

After defining an SDM, the researcher could define an ASDM and explain the

seven core ASDMs (Hig hsmith, 2002a:6) that are relatively settled in today's

environment. In order for an organisation to be agile, Highsmith (2002b)

explains agility as the ability to deliver quickly, change quickly, and to change

as often as possible. Lindvall et a/. (2002:201) explains ASDMs as iterative,

incremental, self-organizing and emergent methodologies.

During the explanation of the seven ASDMs, it became clear that ASDMs focus

on people, incremental development and communication. A summary of the

seven core set ASDMs are given in Table 2.1.

Lastly, the researcher studied the effectiveness of ASDMs used in practice

today. ASDMs give developers the ability to adapt to an ever-changing

environment to produce a product that is of value and up to date. There are

many success stories of organisations that used ASDMs in their projects, but

there are circumstances where ASDMs are not that successful. There is no

unique SDM that will work in all circumstances. This also applies to ASDMs.

Some ASDMs work only in small projects while others work only in large

projects. Furthermore, there are ASDMs that might work in both large and small

projects. The study of the effectiveness of ASDMs is still taking place, but the

fact that they are being used, has been established.

Highsmith (2002a:g) states that large companies in countries like the USA,

Australia, Europe and India found ASDMs to be very effective, because a

product could be produced in a "turbulent, ever-changing, ever-existing

marketplace". Ambler (2002:9) agrees with Highsmith (2002a:g) that "agile

processes are 'real': they're here to stay and every IT professional needs to

take them seriously".

The evidence supports the conclusion that ASDMs can deliver software on

time, within budget, and in a constant changing environment if implemented

correctly.

Schwaber and Jeff
Sutherland in 1995.

Name:

XP

Consortium in 1994.

Time and
Author:
Created by Kent
Beck in 1996 and
later popularized in
his book in 1999.

DSDM

every project.
A set of
methodologies.
Suggest
development cycle
within four months.
Emphasis on
communication.
Allow adoption of

Current status

Growing. More
practical experience
than academic
research.

Core Ideas:

Twelve key practices
(such as refactoring,
test before coding).
No process to fit

Defined by the 16
founding members of
the DSDM

other ASDMs.
Do not reauire

Scope of use:

Good for small and
medium size teams
of 3-20 members

specific piactices,
but need
management
practices and tools.
Applications of
controls to RAD.
Emphasises time
and resources.

critical system. Up to
40 persons in local

ASD

1 development.

Four proposed
Crystal ASDMs, two
of them exist.

Created by Jim
Highsmith and first
documented in his

Emphasis on
incremental, iterative
development.

1 members.

I I

Team size between
2 and 6, multiple
teams exist. Can be
used in large system,
if the system can be
split into

Suitable for small
teams: 4 0

1 Scrum and XP.

Ongoing research
aims to integrate

Widely used in UK.
E-DSDM was
released in 2001.

I components.
I Focuses on I No significant

developing large
svstem. I

I book in 2000.

firms advocating it.
Relatively new and
still evolving.

I Nb built-in limitation. I
Luca and Peter Coad
in 1997

FDD 1 Created by Jeff De I Focuses on design Claims to be suitable Some consulting

Table 2. I: Summary of ASDMs (extracted from A brahamsson et al., 2002: I 8-

and building phase.
Emphasises iterative
development. Needs
other supporting
approaches.

LD

for the development
of large software
project.

Created by Bob
Carette during
19801s, later
popularized by
Poppendiecks book
in 2003.

. .

7 Principles used as
guideposts with 22
tools.

Highsmith (2002a:6)
states LD is effective
in large projects.

Used in large
telecommunication,
health, logistics,
military and
construction projects
(Poppendieck,

CHAPTER 3

DATA WAREHOUSING

3.1 Introduction

A number of approaches for developing a data warehouse exist, but for the

purpose of this study, the researcher will only explain the approach of Bill

Inmon, the father of the data warehouse; as well as that of Ralph Kimball, the

dimensional data warehouse expert.

In this chapter, business intelligence (BI) will firstly be explained after which a

data warehouse will be defined by examining the different definitions offered by

various authors. The approaches of lnmon and Kimball will then be discussed,

starting with the explanation of data flow through Kimball's high-level technical

architecture components. In contrast, Inmon's hub-and-spoke architecture will

be explained in par. 3.6.1. Each architecture will be followed by a discussion on

both expert's data warehouse development lifecycles, using the four main

stages (requirements collection, data modelling, data staging, and data access

and deployment). The chapter will end with a description of the contrasts and

differences in the approaches of Kimball and Inmon.

3.2 Business intelligence

The term business intelligence (BI) was used as early as 1989 by Howard

Dresner from the Gartner Group who "popularized BI as the umbrella term to

describe a set of concepts and methods to improve business decision-making

by using fact-based support systems" (Wikipedia, 2006). According to Greiner

(2001:13), a Gartner Group report concluded in 1996 that by the year 2000,

"Information Democracy will emerge in forward-thinking enterprises, with

business intelligence information and applications available broadly to

employees, consultants, customers, suppliers, and the public".

BI is the tracking, collection, understanding, management, and analysing

process of gathering information about an organisation's competitors and

enviror~ment (Wikipedia, 2006; McGuigan, 2006). BI is all about gathering data

that the organisation already generates and organizing it into information that is

of value to business growth and the prediction of future events. According to

TechTarget (2005), "BI is a broad category of applications and technologies for

gathering, sorting, analysing and providing access to data to help enterprise

users make better business decisions. BI applications include the activities of

decision support systems, query and reporting, on-line analytical processing

(OLAP), statistical analysis, forecasting and data mining". Through better

understanding the data the organisation generates, it can determine where

changes can be made to help make the business more efficient, increase

revenue, decrease costs, and improve relationships with customers and

suppliers.

Once an organisation has a BI system in place, it has a good understanding of

how to compete with the strongest competitors, improve turnaround times on

data collection, more targeted marketing campaigns and a better understanding

of customer needs. BI in- proves the orgallisation's agility (i.e. ability to adapt to

change) in order to take better advantage of constant evolving environmental

conditions (McGuigan, 2006).

BI results in better decision-making by transforming a large amount of data into

relevant and accurate information that will be of value. "BI encompasses the

gathering, sorting and analyzing of data," because it includes tools in various

categories. Example categories include customer relationship management

(CRM), data warehousing, decision support systems (DSS), forecasting and

online analytical processing (OLAP) (Government Technology, 2001).

BI components framework

The framework consists of three layers, namely the business layer,

administration and operation layer as well as the implementation layer.

Business Requirements
h

BI Architecture

Data Warehousing -

Data Sources
I I

1 I I
Data Acquisition, Cleansing, & Integration

I \
<7

Data Stores

.................----- v -----.--. information Services ..-. v-.............

1 Information Delivery Business Analytics 1

Business Value

Figure 3. I : BI components framework (TDWI, 2004:lO)

The business layer consists of the components required for BI to fit into

business processes, activities and organisations. The corr~ponents include

(TDW I, 2004: 1 1):

Business requirements: The results expected as well as the reason to

implement BI.

Business value: The benefits of implementing BI, including reduction costs,

improved profit margins and increased revenue.

Program management: Ongoing activity of managing the implemented BI

program to gain maximum business value.

Development: Project activities that develop and deploy data warehouse

and BI products, including project decomposition and methodologies.

The administration and operation layer consist of the components that connect

business components with technical components. The layer is composed of

(TDWI, 2004:ll):

61 architecture: Conventions, standards and frameworks that describe BI

enviror~ment components and the relationships among them including

project, organisational, technology, business and data architectures.

Business applications: Archiving business results through the use of

business processes and procedures that access andlor retrieve and employ

information.

Data resource administration: Policies, processes and procedures to govern

data.

61 & Data warehouse operations: Executing, maintaining and monitorirrg

acceptable availability, performance and quality of data warehousing and BI

functions and services.

The implementation layer consists of the technical components required to

capture data, convert it into information and present the information to the

business. This layer consists of (TDWI, 2004:ll):

Data warehousing: Process to integrate data and prepare it to become

information. A detailed definition is given in par. 3.3.

Information services: Processes, procedures and systems that turn data into

information and deliver the information to the business.

Deployment of BI

Microsoft describes the deployment process of BI starting with the importance

of implementing proper analysis, design and planning procedures before

deployment (Government Technologies, 2001). After implementing these

procedures, a sound architectural model is developed in which business

process views aught to be created from the data the organisation has already

collected. This data should then be analysed so the information generated can

be integrated with information of data sources.

Deployment can begin after a successful architectural model is developed. A

BI-system should contain the five elements including a database, an ETL

(extract, transform, load) function, analytic tools, reportinglquerying tools, as

well as user training. Microsoft warns organisations not to try to do too much at

once, as BI is a simple and inexpensive way to analyse years of data.

The best productivity gain that BI offers is the ability to access data faster, and

the most effective driver behind BI investments is better customer satisfaction

and retention (Macling, 2004:20). A real BI system connects workers and

customers with the right information at the right time (Windley, 2003:44) and

gives them all the information they need. Many organisations have achieved

great success in using and implementing BI and BI tools (Windley, 2003:44;

Macling, 2004:20). Data warehousing is used as a BI tool. Because BI uses an

incremental approach to identify requirements and issues that cause problems

for an organisation (Government Technologies, 2001), it will be a good idea to

implement BI, or a BI tool such as a data warehouse, using methodologies that

focus on incremental development and deployment, i.e. ASDMs.

3.3 What is a data warehouse?

There is no official standardised definition for a data warehouse supported by a

standards committee such as the American National Standards Institute (AIVSI)

(Quarles, 2002:6). Bill lnmon (1996), the father of data warehousing, and the

dimensional data warehousing expert Ralph Kimball (Kimball et a/., 1998) have

different explanations towards the development and definition of a data

warehouse.

Kimball defines a data warehouse as "the queryble source of data in the

enterprise" (Kimball et a/., 1998:19). Kimball also states that a data warehouse

is the "union of its constituent data marts" (Kimball et a/., 1998:27).

lnmon (1996:371) defines a data warehouse as "a collection of integrated,

subject-oriented databases designed to support the DSS function, where each

unit of data is specific to some moment of time. The data warehouse contains

atomic data and lightly summarized data".

lnmon (1996:33) further defines a data warehouse as a "subject oriented,

integrated, non-volatile, and time variant collection of data in support of

management's decisions. Each part of this definition can be explained as

follows (Hou et al., 1998:2-3; Inmon, 2000:l-7; McKnight, 2005):

Subject oriented A data warehouse is oriented around the major subjects of

the enterprise. Operational data is organised around business activities or

functional areas. Subject orientation presents data in a format that is much

cleaner and more consistent for users to understand, and focuses on

natural data groups.

Integrated: Data integration within the data warehouse is the most

important. Data integration is accomplished by dedicating consistency in

naming conventions, measurement of variables, encoding structures, and

physical attributes of data.

Time variant: Data in the data warehouse is accurate as of some moment in

time, because a data warehouse maintains both historical and current data.

Non-volatile: Only load and access operations are allowed. The data in the

data warehouse is never updated like in an operational environment.

Meyer and Cannon (1998:6) state that the primary goal of a data warehouse is

the creation of a single, logical view of an enterprise's data, accessible by

developers and business users alike. Goede (2005:133) defines a data

warehouse as examples of decision support systems (DSS).

According to TDWI (2004:24), "A data warehouse is a data structure that is

optimised for distribution. It collects and stores integrated sets of historical data

from multiple operational systems and feeds them to one or more data marts. It

may also provide end-user access to support enterprise views of data."

There is a broad category of definitions for DSS, but in data warehousing

terms, a DSS can be described as a computer based system that aids workers

with the correct information to make informed decisions during the decision

making process (Gachet, 2000: 1-2; Gachet & Haettenschwiler, 2003:142).

Because there is no universally accepted definition of a data warehouse, the

popular search engine Google (http://www.google.co.za) shows a wide variety

of descriptions and definitions. Many state that it is a collection of databases or

data that can be loaded, extracted and transformed, while others emphasise

that it is more of an information structure or data repository that preserves

historical and current data to be accessed and analysed to create reports.

3.4 Definitions associated with data warehousing

After understanding what a data warehouse is, defil-litions associated with the

concept can be defined. The researcher will only define definitions associated

with the approaches of lnmon (1 996) and Kimball et a/. (1 998).

Dimensional modelling: It is a logical design technique with a primary

objective of presenting data in a standardised framework, with high

performance access inside a data warehouse. Furthermore, it is a name for a

logical design technique in data warehousing (Kimball et a/. , 1998: 140,144),

and an alternative for the term ERD-modelling.

Fact: A fact is something that you did not know before, normally a numeric

value that changes over time (Kimball et a/., 1998:165). A fact has to do with

the transaction that takes place, e.g. price, quantity, VAT.

Additive facts: These are facts that can be added along all the dimensions

(Kimball et a/., 1998:193), e.g. quantity.

Semi-additive facts: These facts are snapshots of a specific point in time; they

do not present a flow past this snapshot (Kimball et a/., 1998:193), e.g. bank

statement.

Non-additive fact: Facts that have no meaning; if an average is not

computed, e.g. room temperature.

Fact table: A fact table is the primary table in a dimensional model. It contains

all the primary keys of the dimension tables as foreign keys. These foreign keys

form a multi-part key that uniquely identifies the table. The fact table also

contains one or more facts. The fact table is the primary table in "each

dimensional model that is meant to contain measurements of the business"

(Kimball et a/., 1998:17,144,165).

Dimension table: The dimension tables are arranged around the fact table in

the star-schema and they contain attributes that describe the characteristics of

a record. They also contain a primary key that is related to its corresponding

foreign key in the fact table. A dimension table is "one of a set of companion

tables to a fact table" (Kimball et a/., 1998:17,144,166).

Business process: It is a set of business activities that are of value to the

business users of the data warehouse. It is a useable set (grouping) of

information that is represented by a star-schema (Kimball et a/., 1998:18,348).

Data mart: A data mart can be organized around a single business process. A

dimensional model, with its fact table and corresponding dimension tables,

represents a data mart. A data mart contains granular data and in some cases

it also contains aggregates. It is a "logical sub-set of the complete data

warehouse" (Kimball et a/., 1998:18, 27,348), meaning that a collection of data

marts form a data warehouse.

OLAP (on-line analytical processing): Kimball et a/. (1998:21) defines OLAP

as "the general activity of querying and presenting text and number data from

data warehouses, as well as a specifically dimensional style of querying and

presenting that is exemplified by a number of OLAP vendors". OLAP is a form

of transaction processing conducted via a computer network where the

response time is crucial for business success (Inmon, 1996:30).

ROLAP (relational OLAP): "A set of user interfaces and applications that give

a relational database a dimensional .flavour" (Kirnball et a/., 1998:21).

MOLAP (multi-dimensional OLAP): "A set of user interfaces, applications,

and proprietary database technology that have a strong dimensional flavour"

(Kimball et a/., 1998:21).

Metadata: Metadata is data about data, in other words it is data that explains

other data. It is information in the data warehouse other than the actual data.

(Kimball et a/., 1998:22,435), e.g. column headings in a table.

Snowflaking: Snowflaking takes place where a table can be divided into

additional tables. It is done by taking low cardinality text attributes from a

dimension table and placing them in a secondary dimension table. The

secondary table is uniquely related to the primary table. In other words, an

attribute has the ability to create an additional secondary table, giving the

impression of a snowflake effect. (Kimball eta/., 1998:151).

Stovepipe data mart: Stovepipe data mart does not use conformed

dimensions. In other words, it does not use dimensions of other data marts or

dimensional models (Kimball et a/. , 1998: 18).

Primary key: Defines uniqueness in a dimensional table within a dimensional

model (Kimball et a/., 1998:191). The attribute that uniquely identifies a record

in a table is called a primary key.

Surrogate key: The key is normally an integer number (1, 2, 3. . .) . The key

alone does not mean anything and does not have any value (Kimball et a/.,

1998: 192).

Foreign key: This key is normally in the fact table. Each foreign key in the fact

table relates to its corresponding dimension primary key (Kimball et a/.,

1998: 191).

Conformed dimension table: It is when a dimension table that is related to

one fact table in a dimensional model connects to another fact table in a

different dimensional model (Kimball et a/., 1998:157). Example: client

dimension or product dimension.

Conformed fact: Conformed facts are required when the same terminology is

used across data marts and when single reports are built when drilling across

data marts (Kimball et a/., 1998:159). Example: revenue, costs and profit.

Factless fact table: Is a fact table set up without any facts. Example: an event

that takes place when you want to compute the attendance of students at

college (Kimball et a/., 1998:212).

Aggregate: An aggregate is a summary of data that is already in the

dimensional model, built to improve query performance so fast and effective

queries can be done. An aggregate is the result of a big query, stored as a

table (Kimball et a/., 1998:211,383,647).

Star-schema: A star-schema represents a dimensional model. It consists of a

primary fact table and its corresponding dimensions arranged around the fact

table. The star-schema is easy to understand and changes can be made easily.

(Kim ball et a/. , 1 998:206-211,589).

Granularity: Grain is the depth of detail. The depth of detail can be declared by

using "per" (Kimball et a/., 1998:195). Granularity refers to the level of detail,

meaning the less detail there is, the higher the level of granularity (Inmon,

1996:45,373). Example: products per client per day.

Integrity: The data in the data warehouse should be as accurate and

consistent as possible (Ir~mon, 1996:374).

Redundancy: The same data is stored more than once. "Practice of storing

more than one occurrence of data" (Inmon, 1996:377).

Aggregate navigator: Aggregate navigator is a component that gives us the

awareness of aggregates. It is the piece of middleware that sits between the

client and the database management system (DBMS). The aggregate navigator

sits above the DBMS (database management system) and catches all SQL

(structured query language) statements and queries sent by the user. A good

aggregate navigator tool holds statistics about every SQL query as well as the

use of the current aggregates. It also mentions aggregates that should be built

in order to improve performance (Kimball et a/., 1998:383)

Data staging: Data staging is also known as the ETL (extract, transform and

load) process. Data staging is the process of cleaning data so it can be of value

to the data warehouse (Kimball et a/., 1998:23).

Architecture: Architecture gives better process planning and communication in

the project. The flexibility and productivity will improve with an effective

architecture. Architecture is like the blueprint of a house, you can see the value

and purpose of the architecture. Example: an architect and client can decide

what the results should be. The contractor computes the price and time of the

project, while sub-contractors see where they fit in and what work they should

do (Kimball et a/:, 1998:318).

Data mining: There is a wide variety of definitions for the term data mining

because it is used in several ,fields of study. A summary definition can be

created using Friedman (1998:3). Data mining is the process of identifying and

extracting previously unknown and potential useful patterns in data, as well as

distinguishing previously unknown relationships within the data to make crucial

business decisions. Data mining is the process by which an organisation

compiles personal, pertinent, actionable information about the purchasing

habits of their current and potential customers (Straubhaar & La Rose,

2003:338). According to Kimball et a/. (1998:377), data mining is a "collection of

powerful analysis techniques for making sense out of very large data sets".

Multi-dimensional database cube: A multi-dimensional database (MDD) is a

specialized engine that stores data in a proprietary format (also known as

MOLAP) that is commonly referred to as a cube. The cube corresponds to

business dimensions understood by users (Kimball et a/., 1998:408).

ODs (operational data store): According to lnmon (1995:21), an ODs "is a

subject-oriented, integrated, volatile, current valued, detailed-only collection in

support of an organisation's need for up-to-the-second, operational, integrated,

collective information". Example: large companies with many bank accounts

such as AT&T, are managed by the bank through creating an ODs for AT&T as

a single account (Inmon, 1995:21).

DSS (decision support system): According to lnmon (1996:372), DSS is "a

system used to support managerial decisions". DSS involves the analysis of

data and as a rule, it does not involve an update process.

ERD (entity relationship diagram): An ERD-diagram shows the relationship

among entities. According to lnmon (1996:373), an ERD is the schematic

presentation of "all entities within the scope of integration and the direct

relationship between those entities".

3.5 Kimball's approach towards data warehouse development

Kimball and Inmon's approaches towards the development of a data

warehouse will be explained at the hand of their books and interpretations.

3.5.7 High-level technical architecture

The data flow of the high-level technical architecture model can be seen in the

following figure:

- Extract
..-..-t---

- Load
- Jot, c~ntml

service!

High level warehouse technical architecture

The back room The front room

- I rdr~slumidbon

top data
SS tools

. data mining]

nstream I
slional

Figure 3.2: The high-level tecbnicai architecture (Kimbali et a/. , 7 998:329).

The data element, services and elements will be explained in detail in the

paragraphs that follow: Each data element and service will be defined, as well

as the data flow through the back and front rooms. The data flow can be seen

in figure 3.2 by following the arrows.

The back room: This is the place where the data staging process takes place.

It is described as the engine room of the data warehouse and the primary

concern is to write data, with appropriate associations and time, from point A to

B. (Kimball et al., 1998:335).

The front room: The front room is the public face of the data warehouse

(Kimball et a/., 1998:373) that users see and work with every day. Users do not

know what is going on behind the user interface; the primary goal should be to

make information as accessible as possible.

Data stores: Are the permanent or temporary landing places for data along the

way in the technical architecture (Kimball et a/., 1998:330).

According to Kimball et a/. (1998:16) three different systems are required for a

data warehouse to function successfully, namely the source system, the data

staging area, and the presentation server.

Source system: It is an "operational system of record whose function is to

capture the transactions of the business" (Kimball et al., 1998:14). The source

system is outside the data warehouse and uses keys to uniquely identify data

(Kimball et a/., 1998:16). It does not contain any built in dimensions. The data

warehouse requests access to the source system, which the source system

then grants, with strict access rules (Kirnball ef al., 1998:371). The data is read

from the source data and extracted to the data staging area using data staging

services (Kirnball et at., 1998:436).

Data staging area: The data staging area is "a storage area and a set of

processes that transform, clean, combine, duplicate, household archive and

prepares source data for the use in the data warehouse" (Kimball et a/.,

1998:16). This is the construction site of the data warehouse. It is everything

between the source system and presentation server. Here data transformation

takes place and value is added to the data. The data staging area is normally

spread over a few machines and does not have any query or presentation

services. It is not meant to be seen by users. (Kimball et at., 1998:16). After the

data has been cleaned it is moved to the presentation server.

Presentation server: "... is the target physical machine on which the data of

the data warehouse is stored and organised for direct querying by end users,

report writers and other applications" (Kimball et al., 1998:16). Data should be

in a dimensional framework.

Dimensional data marts including atomic data: "Atomic data marts hold data at

the lowest common-denominator level" (Kimball et al., 1998:347). This means

data is held at the lowest level of detail (atomic data), which cannot be divided

into smaller pieces, in order to meet business requirements. Atomic data marts

may contain a range of aggregates to improve performance (Kimball et a/.,

1 998:347).

Dimensional data mads with only aggregated data: Data that is related to every

core business process is called a business process data mart (Kimball et al.,

1998:348). Every core business process generates data that can be used and

is of great importance for other business functions. Business process data

marts bring relevant sets of data together from the atomic data mart to present

it in a simple dimensional form which users can understand and that has

meaning and is important to the users (Kimball et al., 1998:348).

Figure 3.3: The data warehouse bus (Kimball et a/., 1998:347)

According to Kimball etal. (1998:346), in figure 3.3, every dimension is seen as

a connector (wire). Each of the business processes is seen as an expansion

card that plugs into the appropriate data connectors. Figure 3.3 gives us an

example of how the bus might work. In this example time, sales rep, customer,

promotion, product, plant and distr. centre are dimension tables. Each of these

tables are seen as a wire that can be connected to more than one data mart

(orders, production) to form conformed facts and conformed dimensions (see

par.3.4).

"Services are the functions required to accomplish the required tasks of the

data warehouse" (Kirnball et a/ . , 1998:330). For tasks that should be completed,

there are data staging services; functions that can clean the data, and query

services; functions that allow easy access and valuable feedback.

Data staging services: The data staging services are the tools and techniques

that must be used in the data staging process (Kimball et a/., 1998:350).

Extract: Tools and techniques are used to pull data from the source system.

The biggest challenge is to determine which data should be extracted and

which kind of filters should be applied (Kimball ef a/., 1998:357). It is

important to understand the requirements of the extraction process in order

to determine which kind of services will be required. Most extract processes

generate temporary load files that become the input data for the next activity

downstream (Kimball ef al., 1998:357). Mayor classes of requirements

include multiple sources, code generation, multiple extract types, replication

and compression/decompression (Kimball et a/., 1998:358-360)

Transformations: Data transformation takes place when the data is

extracted from the source system. A range of acts is performed on the data

to change, edit and convert it in order to present it in an acceptable format

to users, so it can be of value to the business. (Kimball et al., 1998:361).

Some kinds of transformation that might be necessary in the data

warehouse include integration, denormalisation and renormalisation,

cleaning, mergingtpurging, data type conversion, calculation, derivation,

allocation and aggregation (Kimball et a/., 1998:360-363).

Loading: The loading process should support as many targets as possible.

Tools should be used to optimise the load process using the features

provided by a bulk loader or using incremental load processes. After

loading, it is important to have services that will support requirements, like

creating or dropping tables or indexes. Capabilities necessary during the

loading process may include support for multiple targets, load optimisation

and entire load process support (Kimball et al., 1998:363-364).

Job control: "The entire data staging job stream should be managed" by

using a single metadata-driven job control environment (Kimball et al.,

1998:364). The job control service also captures metadata of the job itself

as well as metadata that has to do with statistics. It is important to develop

an environment that creates, manages and monitors the job stream of the

data staging process. (Kimball et a/., 1998:364). Job cantrol services include

job definition, job scheduling, monitoring, logging, exception handling, error

handling and notification (Kirnball et a/., 1998:364-366).

Query services: The data access services should stand alone, without being

dependant on specific tools. They should be available to all and should add

value to the data access process.

Warehouse browsing: Warehouse browsing uses the "metadata catalogue

to support user efforts in order to find and access the required information

they need" (Kimball et a/., 1998:379). The mefadata catalog provides

information and parameters that "allow the application to perform their tasks

- a set of control information about the data warehouse, its contents, the

source systems, and its load processes" (Kimball et a/.,1998:332).

Access and security: "Access and security services facilitate a user's

connection to the database" (Kimball et al., 1998:380). It relies on the

authentication and authorisation (i.e. a person really is whom he claims to

be) services where access rights are determined or access is refused to an

identified user. It will be a sensible option to give every user a unique

identification number (Kimball et a/., 1998:380). Authentication can be

established by a password as well as physical evidence such as a

fingerprint or retina scan.

Activity monitor: This service captures information about the use of the data

warehouse. The activity monitoring service should centre around four areas,

namely performance, user support, marketing and planning (Kimball et

a/.,l998:380-381).

Query management: According to Kimball ef a/. (1998:381), query

management services are the set of capabilities that manage the exchange

between the query information, execution of the query and the return of the

result set to the authorised user's desktop. Here the user interacts with the

data warehouse to access required information. The mayor query services

that should be included in a data warehouse include content simplification,

query reformulation, query retargeting and multipass SQL, aggregate

awareness, date awareness and query governing.

Standard reporting services: Here standard reports can be created with a

production style fixed-format that has a limited Iifespan. These reports are

normally displayed to a broad audience with regular execution schedules

and limited user interaction (Kimball et a/., 1998:386). Kimball et a/.

(1998:387) describe requirements for standard reporting tools. Some of

these include, report development environment, time and event-based

scheduling of report execution and flexible report delivery.

After requesting information from the data warehouse, the required data leaves

the presentation server and ends up on the user's personal computer.

Alternatively, the result can be fed into front-end tools from the data warehouse.

Standard reporting tools: These are tools used for creating and displaying

reports. Kimball ef a/. (1998:375-376) explain that as transaction systems

change into clientlserver packages, the tasks that should be done by the old

report system, are not carried out or are poorly dealt with. This is where the

clientlserver-based standard report tool is used to take advantage of the data

warehouse as a primary source. These applications may use multiple data

stores or a report library. Kimball et at. (1998:387) describe the requirements

and capabilities for standard reporting tools. On the front-end, standard reports

also need to provide the same user interface and formatting controls and

capabilities as the push button access systems described by Kimball et at.

(1 998:393).

Desktop data access tools: As data moves from the back room to the front

room, "it becomes more diffused" and the users can generate queries and

reports as often as required (Kimball et a/., 1998:375). The results are stored

(temporarily) in the data access tool and most of the time the results are

transformed into a spreadsheet to be further analyzed (Kimball et al.,

1998:375).

Application models: The best example of an application model is data mining

(see definition of data staging and data staging area in par. 3.4).

Downstream/operational systems: As the data of the data warehouse

increasingly becomes the source of analysis and reporting, "other systems are

drawn to it as the data source of choice" (Kimball et a/., 1998:378). While most

of these systems are transaction oriented, they gain value by including history

from the data warehouse. Example: budgetinglforecasting systems. This can

help organisations carry out sales transactions with customers. While doing a

sales transaction over the phone, the customers' history and credit history is

already available. The administrator can then, before selling the product,

ascertain whether the customer will be able to pay (i-e. has a good credit

record) or not.

3.5.2 Kimball's data warehouse development lifecycle

The business dimensional lifecycle diagram "depicts the sequence of high level

tasks required for effective data warehouse design, development, and

deployment" (Kimball et at., 1998:33). Throughout the business dimensional

lifecycle, Kimball et al. (1998:33-39) explains that business requirements are

the most important. The process of collecting business requirements differs

from lnmon's (1996) view of using a data-driven requirements analysis

methodology. It is important to realise that in the business dimensional lifecycle

of developing a data warehouse, project management is an ongoing process

that starts with planning and ends with maintenance and growth (see figure

3.4). Each of these guideposts in the diagram will be explained using the

requirement-driven methodology of Kimball ef al. (1998:33-38).

Figure 3.4: The business dimensional lifecycle diagram (adopted from Kimball

et al., 1998:33)

TECHNOLOGY TRACK

Project planning: Project planning is a critical stage in the business

dimensional lifecycle because of the costs and scoping process involved in

data warehouse development. Planning addresses the project's definition and

scope, including business justification and readiness assessment. Thereafter,

project planning focuses on staffing requirements (e.g. funding people who can

do the work), coupled with task assignments, sequencing and the duration of

the tasks to be completed. Planning is the most important factor for ongoing

management and it identifies all tasks involved in the business dimensional

lifecycle, as well as the people involved.

Business requirements definition: Business requirements establish the

foundation for technology, data and end-user applications to create a project of

u I specification I 1 development I

Project Management

+

Business
require-
ment
definition

V
Project
plan-
ning

f echnical
architeclure
da ib !

C,

+

DATA TRACK

End-user End-user
applicalion application

-b -D+

Product
selection &
installation

b

APPLICATION TRACK

Dimensional
modelling

Deploy-
ment + +

klaintenance
8r growlh

Physical
desiga -F

Data staging
design &
development

success. For a data warehouse to be successful, it is important to understand

the requirements of business end-users. Designers should understand the key

business driving factors in order to determine business requirements and to

change them into design considerations.

DATA TRACK

Dimensional modelling: Dimensional modelling is explained in detail in par.

3.4 and par. 3.5.4. Firstly, a matrix is constructed that represents key business

processes (data marts) and their dimensionality. A dimensional model is then

created analysing data of relevant source systems and business requirements.

This model identifies the fact table grain, associated dimensions, attributes,

hierarchical drill paths of facts and appropriate table structures with

prirnarylforeign key relationships.

Physical design: The physical data warehouse is designed by defining the

physical structures necessary to support the logical data warehouse design.

Indexing and partitioning strategies are primarily determined, naming standards

are defined and the data warehouse environment is set up.

Data staging design and deployment: Data staging is explained in par.3.4

and 3.5.5. The data staging process (ETL-process) has three major steps:

extraction, transformation and load. Two data staging processes should be

built, one for the initial population of the data warehouse, and the other for

regular incremental loads.

TECHNOLOGY TRACK

Technical architecture design: The overall architecture framework and vision

is established. To establish the data warehouse technical architecture design,

business requirements, current technical environment, and planned strategic

technical directions should be considered simultaneously. (See par 3.5.1).

Product selection and installation: Using the high-level technical architecture

as a framework, components such as the data staging tool or data access tool

need to be evaluated and selected. An evaluation process is defined along with

specific evaluation factors for each component of the high-level technical

architecture. After evaluating and selecting the products, they are installed and

tested thoroughly.

APPLICATION TRACK

End user application specification: Application specifications describe the

required calculations and user driven parameters. These specifications ensure

that the business users and development team understand the applications that

should be developed.

End user application development: The users can construct specific reports.

The reports are built using an advanced data access tool that provides value to

the team. It can also provide a mechanism to easily modify existing report

templates.

Deployment: Deployment represents the combination (with extensive

planning) of the three tracks, technology, data and end user applications, that

can be accessed from the user's desktop. Business users should be educated

on all aspects of the combination of the three tracks. User support and

communication or feedback strategies should be established before users are

granted access to the data warehouse (see par 3.5.6)

Maintenance and growth: Business users should be provided with ongoing

support and education. Continue giving attention to the back room (see fig 3.2)

to ensure that the procedures and processes are in place for effective ongoing

operation of the data warehouse. Using a business dimensional lifecycle, the

data warehouse will evolve and grow (a sign of success). A prioritisation

process should be established to deal with this business user demand for

evolution and growth.

Project management: This step ensures that the business dimensional

lifecycle activities remain on track. Project management activities occur

throughout the lifecycle, focusing on issue tracking, scope boundaries and

monitoring project status. Lastly, project management include the development

of a communication plan that addresses information systems and business

organisations. To achieve data warehouse goals, ongoing communication is

critical to manage expectations. Thus, it would be wise to use methodologies,

ljke ASDMs that focus on communication and people.

The business dimensional lifecycle does not attempt to create an absolute

project timeline. Each box in figure 3.4 is merely a guidepost. This lifecycle can

be customized and adjusted to address the unique needs of a specific

organisation (Kimball et a/., 1998:38). According to Kimball et a/. (1998:39), this

lifecycle is "most effective when used to implement projects of manageable yet

meaningful scope".

3.5.3 Collecting requirements

According to Kimball et a/. (1998:95) "business requirements have an impact on

every aspect of developing a data warehouse". That is why they follow a

requirement-driven methodology.

Kimball et a/. (1998:96) recommend talking to business users in order to better

understand business requirements. The authors (1998:97) further state, "you

can't just ask users what data they would like to see in the data warehouse".

You should instead be talking about their jobs, their challenges and objectives

to try to understand what kind of decisions they must make everyday. Its also

important to interview IS (information system) personnel (Kimball ef a/.,

1998:97) to identify and understand their business requirements.

Maintenance &

Figure 3.5: Business requirements affect virfually every aspect of the data

warehouse project (Kimbait et a/. , 1998:96)

There are two basic techniques for gathering requirements, namely interviews

and facilitated sessions. Kimball et a/. (1998:97-98) suggest that interviews

should be conducted in small groups or one-to-one. This leads to participation

and detailed data, although it takes a lot of time. Facilitated sessions are

shorter but do not give the high level of detailed data that individual or small

group interviews do. It also needs a facilitator who prevents extroverts from

taking over. Facilitated sessions cause brain storming but it also may result in

certain individuals not taking part. This problem can be corrected by

interviewing smaller groups.

What should be done first? Kimball et a/. (1998:98-104) suggest starting by

preparing for the interview. This involves identifying an interview team that

includes a lead interviewer, who leads the interview; a scribe, who takes notes

as the interview progresses; and observers - people interested in the interview.

Next, pre-interview research should be conducted, followed by selecting the

interviewees in cooperation with IS management sponsors.

Thereafter questionnaires should be developed that "should be structured to

align your intended interview flow" (Kimball et a/., 1998:104). Then the

interviews should be scheduled. Next, the interviews should be sequenced,

starting with the business driver and business sponsor. A time and place should

also be specified that suit the interviewees. Lastly, the interviewees should be

prepared by arranging a kick-off meeting (Kimball et a/. , 1998:108).

The first thing to remember when conducting the interviews is the roles of every

person involved in the interview. The lead interviewer asks the questions, the

user answers, the scribe takes notes and the rest should listen.

It is very important to verify that communication took place. One should

understand what the interviewee is saying. The terminology should be defined;

but vocabulary should not be viewed as unimportant. Furthemore, a peer base

should be established where every user is seen as an equal. It is also important

to remember that one should maintain the interview's schedule flexibility. Do

not let the interview burn out and remember to manage expectations

continuously without overselling the data warehouse. (Kimball et a/., 1998: l l l -

I 1 4).

Start the interview by keeping everything stated above in mind. Business

executive interview questions, IS data audit interview questions and business

manager analysis interview questions can be asked as the interview

progresses. Next, the interview should be properly concluded (Kimball et a/.,

1998:122-123). Lastly, the interview results should be reviewed in order to

determine which requirements are set by the users (Kimball et a/., 1998:126-

127).

Several common interview obstacles might occur while collecting business

requirements. These include (Kimball et a/., 1998: t 24-1 25):

Abused user: It is a user who is frustrated and who normally says, "We

already told IS what we want".

Overbooked user: This happens if all users are too busy to attend

interviews, which may result in the project being cancelled.

Comatose user: User responds with single words, and does not perceive

the interview as serious.

Overzealous user: A user who arrives determined to be heard (opposite of

comatose user).

Nonexistent user: User who thinks he knows best what the IS needs.

After having determined what users want and what is required to satisfy their

requirements, the following activities should take place (Kimball et a/.,

1998:131). Firstly, users have to agree that the collected requirements are

accurate. If users are not satisfied with the requirements and want more that

can be delivered in a single phase of implementation, the team needs input

from the business community. The team needs to reach consensus about the

scope before continuing with the project.

3.5.4 Data modelling

The next task, after defining requirements, is data modelling, where all the

requirements should be modelled into diagrams. Kimball (1998) uses star-

schemas known as dimensional models, and not the traditional ER (entity

relationship)-diagrams.

The difference between dimensional modelling and a large ERD is that a single

ERD breaks down into multiple fact table diagrams. Kimball el a/. (1998:146-

147) describe three steps to convert an ERD to dimensional model diagrams:

Step 1: Separate the ERD into its discrete business processes and model

each business process.

Step 2: Select the many-to-many relationship in the ER-model containing

numeric and additive non-key facts and designate them as fact tables.

Step 3: Denormalise the remaining tables into dimension tables with single part

keys that connect directly to the fact tables. Conform dimensions

(dimensions shared by dimension models) can be formed where one

dimension connects to more than one fact table.

There are many advantages in using star-schemas. Kimball et a/. (1998:?47-

149) describe the four main advantages (strengths). Firstly, the dimensional

model is a standard, predictable framework. Secondly, a star-schema has the

ability to change, which is not the case with an ERD. Thirdly, a dimensional

model can accumulate new data elements as well as new design demands and

requirements. Lastly, aggregates can be built to ensure early and speedy

feedback to users.

Kimball's star-schema can best be illustrated by using an example. Before

looking at the example, there is some detail to understand. A dimensional

model consists of a fact table and dimension tables. Each dimensional model

represents a single business process as well as a data mart. A collection of

dimensional models relates to one another and is called a data warehouse.

The fact table is seen as the main table and is placed in the middle of the

dimension model. The dimension tables are placed around the fact table, each

with its own primary key or surrogate key. The fact table contains all the

dimension tables' primary keys or surrogate keys, as foreign keys that are

related to every dimension table's primary key or surrogate key. The fact table

can also contain one or more facts.

The researcher will explain the development of Kimball's star-schema by using

the four steps of designing a fact table given by Kimball ef a/. (1 998: 194-1 99):

Step 1 : Choosing the data mart

As stated above, a data mart represents a single business process. In this

example, itemized billing will be used. Hypothetically speaking, the example

should represent one line on a cell phone (mobile) account.

Step 2: Declaring the fact table grain

Here the depth of detail is declared (atomic detail). In this case each fact

table entry represents a call made by a cell phone (mobile) user of a specific

network (only one network, either MTN, Cell C, or Vodacom).

Step 3: Choosing the dimensions

As explained, the dimensions are the tables around the fact table that can

be chosen using the next five questions:

o Who: Who is involved? Account holder, network called.

o Why: Why will it (call) be done? Service, package, cost structure.

o Where: Where will it be done? Original location, destination location.

o When: When will it? Date.

o What: What will be done? Promotion.

According to Kirnball et a/. (1998), the designer of the dimensional model

examines all the data sources available and preferentially attaches the

single-valued descriptors as dimensions. Each dimension table has its own

granularity that cannot be lower than the total granularity of the fact table.

Step 4: Choosing the facts

As stated in the definitions, facts are things one does not know until it

happens. In this example, the following facts can be declared:

o Number called

o Start time (of call)

o End time

o Duration

o Service cost (sms, mms)

o VAT

Note: This example uses surrogate keys.

Duration
Service Cost

, I A VAT Promotion

Cost Structure
Cost key
Peak time

Promotion key
Promotion description

Service name
Service description Package key

Package name
Initial Cost

Figure 3.6: A star-schema for itemized billing cell phone (mobile) example

Origin Location

Origin key
Tower Number
Tower Location

3.5.5 Da fa staging

Data staging has been defined in par. 3.4. and data staging is explained in par.

3.5.1 and par. 3.5.2.

<

Account Holder
Account key
Account Number
Client Name

Off-peak time

Data staging is also known as the ETL-process (extract, transform, load) as

stated earlier. During the data staging process, data is extracted from the data

source system, transformed according to data warehouse standards and

cleansed before loading the transformed data into the data warehouse. In short,

data staging is the shifting of data from the operational database to the data

warehouse.

Client Surname

Kimball et at. (1998:23) explain the ETL-process as follows. During extraction,

SMS Client Tel. Number

MMS Fact - table Client Address

Network calls

Date

Date key

Data calls Account key

Destination key Day
Date key Month

Promotion key Year

Number called Fiscal Quarter

Tower Number Begin time
Tower Location End time

Network
Contract start date
Contract end date

Service key
Packagekey
Cost key
Origin key

the data that is required is copied from the source system to the data staging

area for further work. After extraction, transformation is done where the data is

cleaned, data sources are combined, surrogate keys are created for each

dimension and aggregates are built to enhance query performance. Lastly, the

fact and dimension tables are presented to the bulk loader that loads it record

by record into the data warehouse. A detailed presentation of the ETL-process

is given in fig. 3.7.

Operational Extraction, Transformation, Loading
Sources Data

Extraction Integration Aggregation Warehouse

Schema extraction Schema matching and Schema ,
and translatio integration implementat~on

Filtering
aggregation

Scheduling, logging, monitoring, recovery, backup

lnstance characteristics a Mapping between source
Legends 4 Metadata fiow CD CD (real ,,,etadata)

and target schema

4 Data flow OTranslation rules Q Filtering and aggregation
rules

Figure 3.7: Steps of building a data warehouse: the ETL-process (Rahm & Do,

Data staging will be explained by following the 10 steps of the ETL-process,

explained by Kimball et al. (1 998:612-650). Steps 1, 2 and 3 cover planning the

process effectively. It includes the decision on a data staging tool (Kimball et

a/., 1998:166). During the dimension table staging phase, steps 4, 5 and 6 are

covered. This entails the building of the data staging application by choosing

and using the simplest dimensions (Kimball et at., 1998:167). Lastly, the fact

table loads and warehouse operations phase covers steps 7-10, where

incremental loads are suggested for fact- and dimension tables that are too

large for a single load process (Kimball et a/., 1998:680).

Step I : High-level plan

Start the design process by putting the pieces you know of in a simple

schematic format containing only sources and targets. Keep the design on

one page, indicating were the data is coming from, and including the

challenges and requirements you already know about. Use placeholders for

unknowns.

Step 2: Data staging tools

It is very important to choose a data staging tool and to use it early in the

project. New releases of data staging tools are showing significant

functionality and usability. The team should make a decision whether to use

hard coding for extraction or approved data staging tools.

Step 3: Detailed plan

"Start planning which tables to work on, in which order, and for sequencing

the transformations within each data set" (Kimball et a/., 1998:615).

Graphically diagram the complex restructurings into a set of fact tables onto

a single page. Structure the diagrams around the source tables instead of

the target tables. The data staging area should also be organized, so that

the raw data that has been loaded can be cleaned, combined, archived and

exported to the presentation server.

Step 4: Populate a single dimension table

The main reason starting with a static dimension table is that it is the easiest

table to populate. In order to populate a static dimension table, the primary

source of data (lookup table) should be extracted to the staging area, after

which the data is cleansed during the transformation process. Lastly, the

cleansed data is loaded into the target tables using the bulk loader.

Step 5: Implement dimension change logic

Every data warehouse key should be a surrogate key in the data warehouse

DBA (i.e. in every data mart or star-schema) in order to respond to changing

descriptions and abnormal conditions in the raw data. If the join key

between dimension tables and fact tables are direct derivations of a

production key, change will not be possible. The implementation of

dimension change logic can be done by doing dimension table extracts,

processing slowly changing dimensions and by transforming and loading

these slowly changing dimensions.

Step 6: Populate remaining dimensions

After populating a simple dimension table (step 4) and implementing

dimension change logic (step 5), the rest of the dimensions should be

populated. At this point populating the remaining dimensions will be easy,

unless there are major data quality issues.

Step 7 : Historical load of atomic-level facts

This is done by historical fact table extracts, where records should be

identified that fall within the basic parameter of the extract, and where the

records are of value for the data warehouse. This is also done by fact table

processing, where surrogate keys replace the production IDS in the

incoming fact table.

Step 8: Incremental fact table staging

The problem with most fact tables is that they become too big. The data

cannot be loaded into the fact table all at once. A common technique that

can be used is to only load the most recent data or only the data that has

changed. This means that incremental loading of data into fact tables is

used.

Step 9: Aggregate table and MOLAP loads

The fact table can be too large to be loaded all at once, so it can be a

problem building aggregate tables from a query on the fact table. This

problem can be solved by doing aggregate table incremental loads. The

aggregates are merely results of big queries mostly including the latest data.

Step t 0: Warehouse operation and automation

The ultimate warehouse operation would run the regular load process

completely unattended. Although this is difficult to attain, it is possible.

Kimball et a/. (I 998:650) describe different operational functions and a few

approaches to implement these functions. The ongoing operations functions

of the data warehouse can be automated (semi-automated) by using a good

data staging tool.

In order to get quality data in the data warehouse, the data gathering process

should be well designed and the people (resources), providing the data should

deliver quality information (Kimball et a]., 1998:653). Cleaning data uses two

processes, namely entering clean data and correcting the problems once the

data has been entered. No data warehouse has perfect data, but Kimball et a/.

(1998:653) explain quality data as accurate, complete, consistent, unique,

timely and truthful.

The data quality contained in the data warehouse after the loading process can

be assured by using techniques like cross-footing, manual examination and

process validation (Kimball et a/., 1998:658-659). Cross-footing is a query that

is run against the source system. The results are then compared with the

results of the same query against the load set. Manual examination involves

data checks to try to find errors, while process validation may show that the

data warehouse might be slightly different from the source system. It will,

however, be close enough.

3.5.6 Data access and deployment

This phase contains two parts, data access and deployment. A way should be

found for users to access data easily and to get results that are of value to

them. Access applications are created for business users in a manner that

enables them to locate the necessary data as speedily and easily as possible in

order to analyse the data so it can be of value to the organisation. OLAP (see

par.3.) is used to create applications to do queries on data in the data

warehouse. According to Goede (2005:153) "tools for end user access focus on

trend analysis and ad hoc queries".

Deployment takes place when the data warehouse is completed and the end

users use it and find it to be of value. The users should not be negative towards

the data warehouse; otherwise, they will not use it. They should understand the

power and effectiveness of a data warehouse in order to gain value. To solve

the problem of negativity, towards the data warehouse it is important that users

are involved from the beginning so that they adapt ownership that will ensure

motivation and successful implementation of the data warehouse.

It is important to educate the end-users (Kimball et a/., q998:693) in order for

them to gain maximum value out of the data warehouse. It is no use to design a

data warehouse with a very sophisticated architecture, including large amounts

of clean data, and the user does not even know how to perform a query.

It is also important to implement a business end user strategy to support users

after deployment (Kimball et a/., 1998:699). To deploy the data warehouse, a

framework should be built that encapsulates the pieces involved during

deployment. The data warehouse should go through an internal alpha test

period (internally test all the components), followed by a beta test period (giving

access to a limited number of business users) before the data warehouse is

generally available (Kimball et a/., I 998:705).

After implementation, it will be interesting to study the use and effectiveness of

the implemented data warehouse. This can be done by submitting

questionnaires electronically to all users.

Maintaining and managing the data warehouse after successful deployment, as

well as preparing for the growth and evolution of the data warehouse, is an

ongoing process. After the project priorities have been identified, the lifecycle is

run from the start; building upon what has already been established, and

focusing on new requirements and recommendations. (Kimball et al., 1998:37).

If the data warehouse grows and evolves, the design can be declared

successful. "Success breeds success" (Kim ball et a/. , 1 998:733).

3.6 Inmon's approach towards data warehouse development

Inmon's approach towards the development of a data warehouse, differs

greatly in both view and design from Kimball's approach. During the discussion

of Inmon's approach, the researcher will use Kimball's approach towards

certain components in data warehousing as a reference to explain Inmon's data

warehouse components.

3.6.7 Hub-and-spoke architecture

lnmon follows a hub-and-spoke architecture, while Kimball uses the high-level

technical architecture. Inmon's data warehouse can be seen as the central data

warehouse or hub. Using Inmon's definition for a data warehouse (see par 3.3),

TDWI (2004:27) state that the definition of a hub-and-spoke architecture

"serves as a single source hub of integrated data upon which all downstream

data stores are dependant".

The data marts are populated from a single integrated and consistent source.

Inmon, just like Kimball, uses an ETL-process were the data from the source is

transformed using a specific standard of transformation and loading it into the

central data warehouse or hub.

Data
Warehouse Data mart

1 1 rl End User

I Data Flow
L I

Figure 3.8: lnmon 's architecture approach (adopted from Mailvaganam, 2004).

In figure 3.8, the data of lnmon's data warehouse is integrated and a data mart

is seen as an interface between the end-user and data warehouse and not as a

"logical sub-set of the complete data warehouse", as defined by Kimball et a!.

(1998:19). lnmon (1996) follows a bottom-up approach, i.e. the data

warehouse is firstly built and then requirements will evolve and become known.

TDWl (2004:29) provides advantages and disadvantages for using a hub-and-

spoke architecture:

Table 3.1: Advantages and disadvantages of hub-and-spoke archifecture

(TD WI, 2004:29)

Advantages

Produces a flexible enterprise

architecture

Retains detail data in relational form

Eliminates redundant extracts from

operational data sources

Integration is consistent and enforced

across data marts

Disadvantages

Requires considerable front end

analysis - long start-up time

Warehouse grows large quickly - high

start-up costs and maintenance

Design to delivery time is too long

lnmon (1996:20) defines four levels in the architected environment, namely

operational, atomic or data warehouse, departmental and individual. The

operational level holds primitive data that serves the high-performance

transaction processing community. The data warehouse level holds primitive

data that is not updated, while the department level contains exclusive derived

data. The individual level is where heuristic analysis takes place. At first glance,

it may seem as though the architected environment contains redundant data,

but the architected environment in fact has integrated data.

3.6.2 Inmon's data warehouse development lifecycle

Inmon's data warehouse development lifecycle follows a data-driven

methodology, while Kimball's lifecycle is requirement-driven. According to

lnmon (1996:44), a central data store for one subject area that is populated with

operational systems should be built,. The demand for an integrated data store

for another subject area will grow as the analytical ability of the new data

warehouse is discovered. This pracess will repeat itself until a complete data

warehouse has been developed (Goede, 2005:142).

Figure 3.9 presents the classical system development lifecycle (SDLC) as well

as the CLDS (data warehouse SDLC). The SDLC is requirement-driven, just

like Kimball's approach where requirements should be understood before the

stages of design and development are implemented in order to build the system

(Inmon, 1996:25).

The CLDS (reverse of SDLC) is data-driven, which means that data is the most

important. CLDS starts with integrated and tested data, whereafter programs

are written that uses the data. The results of the programs are analysed to

identify and understand the requirements (Inmon, 1996:25). lnmon uses the

CLDS data-driven approach. He believes requirements are only understood if

the data warehouse has already been developed.

Requirements r-1

Classical systems development
lifecycle (SDLC)

Requirements gathering
Analysis
Design
Programming
Testing - Integration
Implementation

/ Program 1

Requirements r-1
Data warehouse SDLC

Implement data warehouse
Integrate data
Test for bias
Program against data
Design DSS system
Analyze results
Understand requirements

Figure 3.9: The system development lifecycle for the data warehouse

environment (Inmon, 1996:24)

3.6.3 Collecting requirements

According to Inmon's approach, a data warehouse should be developed using

existing data to satisfy decision makers before requirements are identified and

satisfied. As seen in figure 3.9, Kimball's view of collecting business

requirements is very important. In contrast, lnmon (1 996: 144) states that,

"requirements for the data warehouse cannot be known a priori".

Using Inmon's CLDS, requirements are identified last and not first as in the

case of the traditional SDLC. The time to complete data warehouse

development and user requirements depend on the size of the project. The

larger the data warehouse project, the longer it will take to meet requirements.

3.6.4 Data modelling

lnmon (1996:85) proposes that an ERD data model be used, instead of

Kimball's star-schema for the development of a data warehouse. A combination

of individual ERDs, where each reflects the different views of people within the

organisation, makes up the corporate ERD. lnmon (1996:82) states that in

order to construct a data model, the corporate model should be used as starting

point. The feedback loop explained in par. 3.6.6 can be used to identify DSS-

analyst requirements.

e w corporate
model

data model

5 -G E-g
data model

data

data model f3 warehouse
data model

B
operational
data model

data warehouse

Operational data

Figure 3.10: Operational data model vs. data warehouse data model (lnmon,

In order to construct a data warehouse data model, the pure operational data

should be removed followed by the enhancement of the key structures by

adding an element of time to each key. Derived data that is publicly used, is

added to the corporate data model only once it has been calculated. Lastly, the

operational environment's relationships are turned into "artefacts" in the data

warehouse.

Figure 3.1 I : An entity relationship model of an enterprise that manufactures

goods (Kimball ef al., 1998: 143).

lnmon (1 996: 139) also describes star-schemas, but calls them star-joints.

lnmon emphasises that star-joints and ERDs will lead to an optimal data

warehouse design. According to Goede (2005:147), lnmon (1996) does not

offer sufficient explanation on how this is achieved.

According to lnmon (1996:85), there are three levels of data modelling:

High-level modelling (ERD: entity relationship diagram)

Mid-level modelling (DIS: data item set)

Low-level modelling (physical model)

High-level modelling can be done by surrounding every entity with an oval and

representing relationships between entities with arrows, where the number of

arrowheads indicate the cardinality of the direct relationship. As stated earlier,

the corporate ERD of the data warehouse is a composite of many individual

ERDs that reflect the different views of people across the organisation.

The mid-level model is created after the high-level model. For each entity in the

high-level model, a mid-level model is created. The mid-level data model for

one entity or major subject area is explained, "then the mid-level model is

fleshed out while other parts of the model remain static" (lnmon, 1996:88). A

mid-level model is created for every entity or major subject area. Four basic

constraints should be remembered in the creation of a mid-level model:

A primary grouping of data: Contains attributes and keys, where the

attributes are held that only exist once for every entity.

A secondary grouping of data: Holds attributes that can exist more than

once for each entity.

A connector: The connector relates data between groupings of data. To

indicate a connector, the foreign key is underlined.

'Type of" data: Indicated by a line leading to the right, where the group of

data to the right is sub-type data and the group of data to the left is super-

type data, indicates the "type of' data.

primary
grouping of
data

XXXXXX

XXXXXX

,,,,,,,..,I F2.X; i ELI
secondary
grouping of
data connkctor data

"%"type of"
data

,/,,,, .,*,-.

XXXXXX J-
Figure 3.12: The four constraints of the mid-level data model (Inmon, 1996:89)

The low-level data model is created from the mid-level data model by

expanding the latter to include keys and physical characteristics of the mid-level

model. In the physical (low-level) model the model looks like a series of tables,

called relation tables. One very important design step remains, namely

"factoring in the performance characteristics" (Inmon, 1996:93). This means

deciding on the granularity and partitioning of the data being used. After this is

done, other physical design activities can be used in the design.

The problem with the data model is that is appears to make all the entities peer

with each other. To get data to provide a three-dimensional perspective, a star-

join can be used.

dimension fact table dimension
tables tables

order

Order data
Vendor id
Vendor data
Vendor data Order data

Order data

vendor
I

nonkey data I Vendor id
Cust id

customer nonkey data

, Order id product

Order id
Order data

Cust id
nonkey data
Product id Product id
nonkey data

Cust data Product data
Product data

custdata K . shipment

Figure 3.13: Star-join with fact table and corresponding dimension tables

(Inmon, 1996: 142)

A star-join is a "design structure that is required to manage large amounts of

data residing in an entity in the data warehouse" (Inmon, 1996:140). Figure

3.13 is an example of a star-join that resembles Kimball's (1998) star-schema.

The order table in the middle of the star-join is called the fact table. This entity

is heavily populated. The surrounding tables, vendor, customer, shipment and

product, are called dimension tables.

The fact table (order) contains data unique to the fact table itself, as well as

unique identifying data for the fact table. The fact table also contains foreign

keys that references to the surrounding dimension tables. The star-join can also

contain non-foreign key information, but this information should be used

frequently with the fact table.

During the creation of a star-join, the textual data is often separated from

numeric data (this is done in Kimball's star-schema by using surrogate keys).

Normally textual data ends up in the dimension tables and numeric data is seen

in the fact table (see figure 3.13).

The star-join is used within the DSS data environment. If star joins were used

outside the DSS where data relationships are managed and updated, it will be

a very cumbersome structure (Inmon, 1996:142).

The benefit of using star-joins is to "streamline data for DSS processing"

(Inmon, 1996:142). By creating selective redundancy and by pre-joining data,

the data is simplified and streamlined for access and analysis, "which is exactly

what is required for the data warehouse" (Inmon, 1996: 142).

3.6.5 Data staging

This data staging heading can also be replaced with data cleaning or data

cleansing. Data cleansing is used to see if business, user and analyst

requirements are met. lnmon (1 996) also uses the ETL-process were data is

extracted from the source, transformed according to organisation's standards

and loaded into the central data warehouse (TDWI, 2004:29).

Because the data warehouse of lnmon is integrated, transformation should be

mapped from the different source fields to the data warehouse fields. Not only

is integration difficult when transforming an existing systems environment to the

data warehouse environment, but the efficiency of accessing existing system

data is also hampered (Inmon, 1998:76). There are three types of loads from

the operational environment to the data warehouse environment (Inmon,

1996:76):

The loading of archival data.

The loading of data contained in the operational environment at that point in

time.

The loading of ongoing changes to the data warehouse environment from

the changes (updates) that have occurred in the operational environment

since the last refreshing of the data warehouse.

Determine data
needed

Figure 3.13: Activities for cleaning data (Inmon, 1996:357)

Data pulled from Program to merge,

Inmon's data cleansing activities begin by determining the required data and

ending with institutionalisation. The data required should firstly be determined.

"Data in the data warehouse is selected for potential usage in the satisfaction of

reporting requirements" (Inmon, 1996:347).

Program to
extract data

Analysis with other
the warehouse analyze, combine relevant data

with other data

Analyze data
1

Fulfilled requirements

The first few times this activity is executed, only part of the required data will be

retrieved from the data warehouse. It is important to remember that Inmon's

approach is all about data (data analysis). This means that data is seen as

most important. The data that is selected can be used for further analysis.

Furthermore, a program should be written to extract data from the data

warehouse after selecting the correct data. This is done by writing a program to

"access and strip" the data (Inmon, 1996:347).The program should be

modifiable when necessary, because most code will be run and modified

numerous times. The program is used to pull data from the data warehouse for

DSS analysis.

The data should then be prepared for analysis by combining, merging and

analysing the data after selection has taken place. This means combining,

editing and refining data for analysis (Inmon, 1996:348).

Subsequently, the data should be analyzed. The question here is: "Do the

results obtained meet the needs of the analyst?" (Inmon, 1996:348). If the

results satisfy the needs of the analyst, the preparation for the final report can

commence. If the result does not satisfy the needs of the analyst, it causes

another iteration to take place.

The final report is then prepared (the questions are answered) and produced,

which contains the results of many iterations of processing, as well as the

conclusion.

Finally, a decision should be made to determine whether the final report should

be institutionalised. If the need arises to run the report repeatedly, it will be a

good idea to submit the report as a set of requirements and to rebuild it as a

regularly occurring operation (Inmon, 1996:348).

3.6.6 Data access and depioyment

According to lnmon (1996:128), there are two kinds of data warehouse data

access: direct access and indirect access.

Direct access of data warehouse data

Direct access takes place where a request is made within the operational

environment for data that is in the warehouse. The request made by the user or

manager is transferred to the data warehouse environment. The requested data

is then located and sent back to the operational environment. A scenario can

occur where a manager needs to trace data from the data warehouse back to

its operational source. This is called the "drill-down" process (Inmon, 1996:186).

There are some limitations to the scenario of direct access (Inmon, 1996:128):

The request should be casual in terms of response time.

The request for data needs to be for a minimal amount of data.

The technology managing the data warehouse needs to be compatible with

the technology managing the operational environment in terms of capacity,

protocol, etc.

The formatting of data after it is retrieved from the data warehouse in

preparation for transport to the operational environment, should be non-

existent (or minimal).

These conditions do not include data that will be directly transferred from the

data warehouse to the operational environment.

Indirect access of data warehouse data

Direct access of data warehouse data is one of the most effective uses of

warehouse data by the operational environment (Inmon, 1996:129). lnmon

(1 996:129-138) describes three examples of indirect access of data warehouse

data, but in this study only one of these examples will be discussed, namely the

air commission calculation system.

In this example (Inmon, 1996:129-A31) a travel agent contacts the airline

reservation clerk on behalf of a customer. The main concern is the commission

paid by the airline. If the commission rate is high, the airline could secure

business, but lose money in the process. If the airline pays commission under

average, it could lose business. It is therefore very important to carefully

calculate the commission rate.

The business process between the client and airline should be as short as

possible, because the airline will lose business if response time is poor.

Interaction between the travel agent and airline clerk should consequently be

as fast as possible. The optimal commission for this example can be computed

by using two factors; existing bookings and the load history of the flight, that

"yields a perspective of how the flight has been booked in the past" (Inmon,

1 996: 1 30).

The calculation of the appropriate commission is done offline to improve

response time. Offline calculation is done periodically and a small, simple table

to access flight status is created. When the airline clerk interacts with the travel

agent, a quick decision can be made by just looking at the current booking and

flight status table. The data warehouse is deployed after alpha and beta testing

has been completed and the data warehouse is populated from the existing

system.

lnmon (1996:283) describes a feedback loop (see fig. 3.15) after the data

warehouse has been deployed (data warehouse populated from existing

system). The DSS analyst uses the data warehouse and analyses new

requirements that has been provided to the data architect. The data architect

makes appropriate adjustments to satisfy the requirements.

data
warehouse

existing systems \ environment

data k b ; X analyst

Figure 3.1 5: Feedback loop between data architect and DSS analyst (lnmon,

1996:283).

3.7 Kimball versus lnmon

Kimball and lnmon have different views towards their respective architectures,

data warehousing lifecycles and it's main stages; requirement collection, data

modelling, data staging and data access and deployment, as described in par

3.5 and 3.6.

In par.3.3, Kimball's definition of a data warehouse differs from Inmon's

definition. Kimball describes a data warehouse as a collection of data marts,

where every data mart represents a business process or dimensional mode,

while lnmon describes a data mart as an interface between the end-user and

the data warehouse.

Inmon's (1996) approach towards the development of a data warehouse follows

a data-driven methodology, were data is seen as most important. lnmon

believes that the data warehouse should be built using the existing operational

system. After successful population of data into the data warehouse, reports

are created. After report generation, requirements will be known and

implemented using the data architect and DSS analyst feedback loop. Kimball

(1 998), on the other hand, follows a requirement-driven methodology where

requirements should first be collected from trusted sources to develop a data

warehouse that will be of value to business users. After successful deployment,

maintenance is done to ensure that the data warehouse is up to date.

It is clear that Kimball works with a top-down approach (starting with

requirements), while lnmon follows a bottom-up approach (ending with

requirements). Other differences between the approaches include that the

conformed dimensions of Kimball are denormalised, while lnmon prefers to use

a highly normalised central database model. The dimensions of Kimball used in

the data marts are the dimension tables themselves, and not copies of

conformed dimensions, while Inmon's data marts store a second copy of the

data from the centralised data warehouse tables that take up extra space.

Kimball et a/. (1998:153,347) refer to the data warehouse bus as a set of

conformed dimensions.

In examining the data warehousing architecture, it is clear that both Kimball et

a/. (1998) and lnmon (1996) obtain source data from legacy batch and online

operational systems and specialised operational data stores (ODs). lnmon and

Kimball mainly differ in the arrangement of data in the data warehouse itself.

lnmon uses the hub-and-spoke architecture, while Kimball uses the bus

architecture. Inmon's approach uses an atomic level, third normal form (3NF)

relational format in which to store extracted and transformed data, while

Kimball's approach uses a multi-dimensional style containing dimensions and

facts (Lawyer & Chowdhury, 2004:2).

Lawyer and Chowdhury (2004:2) examined the differences between the Kimball

and lnmon approaches. Kimball's approach has data pre-arranged by certain

dimensions according to the desired output, while Inmon's approach is

considered application neutral. Kimball's "enterprise" data warehouse is the

sum of all individual multi-dimensional data str~~ctures; while Inmon's

"enterprise" data warehouse has data that covers most data subjects from the

organisation. Data is summarised by higher-level dimensions in Kimball's

approach, while in Inmon's approach data is kept at the lowest level of detail,

meaning that each transaction wo1.11d be stored in 3NF (normal form). In

Kimball's approach, data is arranged in an application or data-view-specific

manner, while in Inmon's approach data is arranged according to the rules of

normalisation and remain application and data-view-independent. Legacy

system data is neither integrated nor standardised. Sourcing the legacy system

would require s~lmmarising and arranging facts by their dimensions and

standardisation in Kimball's approach, while lnmon uses only standardisation

when outsourcing takes place. Authoring SQL to access data arranged in a

multi-dimensional database would be a very difficult task using Kimball's

approach. Inmon's approach, on the other hand, will simplify the process of

accessing the multi-dimensional str~~cture and performing drilling navigation.

Lawyer and Chowdhury (2004:2) describes another advantage of Inmon's

approach as "the ability to create dependent data marts from the atomic data

warehouse for those situations where a repetitive reporting requirement or

application-specified need exists".

lnmon (1996:87) prefers the use of ERD data models because it reflects the

different views of people across the organisation, as well as a star-join, for it will

lead to a successful data warehouse. Kimball prefers the use of a star-schema,

where every star-schema is a dimensional model or data mart, presenting a

single business process that contains a centralised fact table and surrounding

dimension tables. The data warehouse is thus built out of a collection of

interacting dimensional models.

TDWl (2004:27) identifies some differences between Inmon's data warehouse

and Kimball's data warehouse by looking at key aspects in the development of

a data warehouse:

Table 3.2: Kimball vs. lnmon (TD WI, 2004:27)

Intake

lntegration

Distribution

Access

Delivery

In practice, organisations usually pick one approach depending on assumed

preference, budget, consultant or vendor recommendation, existing

technologies or advantages of the approach.

In this chapter, BI was firstly discussed using the BI framework and explaining

data warehousing as a tool of BI. Secondly, a data warehouse was defined,

with Kimball et a/. (1998:27) stating that a data warehouse consists of a

collection of data marts, and lnmon stating that a data warehouse is subject

oriented, integrated, time variant and non-volatile. After defining a data

warehouse, the basic terms associated with data warehousing were defined in

par. 3.4.

lnmon warehouse

Fills the intake role, but

may be downstream from

staging.

Primary integration data

store with data at the

atomic level

Designed and optimised for

distribution to data marts

--

Subsequently the two different approaches of Kimball et a/. (1998) and lnmon

Kim ball warehouse

Fills the intake roll - downstream

from "backroom" transient

staging

lntegration through standards

and conformity of data marts

Distribution is insignificant

because data marts are a sub-

set of the data warehouse

May provide limited data

access to some "power"

users

Not designed or intended

for delivery

business access and analysis

Supports delivery of information

to the business

(1996) were described by examining six focus areas, namely architecture (par.

3.5.1, 3.6.1), data warehouse development lifecycle (par.3.5.2, 3.6.2), collecting

of requirements (par. 3.5.3, 3.6.3), data modelling (par. 3.5.4, 3.6.4), data

staging (par.3.5.5, 3.6.5) and data access and deployment (par. 3.5.6, 3.6.6).

Kimball's approach is explained as a requirements-driven approach, where

collecting requirements are viewed as the most important, and completed first.

Inmon's approach is explained as a data-driven approach, where data is seen

as most important and requirements are identified after the data warehouse has

been developed.

In conclusion, lnmon and Kimball's approaches were discussed by examining

their differences and contrasts in both view and design. One of these

approaches will be used to develop a data warehouse using a single or

selected combination of ASDMs.

In the next chapter, the researcher aims to create a framework in which the

seven ASDMs, discussed in chapter 2, will be evaluated by investigating their

suitability to each phase of data warehouse development for lnmon and

Kimball's approaches, if possible.

CHAPTER 4

THEORETICAL DEDUCTIONS: SUITABILITY OF ASDMs

FOR DATA WAREHOUSE DEVELOPMENT

4.1 Introduction

In this chapter, the suitability of the use of ASDMs in data warehousing will be

investigated form a theoretical point of view. The general findings associated

with the characteristics of all ASDMs in data warehouse development will be

explained (par 4.2.1), including the applicability of the nine core values of all

agile processes, as explained in par. 2.3. Next the explanation of each ASDM1s

suitability towards data warehouse development will follow. The findings will be

paraphrased under each ASDM for Kirr~ball et a/. (1998) and Inmon's (1996)

approaches.

The words increment and iterative will be used frequently in this chapter. An

increment in a data warehousing project can be seen as a data mart or a sub-

data mart (sub-division of a data mart), while an iteration can be viewed as a

repeatable process in a specific increment. In addition, when referring to a data

mart, it includes everything associated with the data mart: the diagram of the

requirements into a star-schema (data mart); the design and data staging of the

star-schema; the graphical user interface (GUI) associated with the data mart,

and the reports that should be generated according to user specifications.

Therefore a sub-data niart car1 be any of the above mentioned sub-divisions of

the data mart.

4.2 Kirnball's approach

In this section, each of the seven ASDMs discussed in chapter 2 will be

investigated from a data warehousing point of view. Their suitability for the use

in data warehouse projects will be described in terms of suitable and unsuitable

characteristics, The discussion of each ASDM will be done according to the

data warehouse lifecycle phases presented by Kimball e f a/. (1 998).

4.2.1 Agile system development methodologies (ASDMs)

The ASDMs investigated in chapter 2 has shared characteristics with regard to

their suitability for data warehouse usage. These shared characteristics and

their suitability for data warehousing is discussed in this section according to

the phases of the data warehouse lifecycle proposed by Kimball et a/. (1 998).

4.2.1 .I Collecting requirements

Kimball e f a/. (1998) follows a requirements-driven methodology, i.e.

requirements should be collected from trusted sources before data warehouse

development takes place, providing an orgal- isa at ion with readiness for a data

warehouse project.

Suitable Characteristics

It would thus be possible to use ASDMs that follow the same approach, where

customer satisfaction is one of the main concerns. Although different ways to

collect requirements exist, Kim ball e f a/. (1 998:97) suggest that interviews or

facilitated sessions are conducted in order to collect significant information to

develop a data warehouse of value to the business users. Interviews, although

time consuming, lead to detailed data, as well as participation from different

levels in the organisation. High-level requirements are given during interviews

that will be the primary requirements to complete, after which extra

requirements can be added by the users as development progresses. This

emphasises the fact that high-level requirements are frozen early in the project

to allow detailed investigation procedures, done by the team, to determine the

consequences of the primary identified requirements (one of the values of agile

processes).

Using ASDMs in data warehouse development will ensure early customer

identification, resulting in early customer involvement and earlier requirements

identification, making users actively involved throughout 'the development

process (one of the core values of agile processes). F~.~rthermore when using

ASDMs, any means possible can be used to collect requirements, including

techniques such as facilitated sessions and interviews explained by Kimball et

a/. (1 998:97).

ASDMs make use of frequent incremental delivery, which leads to continuous

customer involvement that result in feedback on the implemented requirements,

emphasising the fact that frequent delivery has the highest priority (one of the

core values of agile processes). Furthermore, ASDMs promote the availability

of users to keep developers on track to satisfy requirements. This emphasises

one value of agile process where, "users must be actively involved throughout

the development process'' (Hislop et a/., 2002:177).

Unsuitable Characteristics

ASDMs do not explicitly identify techniques that can be used during

requirements collection. Furthermore, ASDMs primary concern is not on

collecting requirements, they rather focus more on the development process by

managing the process and constructing the product that will satisfy user

requirements.

4.2.1.2 Data modelling

After collecting requirements, Kimball's approach suggests these requirements

be modelled into diagrams. The diagram suggested by Kimball et a/. (1998:194-

199) is a star-schema, representing a dimensional model or data mart.

Suitable Characteristics

ASDMs do not specify which data model should be used to model

requirements, as ASDMs are process models that mainly focus on customer

involvement and an iterative development process, not a data modelling

technique. However, ASDMs do state that projects have different

characteristics that must be accol-~nted for, and during a data warehousing

project a data model(s) is required. This will allow the team and users to

empower themselves to make their own decisions, by using a star-schema to,

model requirements, without the explicit approval of higher management (one

of the values of agile processes). It would consequently be possible to use a

star-schema to model requirements when ASDMs are considered for the

development of a data warehouse using Kimball's star-schema.

Star-schemas present two strengths that can make them applicable when

ASDMs are used in data warehouse development. Kimball et a/. (1998:148)

explains the first strength, where the predictive framework of a star-schema

"withstands unexpected changes in user behaviour". The second strength of

using a star-schemas, is that a star-schema "is gracefully extensible to

accommodate unexpected new data elements and new designs" (Kimball et al.,

1998:148). Graceful changeability has the advantage where no reporting or

query tools need to be reprograrrlmed to accorrlmodate the changes that was

made by users or developers. In other words "old applications can continue to

run without yielding different results'' (Kimball et al., 1998:148). Thus, the

graceful changeability of Kimball's star-schemas makes it applicable for all

ASDMs to be used during the data modelling phase, as requirements can be

added after development took place.

Unsuitable Characteristics

ASDMs do not provide explanations of star-schemas and ERDs as data

modelling techniques. However, experience proves that system development

is affected and limited by the "characteristics of the project, the people in the

team and the organisation in which it works" (Lindstrom & Jeffries, 2004:50).

4.2.1.3 Data staging

During data staging, data is extracted from the data source system,

transformed according to data warehouse standards and cleansed before

loading it into the data warehouse. The 10 steps performed to clean data during

data staging are explained in par. 3.5.5.

Suitable Characteristics

Kimball et al. (1998:630) state that the loading process can be done iteratively.

Data stagirlg (ETL-process) can be done in iterations when using an ASDIM as

an SDM.

The ETL-process of Kimball's approach can be viewed as the development

process of every ASDM. ASDMs imply that team members may use their own

tools and techniques to get the job done that empowers the team (one of the

values of agile processes). Kimball et al. (1998:612) also agree that tools can

be used to clean the data during the data staging process (i.e. step two of the

data staging process).

ASDMs focus on developing a project in increments. Each individual increment

can be completed iteratively so that altered and new requirements can be

satisfied during the current increment. The idea of developing in increments can

be applied during data warehouse development, i.e. the collection of data

marts, where every data mart can be regarded as an increment or a set of

increments (sub-data marts) that must be developed. Each data mart is

developed and deployed separately. Each data mart can then be developed

and delivered (if the data mart is very big) incrementally and rapidly,

emphasising the fact that rapid iterations and incremental delivery are key to

converging on acceptable business solutions (one of the values of agile

processes). New and altered requirements can be added as development

progresses for a specific data mart, which emphasises that reconstruction of

previous data mart increments and iterations must be possible (one of the

values of agile processes). This approach will result in a data mart (data

warehouse) that is up-to-date where most user and technical requirements are

fulfilled.

With this said, the ETL-process for every data mart can be divided into

iterations (or increments if a large data warehousing project is developed,

where the extraction, transforniation and loadirlg processes are viewed as

increments that can be done iteratively). This means that the extraction,

transformation and loading process is completed iteratively to ensure that

altered technical and user requirements are met in every increment. New and

altered requirements can always be added in iterations as the data marts

evolve.

The correct data must be extracted, transformed, and loaded, when using

ASDMs to meet requirements in a data warehousing project.

Users can be either on-site or partially available (depending on how

requirements are collected) while data staging takes place to assist developers

in extracting, transforming and loading the correct data that will satisfy the user

and technical requirements.

Unsuitable Characteristics

ASDMs do not list tools that can be used during data staging, which has an

influence on its suitability within the data staging phase of Kimball's approach.

4.2.1.4 Data access and deployment

Access applications are created for business users in a manner that enables

them to locate the necessary data as speedily and easily as possible in order to

analyse the data to meet the users expectations. OLAP is used to create

applications where users can execute queries on the data warehouse. Before

deploying the data warehouse, alpha and beta tests must be completed before

the data warehouse is made available generally. Testing is not only performed

as part of implementation, it is interacted throughout the development lifecycle

where ASDMs are applied to data warehouse development (one of the values

of agile processes).

Deployment takes place when the data warehouse has been completed. At this

stage, end users are able to use the data warehouse and find it to be of value,

and to evaluate whether developers made the right decisions duriug

development. Users must be educated to gain maximum value from the data

warehouse. After successful deployment, by evaluating data mart deliverables

to determine its acceptable use (one of the values of agile processes), it is

iniportant to nianage and maintain the data warehouse and prepare it for

possible growth.

Suitable Characteristics

ASDMs show attractive characteristics in the implementation of a data

warehousing project. Incremental (sub-data mart) delivery to a data mart and

deployment of a data mart as a whole in data warehousirrg is key to convergirrg

an acceptable business solution, the latter being one of the nine principles

reflecting the core values of agile processes.

Using ASDMs in data warehouse development and deployment, a small

release can be viewed as a data mart that is delivered or implemented,

becoming part of the main data warehouse. Before a data mart is implemented

into the main data warehouse, it must be tested to identify whether

requirements are met or not.

Duriug the implementation phase of all ASDMs, the system is implemented and

the operation of the system, or data warehouse for a data warehousing project,

is transferred to the users. The users are trained to use the system effectively.

If implementation occurs over a period in a data warehousing project, it may

also be done in increments. If new requirements are identified after a data mart

have been deployed; it can be added by a simple iteration, meaning that

backtracking or reconstruction of previous versions of data mart development

must be possible (one of the core values of agile processes). The data

warehouse will then be fully deployed if all increments (data marts) are

successfully implemented for customer use. The data warehouse will only be a

success if there is cooperation and collaboration between all team members

and users (one of the core values of agile processes).

Unsuitable characteristics

ASDMs do not specify a specific way in which data should be accessed, which

reporting tools should be used, in which ways users should be educated to use

the data warehouse effectively or how a data warehouse should be managed

and maintained to prepare it for possible growth. These are disadvantages of

all seven ASDMs.

The general discussion on the suitability of ASDMs to data warehousing is now

followed by individual explanations of how the unique characteristics of each of

the seven chosen ASDMs can be applied on Kimball's data warehousing

approach.

4.2.2 Dynamic Systems Development Methodology (DSDM)

This discussion of the suitability of the specific features of DSDM will be done

according to the lifecycle phases of Kimball et a/. (1998).

4.2.2.1 Collecting requirements

DSDM state that any means possible can be used to collect requirements.

DSDM mainly focuses in keeping time and resources fixed while adjusting

functionality accordingly, and keeping requirements in mind (Abrahamsson et

a/. , 2002:63).

Suitable Characteristics

Because DSDM recognizes requirement collection as important during the

business study where requirements are collected using facilitated workshops, it

would be possible to use DSDM during the collecting requirements phase of

Kimball's approach, as Kimball et al. (1 998) also use facilitated workshops.

DSDM uses a technique called time boxing, to handle flexibility of

requirements.

As an output of the business study, early client identification ensures early

customer involvement (Kimball et al., 1998:97; Abrahamsson et al., 2002:65),

and earlier requirement identification.

What makes DSDM even more suitable is that it is a people-oriented

methodology, i.e. the requirements given by users are viewed as important.

Unsuitable Characteristics

DSDM, however, also has characteristics that make it unsuitable for collecting

requirements during data warehouse development. One problem is that the

primary focus is not collecting requirements. F~~rthermore, single interviews are

not discussed. This implies that no interviews are scheduled or sequenced, and

no kick-off meetings are held.

In addition, DSDM uses prototypes to capture information rather than detailed

documentation, while Kimball et a/. (1 998) promote the use of documentation.

(Highsmith, 2002a:8).

4.2.2.2 Data modelling

The DSDM Consortium (2003) states that DSDM can be used in a data

warehousing project. This includes the use of data modelling techniques such

as star-schemas and ERDs.

Suitable characteristics

According to the DSDM Consortium (2003), DSDM products include a logical

data model that contains a star or snowflake schema, or cube definitions

focusiug on the semantic integrity of ,the information presented to the user.

A star-schema represents a single business process. Because of the business

study, the business area is defined by describing the affected business

processes. These processes can be modelled into star-schemas when using

Kim ball's approach.

During the functional model iteration phase, the identified business process and

requirements can be modelled by developing dimensional models (i.e. fact and

dimension tables) that will satisfy and diagram user requests and requirements.

During the design and build iteration the fact and dimension tables (data mart)

call be built and implemented iteratively.

Avison and Fitzgerald (2003:286) suggest a modelling theme (star-schema or

ERDs) to be used during system (data warehouse) development.

Unsuitable characteristics

Although the DSDM Consortium (2003) states that DSDM products include

star-schemas, a star-schema (data modelling technique) is not mentioned in

the six core techniques of DSDM. Authors of their methodologies will usually

state that their methodologies will work in all kinds of projects, including

modelling requirements into diagrams (star-schemas), as is the case with the

DSDM Consortium (2003).

4.2.2.3 Data staging

DSDM provides several suitable characteristics where data staging can be

implemented using Kimball's approach.

Suitable characteristics

The ETL-process is incremental, i.e. requirements can be updated and added

as development takes place. In addition, the functional model iteration phase

can be combined with step 'l (high-level plan) of Kimball's data staging process

by bdilding a schematic format (on one page) containing indications as to

where the data has originated as well as the requirements identified in the

business study phase. The schematic format can be a source-to-target map in

a data warehousing project. A source-to-target map is a technique used by

Kimball et al. (1998) to diagram where the data in a star-schema originates

,from using the ERD tables of the operational system.

The ETL-process can be done iteratively during the design and build iteration

phase of DSDM during which the requirements are designed and satisfied.

Also advantageous is the selection of tools that can be used (Avison and

Fitzgerald, 2003:286, 331):

Oracle (Oracle Database Management System, Designer/2000, Developer)

Business process modelling

UML profile

Graphical simulations of UML designs

Database modelling and code generation

Design patterns and optional component-based techniques

Scalable enterprise repository

Intelligent document generation

Traceability and impact analysis

Java, Visual Basic, C++ code synchronization

Integration with a range of other tools

The techniques that can be used are (Avison and Fitzgerald, 2003:154,286):

UML

Joint application development (JAD)

Unsuitable characteristics

It is a disadvantage that not all of the identified tools by DSDM are suitable for

data staging during data warehouse development.

4.2.2.4 Data access and deployment

During the implementation phase of the DSDM lifecycle (fig 2.2), the system is

implemented and the operation of the system, or data warehouse for a data

warehousing project, is transferred to the users (DSDM Consortium, 2005).

Suitable characteristics

This implementation phase is repeated for every data mart in a data warehouse

project until all data marts are deployed as a whole, forming a data warehouse.

During the implementation phase, the incremental review document can be

used to discuss the state of the system by testing it, and preparing it for further

growth and maintenance. Output of implementation is a user manual that can

train the users to use the implemented data warehouse effectively. The project

review document can be used to know what to maintain in the developed data

warehouse, as well as what preparations should be made for possible growth.

During the post-project phase, the system is thoroughly tested and maintained

to ensure that the deployed data warehouse continues to be valuable and of

use. The output of the design and building phase is a tested system (data

warehouse) that meets at least the most irr~portant requirements set by users. A

big advantage of DSDM is that the system is constantly being tested throughout

the development process.

Incremental development and deployment is used to complete, combine, and

test prototypes of sufficient quality and to release them safely to users (DSDM

Consortium, 2005).

Unsuitable characteristics

DSDM is more concerned with developing what the customer expects than with

deploying the system or data warehouse in a predefined way.

4.2.3 Scrum

4.2.3.1 Collecting requirements

Using Scrurn, any means possible can be used to collect requirements from

software developers, users, and experts. Techniques such as facilitated

sessions and interviews can thus be used in a Scrurn project, therefore making

it possible to use Scrurn during the collecting requirements phase of Kimball's

approach.

Suitable characteristics

The fact ,that Scrurn is requirements driven (i.e. requirements are viewed as

very important throughout the Scrurn lifecycle), makes it suitable within the data

warehouse development process, because Kimball et a/. (1998) also follows a

requirements-driven methodology where requirements can change. These

changeable requirements can be managed and implemented within the

evolving system using Scrurn.

During the pre-sprint planning phase, requirements are identified and extracted

from the prioritized product backlog to the sprint backlog to be completed

during the next sprint (Cohen et al., 2003:14).

The requirements set by users, managers and experts during interviews are

satisfied during a sprint (30 days). Wi,th Scrurn, 15 minute meetings every day

ensure that requirements are met and cause new requirements to be

discovered. Another suitable characteristic is that after each sprint a post-sprint

meeting is held that may result in the identification of new requirements to

improve the system or data warehouse. The product backlog must be

constantly updated and prioritized as new requirements are identified.

Unsuitable characteristics

The fact that Scrum focuses more on team empowerment (Huijbers et. al.,

2004:19) than collecting requirements, can make it unsuitable for collecting

requirements during a data warehousing project. This focus implies that

commur~ication is more important than collecting requirements. In addition,

Scrum focuses on the development process by managing the process and

constructing the product.

4.2.3.2 Data modelling

The data warehouse lifecycle components of Kimball's approach can be

incorporated into the building blocks of Scrurn, firstly by using a sprint to model

requirements into an acceptable star-schema.

Suitable characteristics

During the first sprint the key pieces (building blocks), including the initial

system framework (i.e. star-schemas in the case of data warehouses),

technological requirements (i.e. programmes used to develop a data

warehouse), and business functionality are estimated and completed. Even

more advantageous is that because requirements have a tendency to change,

updated requirements can be modelled into the star-schemas using iterative

development of Scrum.

Scrurn has been found successful in exporting and importing data in a data

warehouse during a project in a university environment (Mahnic & Drnovscek,

Unsuitable characteristics

S c r ~ ~ m does not explain star-schemas or other data modelling techniques to be

used during project (data warehouse) development, which diminishes its

suitability in the data modelling phase.

4.2.3.3 Data staging

In order to give users what they ask for in a data warehousing project, the

correct data must be extracted, transformed and loaded. An aspect that

distinguishes Scrurn from other ASDMs is that a Scrurn meeting is held every

day and development takes place in sprints. A sprint in a data warehouse

project can be seen as an iteration of an increment (sub-data mart) in large

projects, or an increment of a data mart in a small project. The data mart can

thus be defined in sprints, i.e. a specified workload is completed during each

iteration (sprint) to deliver a sub-data mart that becomes part of the data mart.

Scrurn doesn't specify whether tools or manual written data staging programs

can be used during data staging, although Scrurn recognises that every project

has its own characteristics and degree of uncertainty. Thus, it would be

possible to use data staging tools or manually written programs to clean data

during the E'TL-process of a data warehousing project. Scrurn can be used

during the ETL-process in several ways.

Suitable characteristics

An advantage of Scrurn is that it accepts the unpredictability of the

development process. This means the ETL-process can be used during the

development of a data warehousing project.

System development using Scrurn involves requirements, resources,

technology, and time constraints. In this instance, technology can be viewed as

data staging tools that can simplify the ETL-process.

Abrahamsson et a/. (2002:29) explains the product backlog as part of the

planning phase, i.e. as a sub-phase of the pre-game phase, where team,

resources, controlling issues, and tools are defined. These defined tools, are

the tools that can be used during data staging to extract, clean, and load the

data.

By using Scrurn during a data warehousing project, the requirements can be

extracted from the product backlog to the sprint backlog to be completed and

transformed during the next sprint. After successful completion of the sprint, the

requirements that have been met can be loaded, to become part of the

increment (sub-data mart) that is being developed in large data warehousing

projects. The sprint backlog and sprints are part of the development process

(Abrahamsson et al., 2002:28), thus the ETL-process can be executed using

the product backlog and sprints.

To keep track of the ETL-process with Scrurn, short 15 minute meetings can be

held daily to identify and solve problems during the development of a

demanding data warehousing project. Post-sprint meetings can be held to

analyze whether the iterative (in small projects) or incremental (in large

projects, where every increment (extract, transform or load) is developed

iteratively) ETL-process has been successful. If it is successful, the next sprint

is done by extracting the next requirements from the product backlog. If not, the

sprint(s) is repeated.

Scrurn can be adopted in existing and new projects (Schwaber & Beedle,

2002:59).

Unsuitable characteristics

However, Scrum does not list tools as DSDM that can be used during data

staging, which has an influence on its suitability within the data staging phase

of Kimball's approach.

4.2.3.4 Data access and deployment

Scrum does not only have the ability to design a new project, but it can also be

adopted in existing projects. As explained in par. 4.2.3.3, the characteristic that

distinguishes Scrum from other ASDMs, is that development is done in sprints.

If requirements change or new requirements need to be added, it can be done

using a simple iteration.

Suitable characteristics

Scrum has a built-in phase where implementation and maintenance takes

place, called the post-game phase. The architecture phase, which is a sub-

phase of the pre-game phase, includes the changes, and the problems these

changes may cause in implementing the product backlog if the implemented

system (data warehouse) requires enhancement (Abrahamsson et al.,

2002:29).

Planning, yet another sub-phase of the pre-game phase, "includes the definition

of the system being developed, project team, tools and other resources, risk

assessment and controlling issues, training needs and verification management

approval" (Abrahamsson et al., 2002:29). Planning can thus be used to plan a

training program for the users.

The post-sprint meeting as described in par. 4.2.3.3 can be used to identify

whether incremental implemented design meets the expectations of the users.

One of the key principles of Scrum is that the system must be constantly tested

and documented.

Unsuitable characteristics

Scrum is not clear about a specific way in which a data warehouse should be

implemented, because it is more focused on the development and success of

development than on the implementation process.

4.2.4 Exfreme Programming (XP)

4.2.4.1 Collecting requirements

XP mainly uses story cards to collect requirements. When facilitated sessions

or interviews (any data collection technique can be used by XP) are used in an

XP project, the requirements mentioned can be written on story cards to help

developers apply their minds to what is expected from the data warehouse. The

mentioned requirements can also be prioritized much easier using story cards.

Suitable characteristics

XP's suitability in the collecting requirements phase of Kimball's data

warehouse firstly lies in the fact that requirements can be collected with story

cards.

XP regards requirements as very important, as they are addressed in the four

values (communication, simplicity, feedback, and courage) and four activities

(coding, testing, listening, and designing) of the methodology. This ASDM

focuses on communication between the team and its users to gather

requirements using techniques such as interviewing or facilitated sessions.

Simplicity requires that the simplest system (or data warehouse) that will satisfy

the requirements set by business users and sponsors be developed.

During feedback, users define their requirements on story cards and

developers estimate the correct approach for immediate feedback to users on

the work they will do to satisfy these customer requirements.

Developers furthermore need courage to develop a data warehouse that fulfil

most requirements, because the process consumes time and acquires

intellectual skills.

Another characteristic that makes XP suitable is that pair programming is used

to generate code, code that does what it is designed to do in order to satisfy

user requirements. Developers should listen to clients to know which

requirements should be tested (Hislop et al., 2002:174).

Story cards are used to simplify listening so designers can design the specified

user requirements. Designing is a continuous activity of incorporating new

requirements into the evolving and already existing system (data warehouse).

Requirements are one of the main building blocks within the XP lifecycle and

twelve XP practices, as they are integrated throughout the lifecycle.

Lastly, the XP methodology is suitable for data warehousing because users are

always on-site to keep developers on track to satisfy requirements. These

requirements are visible throughout the rhythm of an XP project, i.e. where

requirements are written on story cards, discussed, implemented and tested.

Unsuitable characteristics

Kimball et al. (1998) mainly collect requirements using facilitated sessions or

interviews, while XP uses story cards that must be given for the users to write

down these requirements.

4.2.4.2 Data modelling

XP's twelve core practices have the potential to incorporate requirements

gathered into a data model during a data warehouse project.

Suitable characteristics

Advantages of XP include that "simple design" (one of the twelve practices of

XP) can be accomplished by using star-schemas were requirements could be

modelled into an understandable format for users and developers.

"Refactoring", also one of the twelve practices of XP, can be accomplished

through using star-schemas to remove field and record duplication, improving

communication and by adding flexibility to a difficult design.

Furthermore, a star-schema can be used to organize and model requirements

in an organized fashion during the "planning game" (another practice of XP).

Because users are on-site the whole time (also one of the twelve XP practices),

new and adjusted requirements can be added to the dimensional models (star-

schemas).

Unsuitable characteristics

A disadvantage is that XP cannot be adopted in all kinds of projects. Aveling

(2004:98) interviewed four companies that struggled and failed to implement

some of the practices of XP. Aveling (2004:94) states that "most existing

studies are the post-hoc assessments of the authors' adoption of XP", and

further explains that "most organisations adopt XP only partially".

4.2.4.3 Data staging

XP shows great potential to work during the development of a data warehouse,

and especially during the ETL-process. In fig. 2.6, XP's lifecycle shows how

requirements (story cards) are satisfied by programming, testing and releasing

iteratively. XP uses pair programming where errors can easily be identified and

corrected during the transformation and data cleansing process. Graziano

(2005:5) emphasises that pair programming can be used during the ETL-

process, especially with Oracle Warehouse Builder and the input of PLlSQL

code into Oracle Designer. XP is suitable for use during the ETL-process in

various areas.

Suitable characteristics

Developing a data warehousing project using XP is possible using an

incremental (or iterative - for small projects) ETL-process and "continued

integration" (one of the twelve core practices of XP). "Coding", one of the four

activities of XP, is seen as a learning activity where the requirements are coded

and transformed to satisfy users' needs in a data warehousing project.

"Designing", another of the four activities of XP, is a continues activity of

incorporating new designs of the ETL-process into the existing system (data

warehouse). Development is incremental, i.e. development takes place in

"small releases" (one of the twelve core practices of XP), one sub-data mart at

a time, until the data mart is deployed as a whole becoming part of the existing

data warehouse.

The "metaphor", another core practice of XP, guides the design, meeting user

requirements by loading data that is of value. The core practice, "testing"

ensures that the ETL-process is followed correctly. It entails that programmers

ensure that the code that has been written, does what it is designed to do.

During the refactoring core practice, duplication is removed by using data

staging tools. Another advantage is that code quality can be increased trough

using "collective ownership" (Lindstrom & Jeffries, 2004:49) when developing

the GUI (Graphical User Interface) of the data warehouse.

"Coding standards", another core practice of XP, ensures that the

transformation process in a data warehousing project remains the same

throughout the project.

Unsuitable characteristics

There are aspects of XP that could make it unsuitable for use in the ETL-

process of a data warehousing project. "Collective ownership" (core practice of

XP) may delay the data staging process if new developed data staging code is

changed by inexperienced programmers.

4.2.4.4 Data access and deployment

XP delivers the system in small releases or increments. A "small release" can

be seen as logical grouping of tasks or requirements (increment) that should be

delivered iteratively to a sub-data mart that becomes part of a data mart in a

large data warehousing project, where after the data mart is deployed as a

whole to become part of an existing data warehouse. Before a small release

(sub-data mart) is implemented, it must be tested to identify whether

requirements are met or not. In small projects, using XP during data warehouse

development and deployment, a "small release'' can be viewed as a data mart

that is deployed, becoming part of the main data warehouse.

Suitable Characteristics

XP shows acceptable characteristics for implementing a data warehouse in the

various ways. Simplicity, one of the four values of XP, can be achieved by

keeping the system easy accessible for users, using maintenance, and by

upgrading the data warehouse regularly.

One of the fifteen principles that support XP1s values emphasizes "teaching"

and "learning". This entails teaching users to use the data warehouse

effectively. "Testing", one of the four activities and twelve practices of XP, is a

continuous activity that takes place throughout the development process of XP

and data warehousing. Another advantage is that in XP, "designing", which is

also a basic activity of the methodology, is a continuous activity of incorporating

new requirements into the evolving system or data marts.

By "listening" (an XP value) to user expectations, designers will know how to

manage the data warehouse to deploy an effective data warehouse.

Every time a task has been completed, it is integrated into the system or data

mart. Then tests are run. The data marts must pass these tests for the changes

in code to be accepted (Abrahamsson et a/., 2002:24; Cohen et a/., 2003:12;

Lindstrom & Jeffries, 2004:48). After this is done, users of the data warehouse

can be trained to gain easy and valuable access to the data warehouse.

Unsuitable characteristics

No specific way of implementation is specified by XP. This is necessary when

employees have to continue working on the old existing system.

Kimball et a/. (1998) promotes documentation and a user manual, while XP is

"lite" and prefers that documentation be cut away. Furthermore, XP believes a

user should be trained to use the data warehouse effectively instead of giving

the user a user manual.

4.2.5 Feature Driven Development (FDD)

4.2.5.1 Collecting requirements

A feature is the primary component that drives development in an FDD project.

Features in FDD can be viewed as requirements gained from trusted sources

that must be fulfilled in the course of a project. FDD does not explicitly state

which techniques should be used during the process of collectiug requirements,

as long as the requirements come from trusted sources. Thus, it would be

possible to use facilitated sessions or interviews to gather requirements

(features) in a data warehousing project. These features are then prioritized in

a features list and grouped in feature sets to be developed.

Graziano (2005:4) states that a feature set may be equivalent to a subject area

or data mart, or a sub-division thereof in a data warehousing project. Using an

agile approach, the data warehouse can then be developed in sub-feature sets

or sub-subject areas (sub-data marts) in large data warehousing projects

(Graziano, 2005:4). This holds that a data mart (in small projects) or sub-data

marts (in large projects) can be developed in iterations. The sub-data marts can

then be delivered incrementally to the data mart, where after the data mart is

deployed as a whole, instead of modelling and developing the whole data

warehouse all at once.

Suitable characteristics

When it comes to suitability, FDD has several positive characteristics. FDD's

features contain requirements written in a language understandable to all

parties associated with the project (like XP's story cards).

As in Kimball's data warehouse, FDD firstly identifies requirements and

develops an overall model where users, sponsors and other role-players know

the specified requirements. During the process of "building a feature list", the

features (requirements) are grouped together, each group representing a

specific domain. The collected feature list is then prioritized and assigned to

chief programmers responsible for meeting the assigned requirements.

During the "design by feature and build by feature" phase a feature set (data

mart) is selected, designed and tested in increments (data marts) before

becoming part of the main system (data warehouse).

Unsuitable characteristics

FDD primarily focuses on the design and building phases of the software

development process (Abrahamsson et al., 2002:47), and not on the

techniques for collecting requirements. This could make the methodology

unsuitable for collecting requirements.

4.2.5.2 Data modelling

FDD as explained by Graziano (2005:4) can be used during the modelling as

well as the data stagiug phase of a data warehousing project. The data model

of a data warehouse can be modelled in some key areas of the FDD ASDM.

During the development of an overall model a star-schema can be constructed

in which all the requirements are encapsulated in the data model(s).

Suitable characteristics

FDD shows potential in several areas. During "domain object modelling" (a best

practice of FDD), a framework (star-schema) is developed to which features

can be added. One of the values that work best for developing a project using

FDD explains that FDD works for projects that have the ability to grow, similar

to data warehouses.

During the "build a feature list" phase, the features (requirements) can be

identified and represented through using star-schemas in data warehousing

projects. Star-schemas can be designed by collecting and diagramming a list of

features (requirements) into design packages. This forms part of the "plan by

feature" phase. During the "design and built by feature" phase the selected

features (requirements) are planned in more detail by developing the final star-

schema(s).

FDD has a high success rate in large projects (data warehousing projects), if

diverse talent is available (Highsmith, 2002a:6). FDD is also suitable for new

projects, projects in need of code upgrading, and projects that require the

development of a second version (Abrahamsson et al., 2002:54). This could

include data warehousing projects.

Unsuitable characteristics

FDD could be unsuitable because it primarily focuses on the design and

building phases of the development process and does not require a specific

data model (star-schema) to succeed (Abrahamsson et a/., 2002:47).

4.2.5.3 Data staging

By using FDD the data warehouse will be developed in feature sets, or, as

explained in par. 4.2.5.1, in data marts or sub-data marts (increments) in large

projects. When using FDD, the features can be selected from the feature list to

be planned, built, tested, and integrated as increments in the already existing

data warehouse.

Team h~~ddles, also known as morning roll calls, is a "concept that can

definitely be applied to data warehouse projects ... it keeps everybody in sync"

(Graziano, 20055). These team huddles, like the daily meetings of Scrum,

keep developers op to date on the progress of development and the data

staging process as the project progresses.

Suitable characteristics

By using FDD, a data warehousing project can be developed through an

incremental ETL-process. FDD focuses on the design and building phases of

the development process (Abrahamsson et a/., 2002:47), contributing to the

fact that it is an advantage when FDD is used to clean data during a data

warehousing project.

The ETL-process can be done during the "design by feature and build by

feature" phases where the features (requirements) are planned, built, tested,

and iteratively integrated within the existing system.

The best practices of FDD should be composed into features, planned - i.e.

decide what should be extracted, transformed and loaded - designed and

coded.

One of the core values of FFD is that the process must be "logical". The ETL-

146

process is logical, because it utilizes extraction transformation and loading. The

ETL-process has no "process pride" (core value of FDD), meaning that

developers other than the authors have proven FDD to be effective.

FDD has a high success rate in the development of new as well as large

projects (Highsmith, 2002a:6).

Unsuitable characteristics

FDD does not mention any tools or techniques that can be used during data

staging of a data warehousing project, which puts it at a disadvantage.

4.2.5.4 Data access and deployment

Using FDD, features can be iteratively designed, tested, and integrated to

deliver sub-data marts incrementally to a data mart, where the data mart can be

deployed to become part of the existing data warehouse in large data

warehousing projects.

Suitable Characteristics

FDD can be used for implementing a data warehouse, because "reporting

progress", one of the best practices of FDD, helps to maintain the system and

allows designers to produce a data warehouse of value to users.

FDD encapsulates best practices and incremental development to manage and

monitor the development process after deployment (Abrahamsson et al.,

2002:47; Hislop et al., 2002:175). This can be applied to data warehousing.

After successful completion of each iteration (i.e. the El-L-process and design),

including coding, testing and iteration, the current iteration becomes part of a

sub-feature set or increment (can be one of three increments: extract, transform

or load) in the ETL-process of a large data warehousing project.

During "design by feature and build by feature", the features (requirements) are

planned in more detail, built, tested, and integrated incrementally into the

system. This can be applied to data warehouse development where sub-data

marts are delivered incrementally to a growing data mart.

Unsuitable characteristics

FDD primarily focuses on the design and building phases of the development

process (Abrahamsson et al., 2002:47), and not on implementation. It does not

specify a method of implementation especially during the changeover period

when employees still have to use the existing system.

4.2.6 Crystal Clear (CC)

4.2.6.1 Collecting requirements

CC focuses on reducing documentation and promoting face-to-face

communication. Using osmotic communication (i.e. where developers work

closely together), developers encourage each other to fulfil the requirements,

and to make sure everyone fully understands what is expected from the project.

Suitable Characteristics

CC has several advantages, which makes it suitable for use within the

collecting requirements phase of Kimball's data warehouse. Crystal ASDMs

focus primarily on communication and people, i.e. requirements gained from

communication between the team and business users are seen as very

important.

In addition, Crystal ASDMs aims to address different kinds of project

requirements with different kinds of Crystal ASDMs. "Frequent delivery", one of

the seven CC properties, causes continuous customer involvement resulting in

feedback on the implemented requirements. Requirements that have not been

met, are identified and the project team is given time to eliminate the

deficiencies.

"Face-to-face communication" in CC is advantageous because it leads team

members to understand each other and the requirements that have to be

satisfied.

Unsuitable characteristics

The fact that CC may be too small for a large data warehousing project, could

constitute a disadvantage in the collecting requirements phase. CC is designed

for small projects where team members share the same office space to

enhance communication and help each other understand requirements better.

4.2.6.2 Data modelling

CC mainly consists of seven properties to enhance cornmunicatio~i and to

deploy a satisfactory product. CC does not define any techniques for modelling

requirements into diagrams such as Kimball's star-schema. It does, however,

state that projects have different characteristics that must be accounted for, and

during a data warehousing project a data model(s) is required. It would

consequently be possible to use a star-schema to model requirements if CC is

considered for the development of a data warehouse using Kimball's star-

schema.

Suitable characteristics

"Focus", one of the seven properties of CC, can be established by using ERDs

or star-schemas to keep the focus on the objectives (satifying collected

requirements) which will then be completed much quicker. Team members can

use their own techniques (star-schemas) and tools to satisfy the seven

properties of CC, techniques that may include star-schemas as every project

(data warehousing project) has its own characteristics.

Unsuitable characteristics

CC values "properties over techniques" (Huijbers et al., 2004:21). These

techniques, including ERDs and star-schemas, are very important for data

warehouse development. Consequently, CC c o ~ ~ l d be unsuitable in the data

modelling phase cycle.

4.2.6.3 Data staging

Examining the seven properties of CC, the methodology shows the ability to be

used during the El-L-process of a data warehousing project.

Suitable characteristics

Properties such as "frequent delivery" and "incremental (iterative) delivery"

emphasise that it may be possible to use these properties during the ETL-

process. To deliver frequently and incrementally, developers should extract,

transform, and load data iteratively in a data warehousing project. This agrees

with the suggestion of Kimball et a/. (1998:630) that loading should be done

iteratively.

Although CC does not state whether tools or newly developed programs can be

used to clean data, it accepts the uncertain nature of projects and suggests that

developers with enough experience use their own techniques and tools to get

the job done. It thus harmonises with Kimball et a/. (1998:612) who suggest that

tools are used during data staging (step 2 of the data staging process).

Unsuitable characteristics

As explained in par 4.2.6.2, CC values "properties over techniques'' (Huijbers et

al., 2004:21). CC also does not list any tools that can be used during data

staging - a disadvantage when using the methodology during data staging.

4.2.6.4 Data access and deployment

CC emphasises "frequent delivery". The only way of delivering frequently is by

delivering incrementally. It would thus be possible during a project to deliver the

data warehouse frequently and incrementally,

Suitable characteristics

Using "frequent delivery" and delivering on a regular basis (on of the six

standards of CC), working code are tested and implemented into the system.

During "reflective improvement" (property of CC), the system is monitored and

maintained to identify flaws while development and implementation continues.

Furthermore, CC has a technical environment where testing and controlling

tasks, e.g. making backups and merging changes, are executed during

automated testing, configuration management and frequent deliveries.

One of the six standards of CC requires a release to be tested by two users

before implementation within the existing system or data warehouse.

Unsuitable characteristics

As explained for all ASDMs, there is no specified manner of how data should

be accessed and implemented or which reporting tools should be used by CC.

4.2.7 Adaptive Software Development (AS D)

4.2.7.1 Collecting requirements

ASD uses JAD sessions to gather requirements. This entails that developers

and users meet to discuss ideas and product deliverables, and to enhance

communication. ASD does not state that facilitated sessions or interviews can

be used in conjunction with JAD sessions. During JAD sessions, the users are

brought into the development process as active participants (as with all ASDMs

that focus on user involvement), while during interviews and facilitated sessions

requirements are gathered before development takes place. It would thus be

possible to use a facilitated session or interviews before development takes

place to identify primary requirements, and to update requirements while

development takes place by implementing JAD sessions with users in a data

warehouse project where Kimball's approach is used.

Suitable characteristics

JAD sessions has an advantage where the collected requirements and ideas

can be brainstormed. During the "speculation" phase of ASD the uncertain

nature of complex problems should be recognized and developers should

determine whether the requirements could be satisfied.

During the project, in the "initiation step" (i.e. the first step of the adaptive cycle

speculation) requirements are identified and collected, after which the "project

time box" (duration of data mart) is determined based on the requirements set

by users. Teams can effectively work together (collaborate) if communication is

good and if they know what to do (requirements) and how to do it (satisfy the

requirements).

Furthermore, review practices ensure that requirements are met in the learning

phase. The "learning loop" can be used to identify new requirements in a data

warehousing project to be implemented within the data warehouse during the

learning phase.

One of the characteristics of an adaptive lifecycle is time boxing, where fixed

delivery times for iterative cycles are estimated to deliver satisfied requirements

(sub-data marts) and where requirements can be redefined.

A important advantage is that ASD can be used in large projects, such as a

data warehousing project, to deploy a product that is up to date and meets the

most requirements.

Unsuitable Characteristics

Because ASD identify only JAD sessions as a requirements collection

technique, it could make this methodology unsuitable within the collecting

requirements phase. Interviews and facilitated sessions are not mentioned by

ASD that is suggested by Kimball et a/. (1998:97).

4.2.7.2 Data modelling

Although ASD does not mention the use of star-schemas, ASD present areas

where a star-schema can be incorporated into a data warehousing project.

Suitable characteristics

ASD focuses on results. These results can be achieved using star-schemas to

model the requirements that should be satisfied in a data warehousing project.

"Speculation", which is part of the adaptive lifecycle, leaves room for

exploration. This may lead to the inclusion of star-schemas in a data

warehouse project.

Using ASD for large projects, a large volume of information must be collected,

analyzed, and applied to solve the problem. Star-schemas could be used in

data warehousing projects for analysis and collection. During the "project

initiation" phase, which is step 1 of adaptive cycle speculation, the requirements

should be represented by using star-schemas in data warehousing projects.

Unsuitable characteristics

ASD does not explicitly state how data should be modelled as it is more

concerned about collaborate teamwork and regarding every problem as a

learning activity to create opportunity.

4.2.7.3 Data staging

ASD does not specify a tool that can be used during transformation, as ASD

focuses mainly on collaboration, speculation, and learning activities. In using

ASD as an ASDM for data warehousing, it is essential to incorporate the El-L-

process.

Suitable characteristics

ASD focuses on results by meeting users' needs. In order to meet

requirements, the correct data must be extracted, transformed, and loaded

during a data warehousing project. In designing large and complex problems, a

large volume of information must be collected (plan what to extract), analyzed

(transformed) and applied (loaded) to solve the problem.

Developers should be able to adapt by focusing on "learning". The best way to

learn is to transform data in a data warehousing project to see what the data

can present to the users. Development is a learning process because

developers learn from their mistakes.

During the adaptive lifecycle activities, "project initiation" and "adaptive lifecycle

planning" (see fig. 2.12) can be replaced by planning what should be extracted

to satisfy user requirements in a data warehousing project. The transformation

process (see fig. 2.12) can replace "concurrent component engineering" during

a data warehousing project. "Quality review", and "final QIA and release" (see

fig. 2.12) can be performed iteratively where new and changed requirements

can be identified.

The ETL-process can be executed using "timeboxes" and "release cycles". In

large data warehousing projects the ETL-process can be divided into

increments (extract transform and load) where every ETL increment is

developed in timeboxes (iterations) and delivered to the data mart in release

cycles. The data mart can then be deployed as a whole in a data warehousing

project.

Using component based development, which is one of the characteristics of the

adaptive lifecycle where a group of features to be developed are defined, the

ETL-process can be done iteratively (in small project) by planning the

requirements to be extracted, transformed and loaded to meet users'

expectations.

Unsuitable characteristics

Managers are more worried about dealing with collaboration and concurrency

than about the details of designing, coding and testing when using ASD, which

affects its suitability.

4.2.7.4 Data access and deployment

Although ASD focuses more on collaboration, speculation, and learning

activities, it would be possible to deploy a data warehouse, one data mart at a

time.

Suitable Characteristics

Several suitable characteristics to deploy and maintain a data warehouse are

notable. One of tlie four categories of lessons to be learned is the "project

status". This will only be known if the data warehouse is tested, monitored, and

status reports are generated.

"Final QIA and release" (see fig. 2.12) can be replaced by deployment and data

access in a data warehousing project. Maintenance and testing can be

integrated throughout the "learning" phase of ASD where the technical quality

of the project is reviewed. The review practice of providing visibility and

feedback from the users, explains how to review and test the system to

determine what users expect. Furthermore; the team's performance is

monitored.

The (data warehouse) project status can be reviewed by applying maintenance

controls and tests on the existing system to determine the value of the data

warehouse, and determine whether it meets user expectations.

The "learning loop" is gained from repeated quality reviews in fig. 2.12

(Abrahamsson et al., 2002:70), using maintenance controls and tests to deliver

a data warehouse of value.

Unsuitable characteristics

As explained in par. 4.2.7.3, managers are more concerned with dealing with

collaboration and concurrency than with the details of designing, coding and

testing, which influences ASD's suitability.

4.2.8 Lean Development (LD)

4.2.8.1 Collecting requirements

LD states in practice 2 (amplified learning) that developers can use their own

techniques and digression to complete a specific phase, in this case: collecting

requirements. Because developers can use any technique, it would be possible

to collect requirements before development takes place through facilitated

sessions or interviews, and to update these requirements using "feedback (one

of the 22 tools of LD) from users in a data warehouse project where Kimball's

approach is used.

Suitable Characteristics

Several characteristics make LD suitable to collect requirements for a data

warehousing project.

"Amplify learning", one of the seven principles of LD, uses "feedback, one of

LD's 22 tools, where the developers determine whether user requirements are

satisfied. The principle of "delay commitment" causes users to delay their

decisions until they have enough accurate information to sl-lpply the correct

requirements to be implemented iteratively within the system (data warehouse).

"Deliver fast" (fourth principle) means satisfying user requirements as quickly as

possible.

During "bl.lild integrity in", another of the seven principles of LD, perceived

integrity and conceptual integrity are achieved when users are satisfied by

meeting their requirements.

Unsuitable characteristics

"Lean thinking" may cause some requirements to be overlooked in a data

warehousing project. Lean thinking entails letting users delay their decisions

about what they want, and when they ask for something, provide it so quickly

that they do not have time to change their minds. The principle, "delay

commitment" may be a disadvantage in large projects that must be completed

in a specific period, because if developers wait for requirements, development

is delayed. In most cases, users will be more decisive if they have a basis

system (data warehouse, or data mart) to work on.

Another disadvantage is that the overall success of the project (see the whole)

is more important to LD than the traditional sub-optimization of individual tasks,

such as identifying requirements.

4.2.8.2 Data modelling

It would be an acceptable approach to use Kimball's star-schema when data is

modelled into diagrams in a data warehouse where customer and requirement

satisfaction is the primary priority, as is the case with LD.

Suitable characteristics

According to Poppendieck (2003:2), "Great designers understand that designs

emerge as they develop a growing understanding of the problem." This means

that star-schemas will emerge if Kimball's approach is used to develop a data

warehouse, which is an advantage. Through empowerment, the team can

make its own process designs (star-schemas), commitments, goals, and

decisions. "Empowering the team" is one of the seven principles of LD.

Unsuitable characteristics

On the down side, no ERD or star-schema structure is mentioned as one of the

22 tools of LD. As explained in par. 4.2.8.1, the authors of LD state that LD is a

management philosophy rather than a development process.

4.2.8.3 Data staging

The data staging process can be integrated in all of the seven LD principles in

several areas. The principles are; eliminate waste, amplify learning, delay

commitment, deliver fast, empower the team, build integrity in, and see the

whole. Development of a data warehousing project can be done through an

incremental ETL-process by using LD.

Suitable characteristics

The ETL-process can benefit from "lean thinking" and "delayed cornmitrnent",

which entails that users' decisions are delayed so that they know exactly what

they want. When they then ask for it, it is given to them so quickly they would

not have time to change their minds.

During "elimination of waste", duplication fields and records can be removed

using the data staging process in a data warehousing project. During the

transformation process, a developer will "learn" when data is transformed to

identify its capabilities to satisfy users.

LD has a choice of 22 tools. Because the ETL-process can be done iteratively,

in small data warehousing projects, or incrementally, in large data warehousing

projects where every increment is done iteratively, a data warehouse can be

delivered fast by using the tool, "queuing theory" where "cycle" times are kept

short (Steindl, 2004). Integrity can be built by loading data that is of value to

users (i.e. giving users what they expect).

Another advantage of LD is that it has been proven successful in large

telecommunication projects in Europe (Highsmith, 2002a).

Unsuitable characteristics

As explained in par. 4.2.8.1, lean thinking may cause development to be

repeated because some requirements may not have been satisfied. None of

the 22 tools focuses on the cleansing of the data during a data warehousing

project.

4.2.8.4 Data access and deployment

LD does not explicitly explain how a data warehouse project should be

deployed or maintained. It does however, specify that deliveries should be

quick, i.e. where every sub-data mart (increment) is delivered to the data mart

that will be deployed as a whole.

Suitable characteristics

LD focuses on the elimination of waste, e.g. duplicate data, by looking at the

flow of value from request to implementation. (The elimination of waste is a

principle of LD.) In "quick delivery", another of the seven principles, the goal is

to create value as fast as possible by allowing no delays during testing,

integration and deployment, sirr~ilar to the way in which Kimball et al. (1998)

promotes deployment of a data warehouse.

During "empowerment of the team", the whole team - including on-site and

other users - can be trained to use the system or data warehouse effectively.

To achieve perceived integrity, the correct requirements should be tested and

implemented after development to meet users' expectations.

A mature system serves users with speed, repeatedly and reliably

(Poppendieck, 2003:3), and delivers a system or data warehouse (as a data

warehouse is seen as a system in this study) of value to users.

Unsuitable characteristics

Implementing a data warehouse in one-third the time, a third of the budget and

one third the defect rate is an almost impossible task, which makes LD

unsuitable for a large data warehousing project.

4.3 Inmon's approach

Since the use of ASDMs are limited to certain phases of Inmon's approach the

discussion of the suitability of ASDMs for Inmon's approach is done according

to Inmon's development phases. Thus, in this section the shared characteristics

and unique individual characteristics with regard to ASDMs suitability towards

data warehouse development will be excluded for every phase of Inmon's

approach (accept for the data access and deployment phase). Only the unique

individual characteristics of the seven ASDMs will be explained for the data

access and deployment phase of Inmon's approach.

4.3.1 Collecting requirements

ln~non (1996:144) states "requirements for a data warehouse cannot be known

a priori". Although lnmon does not collect requirements before development

takes place, requirements are identified after deployment takes place by using

the "feedback loop". During the "feedback loop", new and alternative

requirements are identified by the DSS analyst who sends them to the data

architect. The identified requirements are then implemented by the data

architect into the existing data warehouse, in order to keep the data warehouse

up to date and of value for users.

The seven ASDMs emphasise that requirements must be collected before

development takes place, and new requirements added as the system evolves.

Thus, it would be unwise to develop a framework for the seven ASDMs in this

phase of Inmon's approach, because ASDMs rely on collecting requirements

before system (data warehouse) development. Contrary to this, Inmon's

approach relies on a "feedback loop" to identify requirements after deployment

takes place.

Furthermore, review practices ensure that requirements are met in the learning

phase. The learning loop is used to identify new requirements to be

implemented within the system during the learning phase.

4.3.2 Data modelling

lnmon (1996:85) proposes the use of an ERD data model above Kimball's star-

schema for developing a data warehouse. A data model can be developed by

using the corporate model as a starting point. A corporate ERD consists of a

combination of ERDs with every ERD reflecting the different views of people

within an organisation.

ASDMs have the ability to deliver a system or data warehouse in a constantly

changing environment. To deliver a system in such an environment, ASDMs

suggest incremental and iterative development (see par. 2.3) whilst primarily

focussing on communication and requirement satisfaction. Some ASDMs, e.g.

DSDM, ASD, Scrum, and XP with it's twelve practices, follow a lifecycle, while

others follow either a process (FDD), properties (CC), practices (XP) or

principles (LD) to deploy a product (data warehouse) in which at least the most

important requirements have been met. Most ASDMs, e.g. LD, ASD and CC,

specify that team members, under supervision, can use their own techniques

and tools during the data modelling phase. None of the ASDMs specifies a

specific data model (ERD or star-joins) that must be followed during the

development of data warehouse, because every project has its own

characteristics, resources, environmental circumstances and degree of

uncertainty.

Due of the fact that lnmon (1996) does not collect requirements before data

modelling or data staging takes place, it would be unwise to use ASDMs to try

to develop a data model (star-join) based on his approach. Although there are

some areas during data modelling and data staging where ASDMs could be

applicable for Inmon's data warehouse, it will be of no value. The reason is that

ASDMs emphasise that new or changed user and technical requirements must

be incorporated in the design (using iterations) as development progresses, in

order to give users what they want as fast as possible. Thus, no framework will

be explained during this phase

lnmon uses ERDs and star-joins while Kimball uses a star-schema. However,

the ASDMs do not explicitly state which data model must be used during the

development of a data warehouse. In fact, most ASDMs do not even mention

the use of a data model during development. They merely explain a process

model to get the job done in a constantly changing environment were user

satisfaction is their primary concern.

4.3.3 Data staging

lnmon also uses the ETL-process. During this process, data cleansing begins

by extracting the required data from trusted sources, transforming it with

programmes or tools, and loading the transformed data into the central data

warehouse. Inmon's approach is data-driven, i.e. data is viewed as the most

important factor.

The ETL-process can be replaced by the actual development phase(s) of every

ASDM. The only difference between Kimball and Inmon's ETL-processes is that

during Inmon's ETL-process new development requirements (not the

requirements of the user) can be added after the loading process if analysis

was unsuccessful.

After a program has been written to extract and transform the required data

from the data warehouse, the data should be analysed (i.e. combined, merged,

and redefined). If the result of the analysis does not satisfy the specified needs,

it causes iteration with redefined and new technical and development

requirements through which iterative development is promoted. This, however,

may cause a delay where the programme used for transformation must be

modifiable and adaptable because code will be changed due to the change in

requirements. Another advantage is that the final report contains the results of

many processed iterations. A decision should be made to determine whether

the final report should be institutionalised.

Although I r~mo~i (1996:96) promotes iterative data warehouse development,

this approach has a disadvantage during transformation and integration (Inmon,

1996:116-120). This could be attributed to the fact that users are not part of

any extraction, transformation, or loading process. This emphasises that

ASDMs will not be applicable when using Inmon's approach. ASDMs state that

users must be part of the development process or ETL-process of a data

warehousing project to ensure that requirements are understood and

developed as specified. As a consequence, user expectations are met. Another

disadvantage of using the data staging of Inmon's approach is that during the

first few times the desired data for extraction is determined, only part of the

required data will be retrieved from the data warehouse, because requirements

will only be identified during the "feedback loop". Consequently, time is wasted.

It would therefore be unwise to develop a framework for the seven ASDMs

during the data staging phase of Inmon's approach, as he does not include

users during the El-L-process.

4.3.4 Data access and deployment

lnmon (1996:128) defines two kinds of data access in a data warehouse: direct

and indirect access. The data warehouse is deployed after alpha and beta

testing has been completed and the data warehouse is populated from the

existing system. After deployment, new requirements can be irr~plemented

using ,the "feedback loop" between the data architect and DSS analyst (see fig.

3.1 5).

According to lnmon (1996:66), there needs to be an "official organisational

explanation (standards manual) and description of the data warehouse". Some

aspects can be included in a manual in association with ASDMs that endeavour

to minimise documentation. These are:

A description of the source system feeding the data warehouse.

How to use the data warehouse to gain maximum value (training).

How to get help if there is a problem.

Who is responsible for what?

How data warehouse data relate to operational data.

How to use data warehouse data for DSS.

When not to add data to the data warehouse.

What kind of data is not in the data warehouse?

Guide to the available metadata.

Documentation of a data warehousing project using a specific ASDM can be in

the form of a mini user manual that explains the user interface and effective use

of the data warehouse. It could also take the form of a project plan, a star-

schema (when Kimball's approach is used), or star-join (when Inmon's

approach is used), the ERD tables, the source to target map, and data staging

documentation on how data is cleansed, including quality issues.

Similar to Kimball's data warehouse, Inmon's data warehouse must be

managed by creating backups and maintaining the data warehouse. In order for

the data warehouse to be of value, the users must be trained to use the data

warehouse effectively. The suitable and unsuitable characteristics of every

ASDM will be explained during this phase because lnmon (1996:96)

emphasises that "in all cases the data warehouse is best built iteratively",

including iterative deployment. The main reason for paraphrasing the suitable

and unsuitable characteristics is the unique feedback loop characteristic of

Inmon's approach. This holds that newly identified requirements can be

incorporated by the data architect into the existing data warehouse. Inmon's

deployment differs from Kimball's deployment in that new requirements can be

added to the existing data warehouse using the feedback loop. Another reason

for building a framework for this phase is Inmon's (1996:66) preference for the

use of a manual. One should take cognisance of the fact that because ASDMs

are "lite" they keep documentation to a minimum. Par. 4.3.4.1 - par. 4.3.4.7

differ in many aspects to Kimball's approach using ASDMs to develop a data

warehouse.

4.3.4.1 Dynamic System Development Methodology (DSDM)

Suitable characteristics

DSDM boasts the best supported documentation and training of any ASDM

(Highsmith, 2002a:8). Like lnmon (1996:96), using DSDM, each increment, or

iteration in the case of large projects, can be developed, tested and deployed

during the development process. This concurs with lnmon (1996:96).

Incremental delivery and deployment is key to acceptable business solutions.

The latter is one of the nine principles reflecting core values of agile processes.

In the "functional model iteration", every iteration is planned, reviewed, and then

analyzed. Testing is integrated throughout the development process. The

"functional review documents", an output of the functional model, collects

requirements from users from the current increments that can be used during

other increments -just like Inmon's "feedback loop".

During "risk analysis" for further development, a document is created outlining

risks, conclusions and new requirements, similar to Inmon's (1996:348) final

report. (Risk analysis is another of the outputs of the functional model.) The

output of the "design and build" phase is a tested system or data warehouse

that meets at least the most important requirements set by users.

Implementation of a data warehousing project can occur during the

implementation phase of DSDM, i.e. the deployment of the data warehouse

within the user organisation. Output of deployment or implementation is a user

manual that can train users to utilize the implemented data warehouse

effectively.

The "incremental review document" can be used during the implementation

phase to discuss the state of the system or data warehouse by testing and

preparing it for further growth and maintenance. The "project review document"

can be used to ascertain what to maintain in the developed data warehouse as

well as what preparations should be made for possible growth.

During the "post-project" phase, the system is thoroughly tested and maintained

to ensure that the deployed data warehouse continues to be of value and use.

Unsuitable characteristics

lnmon promotes the use of a manual (documentation). DSDM is "lightweight",

i.e. it does not focus on documentation. There is also no definite way specified

by DSDM of how data shol-~ld be accessed or which reporting tools should be

used.

4.3.4.2 Scrum

Suitable characteristics

As explained in par. 4.2.3.4, "planning" is a sub-phase of the pre-game phase

that "includes the definition of the system being developed, project team, tools

and other resources, risk assessment and controlling issues, training needs

and verification management approval" (Abrahamsson et al., 2002:29).

Planning can thus be used to plan a training program for users.

The "architecture" phase, another pre-game sub-phase, includes the changes

and the problems the changes may cause in implementing the product backlog

if the implemented system (data warehouse) requires enhancement

(Abrahamsson et al., 2002:29).

Development is incremental. Each sprint include requirements, analysis,

design, evaluation and deployment (Abrahamsson et a/., 2002:30). lnmon

prefers this approach. During the post-sprint meeting it can be determined

whether incrementally implemented design is suitable according to user

expectations

One of the key principles of Scrum is that the system (data warehouse) must be

constantly tested and documented.

Unsuitable characteristics

Scrum focuses on the development and success of development and therefore

does not specify a specific way of implementing a data warehouse. The same

applies to data access and reporting tools.

4.3.4.3 Extreme Programming (XP)

Suitable characteristics

Simplicity requires developers to keep the design as simple as possible so that

the necessary modifications can be implemented. Inmon's "feedback loop" can

replace "feedback, one of the four values of XP where users define

requirements on story cards.

"Testing" is a continuous activity throughout the development process of XP

and data warehousing. In XP, "designing" is a continuous activity to incorporate

new requirements into the evolving system -just like Inmon's "feedback loop".

XP delivers the system in small, tested iteration releases of business value to

users. This approach is also favoured by lnmon (1 996).

If the system (data warehouse) no longer holds value, changes will be made

during "refactoring". Each time a task is completed, it is integrated into the

system (data warehouse). Tests are then run, and sho~~ld be passed for the

changes in code to be accepted (Abrahamsson et al., 2002:24; Cohen et al.,

2003:12; Lindstrom & Jeffries, 2004:48). lnmon promotes this practice of XP.

Because development is incremental and iterative, requirements are

developed, tested, and implemented incrementally.

Unsuitable characteristics

No specific way, except incremental implementation in "small releases"

(iterations), is specified by XP (see par. 2.4.3). Another disadvantage is

contrary to Inmon's preference of a user manual, XP prefers minimal

documentation.

There is no definite method of data access specified by XP, nor does it explain

reporting tools to be used.

4.3.4.4 Feature Driven Development (FDD)

Suitable characteristics

"Progress reporting", an FDD best practice, involves reporting on all completed

sections (increments). This can be replaced by the "final report" of Inmon's

approach. FDD encapsulates best practices and incremental development to

manage and monitor the development process (Abrahamsson et al., 2002:47;

Hislop et al., 2002:175) and the data warehouse after deployment is complete.

During plan by feature, chief programmers lead small teams in the analysis,

design, and development of new features. During design by feature and build

by feature, the requirements are planned in more detail, built, tested, and

integrated iteratively. lnmon also promotes data warehouse development and

deployment in this way.

Unsuitable characteristics

FDD primarily focuses on the design and building phases of the development

process and it does not need a specific process model to succeed

(Abrahamsson et al., 2002:47). No specific way of implementation is specified

by FDD, nor does it offer guidelines as to how data should be accessed, or

which reporting tools are preferred.

4.3.4.5 Crystal Clear (CC)

Suitable characteristics

Since development is incremental and iterative, implementation is done

incrementally (if the data warehousing project is large) until the data warehouse

has been fully deployed. Using "frequent delivery", working code are tested and

implemented into the existing system (data warehouse).

"Osmotic communication", i.e. communication between team merr~bers and

users, is seen as very important. It can, however, be replaced by Inmon's

"feed back loop"

Data warehouse users can be trained by development experts to gain easy and

valuable access.

Furthermore, CC has a technical environment where testing and controlling

tasks, e.g. creating backups and merging changes, are done during automated

testing, configuration management and frequent deliveries, which is to its

advantage

Unsuitable characteristics

By replacing written documentation with "face-to-face communication", a

system can be delivered with reduced reliance on documentation. No specific

way of implementing a system or data warehouse is explained by CC, nor does

it offer specifications on data access and reporting tools.

4.3.4.6 Adaptive Software Development (ASD)

Suitable characteristics

In designing large and complex problems, a large volume of information (data

warehouse) must be collected and analyzed, as lnmon suggests. "Final QIA

and release" (see fig. 2.12) can be replaced by deployment and data access in

a data warehousing project. "Feedback from users, one of the review practices

of ASD, can in turn be replaced by Inmon's "feedback loop". 'The technical

quality is reviewed during maintenance of a data warehouse, which adds to

ASD's suitability.

Durirlg a data warehousing project, the team's performance is monitored as a

standard review practice. The (data warehouse) project status can be reviewed

through applying maintenance controls and tests on the existing system or data

warehouse to identify whether the system is of value and performs satisfactory.

The "learning loop" (and feedback, as explained above), gained from repeated

quality reviews in fig 2.12, using maintenance controls and tests to deploy a

data warehouse of value in a data warehousing project, can be replaced by

Inmon's "feedback loop".

ASD can make large projects, such as data warehousing projects, a success by

managing change and deploying an up-to-date product.

Unsuitable characteristics

Managers are more concerned with dealing with collaboration and concurrency

than with the details of designing, coding and testing. There is no definite way

specified by ASD of how data should be accessed or which reporting tools

should be used.

4.3.4.7 Lean Development (LD)

Suitable characteristics

During "amplify learning"; feedback to users can be replaced by Inmon's

"feedback loop". During "delay of commitment", one way to keep options open

during system (data warehouse) development is to implement the system for

future capabilities and add-ons.

"Deliver fast", one of the seven principles of LD, entails creating value as

quickly as possible by allowing no delays during testing, integration and

deployment. lnmon prefers this approach when deploying a data warehouse.

LD focuses on the "waste elimination", e.g. duplicate data, by looking at the

flow of value from request to implementation.

During "empowerment of the team", the whole team (including on-site and other

users) can be trained to use the system (data warehouse) effectively.

To achieve "perceived integrity", the correct requirements must be tested and

implemented after development to give users what they expect.

Poppendieck (2003:7) states that tests should be done early, often, exhaust-

fully, and an automated test suite should be delivered as part of the product

(data warehouse).

A mature system serves users quickly, repeatedly and reliably (Poppendieck,

2003:3), and delivers a system (data warehouse) of value to users.

Unsuitable characteristics

There is no definite data access method specified by LD, nor does it shed light

on which reporting tools should be used. "Delay commitment" and "decide as

late" (principles of LD) can delay requirements collection and development.

4.4 Choice of data warehouse approach

During the evaluation investigation of ASDMs' suitability towards each phase of

data warehouse development for lnmon and Kimball's lifecycles, it is clear that

Kimball's approach is more suitable for developing data warehouses in chapter

5. The interpretive experiment in chapter 5 will determine the suitability of the

seven ASDMs for data warehouse development. The main reasons for this

approach is that ASDMs collect requirements before development of a data

warehouse takes place, concurring with Kimball et a/. (1998). ASDMs realize

that every project has its own characteristics, resources, environmental

circumstances and degree of uncertainty. Most ASDMs state that any tools or

techniques can be used by experienced and well-trained developers to get the

job done, covering the fact that a data modelling technique (star-schema) and

tools or manually written programs can be used during data staging.

The idea of developing in increments can be applied in data warehousing

projects where every data mart or sub-data mart can be viewed as an

increment that must be developed. Each increment can then be developed in

iterations where new and changed requirements can be added as development

progresses for a specific sub-data mart. The sub-data mart can then be

delivered to the data mart (after passing certain tests); where after the data

mart can be deployed as whole to become part of the existing data warehouse.

Each data mart is developed and deployed separately.

The ETL-process for every data mart can be done in increments (for large data

warehousing projects) i.e. the ETL -process can be divided in three increments

(extract, transform, and load) where every ETL increment is done iteratively. In

small data warehousing project the ETL-process can also be done iteratively

and not incrementally.

lnmon (1996), on the other hand, defines requirements after the data

warehouse has been deployed. This fact emphasizes that ASDMs cannot be

applied to develop a data warehouse using Inmon's approach, as ASDMs

focuses on collecting requirements before development, and continues the

collection of requirements as a system or data warehouse evolves to satisfy

user expectations. With this said, the study is limited to further explain the

suitability of ASDMs during data modelling and data staging of Inmon's

approach. The main reason for explaining the suitable and unsuitable

characteristics of ASDMs during the data access and deployment phase of

Inmon's approach is because of the unique "feedback loop" characteristic of

lnmon (1996), where the new and alternative requirements are implemented by

the data architect into the existing data marts or data warehouse (see fig. 3.1 5)

after deployment takes place.

CHAPTER 5

APPLICATION OF ASDMs ON DATA WAREHOUSE

DEVELOPMENT

5.1 Introduction

In chapter 4, the seven ASDMs were evaluated by investigating their theoretical

suitability in each phase of data warehouse development of lnmon and

Kimball's approaches. As discussed in chapter 4, it was clear that Kimball's

approach has more potential to be successful using ASDMs to develop a data

warehouse than that of Inmon. Since Kimball's approach focuses on collecting

requirements before development takes place (as is the case with ASDMs), it

was selected for the interpretive experiment reported in this study.

In chapter 5 the theoretical deductions made in chapter 4 will be interpretively

tested. In this chapter it will be explained how the interpretive experiment was

designed, how the data was collected, and how the data was analysed for the

seven different development teams. Seven teams of equal strength developed

a data warehouse using Kimball's data warehouse development lifecycle. Each

team used their assigned ASDM to guide their activities during the data

warehouse development process.

Furthermore, it will be explained how the interpretive experiment was

conducted and executed. Lastly, the researcher will determine whether the data

warehousing projects of the seven teams were successful.

5.2 Research design

The research plan is presented in this section. It includes what was done (i.e.

providing the problem description); what was expected from the development

teams; how the participant profile was compiled; and how the experiment was

executed.

5.2. I Research plan

The purpose of the practical part of the study was to determine whether the

theoretical deductions made in chapter 4 are applicable in a real world

environment using an interpretive experiment.

The interpretive experiment was conducted using seven groups or teams to

develop a data warehouse using their specifically assigned ASDM. The results

of the interpretive experiment will be combined with the theoretical deductions

from chapter 4 to present findings for the use of ASDMs in data warehouse

development in chapter 6.

Seven data warehouses where developed using different ASDMs. The details

of the data warehouses developed are given in the next section.

5.2.2 Data warehouse description

Each team had to develop a medium to large cricket data warehouse using

their randomly assigned ASDM. A number of specific requirements were

expected from each team during the development of the data warehouse. The

data warehouse users in this study were cricket supporters and team selectors.

The data used for the data warehouse was extracted from www.cricinfo.com.

After successful extraction, the text files were processed into ERD tables and

stored in a temporary MySql database, viewed as the source system for further

processing. The data had to be extracted from the source system, transformed

and cleansed before it could be loaded into Oracle. As part of the

transformation process, an application was written to clean the data in order to

load the cleansed data into the Oracle data mart (star-schema). Before the data

was loaded, the participants in each group had to develop a star-schema (fact

table with facts and its corresponding dimension tables) in Oracle. The data

warehouse only consisted of one data mart. Surrogate keys and key maps

were used with the transaction ERD table (namely a Balls table) to populate the

Oracle fact table.

After a successful loading operation, an application had to be developed that

had to connect successfully to the Oracle constructed data mart. The

application had to generate scorecards for cricket matches played, including

five-day tests and OD1 (one-day international) matches. Furthermore, the

application had to be user friendly with a user-friendly query builder that

constructs editable queries that would help users understand and make choices

based on the statistics and information they receive from the executed queries.

The fact table and its corresponding dimension tables had to be viewed in the

application, implying that an effective connection had to be created between the

application and data tables in Oracle.

Lastly, the teams had to use Cognos (a reporting tool) to generate reports from

the data warehouse through an effective connection. After completing the

project, the participants in each team explained whether their assigned ASDM

was successful in developing a data warehouse by exploring the s~~itability of

their assigned ASDM's properties, principles, practices or phases.

These were the primary requirements applicable to all ASDM teams.

5.2.3 Participant profile

The participants in the seven teams participating in the interpretive experiment

were postgraduate students at a university. During the four years of study they

learned to program in several different languages, including Java, Visual Basic,

VB.NET and C#. Other modules such as project management, information

systems development (including methodologies) and data warehousing were

also part of their curriculum. They also completed four Oracle modules in two

years as part of their curriculum. All participants passed these modules, making

them suitable for delivering a data warehouse consisting of one data mart to

fulfil the requirements explained in par 5.2.2. This project formed part of a

module of the BSc (Hons) programme. The participants were well equipped to

complete the task of developing a data warehousing using a specifically

assigned ASDM.

The participants were divided into groups, ensuring teams of equal strength.

Development was done using groups or teams because of the heavy workload

involved in developing a data warehouse. Most importantly, the reason for

developing in teams, was that all ASDMs depended on teamwork during project

development. This ensured thorough testing of the ASDMs. Teamwork is a

common practice used in the development of large projects.

An ASDM was randomly assigned to each team to develop a data warehouse.

The teams firstly had to study the ASDM assigned to them and present an

approach in the first interview on how the assigned ASDM could be applied to

develop a data warehouse using Kimball's approach.

5.2.4 Interpretive experiment description

The interpretive experience started by dividing the 19 participants into 7 groups

or teams to develop a data warehouse using a randomly selected ASDM

assigned to each team. The participants had to study their ASDM as well as the

other ASDMs to get a solid background. The researcher used cross-case

analysis (explained in par. 5.4) to analyse the data collected from the

interviews, documentation and evaluation sessions.

Seven interviews comprising open-ended questions were conducted and

recorded on a weekly basis. Each team firstly had to develop a project plan

including a diagram and a schedule. The diagram had to bring the assigned

ASDM and data warehousing together, showing how a data warehouse can be

developed, one increment (data mart or a part of a data mart) at a time, using

the team's assigned ASDM (see par. 5.4). The requirements were given to all

participants during a requirements session after the first interview, as explained

under the second interview in par. 5.3.1.

Halfway through the project the data warehouse was evaluated during an

evaluation session to determine whether the requirements set to date had been

fulfilled. A second evaluation session was conducted after the data

warehousing projects were completed to establish whether all primary

requirements were fulfilled, and whether the projects were completed

successfully. For the final evaluation session, the teams had to deliver primary

documentation as described in par. 5.3.2.

5.3 Data collection

Data were collected in three different ways. The researcher conducted seven

semi-structured interviews (open-ended questions) to understand the problems

the team may have experienced. Primary documentation was completed, i.e.

every team had to deliver certain important documents as specified in par.

5.3.2. Two evaluation sessions were held to determine whether the primary

requirements given during the requirements session (explained in interview

two) had been met.

To establish whether the data warehouse teams were successful, the following

aspects were investigated:

Did the team understand the ASDM assigned to them based on the

questions asked during the first interview?

Were the ERD and star-schema constructed correctly3

Was the source-to-target map done correctly?

Was the fact table loaded correctly using key maps and look-ups?

Was data staging done correctly (i.e. created and deleted data are

acceptable and data were cleansed correctly)?

Was the GUI user friendly and was an effective connection created with the

data warehouse?

Did the GUI have an editable query builder?

Was the data warehouse effective?

5.3. I Interviews

Weekly interviews were conducted with all participants of every team. The last

interview was held five days before the final evaluation session and four weeks

after the sixth interview. This four-week interval was necessary for the

participants to finish their data warehouses. The seven 15-20 minute interviews

were recorded on a laptop.

Interview 1

In this interview the attitudes and perceptions of the team members were tested

after the ASDMs were assigned to each team (see par. 5.2.4). The researcher

wanted to determine whether the team comprehends where their assigned

ASDM can be applied in the data warehouse development lifecycle.

Furthermore, a project leader was assigned for every group and the

participants were asked to come prepared for the requirements session held a

day before the second interview.

Each team was asked the following questions to determine whether they

understood their assigned ASDM, and the other ASDMs:

What is an ASDM?

Did the team study all seven ASDMs?

Explain the assigned ASDM.

After studying their assigned ASDM, does the team think it has the potential

to be used to develop a data warehouse?

Does the team think that development can be done in increments and

iterations?

Why would it be a good idea to develop in increments and iterations?

How does the team feel about the project?

Does the team have any questions?

The teams were then asked to develop a project plan and schedule, including a

diagram, explaining how they think their ASDM fitted into the development of a

data warehouse. The first project plan was submitted before the second

interview.

Interview 2

At this stage the requirements given during the requirements session were

discussed. The users wanted to examine the same kind of information given

during a cricket match on television, including information they could interpret to

decide which player to choose for a certain match, based on the player's

statistical information. These statistics included, for example, against whom

(which country) and where (in which country) did a certain player perform

better. The primary user requirements provided during the requirements

session were the following:

1. The most important user requirement was that the teams had to generate a

scorecard for every match. The scorecard had to include the following:

Name of each team in the specified match.

Batsman:

Names of batsman.

Score of batsman.

Number of overs (balls) bowled to batsman.

IVumber of fours and sixes hit by a specific batsman during the match.

If a batsman was dismissed, the method of dismissal and which bowler

was responsible.

Bowler:

Name of bowler.

Total nurr~ber of overs bowled by a specifc bowler.

Other technical information such as wides and no balls bowled.

The GUI had to be user friendly. The participants in each team were

responsible to add their own technical requirements, and to meet these

requirements. To generate a scorecard for users will require a very large

query-

2. Additional user requirements were given based on individual player

performances, including:

The players' batting average.

The most runs a player accumulated during an OD1 and five-day test.

How many five-day tests and OD1 matches has the batsman played?

How many 50's and 100's (centuries) did the batsman score?

If the corresponding player was a bowler, the following requirements should

have been provided:

What was the average number of runs a batsman hit from a bowler

before being dismissed (bowling average)?

What were the biggest nurr~ber of overs (runs) bowled in a specific

match?

How many hattricks (three people taken out with three consecutive balls)

has the bowler had in his career?

3. User requirements that would help a selector choose specific players for a

match based on a player's statistics:

How many times have two teams played against each other, in which

years, and who won? What was the score during every inning if it was a

five-day test?

Which batsman hit the most runs in an OD1 and five-day test match and

against whom - including his personal statistics?

Which bowler took the most wickets from a specific team?

How many times did a specific bowler take a wicket after the batsman hit

four runs?

How long did a specific batsman continue batting after scoring 50 runs?

During the second interview, the researcher investigated whether the teams

understood the requirements given to them during the requirements session.

The project plan (including a diagram, ERD tables, star-schema and schedule)

that was submitted five days prior to the interview, was evaluated by the

researcher. Each team's diagram was discussed, establishing whether the

participants understood how to apply their ASDM to data warehouse

development.

Interview 3

During this interview the second project plan was evaluated and reviewed. New

requirements were added, including designing a source-to-target map

indicating where the star-schema's data came from. The final project plan had

to be submitted four days before the fourth interview. Each team was expected

to adhere to a task time schedule. The researcher reviewed whether each team

was on schedule on a weekly basis. All the teams were placed on the same

schedule without changing the characteristics of each project, e.g. every team

had to finish certain subjects of the project before a certain date. Each team still

used their own cycles, story cards, features, sprints or iterations to meet these

deadlines. This helped the researcher to manage all the projects by stating, for

example, that all teams' fact table had to be loaded before a certain date.

Interview 4

The respective team project plans, ERDs and star-schemas were reviewed to

determine whether the teams were working according to their schedules. Last

chances were given in cases where the researcher iderrtified problems. The

researcher allowed team characteristics to show in the data warehousing

project and development process. During this interview, the researcher stated

that all dimensions for each team should be loaded before the next interview.

The following aspects where investigated:

Did the team understand why a project plan was developed? The project

plan brought the team's thoughts in line with what should have been done

next to keep the team on schedule, so the project could be completed in

time. Furthermore, the diagram helped the team understand how the

ASDIM could be applied to develop their data warehouse.

Did the team have any team problems?

All teams were working together effectively without any major problems.

lnterview 5

The purpose of this interview was to discuss problems within the team or the

development process. Every team's dimensions had to be loaded successfully.

Every team's fact table should have been loaded before the next interview, to

ensure that the data warehouse would be delivered on time.

Interview 6

During this interview, the schedule was discussed. New requirements were

added for the first evaluation session (explained in par 5.3.2) where each team

had to have data staging documentatio~i indicating how the data were

cleansed.

lnterview 7

The purpose of this interview was to understand all the problems the teams

experienced in the final stages of their data warehouse development. Five of

the seven groups where not sure how to implement user requirements in

Cognos. The users were contacted to provide technical detail to these students.

5.3.2 Project documentation

ASDM does not focus on documentation. It was decided that only the most

important documentation involved in developing a data warehouse should be

produced, and not all the documentation as specified by Kimball et a/. (1 998).

Firstly, the team had to develop a project plan with a diagram, ERD, star-

schema and schedule. The diagram had to explain how the assigned ASDM

could be applied to the data warehouse development lifecycle of Kimball's

approach. The researcher could also identify in the diagram whether the team

applied the assigned ASDM correctly to data warehouse development. Every

diagram had to show that development takes place in increments (sub-data

mart, or data mart in the case of CC in par. 5.4.5) iterations. Every increment or

sub-data mart was developed iteratively and delivered incrementally to create

the data mart, where after the data mart (including everything froni collecting

requirements to GUI development and report generation) was deployed as a

whole to the users.

The diagrams developed indicated that iterative development is suitable where

a logical grouping of tasks (iteration) were completed successfully before

starting the next logical grouping of tasks. After one increment (data mart or a

sub-data mart) was fully designed, the next increment could begin by for

example developing the GUI, or extracting and collecting the requirements for

the next data mart that could also be developed in iterations. The participants

only needed to develop one data mart with a grain of ball for ball data in cricket

match history.

The project plan was very irr~portant because it helped the teams to get their

thoughts in order regarding what was expected from the data warehouse, and

how their assigned ASDM could be applied to data warehouse development

(explained by the diagram). It also helped to manage the participants' time

through the use of a schedule. A star-schema using Kimball's approach had to

be designed from the ERD tables in the database. Furthermore, additional

requirements were added, e.g. the development of a source-to-target map,

keeping the project in an agile environment. New data staging and quality issue

documentation (requirements) were also added during development. Data

staging documentation was submitted for the first evaluation session, showing

how the data was cleansed and loaded into the data warehouse, and using

screenshots of the cleansing application as part of the explanation. The quality

issue documentation explained the problems with the data, data that was

generated and deleted. This document was important because it ensured the

researcher could identify whether the data was cleansed correctly, making sure

for example that no important data was deleted, or that data with no value was

generated.

In addition, the teams had to explain how they populated their fact tables. This

was very important because if the fact table was incorrect, the whole data

warehouse would be of no value.

As part of the final documentation that had to be completed for the last

evaluation session, the participants had to produce a mini-manual (keeping the

environment agile). A large manual was not required, because ASDM does not

focus on documentation (Lindvall ef a/., 2002:206). Because seven different

data warehouses and GUI applications were developed, the mini-manual had to

explain (using screen shots) how a user could use the data warehouse and GUI

effectively. The mini-manual also had to include how Cognos was used to

generate a report (with screenshots). This was necessary to ensure that the

user used all aspects of the application, and to determine whether all the

primary requirements were fulfilled.

The teams had to submit a written reflection on their teamwork as well as on

their development process for the final evaluation session. They had to explain

whether the assigned ASDM worked for the development of the data

warehouse. The team had to further explain in which areas, properties or

principles the assigned ASDM worked during the development of a data

warehouse, includiqg advantages and disadvantages of their assigned ASDM,

where possible. The team's explanation had to include a reflection on the

problems they experienced as a group during data warehouse development,

and whether the assigned ASDM helped them to solve some of these

problems.

Finally, the effectiveness of the data warehouse had to be tested. For this

purpose, the team had to execute a complex query on the database containing

the source ERD tables, and the data warehouse containing the fact table and

its corresponding dimension tables. As part of the final documentation, the SQL

statement used needed to be explained for both the database and data

warehouse. This was very important, as the data warehouse had to be effective

to be of any value.

Because documentation was kept to a minimum, the participants could focus

on satisfying the user requirements, making these data warehouse projects

"lean1'.

5.3.3 Evaluation sessions

There were only two evaluation sessions during the development of the data

warehouses, during which each team had to give a presentation of their data

warehouse's progress. An explanation of what was evaluated and what should

be presented during each evaluation session follows.

Evaluation session 1

The evaluation session took place seven days after the sixth interview. An e-

mail was sent two days before this evaluation session including the evaluation

sheet (see Table 5.1) and presentation requirements. Each team had

approximately 35 minutes to present their data warehouse. The user

requirements for the presentation and evaluation session included the

following:

Data staging documentation, showing how the data was cleansed.

ERD and star-schema.

The GUI sho~~ld have had an effective connection with the Oracle data mart.

The users should have been able to view all dimension tables and fact

tables in the GUI.

The applications should have had a primitive query builder where queries

could be executed on the data mart.

The GUI should have been understandable and easy to use.

The team should have indicated how the fact table and facts were loaded,

using the GUI.

The team should have worked out three queries that would be of value to

the users.

The assigned ASDM had to be applied correctly during data warehouse

development.

The following evaluation sheet shows the different aspects evaluated in the

data warehouse evaluation session for each team:

Subject evaluated

ERD

I Quality issue explanation and data staging I
I GUI I
I Queries I
I Teamwork I
Use of ASDM

Total

Table 5. I: First evaluation sheet

Evaluation session 2 (Final evaluation session)

The final evaluation session took place three days after the seventh interview.

During this session, each team evaluated and presented the final data

warehouse project. The documentation requirements and evaluation sheet

(see Table 5.2) was e-mailed five days prior to the final evaluation session

(keeping the environment agile). The documentation was written in a

specifically organised format with the following headings:

Project plan: Updated project plan and schedule.

ERD: Updated ERD diagram.

Star-schema: Updated star-schema.

Data staging and quality issues: Updated data staging documentation and

data quality issue documentation (data problems, generated and deleted

data), including screenshots.

Load of fact table and facts: Explanation of how the fact table and facts

were loaded.

Mini-manual: Explaining the effective use of the data warehouse, including a

Cognos explanation, both with screenshots.

Evaluation of assigned ASDM in data warehouse development: Explaining

how the assigned ASDM was used to develop the data warehouse,

includiqg which phases, properties, practices or principles worked for data

warehouse development. Advantages and disadvantages could also be

included.

Problems during data warehouse development: What were the problems the

team encountered during the development of the data warehouse?

Data warehouse effectiveness: Present a large query to the database and

the Oracle data warehouse to determine whether the data warehouse was

effective and accurate. The data warehouse will be effective if the same

answer or a maximum error margin of 5% was given.

Each team was granted only 20 minutes to present their data warehouse. The

rest of the time was set aside for the users to ask questions. Each team was

granted an evaluation time of approximately 50 minutes.

Subject evaluation

Section 1: Presentation of data

SQL queries

Connection between application and Oracle

GUI and generated queries

Scorecards

Cog nos

Section 2: Business intelligence

Are queries of value to the user?

Presentation of results

Section 3: Teamwork and use of assigned ASDM

Effectiveness of group

ASDM application

Data warehouse effectiveness

Total

Table 5.2: Final evaluation sheet

The evaluation session included all three sections as seen in table 5.2. During

section one, the users wanted to evaluate the SQL queries generated by the

participants of a specific group. The team had to show an effective connection

between the Visual Basic or C# GUI and data warehouse. The GUI and query

builder had to be easy to use, generating a scorecard for any specific match.

Cognos had to be presented, showing at least one cube and a drill-down

operation. A report also had to be generated and presented in Cognos that

would be of value to the users.

In section two, the evaluators determined whether the generated queries were

of value to the users. Furthermore, the results of any selected or built query

had to be presented in an understandable format.

In section three, the effectiveness of the team members were evaluated to see

whether they were team players. The team had to explain whether their ASDM

was applicable during data warehouse development. They had to state

whether there were any limitations to the assigned ASDM. As in evaluation

session one, the team had to explain in which phases, properties, practices or

principles their ASDM worked or did not work. They also had to recorr~mend

how the ASDM could be adjusted to make it more effective. Finally, the

effectiveness of the data warehouse was tested by executing a complex query

on both the database and data warehouse.

The teams were evaluated from the end users' perspective. For example, if

one team's query builder was easier to use than another team's query builder,

they received more evaluation points.

5.4 Data analysis

A large amount of data was collected during the development of the seven data

warehouses, including seven interviews, two evaluation sessions, three

updated project plans, first evaluation documentation and final evaluation

documentation. The cricket source data used by the participants to develop

their data warehouse came from a real world source and data inconsistency

problems cannot be associated with the academic setting of this interpretive

experiment where ASDMs were used to develop data warehouses. This study

focused on data directly applicable to the application of ASDMs on data

warehousing.

The researcher used cross-case analysis as described by Seaman (1 999:568)

to analyse the findings of the interpretive experiment. This is done by firstly

analysing the data collected from the first two ASDMs (DSDM and Scrum); by

writing descriptions in a list that describes each case evaluated. The two lists

were then compared to determine the similarities, which were supporting

evidences of the suitability of ASDMs in data warehouse development, and

differences. The next step was to list propositions and their supporting

evidences if the two ASDMs were the only ones analyzed. After analyzing the

first two ASDMs, the third ASDM (XP) was examined and a list of XP's

characteristics was compiled. It was then determined whether the third ASDM

supported any of the propositions formulated from the first two ASDMs, namely,

DSDM and Scrurn. If a proposition was supported, the third ASDM was added

to the list of supporting evidence. If the third ASDM (XP) contradicted a

proposition, then either the proposition was modified or the description was

noted as refuting that proposition. After this was done, any additional

propositions were added to the list. This process was repeated with each

ASDM case evaluated.

Propositions resulting from cross-case analysis

As a result, the following list of propositions (rich in detail), was determined:

ASDMs do not prescribe a specific structure (structure can change

depending on the type of project) of how a project should be developed

(DSDM, Scrurn, XP, CC, ASD, and LD).

The developed project plan and schedule supported the team to get their

thoughts and ideas in order (DSDM, Scrum, XP, FDD, CC, ASD, and LD).

Active user involvement when applying ASDMs on data warehouse

development is imperative (DSDM, Scr~~rn, XP, CC, ASD, and LD).

Using the assigned ASDM, data marts can be delivered incrementally

(DSDM, Scrurn, XP, FDD, ASD, and LD). Each team proved this by means

of the diagram develop for their assigned ASDM.

Using the assigned ASDM, a sub-data mart can be developed in iterations,

sprints, cycles, feature sets and sub-sets depending on the ASDM (DSDM,

Scrurn, XP, FDD, ASD, and LD).

Using the assigned ASDMs a data mart (including everything from collecting

requirements to GUI development and report generation) can be deployed

as a whole to the users (DSDM, Scrurn, XP, FDD, ASD, and LD).

When applying ASDMs to data warehouse development, the design is kept

simple (XP and LD).

The sub-data mart logical structure (including everything from collecting

requirements to GUI and report creation) was easily divided into individual

tasks, iterations, features, sprints or cycles (DSDM, Scrurn, XP, FDD,, ASD,

and LD).

Because data warehouse development was done incrementally and

iteratively, problems were more easily identified and solved in less time

(DSDM, Scrurn, XP, FDD, CC, ASD, and LD).

The data warehouse design improved as incremental and iterative

development progressed (DSDM, Scrurn, XP, FDD, CC, ASD, and LD).

Development is revisable when ASDMs were applied to data warehouse

development where participants could backtrack (using spike solutions or

post-sprint meetings to identify solutions) to the last safe point in order to

start a new development approach (DSDM, Scrurn, XP, ASD, and LD).

Regular meetings (pre- and post-sprint meetings) helped teams to

understand what was expected of them during each development iteration

(Scrum, XP, FDD, CC, ASD, and LD).

The ASDM team should be empowered to make their own decisions

(DSDM, Scr~~m, XP, ASD, and LD)

ASDMs emphasise teamwork when a data warehouse is developed (DSDM,

Scrurn, XP, FDD, CC, ASD, and LD).

ASDMs allow the team to learn as development progresses, making

development a learning activity (Scrurn, XP, CC, ASD, and LD).

Teams struggled to stay on schedule, because the users kept the

environment agile by adding and changing requirements (DSDM, Scrurn,

FDD, CC, ASD, and LD).

The ASDMs encourages and improves development of a data warehouse in

an agile environment created by the users (DSDM, Scrurn, XP, FDD, CC,

ASD, and LD).

ASDMs encourage feedback as development progresses (Scrurn, XP, and

LD).

Communication between team members, users and other stakeholders is

very important when developing a data warehouse (DSDM, Scrurn, XP,

FDD, CC, ASD, and LD).

If the team is not committed to the data warehousing project, the process of

successful completion could collapse (Scrurn, XP, FDD, CC, and LD).

ASDMs allow developers to use tools and techniques from other

methodologies, for example, where pair programming was used by all the

ASDMs except DSDM (Scrum, XP, FDD, CC, ASD, and LD).

Access to expert users when developing a data warehouse using a

specified ASDM, is of the utmost importance (DSDM, Scrurn, XP, CC, ASD,

and LD).

Frequent delivery (in feature sets, sprints or cycles) and constant integration

is essential to project success (DSDM, Scrurn, XP, FDD, CC, ASD, and LD).

Testing can be integrated throughout data warehouse development when

applying a specific ASDM (DSDM, Scrurn, XP, ASD, and LD).

There was a lack of user involvement in the data warehousing project (XP,

Scrurn, and LD).

New and additional requirements were implemented without any major

problems (DSDM, Scrurn, XP, FDD, CC, ASD, and LD).

ASDMs do not have capabilities to solve technical issues during data

warehouse development (DSDM, Scrurn, FDD, CC, ASD, and LD).

ASDMs will be more applicable to larger projects than the medium-sized

data warehouse developed by the teams (DSDM, FDD, and LD).

ASDMs have the ability to be used in data warehouse development (DSDM,

Scrurn, XP, FDD, CC, ASD, and LD).

There is a definite correlation between the core values of agile processes, as

explained by Hislop et a/. (2002:177) (see par. 2.3), and the propositions

derived by the researcher during the interpretive experiment. All the core values

specified for agile processes were found to be true for all ASDMs used in this

interpretive study.

Propositions for individual ASDMs

The unique characteristics of each ASDM will be discussed in terms of:

Data warehouse diagram: The diagram depicts how the team's assigned

ASDM was applied to the development of their data warehouse. The

diagram describes an incremental data mart development approach where

development is done one sub-data mart (increment) at a time. 'The

development of a data mart includes all the increments associated with the

data mart, i.e. the diagram of the collected requirements into a star-schema;

the design and data staging of the star-schema; the GUI associated with the

data mart, and the reports generated according to user specifications. Each

increment was developed iteratively to deliver the increments (sub-data

marts) to create the data mart, where after the data mart was deployed as a

whole. In this interpretive experiment, the cricket data warehouse consisted

of only one data mart that was divided in increments (sub-data marts), each

developed iteratively. Another data mart may for example be a financial

contract data mart where players' contracts are managed based on

performance. The CC team was the only team that viewed an increment as

a data mart, where the whole data mart was developed iteratively and

deployed as a whole.

The team's interpretation of the assigned ASDM's suitability towards data

warehouse development before development: The assigned ASDM will be

evaluated by the answers to the following question in the first interview:

"After studying their assigned ASDM, does the team think it has the

potential to be used to develop a data warehouse?"

The team's interpretation of the assigned ASDM's suitability towards data

warehouse development after development: The assigned ASDM will be

evaluated by the answers to the questions in the final evaluation session:

"Did the assigned ASDM work for developing the data warehouse? In which

areas, properties or principles (depending on characteristics of ASDM) did

the methodology work and in which areas, properties or principles did it not

work? Are there any shortcomings in the assigned ASDM?"

Documentation evaluation: The assigned ASDM will be evaluated by

examining the documentation provided for the final evaluation session.

Problems during development: Problems encountered during data

warehouse development will be explained, including whether the assigned

ASDM helped to manage the problems.

5.4. I DSDM team

Data warehouse diagram:

: Single I I
- - - - - - - - - - - : datamart I Update j : increment ; _ _ _ _ _ _ _ _ _ _ I

: cclmpletcd ! I
L r - - - - - - -

i Estract Tmsforrn Load Create ~SV-, Load Fact
Ran- data ean ons &.&nls. Tables

Figure 5. I : Applying DSDM to data warehouse development.

The diagram depicts definite development phases or studies that distinguishes

DSDM from other ASDMs. In each phase certain aspects of data warehousing

could be incorporated, for example the conversion of ERD tables to a star-

schema could easily be incorporated as an iteration as part of the design and

build phase of DSDM. Furthermore, the design and build iteration is clearly

visible on the diagram.

The team's interpretation of DSDM's suitability towards data warehouse

development before development:

The participants replied: "If we know what the user wants, we will know if the

DSDM will work." This implies that the team members were uncertain whether

DSDM would work without having knowledge of the primary requirements.

The team's interpretation of DSDM's suitability towards data warehouse

development after development:

Because the users kept the environment agile, the DSDM team experienced a

problem because DSDM states that time should be fixed while functionality is

adjusted. The deadline was set by the users, but they underestimated the

duration of their individual tasks, causing the team to change the timeframe of

individual tasks to ensure that the functionality stayed the same. As new

requirements were added, the functionality declined - contrary to the key

aspect of DSDM.

Documentation evaluation:

DSDM has proven to extend the duration of individual tasks in the project

timeframe. This is in contrast with the statement of DSDM implementation

specifications, which explain that the project timeframe should be fixed.

Functionality was flexible and if changed, it was supposed to decrease in order

for the project to meet the time constraints. In this data warehousing project,

however, functionality requirements kept on increasing, compromising time

constraints.

The DSDM team do, however, state that DSDM can be used for data

warehouse development if the functionality requirements are set (which is

rarely the case in any software project). According to the team, user

involvement is important because users do not know exactly what they want at

the beginning of a project. They explained that incremental data mart

development worked throughout the development phases of the DSDM's

lifecycle.

Problems during development

Apart from the technical issues experienced by the team, the team struggled to

divide the workload among the team members, as the development experience

of each team member was not known.

5.4.2 Scrum team

Data warehouse diagram:

SYSTEMS SERVICES
A
I

G d theMml f l h 01 ball+- :Exmct&atz
bdl dsfa ;cm\en totwtffesuh?e brmet
Gd the adcqvatcddato

;Clem data

I 1
'Oewlop d w m b, p5wlare ERO

Dwdop : D e \ r d ~ c a r f o m e t l l a a l ~ b k s
dbnensbns l -ewrrnpte*m
Develop aslarsd-ema I : D o ~ u c z 4 o X s y t a g ? t m ~ p i n g
Devdop dimsre'ons : Dewzlooa fadtale
Populsk dmensiom> I 3 I P O p ~ l h th? bdtable

I

: Develop a G~rspRcal Userlmemce
I
I

i~opulab ERD Q I

f
1

4
I

I , I
I I I I
1

I
I

,
 PRINT fl-). ; P R I M 31--* RINT 4 ~ - ~ R I N T 51

Figure 5.2: Applying Scrum to data warehouse development

Scrum's development process is uniquely identified by the sprints used during

the data warehousing project. Pre-sprint meetings where held to ensure that all

team members recognise what was expected from the current sprint. Each

sprint represented a logical grouping of tasks that had to be completed before

the next sprint could commence. After each sprint, a post-sprint meeting was

held to determine whether the requirements from the sprint where met and

whether there were any additional identified requirements to be included in the

next sprint.

The Scrum team implemented Scrum in seven sprints in the project. During

sprint three (data modelling), they had several ideas among them and were

able to implement most of these through programming and developing together

using individual strengths. Some of them had more knowledge about cricket

and others had more knowledge about the programming procedures.

During sprint four (population of fact table) the fact table was loaded within

three hours, meaning that Scrum had no impact on this sprint as a normal

sprint period is 20 days or less.

During sprint five (creation of GUI) Scrurn was supportive. The team had

several meetings and through working closely together they knew who would

be best for which part of the GUI.

During sprint seven (project report) Scrurn was a huge help. Due to all the prior

notes and reports it was easy to update schedules and get required

documentation ready through previously developed documentation in the other

sprints.

The first two sprints (methodology and ERD development) did not include any

development process. For this reason Scrum was not used, while in sprint six

(building a cube in Cognos) the team only used the pre- and post-sprint

meetings as specified by Scrurn. According to the Scrurn team, Scrum was very

effective in developing their data warehouse.

The team's interpretation of Scrum's suitability to wards data warehouse

development before development:

The participants gave a positive response to this question but did not give

supporting detail.

The team's interpretation of Scrum's suitability towards data warehouse

development after development:

The Scrum team stated that the daily meetings improved communication,

causing each participant to know exactly what was expected during the current

and future sprints. The team explained that, "...because the work was divided

in sprints, individual tasks of the project could be completed easier". The team

saw a sprint as a logical grouping of tasks to be completed before the next

logical grouping of tasks could start.

Documentation evaluation:

The Scrum team explained some unique advantages and disadvantages they

experienced during the development of their data warehouse.

Advantages:

Rotation of leadership depending on the development phase gave a

distributed nature of project execution and ownership. Every member had

the opportunity to be a sprint leader. In this way not only one person's

development character~stics were imprinted upon the project.

The users were kept informed of the progress of the team and it was

possible to step in whenever required. This was greatly extended by the

weekly reports as well as the meticulous notes the team kept of every

meeting.

Scrum creates an open environment and encourages feedback.

Evaluation of effort and subsequent rewards were based on team

performance.

Reduced need for meetings, authorisation and reporting. As they grew to

know each other's working style, the team held shorter meetings and

worked much faster.

The incremental data warehouse development model allowed the team to

deliver every 20 days or less, and not the normal 30 days as specified by

Scrurn.

Disadvantages:

Loss of initiative and great ideas: Ideas the team had could not be

implemented since, according to them, they did not have enough time

because of the changing environment.

Emotional impact when not keeping to the schedule: The team members

feel they are working continuously and are constantly behind schedule with

the "malicious hastening" of the project.

As with other ASDMs, the Scrum team experienced some technical and

source data problems.

Problems during development

The Scrum team experienced the following categorised problems:

Problems with the data warehouse: The team argue they wanted to add

more functions and tools to their data warehouse, but it was difficult with the

additional requirements they had to complete.

Problems with users: The Scrurn team argue that they struggled with the

users who constantly changed the requirements. They further argue that

they received some of the assignments at too late a stage, causing them to

not implement the solutions to the best of their abilities. (The researcher

added requirements on purpose to keep the development environment

agile.) The team suggests that less time be spent on the initial planning.

Because of the constant changes, data became redundant and caused

many inconsistent dates and tasks. The team had to spend several hours

to correct this problem near the end.

Problems among the team members: The Scrum team explains that they

were fortunate to have a group with such diverse strengths. The team did

not experience any problems that could not be sorted out quickly and

efficiently.

5.4.3 XP team

Data warehouse diagram:

Phase 1 - Phase 2 - Phase 3 - Phase 4 - Phase 5

LJ-
End User

I I I I
N ltwdtions I N Meretjons 1 Nlteralions I Nltembons N Iterations

Technical User Story Cards

Spike Solutions

mbkm

Figure 5.3: Applying XP to data warehouse development

The story cards that were used to identify requirements and to guide the

development process uniquely identify XP. After the completion of a logical

grouping of tasks or requirements on a story card, spike solutions were used to

identify problems experienced during iterative development to find and

incorporate appropriate solutions.

The team's interpretation of XP's suitability fowards data warehouse

development before development:

The participants gave a positive response, but explained that they were not

sure exactly what was expected from them. This was resolved during the

requirements session.

The team's interpretation of XP's suitability fowards data warehouse

development after development:

The XP team was extremely positive towards the development of their data

warehouse using XP and replied: "...we think that we had the best ASDM. XP

worked very nicely for us. We completed story cards ourselves as development

took place and as we realized that new requirements must be added to make

the data warehouse more valuable. Technical requirements, which were our

responsibility, were also filled onto story cards to get our thoughts and ideas

aligned to what was expected. We used pair programming the whole time to

program and design. Pair programming helped us to fix errors much faster, as

the one programmer may know more than the other, creating a learning

environment for us as team members. We think that XP also has the ability to

be used in conjunction with other ASDMs."

Documentation evaluation:

According to the XP team, XP was a sufficient methodology for developing the

data warehouse.

The most effective method of evaluating the failures and successes of XP was

to evaluate the core practices of XP in terms of the data warehouse project. All

XP practices (continuous integration, design improvement, small releases,

simple design, etc.) were applicable in the use of other ASDMs, as explained in

par. 5.4.

The following practices were unique to XP's character during data warehouse

development:

I. Test driven development customer tests and on-site customers: The only

problem with the simulated environment was the lack of consistent everyday

user involvement. Acting as both users and developers made objective

development quite difficult, reason being that XP was built upon user

involvement and thus testing and quality assurance are user dependent.

According to the team, no iteration can be completed without user

acceptance after extensive testing.

2. Planning game (story cards): The simulated environment made it quite

difficult to fully practice the planning game. However, the XP team do think

that it is applicable to data warehousing because the story cards kept the

requirements short and focused.

3. Coding standards or coding conventions: Using XP's recommended coding

standards and conventions was a viable idea with the focus on metadata.

In conclusion, the XP team found XP to be a methodology that is applicable to

the data warehousing paradigm overall. Except for the problems with the

simulated environment, they would definitely use this methodology for future

data warehousing development.

Problems during development

Although XP has nothing to do with the technical issues, the XP team explains

that XP helped with technical problems by offering the option to use spike

salutions to solve some problems.

According to the XP team, XP was helpful for solving problems due to its

iterative nature and spike solutions. When they had a difficult problem to solve,

they created a spike solution before implementing the final solution. When they

experienced problems after a release cycle, they solved these in the next

iteration of the same release cycle (increment).

Concerning the management of problems, the XP team explain that when a

problem occurred in an iteration and it was not resolved, it was passed on to

the next iteration where an attempt was made to resolve the problem with a

spike solution. If this did not solve the problem, it was passed on as a story

card and used in the same iteration. This provided them with enough time and

methodological resources to eventually solve their problems.

The XP team state that they had no team related problems.

5.4.4 FDD team

Data warehouse diagram:

Figure 5.4: Applying FDD to data warehouse development

FDD is uniquely identified by the fact that features are used to capture

requirements and to guide the development process, just like the story cards of

XP. Features can also be grouped in logical feature sets and feature sub-sets.

The arrows in the diagram depicts that a certain feature(s) can only be

executed if the pre-defined feature(s) was completed successfully.

The team's interpretation o f FDD's suitability towards data warehouse

development before development:

The participants had a positive attitude and understanding towards the project

by stating: "According to us FDD will work, because it looks almost like the

general system development lifecycle, except that development is done in

increments and iterations". The answer illustrated that FDD can be applied to

data warehouse development because it has the same structure as the normal

system development lifecycle of information technology projects.

The team's interpretation of FDD's suitability towards data warehouse

development after development:

According to the FDD team, FDD was used effectively in all phases of

development where the development of the cricket data mart was viewed as

the primary feature set. The data mart was then divided into feature sub-sets

(sub-data marts) and further into individual features (or tasks) that needed to be

completed in a specific order. The FDD team furthermore stated, "Although

FDD worked for developing the data warehouse, it lacked problem solving

utilities."

Documentation evaluation:

The FDD team stated that FDD was a very useful methodology for developing a

data warehouse because the data warehouse's logical structure was easily

divided into feature sets and feature sub-sets, and identifying individual

features was a very easy task. Each data mart can be a feature set and the

feature sub-sets (sub-data marts) can be anything from creating the

dimensions, creating the fact table, developing the GUI (which in itself can

consist of several feature sub-sets), etc. The team found that it was a perfect fit

and used it very easily and effectively in the creation of their data warehouse.

The team stated that FDD worked very well in all phases of the project. FDD

was not used to solve technical and team related problems as the team

members were competent enough to solve these problems themselves.

The morning calls (short meetings) supported the FDD team to manage the

data warehousing development process in a changing environment. During

each meeting, problems were discussed and solutions were determined to

solve the problems as fast as possible.

Problems during development

With the development of the overall system, the FDD team encountered a few

problems in their project schedule, because the requirements changed as

development progressed. Furthermore, only technical issues were experienced.

5.4.5 CC team

Data warehouse diagram:

End Urrr I)Ppliation

\Z;J
&$3
,--

First increment (data mart)

Figure 5.5: Applying CC to data warehouse development

CC is uniquely identified by the seven properties that were applied during data

warehouse development. CC is different from other ASDMs, as it does not have

a lifecycle that can be followed like that of DSDM or Scrum. Although this team

indicated only one data mart as an increment, the teams' projects could

practically be viewed as consisting of various increments, since GUI

development can be seen as such an increment.

The team's interpretation of CC's suitability towards data warehouse

development before development:

The participants gave a positive response and replied, "Because development

is incremental and iterative, it makes it easier to develop data marts as

requirements are added."

The answer illustrates that CC has the ability to develop a data warehouse.

The team's interpretation of CC's suitability towards data warehouse

development after development:

The CC team explained that CC worked extremely well during the development

of their data warehouse. "Because data warehouse development was

unpredictable, CC's properties helped create an effective working environment

for the team. CC is more a method of communication than a structured

methodology."

The answer illustrates that the CC team was more focused on effective

communication than the development process.

Documentation evaluation:

According to the CC team, there were no specific steps that had to be followed

with CC. However, it provided the team with a few properties that guided them

through the project.

Frequent delivery: The team found this property to be very useful in their

data warehouse development. Firstly, it helped them break the warehouse

down into smaller, more manageable and understandable parts. Secondly, it

helped them keep to a more structured schedule, because they had to make

frequent deliveries of the data warehouse and its underlying aspects and

functionality.

Reflective improvement: The property enabled them to recover from errors.

The team held meetings to discuss what was going wrong and how to

correct and later improve it. They also reflected on the work already done

and each team member had a chance to express his satisfaction or the

contrary. This gave everyone a clear idea of what still needed to improve.

The members who struggled with an aspect, were able to ask for help. The

CC team found this property almost essential for data warehouse

development.

Osmotic communication: The CC team was small, making this property not

hard to adhere to, but it will be substantially more difficult with bigger

groups. They worked together, and communicated well with one another.

Sometimes they kept in contact via e-mail and phone. Every aspect of the

data warehouse was communicated.

Personal safety: The CC team stated that it was sometimes important to

speak ones mind especially if something was bothering a team member.

The personal safety property creates an environment where each team

member was encouraged to speak up. They could criticise the work of

others and explain if they were unhappy for whatever reason, resulting in a

better system or data warehouse being developed. The team members felt

safe and at ease working with other team members. However, the team

used this property less than all the other CC properties. The team became

good friends, being open towards each other. They think that in bigger and

unknown participation, this property should get more attention.

Focus: The CC team explained that team members are required to focus on

what they are doing. Distractions should be kept to a minimum. This was a

very difficult property to uphold, because they had many other priorities.

They admitted that this property was unnecessary, as it is somewhat

obvious that one needs to focus to make something a success.

Easy access to expert users: According to the CC team the data warehouse

was based on some form of activity and process, which, when processed,

provides the necessary information. To correctly represent this information,

much interaction was needed between the expert users and the

development team. The expert users' input will greatly determine the overall

presentation of the whole data warehouse. The CC team do however feel

that this property was not explored as much as the first five properties. The

interaction should be extensive. According to the CC team, the "osmotic

communication" property was greatly neglected.

Technical environment with automated tests, configuration management,

and frequent integration: The CC team admits that this property was

probably least used by them, especially the automated testing which they

did manually. They do, however, feel that this property is important, and that

it can be used successfully in data warehouse development.

Problems during development

The team states that they had no communication problems, because they used

the property "osmotic communication'' effectively. Team members contributed

peacefully and harmoniously, and, according to them, when they worked, they

worked long and hard. Although "automated tests and configuration

management" was seen as very important, the team states that this was

neglected. This may have resulted in sub-optimal requirement satisfaction.

Furthermore, only technical and source data issues were experienced.

5.4.6 ASD team

Data warehouse diagram:

Figure 5.6: Applying A SO to data warehouse development

3x3 'rzm an1 r k

ASD is uniquely identified by the time boxes and cycles that manage a logical

grouping of tasks that has to be developed. Furthermore, ASD sees the

development process as a learning process through effective collaboration

between team members.

The team's interpretation of ASD's suitability towards data warehouse

deveiopmenf before development:

The participants had questions about the suitability of ASDMs on data

warehouse development. The team wanted to know if ASDMs in general have

been used to develop data warehouses in practice.

b
User
Requirements - / -

I

1

Extract

Crez:e
Zz.3

L o a d

+ Cc:'jkn:e ?dw User =:=~.*ma-rs
Learr

The team's interpretation of ASD's suitability towards data warehouse

development after development:

The participants emphasise that ASD was successful in the development of

their data warehouse. They also explain: "A wonderful aspect of ASD is that

every problem is seen as an opportunity and a chance for learning. ASD gave

us the space to make our own choices of what needed to be done to make the

project a success. ASD guided us in delivering a project on time and within a

changing environment."

Documentation evaluation:

Because ASD focuses on adapting to change, the ASD team did their initial

project plan, and implemented it in a way that whenever they saw that their

initial plan would not work, or when they recognized a problem, they did not

hesitate to change it. According to the team, they were very fortunate to receive

this ASDM. The ASD team explains that the planning of the technical

requirements could easily be changed, where they changed between different

Oracle versions, without having major problems. They also argue that ASD

allowed them to move cycles around and to adapt to the additional

requirements that were not part of the initial project plan.

One disadvantage was that the ASD team feels that they never knew exactly

what was expected of them. This resulted in more time spent on planning,

rather than implementing their ASDM's prescribed steps.

The ASD team conclude that ASD could be used in the development of a data

warehouse because of its adaptability.

Problems during development

The team explains that ASD was very effective because every time they

experienced a problem, they were able to change their initial planning. As with

other ASDMs, ASD experienced time schedule problems. The team states that

they experienced scope creep problems, where the time available to complete

the project was kept the same as the scope expanded because additional

requirements were added.

5.4.7 LD team

Data warehouse diagram:

Acceptam 1
[~ t r s atceclarce from uoer]

/

2 L c a ~ n g
3 Dez~de as lare as pa+nMs
4 LkLr~erasfast a s p % ~ b t s
5 Emporwr the ream
6 Bald amsgnb; tn
7 S e Jle h o l e

Figure 5.7: Applying LD to data warehouse development

LD is uniquely identified through the seven principles which can be

incorporated during the development phases of a data warehousing project.

Meetings where held before a logical grouping of tasks were completed to

identify problems and to find solutions for the problems during development.

The team's interpretation of LD's suitability towards data warehouse

development before development:

The participants were unsure of what was expected from the data warehouse

and replied that they were not sure if LD could be applied for data warehouse

development.

The team's interpretation of LD's suitability towards data warehouse

development after development:

The attitude and interpretation of the LD team grew positive towards the data

warehousing project. They state: "LD worked for us and we think that our

warehouse is a success and that LD assisted us in this process. Eliminate

waste (principal 1) was our favourite principal, because documentation that was

not seen as very important during our data warehouse development project

was eliminated. Only important documentation was necessary. A problem we

encountered with LD is that it states that users should decide as late as

possible what they expect from the system. This did not work for us because

we did not have enough time to wait for the user requirements, and had to work

with the requirements given to us during the user requirements session."

The answer illustrates that expecting users to "decide as late as possible", is

not a good approach when time is restricted.

Documentation evaluation:

The LD team explain the advantages and disadvantages of the seven principles

of LD during the development of their data warehouse.

Eliminate waste: Any aspect that did not add value to their data warehouse

was eliminated (using the waste tool), including numerous pieces of

documentation. The team only had to do documentation of utmost

importance, as explained in par. 5.3.2.

The LD team also experienced delays in approval from users as waste.

They explain that they kept developing iteratively to move on within the

confined timeframe of the project without having to wait for approval. They

also explain that to save time, no debugging documentation or debug

planning sessions were done. If an error occurred, they fixed it. The LD

team do, however, state that they sometimes found it difficult to move on to

the next iteration when user approval was not received.

Decide as late as possible: The team states that this principle could lead to

serious problems because their time to complete the project was limited.

They could not wait for users to "decide as late as possible", because the

user requirements were given early in the project and the project had a

limited time frame.

Build integrity in: The LD team explains that the goal here was to ensure

excellent flow of information between customers and the development team.

They used "refactoring" as a tool. When a problem occurred, they stopped

the development of the specific iteration, and took the time to find and fix the

root cause of the problem, before proceeding with further development.

However, according to the team this was not always possible, because they

sometimes had to continue working to find an alternative solution.

See the whole: According to the LD team, the goal is not to focus on

individual parts of the system or data warehouse but rather to focus on the

delivering of the data warehouse as a whole. They explain that ,this can be

negative, because they make use of iterations and completing each iteration

as fast as possible was a major priority. During the project, the LD team

rather focused on the small parts (iterations) to develop the whole data

warehouse.

The principles "amplify learning", "deliver as fast as possible", and "empower

the team" were applicable to all other ASDMs in the interpretive experiment.

The LD team explain that by continuously working with the customer, no

unnecessary features were incorporated in the data warehouse. As a result,

they kept the "design simple".

Problems during development

The team explained that after they completed an iteration, they were

sometimes uncertain about the correctness of certain aspects of their data

warehouse. LD had them moving onto the next iteration without having to wait

for user approval. This could have lead to serious problems at the end of the

development had there not been enough time to correct major problems.

Furthermore, not dl1 the team members are familiar with the game of cricket on

which the data warehouse was based. They used "amplified learning", one of

the principles, to help one another understand these concepts by sharing ideas

and methods to accomplish certain tasks.

The team explained that when development got confusing, they focused on

principle four (deliver as fast as possible). By first getting something going, it

was easy to improve on it later.

Motivational problems occurred frequently in the LD team. They had to find

ways to motivate and "empower themselves and the team" (principle five). They

used the elements mentioned like "feel of progress" to ensure that they worked

effectively.

5.5 Data warehouse success

It was clear that all participants in every team had a positive attitude towards

the use of the assigned ASDMs to develop a data warehouse. After the

evaluation of each ASDM, it was clear that all ASDMs have certain areas,

properties or principles that are suitable to develop a data warehouse in a

constantly changing environment. The users created the constantly changing

environment by adding development and documentation (only the most

important documentation) requirements.

The researcher used specific criteria to verify whether the data warehousing

project of each team was successful. The answer to each question is based on

the data analysis of the seven interviews, two evaluation sessions and the final

project documentation.

The project success criteria consist of the following:

1. A usable project plan with a diagram explaining how the assigned ASDM

could be used to develop a data warehouse.

2. Was the data extracted correctly from the cricinfo.com website into the

created ERD tables?

3. Was the star-schema (data mart) constructed correctly in Oracle?

4. Was the source-to-target map designed correctly, showing where the star-

schema gets its data from?

5. Was the data cleansing acceptable?

6. Was the fact table loaded correctly?

7. Was the connection between the GUI and Oracle data warehouse correct?

8. Was the GUI user friendly?

9. Was it possible to view the fact table and its corresponding dimensions in

the GUI?

10. Did the GUI consist of an editable, easy to use query builder?

11. Were the users able to generate scorecards for any OD1 or five-day test

match (including the first and second innings)?

12.Did the GUI have advanced queries worked out beforehand to help the

users interpret the data in the data warehouse?

13.Was Cognos used to build at least one cube (with a drill down operation)

and to generate a report?

14. Was the project completed before the deadline?

15. Was the data warehouse effective?

16. Did the team work together effectively?

17. Was the ASDM used correctly?

After analysing all the documentation and other data collected during interviews

and evaluation sessions, the researcher determined that all the projects were

successful in the interpretive experiment, answering "yes" to all the questions in

the above criteria.

The data analyzed in this chapter proves deductions that were made in chapter

4, to be confirmed. In chapter 6 general findings for all ASDMs and unique

findings for every individual ASDM will be explained by combining the

theoretical deductions made in chapter 4 and the interpretive experiment

results (propositions) of chapter 5.

CHAPTER 6

CONFIRMED FINDINGS

6.1 Introduction

In chapter 4 the suitable and unsuitable theoretical characteristics of each

ASDM were explained by examining in which phases of data warehouse

development a certain ASDM's areas, properties, practices, principles or

development phases could be applied to develop a data warehouse in a

changing environment. This was done with relation to both Kimball ef a/. (1 998)

and Inmon's (1996) approaches, resulting in the decision to use Kimball's

approach for the interpretive experiment in chapter 5.

In chapter 5 the theoretic deductions made in chapter 4 were practically tested

by conducting an interpretive experiment. The teams, participating in the

interpretive experiment, were able to develop successful data warehouses

using their allocated ASDMs.

After examining the theoretical deductions made in chapter 4 and the

interpretative experiment results in chapter 5, these deductions and interpretive

results (propositions) will be combined in. This will be done by identifying

certain ASDM areas, properties, practices, principles or development phases

that could be applied to the data warehouse development phases. Findings

regarding the suitability of all ASDMs in data warehouse development will be

explained, as well as findings for every individual ASDM.

6.2 Research findings

Firstly, the findings that were applicable to all ASDMs will be explained by

combining the theoretical deduction of chapter 4 with the propositions of

ASDMs in chapter 5. Secondly, a detailed explanation will follow were every

ASDM's theoretical deductions made in chapter 4 will be combined with the

propositions presented in chapter 5.

6.2.7 Findings regarding the suitability of ASDMs in data

ware house development

As confirmed in the interpretive experiment conducted in chapter 5, ASDMs

have the ability to be used in data warehouse development. Throughout the

interpretive experiment, the users kept the environment agile by adding

additional requirements as development progressed. Al ASDM teams stated

that communication between team members and stakeholders, as well as

effective teamwork were important factors for their data warehouses to be

successful.

The source data that was used during the interpretive experiment came from a

real world source and data inconsistency problems could not be associated

with the academic setting of the interpretive experiment where ASDMs were

used to develop data warehouses. With this said, all teams, except XP,

explained that ASDMs lack capabilities to solve technical issues during data

warehouse development.

All ASDM teams further explained that the project plan and schedule helped

them to get their minds organised regarding what had to be done next. All

teams also stated that additional requirements could be implemented into the

evolving data warehouse without any major problems, because of graceful

changeability of star-schemas (Kimball et al., 1998:148). All these deductions

were confirmed in chapter 5, including applicable propositions of all ASDMs.

6.2.1 .I Collecting requirements

It was possible to use ASDMs in the collecting requirements phase during the

interpretive experiment, because Kimball et a/. (1998) and ASDMs collect

requirements before development commences. Furthermore, ASDMs were

used because they follow the same approach as Kimball et a/. (1998), where

satisfaction of user requirements is of the utmost importance.

ASDMs in the data warehousing projects ensured frequent incremental delivery

that resulted in early user identification, continuous user involvement, earlier

requirements identification, and feedback on the implemented requirements.

ASDMs explained that any means possible could be used to collect

requirements - that is the reason why interviews (as explained by Kimball et a/.,

1998:97) were used to collect significant information to develop a data

warehouse of value in chapter 5. ASDlVls ensured that users where always part

of the project (i.e. partially available during interviews and evaluation sessions)

to keep developers on track to satisfy user requirements.

ASDMs seemed to have a problem with the time schedule where requirements

were changed or new requirements added. ASDMs would be more applicable

to any project if a technique was used to manage the time schedule as well as

the work-breakdown structure when requirements are changed or added in a

project.

6.2.1.2 Data modelling

ASDMs do not specify which data model should be used, but they do explain

that projects have different characteristics that should be accounted for, and

during a data warehousing project a star-schema was required to model the

requirements into diagrams. For this reason the teams in the interpretive

experiment used star-schemas that were developed from the ERD tables using

source-to-target maps. Another reason a star-schema was used, is that it has

the trait of graceful changeability (Kimball et a/., 1998:148) allowing changes to

be made easily to the star-schema as requirements are added.

The deduction regarding unsuitability made in par 4.2.1.2, where the researcher

explained that ASDM projects have not been proven to be successful when

using star-schemas, is false, as it was confirmed to work in the interpretive

experiment for every team.

6.2.1.3 Data staging

The confirmed theoretical deductions and propositions of ASDMs during data

staging will be explained in the following paragraphs.

The ETL-process of every team's data warehouse was represented by the

development process of every ASDM. Development was done in increments

(including the ETL-process) where every increment was seen as a data mart or

a sub-data mart; including the diagram of the requirements into a star-schema;

the design and data staging of the star-schema; the GUI associated with the

data mart; and the reports that were generated from the data mart. Each

increment or sub-data mart was developed iteratively. The interpretive

experiment confirmed that using ASDMs in data warehouse development, a

data mart (for CC) or sub-data mart (for all other ASDMs except CC) was

developed in iterations, sprints, cycles, and feature sub-sets, depending on the

ASDM. The data mart's logical structure (including everything from collecting

requirements to GUI and report generation) was easily divided into individual

tasks, iterations, sprints, cycles or features. Because development was done

iteratively, problems were identified easier and solved quicker, which resulted in

an improved data warehouse design as iterative and incremental development

progressed. New and additional requirements were added without any major

problems.

The teams could also use tools and techniques from other methodologies to get

the job done. The technique used by almost all teams during data warehouse

development was pair programming. The ASDMs kept the users actively

involved during the development process, and the teams were empowered to

make their own decisions to satisfy the user requirements that were given

during the requirements session. Development was reversible where ASDMs,

with the exception of FDD and CC, were applied to data warehouse

development as participants could backtrack to the last safe point in order to

start a new development approach.

Every increment or sub-data mart was delivered incrementally to create the

data mart, whereafter the data mart (including everything from collecting

requirements to GUI development and report generation) was deployed as a

whole to the users. ASDMs encouraged and improved development of a data

warehouse in an agile environment.

6.2.1.4 Data access and deployment

Before the data mart of every team was deployed, it was thoroughly tested to

identify whether the primary requirements as specified in the requirements

session were fulfilled. Testing was also integrated throughout the development

process for all ASDMs, except in the case of the FDD and CC teams. After

successful testing results, the data mart was implemented and the use of the

data warehouse was transferred to the users. Every team trained the users to

use the data warehouse effectively by using the evaluation sessions as well as

the mini-manual the participants created for the final evaluation session.

The successful completion of every team's data warehouse confirms that

frequent delivery and constant integration is essential to project success. The

interpretive experiment confirmed that a data warehouse could be delivered in

increments to create the data mart, where the data mart was deployed as a

whole to the users.

6.2.2 Findings regarding the suitability of DSDM in data

warehouse development

Iterative sub-data mart development worked throughout the development

phases of DSDlW where the data warehouse was developed. The team that

used DSDM for their data warehouse explained that DSDM would only work if

functionality requirements were set. The reason for saying this was that the

environment was kept agile by adding additional requirements. This caused the

team to miscalculate the duration of their individual tasks that had an impact on

the functionality, because the deadline for the project was fixed. The addition of

extra requirements may also have resulted in a project that was not completed

on time, as participants in the DSDM team explained that the functionality in

their project decreased because of the extra requirements that caused

individual time boxes to change.

A suitable technique could also be included in the DSDM methodology as the

team struggled to divide the workload among members.

6.2.2.1 Collecting requirements

The following deductions and propositions were confirmed during the

interpretive experiment.

DSDM recognises that facilitated sessions can be used, as explained by

Kimball et a/. (1998:97). The requirements session held by the users could be

viewed as a facilitated session. DSDM could thus be used effectively in the

collecting requirements phase of Kimball's approach.

During the data warehousing project, the business study resulted in early user

involvement as well as early requirements identification. Because DSDM does

not focus on documentation, prototypes were used to capture information and

requirements. DSDM was suitable to gather data warehouse requirements,

since it is a people-oriented methodology, where user requirement satisfaction

was the primary focus, as is the case with Kimball's approach.

6.2.2.2 Data modelling

DSDM includes a logical model that was used by 'the participants to implement

a star-schema (data mart). The business area was defined by the affected

business processes, and because a star-schema represents a business

process, the process (ball for ball data in cricket tests) and requirements could

be modelled into a star-schema. The star-schema, source-to-target map, and

source ERD tables were used without any problems in the data warehousing

project. The deduction made in par 4.2.2.2 that DSDM only uses six core

techniques was confirmed to be false. Techniques such as star-schemas,

source-to-target maps, and ERD tables were used to develop a data

warehouse with DSDM.

These were the findings and confirmed theoretical deductions presented by

DSDM in the data warehousing project.

The following findings and theoretical deductions were confirmed by DSDM.

6.2.2.3 Data staging

DSDM is suitable for successful data staging. The ETL-process was done

iteratively where requirements could be added and adjusted as development

progressed. Although the added requirements had an impact on the

functionality and individual task estimates, the iterative ETL-process ensured

that flows were detected easily and that requirements could be added or

modified.

The function model iteration phase of DSDM was combined with the first step of

Kimball's data staging process by using a source-to-target map as the

schematic format that contains indications as to where the data has originated.

Not all the tools were used during the data warehousing project as explained by

Avison and Fitzgerald (2003:286). The only tools that were used effectively

during this project were Oracle, Visual Basic, and C#.

6.2.2.4 Data access and deployment

DSDM methodology explains that the output of the implementation phase is a

user-manual that can be used to train the users to use the data warehouse

effectively. Because documentation was kept to a minimum, the participants

completed a mini-manual and presented their data warehouse during the two

evaluation sessions to train the users in using the data warehouse effectively.

Incremental development and deployment was used effectively to complete,

combine, and test the developed prototypes before delivering the data

warehouse to the users. The data warehouse was tested throughout the

development process.

The output of the "design and build" phase of DSDM was fulfilled, because a

tested data warehouse that met at least the most important requirements was

delivered to the users.

No incremental review documents or project review documents were developed

by the participants as required by DSDM, because the data warehouse was

kept "lite" by removing some of the less important documentation.

During the evaluation of the ASDMs toward data warehouse development,

DSDM presented the most unsuitable characteristics to be applied in data

warehouse development. The main reason for stating this is based on the fact

that when requirements are added, it compromises the duration of individual

tasks that may result in a project that is not completed in time, or a project with

diminished functionality.

6.2.3 Findings regarding the suitability of Scrum in data

warehouse development

The unique characteristic of Scrurn where development was done in sprints

was viewed as a very important component of the Scrurn team's data

warehouse success. The team explained that because the workload could be

divided into sprints, the project was completed much easer. Every sprint was

viewed as a logical grouping of tasks that was completed before the next logical

grouping of tasks was started. This resulted in newly identified technical and

user requirements that made the data warehouse even more effective.

Furthermore, the daily meetings improved communication where team

members knew exactly what to do during the current and future sprints. These

were deductions confirmed by the interpretive experiments.

The Scrurn team did, however, explain that they had a loss of initiative and

great ideas because of the changing environment. In the interpretive

experiment it was confirmed that a team should not spend too much time on

initial planning because when the environment changes, it causes redundant

data containing an unnecessary number of inconsistent dates and tasks.

Using Scrurn to develop a data warehouse, the following deductions and

propositions were confirmed by the interpretive experiment (see par. 6.2.3.1 -

par. 6.2.3.4).

6.2.3.1 Collecting requirements

The fact that Scrurn is a reqr-~irements driven methodology made it suitable for

application during the collecting requirements phase of Kimball's data

warehouse, as Kimball encourages requirements collection before development

takes place. The primary requirements that were given during the requirements

session were listed and prioritized in the product backlog.

During each pre-sprint planning phase the identified requirements were

extracted from 'the prioritized backlog and moved to the sprint backlog to be

completed during the next sprint. In this way the requirements that were

identified in the requirements session and interviews were satisfied in sprints of

approximately twenty days in duration. Meetings of approximately 5 minutes

were held every day to ensure that requirements were met as development

progressed. After every sprint a post-sprint meeting was held to determine

whether all the selected requirements were fulfilled, and to identify solutions for

possible problems that may have occurred during the sprint. New and updated

technical and user requirements gained from the post-sprint meetings were

added, updated, and prioritized in the product backlog as development

progressed.

The statement made in par. 4.2.3.1 where Scrum was explained by focusing

more on team empowerment than collecting requirements, is confirmed to be

false, as satisfying user requirements are of the utmost importance to the

Scrum methodology. Although Scrum focuses on the management of the

development process, it also focuses on ,the satisfaction of user requirements.

6.2.3.2 Data modelling

Although Scrum did not mention a star-schema as a data modelling technique

(as explain in par 4.2.3.2), a star-schema was confirmed to work in a data

warehousing project where Scrum was applied.

The deduction made in par. 4.2.3.2 explaining that key pieces and

technological requirements can be estimated during the first sprint, was found

to be false, as the first sprint was used to extract the adequate data for the data

warehousing project. The technological requirements were known before

development started as a data warehouse had to be developed using Oracle,

Cognos and programming languages such as VB and C# to clean the data and

build a GUI. The installation of Oracle was not included in the project as a

sprint.

Because requirements have the tendency to change, the updated requirements

were modelled into the star-schema using the graceful changeability of Kimball

et a/. (1 998: 148) and iterative development of Scrurn.

6.2.3.3 Data staging

Scrurn recognises that every project has its own characteristics and degree of

uncertainty that made the manually designed data staging tools applicable

during the ETL-process of a data warehousing project.

The ETL-process was done over ,three sprints (see diagram 5.2). During sprint

2 (as illustrated in diagram 5.2) the ERD tables were loaded from the text files

that had to be cleansed. During sprint 3 the dimensions of the star-schema

were created and populated. Sprint 4 was the last sprint of the ETL-process

where the fact table was loaded using the created source-to-target maps. After

the successful completion of these sprints, the star-schema was loaded.

As deducted from literature, the experiment confirmed that (in par. 4.2.3.3) the

ETL-process can be executed using a product backlog and sprints. To keep

track with the ETL-process, the Scrurn team had daily 5 minute meetings to

identify and solve problems. Post-sprint meetings were held after each of the

three sprints to determine whether the iterative ETL-process was successful. If

the sprint or an iteration in the sprint was not successful, it was repeated. If the

sprint was successful, the next sprint commenced by extracting the required

requirements from the product backlog.

The Scrurn team assigned a different sprint leader to every sprint. This

technique allowed a diverse development approach that resulted in a project

with diverse characteristics. As the team members grew to know one another,

the duration of the daily and post-sprint meetings declined, as problems were

solved quicker by understanding each team merr~ber's point of view faster. The

sprint allowed the team members to deliver a sub-data mart in twenty days or

less, and not 30 days as specified by Scrum.

6.2.3.4 Data access and deployment

Because a sprint was done iteratively, it was possible to add or modify

requirements by using a simple iteration. The Scrum team used the built-in

implementation phase to deliver the data warehouse. During this phase the

users were trained to use the data warehouse effectively by submitting a mini-

manual and using the evaluation sessions to present their data warehouse -

thereby supporting the deduction made in par. 4.2.3.4. This holds that a training

program can be made during the planning sub-phase of the pre-game phase

during which team members plan and prepare their presentation and mini-

manual for the final evaluation session.

During the evaluation of the Scrum team's data warehouse the users were very

satisfied as the diverse team presented the best project of all the ASDMs. The

team was very diverse as some team members were detail oriented by keeping

the team on schedule, while the others used pair programming to design their

data warehouse.

6.2.4 Findings regarding the suitability of XP in data warehouse

development

The XP methodology was used effectively by the XP team to deliver a very

satisfactory data warehouse. The results of tlie interpretive experiment

enriched the understanding of the use of XP in data warehouse development.

Problems in iterative development were resolved early on using XP, since they

were passed on to the next iteration where an attempt was made to resolve the

problem with a spike solution. If this did not solve the problem, it was passed on

as a story card and was added in the current iteration. This technique provided

the team with enough time to solve all ,their problems as development

progressed.

XP was the only ASDM that supported the team when they experienced

technical problems by having the option to use a spike solution. Because

development was done iteratively, they could solve a difficult problem by

creating a spike solution before implementing the final solution. When problems

were experienced during a "release cycle", they were able to solve it in the next

iteration of the same release cycle.

The interpretive experiment confirmed the theoretical deductions made in

chapter 4.

6.2.4.1 Collecting requirements

XP has a unique characteristic of collecting requirements using story cards.

Because XP focuses on communication between the team members and the

users, interviews and a requirements session were used to collect

requirements. The requirements collected during the reql-~irements session and

interviews were written on the story cards by the team members. It was not

necessary for the users to complete the story cards, as the requirements were

thoroughly explained during the requirements session and interviews. Thus, the

team members completed the user story cards where the users explained

exactly what they wanted.

This proved the deduction made in par. 4.2.4.1 to be false that users have to

write user requirements on story cards and that requirements can only be

collected using story cards and not interviews. Thus, story cards can be used in

conjunction with interviews and a requirements session during an XP data

warehousing project. The team members also completed their own story cards

that contained technical requirements, as it were their own responsibility to

incorporated technical requirements.

The story cards guided the development as the team members could organise

their minds regarding the requirements which had to be satisfied next. Because

XP focuses on effective communication between team members and users, the

story cards simplified listiqg as team members knew exactly what was expected

from the data warehouse.

The deduction made in par 4.2.4.1 that users will always be on-site, is therefore

impractical as users are typically managers and only had time available during

interviews and evaluation sessions.

6.2.4.2 Data modelling

The XP team kept their design simple by diagramming the collected

requirements into a star-schema. "Refactoring" was accomplished through

using star-schemas that improved communication between team members

where each team member knew what was expected. Furthermore, the star-

schema was used to organise and model the requirements into an organised

fashion where graceful changeability of Kimball et a/. (1998:148) was applied.

These were deductions confirmed during the interpretive experiment.

6.2.4.3 Data staging

The unique characteristic of XP is "pair programming" where the team

members identified errors faster during the transformation and data staging

process, creating a learning environment for the team members. "Designing"

(one of the four activities of XP) was used during this data warehousing project

to incorporate new and updated designs into the existing data mart. The

"metaphor" (another of the four activities of XP) guided the design and fulfilled

user requirements where team members transformed and loaded data that was

of value to users. "Testing" was incorporated throughout the El-L-process to

ensure that the process was followed correctly and that the data staging

program code does what it was supposed to do. Furthermore, the quality of the

data staging program code was increased by using "collective ownership", and

duplicated data of no value was removed by applying the core practice,

"refactoring". These were all deductions that were confirmed in chapter 5.

The assumption made in par 4.2.4.3 that XP projects are only partially adapted

in most organisations seem be true, as not all practices of XP seem to be

applicable towards data warehouse development, as confirmed in par 5.4.3.

"Test driven development", "customer test" and "on-site customers" could only

be performed partially because of the lack of consistent everyday user

involvement. XP is built on user involvement, making "testing" and doing

"quality assurance tests" user dependent. The "planning game", one of the

practices of XP that was partially used as the academic setting of the project,

made it difficult to practice the planning game.

6.2.4.4 Data access and deployment

The XP team used "small releases" to implement the sub-data mart they

developed into the existing data mart. Before every sub-data mart was

implemented, it was thorougl-~ly "tested" (one of the four activities of XP),

becoming part of the data mart as a whole that was deployed and presented in

the final evaluation session. The data warehouse was kept "simple" (one of the

four values of XP) by the team by training the users, using a submitted mini-

manual and presentation during the final evaluation session. These deductions

were confirmed in the interpretive experiment.

The XP team does, however, state - and it is confirmed in other projects, that

XP can be used in correlation with other methodologies and ASDMs. The

technique "pair programming", which is identified when using XP, was used by

several other ASDM teams. Except from the problems they experienced from

the academic setting of the project, the XP team explained that they would

definitely use XP in future data warehousing projects.

6.2.5 Findings regarding the suitability of FDD in data

warehouse development

FDD has the unique characteristic of developing in features, feature sub-sets

and feature sets. In this project a feature set was equivalent to a sub-division of

a data mart, called a sub-data mart, while a sub-feature set was equivalent to a

sub-division of a sub-data mart (see diagram 5.4). Features were viewed as

requirements that were gained ,from the requirements session and interviews

that had to be completed in a specific order. FDD was applicable to data

warehouse development, but the FFD team explained that FDD lacked

problem-solving abilities.

The FDD team encountered problems in their project schedule as development

progressed, because requirements changed and new requirements were

added.

The following paragraphs summarize the confirmed findings of using FDD in

data warehouse development.

6.2.5.1 Collecting requirements

Because FDD did not explicitly state which data collection techniques should be

used, interviews and a requirements session were chosen and used

successfully during the collecting requirements phase of Kimball's approach.

These features were then prioritized in a feature list and grouped in feature sets

and feature sub-sets (as seen in diagram 5.4) where each logical feature

grouping represented a specific domain (i.e. sub-data mart) within the data

mart. There were no problems during the requirements collection phase of

Kim ball's approach.

6.2.5.2 Data modelling

The "domain object modelling" (best practice of FDD) was used by the FDD

team to develop a star-schema where requirements could be added or adjusted

by using graceful changeability of Kimball's approach. During the "design by

feature and build by feature" phase, the requirements were represented and

further planned in detail by using the star-schema. The star-schema was

confirmed to be effective in the interpretive experiment by using FDD to

develop a data warehouse.

6.2.5.3 Data staging

FDD was found to be applicable to the ETL-process and data warehousing

project as a whole, because the data warehouse's logical structure was easily

divided into feature sets and feature sub-sets, including anything from creating

and loading dimension tables to the creation of the GLII. The team found this to

be an affective technique for work division and to get the team to understand

what was expected from them.

The deduction made in par. 4.2.5.3 that the ETL-process can be done during

the "design by feature and build by feature" phase where the features can be

planned, built, tested, and iteratively integrated into the existing data mart, was

confirmed in the interpretive experiment. As part of the "design by feature and

build by feature" phase, a feature set (increment) was selected, designed, and

tested to become part of ,the existing data mart. Furthermore, the deduction that

the ETL-process was logical and has no process pride was also confirmed by

the interpretive experiment.

The morning calls (short meetings held every morning) helped the FDD team to

manqge the data warehousing development process. During each meeting

problems were discussed and solutions determined to solve the problems as

quickly as possible. The meetings also helped the team to change and add

requirements to the data warehousing project without any major problems.

Although FDD does not mention any tools that could be used to clean data,

manual data staging tools were written that worked effectively in the FDD

team's data warehouse.

6.2.5.4 Data access and deployment

The deduction made in par. 4.2.5.4, stating that features can be iteratively

designed, tested, and integrated to deliver a sub-data mart incrementally to

form the data mart (data warehouse) and then deploy the data mart as a whole,

was confirmed by the interpretive experiment. Furthermore, the "reporting"

practice of FDD supported the team members in delivering a data warehouse of

value to the users. The users were trained in using the data warehouse during

the evaluation sessions and by submitting a mini-manual.

Although the team struggled to stay on schedule as the environment changed,

FDD was used successfully in developing the data warehouse. The changing

schedule car1 be managed by irr~plemerlting an additional time frame after every

increment (feature set), which can be used in cases where certain requirements

are changed or where new requirements are added during feature set

(incremental) development.

6.2.6 Findings regarding the suitability of CC in data warehouse

development

The CC team was the only data warehousing team that made an increment

equivalent to one data mart where every data mart was developed iteratively.

Different aspects of the data mart were delivered iteratively duriug the

development process to form a data mart. The data mart was deployed as a

single increment to the users.

CC worked extremely well during the data warehousing project, as the CC

properties supported the team in creating an environment where members

could work together effectively. It was confirmed in the interpretive experiment

that CC is more a method of communication than a structured methodology in

which certain development phases had to be executed to complete a project

successfully.

The property "osmotic communication" was not hard to adhere to as the team

was small and the workspace small enough for the team to constantly stay in

contact. The "personal safety" property created an environment where each

team merr~ber could state hislher point of view without feeling threatened. This

resulted in a more effective working environment where requirements could be

fulfilled easier and faster. The team members did not experience any team

related problems because "osmotic communication" was present throughout

the development process.

The CC team did, however, feel that it was unnecessary to view the property

"focus" as a property, as it is common sense that all team members must be

focused on the goal to make any project a success.

6.2.6.1 Collecting requirements

The deduction made in par. 4.2.6.1 that "osmotic communication" encourages

developers to fulfil the requirements, and to ensure that team members

understand what is expected from the project, was confirmed during the

execution of the interpretive experiment. Because CC focuses on

communication and the satisfaction of user requirements, interviews and

requirements session were used to effectively collect requirements during the

first phase of Kimball's approach.

6.2.6.2 Data modelling

Although CC did not define any techniques for modelling requirements into

diagrams, the use of a star-schema was found to be very effective in data

warehouse development where CC was used. CC understands that every

project has its own characteristics, and explains that team members are able to

use their own tools and techniques to get the job done. This is the reason why

star-schemas were used, as it is a unique characteristic of the data modelling

phase of Kimball's approach.

6.2.6.3 Data staging

The deduction made in par 4.2.6.3 was confirmed by the interpretive

experiment where the CC team used "frequent delivery" and incremental (data

mart) delivery during the ETL-process. "Frequent delivery" supported the CC

team by breaking the data warehouse development down into smaller, more

manageable and understandable parts. "Frequent delivery" also supported the

team in keeping to a more structured schedule, because the sub-data mart was

completed iteratively.

"Reflective improvement", one of the properties of CC, enabled the team to

recover from errors that were experienced during the data staging process.

Meetings were held to discuss what went wrong and how to solve these

identified problems. They also reflected on the work already completed, and

each member was granted a chance to enhance the project design.

Although CC does not state whether tools or newly developed programs can be

used to clean data, it was confirmed that manually written data staging tools

were used effectively by the CC team. These were the propositions and

deductions that were confirmed in chapter 5.

6.2.6.4 Data access and deployment

The team found the property "frequent delivery" very usefl.11 as increments of

the data mart were delivered frequently to create the data mart that was

deployed as a whole to the users during the final evaluation session.

The deduction made in par. 4.2.6.4 where the technical environment was used

to test and control tasks by merging changes during automated tested (done

manually as explained in par. 5.4.5 under documentation evaluation),

configuration management (less used by CC team) and frequent deliveries,

was confirmed by the interpretive experiment. Testing was a constant process

throughout the development process.

Although CC does not explain a specific method of implementing a data

warehouse, it was found to be effective by implementing a data mart as a

whole.

CC was used effectively as it related to the data warehouse lifecycle of Kimball

et a/. (1998) without any major problems. The seven properties of CC were

incorporated throughout the data warehouse development phases (some more

than others), making CC applicable in data warehouse development. The

deductions made in par 4.2.6.1 that CC may be too small for a large data

warehousing project was found to be false, as the CC team delivered a data

warehouse of satisfactory usability.

6.2.7 Findings regarding the suitability of ASD in data

warehouse development

The unique characteristic of ASD is that every problem is seen as a learning

opportunity. The ASD team explained that ASD gave them the freedom to

make their own choices toward ensuring the project's success. ASD guided

them to deliver a data warehouse on time within a changing environment.

ASD was very effective - whenever the team experienced a problem, they were

able to change their initial planning to adapt to the changing enviro~iment the

identified problem caused. By changing the initial planning process and by

finding solutions for the experienced problems, a collaborate working

environment was created.

A proposition deducted from the interpretive experiment was that the ASD team

spent too much time on the planning process, because according to them they

were not exactly sure what was expected after the requirements session took

place.

The following paragraphs summarize the confirmed findings of using ASD in

data warehouse development.

6.2.7.1 Collecting requirements

Although ASD explains JAD sessions to collected requirements, a requirements

session (conducted in JAD format) and interviews were used to collect

requirements effectively before and while development took place. During the

speculation phase, the team recognized that it would be acceptable to collect

requirements using interviews and a requirements session instead of JAD

sessions.

Although ASD did not support the solutions of technical problems, the ASD

allowed the team to change their technical requirements easily where they had

to shift between different Oracle versions. Although ASD was adaptive during

development, the team experienced scope creep problems when new, time

consuming requirements were added within the existing time frame.

During the "project initiation'' step the data warehouse requirements were

identified, after which the project time boxes were determined based on the

gathered requirements. The team worked together effectively as collaboration

was good and the team knew how to satisfy the gathered requirements.

Furthermore, the "learning loop" was used to identify new technical and user

requirements as development progressed. These findings supported the

tlieoretical deductions made in chapter 4.

6.2.7.2 Data modelling

During the "speculation phase" (step 1 of adaptive cycle speculation), the team

determined that a star-schema had to be used to model the collected

requirements into an understandable format for their data warehousing project.

The star-schema was confirmed to be effective when using ASD as an ASDM,

although ASD focuses on collaborate teamwork and regards every problem as

a learning activity to create opportunity.

6.2.7.3 Data staging

The ETL-process was executed by ASD during data warehouse development

without any major problems. The development process of ASD is uniquely

identified by the time boxes that guide development. The time boxes supported

the team in dividing the logical structure of the data mart into manageable sub-

data marts. Each sub-data mart was assigned a fixed delivery time during

which a logical grouping of requirements were satisfied.

The deduction made in par. 4.2.7.3 was confirmed during the interpretive

experiment, i.e. that the team learned the most by transforming the data to

determine its capabilities and whether the users would be satisfied with the

data provided.

During the adaptive lifecycle activities, "project initiation" and "adaptive lifecycle

planning" were represented by planning what data should be extracted by the

team to fulfil the identified requirements. The transformation process was

represented by "component engineering", and the "quality and final QIA and

release" was preformed iteratively where requirements were updated as the

El-L-process progressed. These deductions were confirmed in the interpretive

experiment where ASD was used to develop a data warehouse.

6.2.7.4 Data access and deployment

Although ASD focuses on collaboration, speculation, and learning activities, the

data warehouse was delivered incrementally using cycles to create the data

mart, whereas the data mart was deployed as a whole to the users during the

final evaluation session.

The status of the project was always known as the data mart was tested

throughout the development process. "Final QIA and release" (explained in par.

6.7.3) was also used durirrg the deployment phase of the data warehousing

project. Maintenance and testing were used during the learning phase as the

team learned by testing and monitoring the data warehouse for deficiencies and

by reviewing the technical quality of the data warehouse. The "learning loop"

was created in this manner by monitoring and testing the data warehouse.

These were deductions of chapter 4 that were confirmed by the interpretive

experiment in chapter 5.

Although the deduction made in par. 4.2.7.4, that ASD is primarily focused on

dealing with collaboration and concurrency, was confirmed, it is also proposed

that ASD is effective in the deployment of a data warehouse.

ASD was applicable to data warehouse development as a very satisfactory

data mart was deployed to users. Although scope creep was experienced as

the environment grew more agile, ASD was very adaptive when requirements

were added.

6.2.8 Findings regarding the suitability of LD in data warehouse

development

LD does not have a specific lifecycle that is used to develop a project

successfully. LD only explains seven principles and 22 tools that can be used

by any project in an agile environment.

LD was used effectively during the data warehousing project. The team viewed

the principal "eliminate waste" as the principal with the most value, causing

documentation that was seen as not very irr~portant to be eliminated. The

interpretive experiment confirmed that to "decide as late as possible" (principle

of LD) could result in project failure, as data staging takes up almost 80% of the

time. Data staging is most successful if requirements are collected before the

process begins. If team members had to wait for requirements, the

development process of the data warehouse was delayed.

The team used the principle "amplified learning" because all team members

were not familiar with the game of cricket. This principle allowed them to put

some time aside to learn the game, as the whole data warehouse was based

on cricket.

The team also explained that because the project was so large and time

consuming, they had to motivate and "empower themselves".

The principles "amplified learning", "deliver as fast as possible", and "empower

the team" were applicable to all other ASDMs in the interpretive experiment.

6.2.8.1 Collecting requirements

LD explains that team members could use their own techniques to gather

requirements. Thus, interviews and a requirements session were adequate to

gather the primary and technical requirements needed for developing the data

warehouse.

The principles "delay commitment" (including "lean thinking") and "decide as

late as possible" were confirmed to have a negative impact on the interpretive

experiment as development was delayed because team members waited for

requirements from users. Team members could not wait for users to make up

their minds, as the project timeframe was limited. These deductions were

confirmed in the interpretive experiment.

6.2.8.2 Data modelling

LD does not explain any form of star-schema or ERD tables, but explains that

every project has its own characteristics, and emphasises the fact that team

members can use their own tools and techniques to complete the project.

Although LD does not define any techniques for modelling requirements into a

star-schema, the use of star-schemas were found to be very effective in data

warehouse development where LD was used. The deduction made in par.

4.2.8.2 that star-schemas will emerge if Kimball's approach is used, was

confirmed in the interpretive experiment

6.2.8.3 Data staging

Deductions confirmed in chapter 5 will be explained in the following

paragraphs.

The deduction made in par. 4.2.8.3 that LD's principles can be integrated

throughout the project, was found to be false as "decide as late as possible"

and "delay commitment" were not proven to be applicable in the data

warehousing project.

"Eliminate waste" was used during the ETL-process where duplication fields

and unnecessary data were deleted. The LD team also viewed delays in user

approvals as waste. No debugging documentation or debugging planning

documentation was compiled in order to save time during the data warehousing

project.

The principle "build integrity in" was used during the ETL-process, i.e. the team

used refactoring tools as well as manually written data staging tools to

transform the data. When problems occurred during the development process,

they were fixed immediately without documenting changes and new

approaches.

The ETL-process was conducted iteratively to deliver the increment (sub-data

mart) as fast as possible. This resulted in a data mart that was deployed as fast

as possible to the users.

6.2.8.4 Data access and deployment

LD does not explicitly explain a way of how a data warehouse should be

deployed. It does, however, specify that deliveries should be done quickly. The

LD team delivered sub-data marts to create a data mart as a whole, which was

deployed to the users during the final evaluation session. Quick delivery

(deduction made in par 4.2.8.4) was confirmed during the interpretive

experiment, i.e. value was added as fast as possible to the LD data warehouse,

not allowing delays during testing, integration and deployment . The LD team

explained that when they got confused, they focused on "delivering as fast as

possible", because having at least started, actions could always be irr~proved

upon at a later stage.

The users were trained to use the data warehouse effectively during the two

evaluation sessions and the submitted mini-manual. Furthermore, the LD team

achieved "perceived integrity" (deduction made in par 4.2.8.4) by testing and

implementing the correct requirements after the first evaluation session.

The team experienced the principle "see the whole" as negative, because

development was done in increments and iterations, and each increment had to

be developed as fast as possible. The LD team explained that they focused on

the completion of one increment (sub-data mart) at a time to complete ,the

whole data warehouse successfully.

LD (like XP) was only partially adapted in the data warehousing project. Some

principles proved to be applicable to data warehouse development, such as

"deliver as fast as possible", "eliminate waste", and "build integrity in". Other

properties such as "decide as late as possible", "delay commitment", and "see

the whole" were found not to be applicable to the data warehousing project.

6.3 Conclusions and future work

6.3. I Contribution of the study

The aim of the study was to investigate whether ASDMs are suitable for the

development of data warehouses. This was done by investigating literature on

ASDMs followed by a literature study on data warehousing where lnmon and

Kimball's data warehouse development approaches were investigated. To

determine the suitability of ASDMs towards data warehouse development, a

two-phased method was used.

During the first phase (reported in chapter 4) theoretical deductions were made

on the suitability of ASDMs towards data warehouse development. The suitable

and unsuitable theoretical characteristics of each ASDM were explained by

examining in which phases of data warehouse development a certain ASDM's

areas, properties, practices, principles or development phases could be applied

to develop a data warehouse in a changing environment.

During the second phase the theoretical deductions made in chapter 4 were

practically tested by conducting an interpretive experiment where each team

used their assigned ASDM to guide their activities during the data warehouse

development process. All teams followed an incremental and iterative

development approach. Every increment or sub-data mart was developed and

delivered incrementally to create the data mart. Where after the data mart,

including everything from collecting requirements to GUI development and

report generation, was deployed as a whole to the users.

After examining the theoretical deductions made in chapter 4 and the

interpretative experiment results in chapter 5, these deductions and interpretive

results (propositions) were corr~bined in chapter 6.

Since the resulting data warehouse was successful and the teams were able to

follow their allocated ASDMs, it can be concluded that ASDMs are indeed

suitable for data warehouse development according to Kimball's approach.

However, it should be noted that the deductions made in chapter 4 limited the

suitability of ASDMs to Kimball's approach.

6.3.2 Limitations

Two aspects of the study proved to limit the generalization of the results:

Single data mart development: Better results on the incremental nature of

data warehouse development and deployment could have been obtained if

teams developed more than one data mart.

Academic setting: The time spent by the teams on the project was limited,

since the project formed part of a larger curriculum. Another factor that

distinguishes this academic setting from an organisational setting is that

participants did not receive any monetary award for their work.

6.3.3 Future research

This study has successfully indicated the suitability of ASDMs for data

warehouse development. The results explained in this chapter are research

findings that were gained from the deductions made in chapter 4 and the

propositions explained in chapter 5. These findings could be presented as

guidelines to develop a data warehouse using ASDMs in a constantly changing

environment. Using these guidelines, data warehouses could be developed

incrementally in an agile environment using one or a combination of suitable

ASDMs, where primary requirements are collected before development takes

place.

REFERENCES

ABRAHAMSSON, P., SALO, O., RONKAINEN, J. & WARSTA, J. 2002. Agile

software development methods: Review and analysis. Espoo 2002. VTT

Publications. University of Oulu http://www2.umassd.edu/SWPI/xp/papers/

p478.pdf Date of access: 14 Apr. 2005.

Agile Alliance. 2006. Helping Agile Projects Start & Helping Agile Teams

Perform. http://www.agilealliance.org/ Date of Access: 9 Mrt. 2006.

AMBLER, S. 2002. Agile development best dealt with in small groups.

Computing Canada: 9. 26 Apr.

ANDERSON, D.J. 2004. Feature-Driven Development: towards a TOC, Lean

and Six Sigma solution for software engineering. Microsoft Corporation, Oct.

2004.. http://www.agilemanagement.net/Articles/Papers/Feature~Driven-

Developmen - -~ towards~a~TOC~Lean~Si~~S igma~so lu t ion~v lO.pd f Date of

access: 7 Apr. 2006.

AVEI-ING, B. 2004. XP Lite Considered Harmful? (In Eckstein, J &

Baumeister, H., eds. XP 2004, LNCS 3092. Singer-Verslag Berlin Heidelberg

2004. p. 94-1 03.)

AVISON, D. & FITZGERALD, G. 2003. Information Systems Development

Methodologies, Techniques and Tools. 3rd ed. England: Berkshire: McGraw-

Hill. 592p.

AVISON, D. & FITZGERALD, G. 2003. Where now for development

methodologies? Communications of the ACM, 46(1):79-82, Jan.

BOEHM, B. 2002. Get Ready for Agile Methods, with Care. IEEE Computer,

BRINKKEMPER, S. 1996. Method Engineering: Engineering of information

system development methods and tools. Information and Software Technology,

(38):275-280.

CHIN, G. 2003. Agile project management: How to succeed in the face of

changing project requirements. http://www.powells.com/cgi-bin/biblio?inkey=62-

0814471765-0 Date of access: 23 Feb. 2006.

COCKBURN, A. 2001. Crystal Light Methods. Cutter IT Journal.

http:/ /al istair .cockburn.us/crystal /a~stal l ightmethods.htm Date of

access: 27 Mar. 2005.

COCKBURN, A. 2005. Crystal Clear: A Human-Powered Methodology for

Small Teams. I st ed. Addison-Wesley. 336p.

COCKBURN, A., & HIGHSMITH, J. 2001 b. Agile Software Development: The

People Factor. Compute~131-133. Nov.

COCKBURN, A., HIGHSMITH, J. 2001a. Agile Software Development: The

Business of Innovation. IEEE Computer:120-122, Sep.

COHEN, D., LINDVALL, M., COSTA, P. 2003. A DACS State of the Art

Report: Agile Software Development. Fraunhofer Center for Experimental

Software Engineering Maryland and the University of Maryland. http://fc-

md.umd.edu/fcmd/papers/DACS-SOAR-AgileSoftwareDevelopment.pdf Date

of access: 13 Mar. 2005.

COLI-IER, K. & HIGHSMITH, J. 2004. Applying Agile Practices to Data

Warehousing. Cutter Consortium: The Cutter Edge, Dec. 28.

http://www.cutter.com/ research/2004/edge041228.html Date of Access: 14

Jul. 2006.

CONBOY, K. & FITZGERALD, B. 2004. Towards a Conceptual Framework of

Agile Methods. (In Zannier, C. et al., eds. XPIAgile Universe 2004, LNCS

31 34. Springer-Verlag Berlin Heidelberg. p. 105-1 16.)

CONTROL CHAOS . 2006. What is Scrurn? http://www.controlchaos.com/

aboutl?SID=8efi'eb5b2a069a271 Oabef27d02c851 f&SID=7da824062baf60b8e7

8ec5f99836f092 Date of access: 23 Feb 2006.

Control Chaos. 2005. What is Scrurn? http:/lwww.controlchaos.com/aboutl

Date of access: 23 Mar. 2005.

COPELAND, L. 2001. Extreme Programming. Computerworld, 3 Des.

http://www.computeworld.com/softwaretopics/soare/appdev/story/O, 10801,6

61 92,OO.html Date of access: 2 Apr. 2006.

DSDM Consortium. 2003. DSDM and Data Warehousing: Synopsis.

http://www.dsdm.org/kss/details.asp?fileid=92 Date of access: 28 Jun. 2006.

DE LUCA, J. 2005. Feature Driver1 Development Overview. Nebulon Pty.Ltd.

http://www.neb1.1lon.com/articles1fdd/download/fddoverview.pdf Date of access:

3 Mar. 2006.

DSDM Consortium. 2005. The History of the DSDM Consortium.

http:llwww.dsdm.orglen/aboutlhistory.asp Date of access: 29 Mar. 2005.

FOWLER, F. & HIGHSMITH, J. 2001. The Agile Manifesto. SDmagazine.com,

Aug. http://www.sdmagazine.comldocuments/s=844/sdmOl08a/0108a.htm

Date of access: 9 Mar. 2006.

FOWLER, M. 2001. Put Your Process on a Diet. Dr. Dobb's Portal, The World

for Software Development. 29 Jun. www.sdmagazine.com/documents/

s=737/sdm0012a/ 001 2a. htm Date of access: 19 Apr. 2005.

FOWLER, M. 2006. The New Methodology. http://www.martinfowler.com/

articles/newMethodology. html Date of access: 4 Mar 2006.

FRIEDMAN, J.H. 1998. Data Mining and Statistics: What is the Connection?

http://www.salford-systems.com/doc/dm-sttpdf Date of access: 10 Jul 2006.

GACHET, A. 2000. A Framework for Developing Distributed Cooperative

Decision Support Systems - Inception Phase. University of Fribourg,

Switzerland. http://www.gachet.net/alexandre/cv.html Date of access: 26 May

2006.

GACHET, A. & HAETTENSCHWILER, P. 2003. A De-centralized Approach to

Distributed Decision Support Systems. Journal of Decision Systems, 12(2):141-

158.

GOEDE, R. 2005. A Framework for the explicit use of specific systems

thinking methodologies in data-driven decision support system development.

Pretoria: UPE. (Theses - D.Phil.) 273 p.

GOOD, J.M. 2003. A Pragmatic Approach to the Implementation of Agile

Software Development Methodologies in Plan-Driven Organisations. Lincoln

University (Dissertation - Degree of Bachelor of Applied Computing with

Honnours) 84p.

Government Technology. 2001. Business Intelligence: How Agencies can

Breathe New Life into Old Data. A Government Technology Solution Spotlight:

Microsoft. http://www.govtech.net/govcenter/solcenter/pdfs/G~rMicrosoftlO~

01 .pdf Date of access: 13 May 2006.

GRAZIANO, K. 2005. Agile methods and data warehousing. http://downIoad-

east.oracle.com/oowsf2005/628wp.pdf Date of access: 23 Feb 2006.

GREINER, L. 2001. Business Intelligence: Know what you do, do what you

know. Computer Canada: 1 3-1 5, Mar.

HARDY, C.J., THOMPSON, J.B. & EDWARDS, H.M. 1995. The use,

limitations and customization of structured systems development in the United

Kingdom. Information and Systems Technology, 37(9):467-477.

HIGHSMITH, J. 2000. Retiring Lifecycle Dinosaurs. Software Testing &

Quality Engineering: 22-28, JulIAug.

HIGHSMITH, J. 2002a. What is Agile Software Development? CrossTalk The

Journal of Defence Software Engineering: 4-9, Oct.

HIGHSMITH, J. 2002b. Extreme programming: Agile project management

advisory white paper service. http://rockfish.cs.unc.edu/COMP290-agilelxp-

highsmith.pdf Date of Access: 23 Feb 2006.

HIGHSMITH, J. 2002c. Agile Software Development Ecosystems. 1st ed.

Boston, MA.: Addison-Wesley. 448p.

HIGHSMITH, J. & COCKBURN, A. 2001. Agile Software Development: The

Business of Innovation. IEEE compute^ 120-1 22, Sep.

HISLOP, G.W., LUTZ, M.J., NAVEDA, J.F., McCRACKEN, W.M., MEAD, N.R.

& WILLIAMS, L.A. 2002. Integrating Agile Practices into Software

Engineering Courses. Computer Science Education, 1 2(3): 1 69- 1 85.

HOU, J., SHERMAN, C., O'BREIN, T. 1998. Data Warehousing on HP3000

Using IMAGEISQL - A New Alternative. HPWORLD '98 Paper #2264.

http://datawarehouse.ittoolbox.con1/pub/DWH3OOO.pdf Date of access: 26 May

2006.

HUIJBERS, R., LEMMENS, F., SENDERS, B., SIMONS, S., SPAAN, B., VAN

TILBURG, P. & VOSSEN. 2004. Software Project Management:

Methodologies & Techniques. (Software Engineering Project delivered as part

of a study at Technische Universiteit Eindhoven in Department of Mathematics

& Computer Science on 17 Sep. 2004.) Eindhoven. 37p. (Unpublished.)

HUISMAN, H.M. & IIVARI, J. 2006. Deployment of systems development

methodologies: Perceptual congruence between IS managers and system

developers. lnformation & Management, (43):29-49.

IIVARI, J. & MAANSAARI, J. 1998. The usage of systems development

methods: are we stuck to old practices? lnformation and Sofiware Technology,

(40):501-510, 23 Jun.

IIVARI, J., HIRSCHEIM, R. & KLEIN, H.K. 1998. A paradigmatic analysis

contrasting information system development approaches and methodologies.

lnformation System Research, 9(2): 1 64-1 93.

IIVARI, J., HIRSCHEIM, R. & KLEIN, H.K. 1999. Beyond Methodologies:

Keeping up with lnformation Systems Development Approaches through

Dynamic Classification. (In Proceedings of the 32nd Hawaii International

Conference on System Sciences: 1-1 0.)

INMON, 6. 1995. The Operational Data Store. InfoDB, 9(1):21-24, Feb.

Available: Google Scholar. Date of access: 28 May 2006.

INMON, W.H. 1996. Building the Data Warehouse. 2nd ed. New York, N.Y.:

Wiley. 401 p.

IWMON, W .H. 2000. What is a Data Warehouse? http:llwww.business.aau.dkl

oekostyrlfileNvhat~is~a~Data~Warehouse.pdf Date of access: 26 May 2006.

JEFFRIES, R. 2001. What is Extreme Programming?

http:llwww.xprogramming.com/xpmag/whatisxp.htm Date of access: 1 Apr.

2006.

KIMBALL, R., REEVES, L., ROSS, M. & THORNTHWAITE, W. 1998. The data

warehouse lifecycle toolkit. New York: Wiley. 771 p.

LAWYER, J. & CHOWDHURY, S. 2004. Best Practices in Data Warehousing

to Support Business Initiatives and Needs. (In Proceedings of the 37th Hawaii

International Conference on System Sciences: 1-9.)

LEE. A.S. 1999. Researching MIS (In Currie, W.L., Galliers. R., eds. Rethinking

management information systems. Oxford: Oxford University Press. P7-27.)

LINDBERG, P. 2003. Lean Development http:lltesugen.comlarchivesl03I011

leandevelopment Date of access: 11 Apr. 2006.

LINDSTROM, L. & JEFFRIES, R. 2004. Extreme Prograrr~rr~ing and Agile

Software Development Methodologies. Information Systems Management: 41-

52, Summer.

LINDVALL, M., BASILI, V., BOEHM, B., COSTA, P., KATHLEEN, D., SHULL,

F., TESORIERO, R., WILLIAMS, L. & ZELKOWITZ, M. 2002. Empirical

Findings in Agile Methods. (In Proceedings of Extreme Programming and

Agile Methods - XPIAgile Universe 2002. p.197-207.)

MACLING, B. 2004. Bullish on business intelligence. Computing Canada:20,

11 Jun. Available: Academic Search Premier. Date of access: 10 May 2006.

MAHNIC, V & DRNOVSCEK, S. 2005. Agile Software Project Management

with Scrum. University of Ljubljana, Faculty of Computer and lnformation

Science. 6p. http://www.mc.manchester.ac.ukleunis2005lmedialibrary/papaers/

paper-I 94.pdf Date of access: 13 Apr. 2006.

MAILVAGANAM, H. 2004. Design IWethodologies of Kimball and Inmon.. .
Plus a Third Way. http://www.dwreview.comlArticleslKimballlnmon.html Date

of access: 1 Jun. 2006.

MCGUIGAN, B. 2006. What is Business Intelligence?

http://www.wisegeek.com/what-is-business-intleegence.htm Date of access:

15 May 2006.

MCKNIGHT, W. 2005. Why a Data Warehouse? http://www.datahabitat.com/

pdfl datawarehouse/.pdf Date of access:26 May 2006.

MENDONCA, J. 2002. The case for a less methodical methodology: lean, light,

extreme, adaptive, agile and appropriate software development. (In Issues and

Trends of lnformation Technology Management in Contemporary

Organisations. 2002 lnformation Resources Management Association

International Conference. Hershey, PA.: Idea Group Publishing. p.503-505.)

IWEYER, D. & CANNON, C. Building a better data warehouse. 1ST ed. Upper

Saddle River: Prentice Hall. 227p.

NORTON, D. 2005. Lean Software Development Overview

http://codebetter.com/ blogs/darrell.norton/articles150341 .aspx Date of access:

11 Apr 2006.

PALMER, S.R. & FELSING, J.M. 2002. A Practical Guide to Feature-Driven

Development. Upper Saddle River, NJ.: Prentice-Hall. 271 p.

PALVIA, P. & NOSEK, J.T. 1993. A field exanimation of system lifecycle

techniques and methodologies. lnformation & Management, (25):73-84.

POPPENDIECK, M. 2003. Lean Software Development. C++ Magazine:

Methodology Issue. Fall. http://www.poppendieck.com/pdfs/Lean-Software-

Development.pdf Date of access: 4 Apr. 2006.

QUARLES, D. 2002. Business Intelligence: The umbrella term. (In BWI-

Werkstuk, Universiteit Amsterdam, Nov. 2002. http://www.few.vu.nl/

stagebureau/werkstuk/werkstukken/werkstuk-quarles.doc Date of access: 20

Aug. 2005.)

RAHM, E. & DO. H.H. 2000. Data cleaning: Problems and Current Approaches.

University of Heipzig, Germany. http://www.cs.utah.edu/juliana/AdvancedDBI

Refsldata-cleaning-rahm-2000.pdf Date of access: 8 Sep. 2005.

REIFER, D.J. 2002. How Good are Agile Methods? IEEE Software: 16-18.

Jul./Aug.

SAEKI, M. 1998. A meta-model for method integration. lnformation and

Software Technology, (39): 925-932.

SCHACH, S.R. 1997. Software Engineering with Java. USA: Irwin, R.D.

61 8p.

SCHWABER, K. & BEEDLE, M. 2002. Agile Software Developnient with

Scrum. Upper Saddle River, NJ.: Prentice Hall. 158p.

SEAMAN, C.B. 1999. Qualitative Methods in Empirical studies of software

engineering. IEEE Transactions on Software Engineering, 425(4):557-572,

JulIAug.

STEINDL, C. 2004. Lean Software Development. IBM Global Services,

Application management Services. IT Architect and IT Specialist Institute

Central Region 2004 in Herrenberg, Germany. http://agilealliance.org/articles/

steindlchristophleans/file Date of access: 3 Apr. 2006.

STRAUBHAAR, J. & LA ROSE, R. 2003. Media now: Understanding media,

culture & technology. 4th ed. Belmont, Calif.: ThomsonNVadsworth. 524p.

TechTarget. 2005. Business Intelligence. http://searchdatamanagement.

techtarget.com/sDefinition/0,290660,sid91~gci213571,00. html

TDWI (The Data Warehousing Institute). 2004. TDWl Business Intelligence

Fundamentals: From Data Warehousing to Business Impact.

http://www.tdwi.org/files/pub/tdwi/Bl~Fundamentals~Previewl .pdf Date of

access: 10 Mar. 2006.

WELLS, J.D. 2000. Extreme Programming Project. http://www.

extremeprogramming.org/map/project.htmI Date of access: 2 Apr. 2006.

Wikipedia. 2006. Business Intelligence. http://en-wi kipedia.org/wikil

Business-intelligence Date of access: 15 May 2006.

WINDLEY, P.J. 2003. Being smart about business intelligence. InfoWorld,

25(8):44, 24 Feb. Available: Academic Search Premier. Date of access: 12

May 2006.

WYNEKOOP, .I.L. & RUSSO, N.L. 1993. Systems development

methodologies: unanswered questions and the research-practice gap. (In

DeGross, J.1 et al., eds. Proceedings of the Fourteenth International

Conference of lnformation Systems, Orlando, FL, 1993. p.181-190.

WYNEKOOP, J.L. & RUSSO, N.L. 1997. Studying systems development

methodologies: an examination of research h methods. lnformation Systems

Journal, (7):47-65.

