Experimental and Theoretical investigation of New Grubbs-type Catalysts for the Metathesis of Alkenes

Margaritha Jordaan
Experimental and Theoretical investigation of New Grubbs-type Catalysts for the Metathesis of Alkenes

Margaritha Jordaan
B.Sc, Hons. B.Sc, M.Sc (PU for CHE)

Thesis submitted in fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR

in

CHEMISTRY

of the North-West University (Potchefstroom Campus).

Promoter: Prof. HCM Vosloo
Potchefstroom
2007
This thesis is dedicated to

Johan and all the people I love
Table of Contents

Table of contents i

List of abbreviations and catalysts v

Summary xi

Opsomming xiii

Publications xv

1 Introduction and Aim of study 1
 1.1 Introduction 1
 1.2 Aims and objectives 4
 1.3 References 4

2 Literature Review: Alkene Metathesis 9
 2.1 Introduction 9
 2.2 Historical overview 10
 2.3 Development of catalytic systems 12
 2.4 Properties of organometallic catalysts 23
 2.4.1 Bonding ability of transition metals 24
 2.4.2 Variability of the oxidation state 25
 2.4.3 Variability of the coordination number of the transition metal 26
 2.4.4 Choice of ligands 27
 2.4.5 Ligand effects 29
 2.5 Chelating ligands: hemilability 30
 2.6 Reaction mechanism of alkene metathesis 39
 2.6.1 Pairwise mechanisms 39
 2.6.2 Non-pairwise mechanism 40
 2.7 Molecular modelling in catalysis 44
 2.7.1 Computational investigation of alkene metathesis 46
 2.8 References 51
3 Experimental

3.1 General 65
3.1.1 Reagents and solvents 65
3.1.2. Apparatus 65
3.1.2.1 General procedure for the removal of solvents under vacuum 66
3.1.2.2 General procedure for the filtration of a suspension under inert gas 67
3.1.2.3 General procedure for pump freezing solvents 68
3.1.2.4 Detection of oxygen generated from molecular sieves 68
3.2 Synthesis of the ligand salts 69
3.2.1 Synthesis of pyridinyl alcoholaio ligands 70
3.2.1.1 General procedure for the synthesis of L1 – L4 71
3.2.1.2 Spectroscopic data of the ligands L1 – L4 72
3.2.2 Synthesis of sodium salts 74
3.2.3 Synthesis of thallium salts 76
3.2.4 Synthesis of lithium salts 78
3.3 Synthesis of RuCl₂(L)(C₅H₅N)₂(=CHPh) 80
3.3.1 RuCl₂(PCY₃)(C₅H₅N)₂(=CHPh) (Gr1-Py) 80
3.3.2 RuCl₂(H₂IMes)(C₅H₅N)₂(=CHPh) (Gr2-Py) 80
3.4 Synthesis of hemilabile ruthenium carbene complexes 80
3.4.1 Use of sodium salts 80
3.4.1.1 RuCl₂(PCY₃)(O^N)(=CHPh) (O^N = L11) 80
3.4.1.2 RuCl₂(PCY₃)(O^N)(=CHPh) (O^N = L6, L8) 81
3.4.1.3 RuCl₂(PCY₃)(O^N)(=CHPh) (O^N = L12) 81
3.4.2 Use of thallium and lithium salts 82
3.5 Metathesis reactions 97
3.5.1 General procedures for the metathesis of 1-octene 97
3.5.1.1 Small-scale reaction (5 mL reaction vial) 97
3.5.1.2 Large-scale reaction (100 mL reaction flask – ethene liberated) 98
3.5.1.3 NMR investigation of the 1-octene metathesis reaction 100
3.6 Analytical methods 100
3.6.1 Characterisation of hemilabile complexes 100
3.6.1.1 Nuclear Magnetic Resonance (NMR) 100
3.6.1.2 Infrared spectroscopy (IR) 100
3.6.1.3 Elemental analysis (CHN analysis) 100
3.6.2 Progress of the metathesis reaction 101
3.6.2.1 Gas Chromatography (GC) 101
3.6.2.2 Gas Chromatography/Mass Spectrometry (GC/MS) 104
3.7 Computational Methods 107
4 Synthesis: Hemilabile Ru=C complexes

4.1 Introduction
4.2 Synthesis of pyridinyl alcoholate ligands
4.3 Synthesis of hemilabile Grubbs carbene complexes
4.3.1 Unsuccessful syntheses
4.3.2 Characterisation of the successfully synthesised complexes
4.3.2.1 Discussion of the NMR-results of the successfully synthesised complexes
4.4 References

5 Alkene metathesis: Experimental investigation

5.1 Introduction
5.2 Metathesis of 1-octene with ruthenium carbene complexes
5.2.1 Metathesis in the presence of Gr1 and Gr2
5.2.1.1 Optimisation of reaction conditions
5.2.1.2 NMR investigation
5.2.2 Metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy
5.2.2.1 Optimisation of reaction conditions
5.2.2.2 Influence of catalyst concentration
5.2.2.3 NMR investigation
5.2.3 Comparing Grubbs systems with hemilabile Ru=C complexes
5.2.3.1 Metathesis with first generation hemilabile complexes
5.2.3.2 Metathesis with second generation hemilabile complexes
5.3 References

6 Alkene metathesis: Theoretical investigation

6.1 Introduction
6.2 Metathesis of 1-octene in the presence of Grubbs carbenes
6.2.1 Catalyst initiation
6.2.2 Catalyst activation

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1 Hardware</td>
<td>107</td>
</tr>
<tr>
<td>3.7.2 Computational details: Software</td>
<td>108</td>
</tr>
<tr>
<td>3.7.3 Model system and notations</td>
<td>109</td>
</tr>
<tr>
<td>3.8 References</td>
<td>113</td>
</tr>
<tr>
<td>4 Synthesis: Hemilabile Ru=C complexes</td>
<td>117</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>4.2 Synthesis of pyridinyl alcoholate ligands</td>
<td>119</td>
</tr>
<tr>
<td>4.3 Synthesis of hemilabile Grubbs carbene complexes</td>
<td>119</td>
</tr>
<tr>
<td>4.3.1 Unsuccessful syntheses</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2 Characterisation of the successfully synthesised complexes</td>
<td>134</td>
</tr>
<tr>
<td>4.3.2.1 Discussion of the NMR-results of the successfully synthesised complexes</td>
<td>150</td>
</tr>
<tr>
<td>4.4 References</td>
<td>153</td>
</tr>
<tr>
<td>5 Alkene metathesis: Experimental investigation</td>
<td>157</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>5.2 Metathesis of 1-octene with ruthenium carbene complexes</td>
<td>158</td>
</tr>
<tr>
<td>5.2.1 Metathesis in the presence of Gr1 and Gr2</td>
<td>159</td>
</tr>
<tr>
<td>5.2.1.1 Optimisation of reaction conditions</td>
<td>159</td>
</tr>
<tr>
<td>5.2.1.2 NMR investigation</td>
<td>173</td>
</tr>
<tr>
<td>5.2.2 Metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy</td>
<td>181</td>
</tr>
<tr>
<td>5.2.2.1 Optimisation of reaction conditions</td>
<td>181</td>
</tr>
<tr>
<td>5.2.2.2 Influence of catalyst concentration</td>
<td>189</td>
</tr>
<tr>
<td>5.2.2.3 NMR investigation</td>
<td>190</td>
</tr>
<tr>
<td>5.2.3 Comparing Grubbs systems with hemilabile Ru=C complexes</td>
<td>200</td>
</tr>
<tr>
<td>5.2.3.1 Metathesis with first generation hemilabile complexes</td>
<td>200</td>
</tr>
<tr>
<td>5.2.3.2 Metathesis with second generation hemilabile complexes</td>
<td>204</td>
</tr>
<tr>
<td>5.3 References</td>
<td>211</td>
</tr>
<tr>
<td>6 Alkene metathesis: Theoretical investigation</td>
<td>213</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>213</td>
</tr>
<tr>
<td>6.2 Metathesis of 1-octene in the presence of Grubbs carbenes</td>
<td>215</td>
</tr>
<tr>
<td>6.2.1 Catalyst initiation</td>
<td>218</td>
</tr>
<tr>
<td>6.2.2 Catalyst activation</td>
<td>223</td>
</tr>
</tbody>
</table>
7 Conclusions and Recommendations

7.1 Introduction
7.2 Synthesis of hemilabile complexes
7.3 Catalytic activity
7.4 Mechanistic investigation
7.5 Summary of recommendations
7.6 References

Acknowledgements

References

Appendix A

References

Appendix B

References

Appendix C1

Appendix C2

Appendix C3

Appendix D

Appendix E

References

Appendix F

Appendix G
List of Abbreviations & Catalysts

GENERAL

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_n)</td>
<td># indicates the carbon chain length e.g. (C_7) is heptene, (C_9) is nonene, etc.</td>
</tr>
<tr>
<td>(=CRR')</td>
<td>alkylidene, carbene moiety where (R, R' = H, \text{alkyl or aryl groups})</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>change in electronic energy</td>
</tr>
<tr>
<td>(\Delta E_a)</td>
<td>activation energy</td>
</tr>
<tr>
<td>(E_{\Delta})</td>
<td>formation energy</td>
</tr>
<tr>
<td>(\Delta G)</td>
<td>change in Gibbs free energy</td>
</tr>
<tr>
<td>(\Delta H)</td>
<td>change in enthalpy</td>
</tr>
<tr>
<td>(H_o)</td>
<td>carbene (\alpha)-proton</td>
</tr>
<tr>
<td>HSAB</td>
<td>hard and soft acid-base</td>
</tr>
<tr>
<td>IP</td>
<td>isomerisation products</td>
</tr>
<tr>
<td>(K_{\text{int}})</td>
<td>initiation rate</td>
</tr>
<tr>
<td>(L_n)</td>
<td>ligands coordinated to a metal</td>
</tr>
<tr>
<td>M</td>
<td>transition metal atom</td>
</tr>
<tr>
<td>M-H</td>
<td>metal hydride</td>
</tr>
<tr>
<td>M-C</td>
<td>metal carbon</td>
</tr>
<tr>
<td>M-Cl</td>
<td>metal chloride</td>
</tr>
<tr>
<td>NHC</td>
<td>(N)-heterocyclic carbene</td>
</tr>
<tr>
<td>(O^\wedge Y)</td>
<td>bidentate ligand coordinated to a metal at (O) and (Y) where (Y = O, N, S, P, \text{etc.})</td>
</tr>
<tr>
<td>PES</td>
<td>potential energy surface</td>
</tr>
<tr>
<td>PMP</td>
<td>primary metathesis products</td>
</tr>
<tr>
<td>RCM</td>
<td>ring-closing metathesis</td>
</tr>
<tr>
<td>ROMP</td>
<td>ring-opening metathesis polymerisation</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>Ru=C</td>
<td>ruthenium carbene moiety</td>
</tr>
<tr>
<td>SHOP</td>
<td>Shell higher olefins process</td>
</tr>
<tr>
<td>SMP</td>
<td>secondary metathesis products</td>
</tr>
<tr>
<td>TS or TS's</td>
<td>transition state or transition states</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
</tbody>
</table>
Chemicals and Ligands

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad</td>
<td>adamantyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>H₂IMes</td>
<td>1,3-bis-(2,4,6-trimethylphenyl)-2-imadazolidinylidene</td>
</tr>
<tr>
<td>Hx</td>
<td>hexyl</td>
</tr>
<tr>
<td>Hoqu</td>
<td>8-quinolinol anion</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>Mes</td>
<td>1,3-bis-(2,4,6-trimethylphenyl)</td>
</tr>
<tr>
<td>Pico</td>
<td>picolinic acid</td>
</tr>
<tr>
<td>'Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>Py</td>
<td>pyridine</td>
</tr>
<tr>
<td>PCy₃</td>
<td>tricyclohexylphosphine</td>
</tr>
<tr>
<td>Pic</td>
<td>picolinic acid anion</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Quino</td>
<td>quinoline</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Ts</td>
<td>tosyl</td>
</tr>
</tbody>
</table>

Catalysts: (List of catalyst abbreviations together with structure and name)

1. **Benzylidene-dichloro(bis(tricyclohexylphosphine))ruthenium**

 ![Gr1](image)

2. **Benzylidene-dichloro(tricyclohexylphosphine)(1,3-bis-(2,4,6-trimethylphenyl)-2-imadazolidinylidene)-ruthenium**

 ![Gr2](image)

3. **Benzylidene-dichloro(tricyclohexylphosphine)bis(pyridine)ruthenium**

 ![Gr1-Py](image)
Benzylimid-chloride(1,3-bis-(2,4,6-trimethylphenyl)-2-imadazolidinylidene)bis(pyridine)ruthenium

Benzylimid-chloride(tricyclohexylphosphine)-[1-(2'-pyridyl)cyclohexan-1-olate]ruthenium

Benzylimid-chloride(tricyclohexylphosphine)-[1-(2'-pyridyl)-1,1-diphenyl-methanolato]ruthenium

Benzylimid-chloride(tricyclohexylphosphine)-[1-(2'-pyridyl)propan-2-olate]ruthenium

Benzylimid-chloride(tricyclohexylphosphine)-[1-(2'-pyridyl)-2,4-dimethylpentan-3-olate]ruthenium

Benzylimid-chloride(tricyclohexylphosphine)-[8-quinolinolato]ruthenium
Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)·[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium

Gr2Cy

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)·[1-(2'-pyridinyl)·1,1-diphenyl-methanolato]ruthenium

Gr2Ph

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)·[1-(2'-pyridinyl)propan-2-olato]ruthenium

Gr2Me

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)·[1-(2'-pyridinyl)·2,4-dimethylpentan-3-olato]ruthenium

Gr2Pr

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)·[8-quinolinoilate]ruthenium

Gr2Quino
LIST OF ABBREVIATIONS

Benzylidene-chloro(tricyclohexylphosphine)pyridine-(pyridine-2-carboxylato)ruthenium

\[
\text{Gr1Pico-Py}
\]

Benzylidene-chloro(tricyclohexylphosphine)pyridine-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium

\[
\text{Gr1Cy-Py}
\]
Summary

Experimental and theoretical investigation of new Grubbs-type catalysts for the metathesis of alkenes

Despite the high selectivity of the first generation Grubbs precatalyst (Gr1) during the metathesis of terminal alkenes, it tends to have a limited lifetime at elevated temperatures. The development of the second generation Grubbs precatalyst (Gr2) has dealt with this problem to some extent. The replacement of one PCy₃ ligand with a N-heterocyclic carbene provided a system with improved activity and lifetime. However, Gr2 shows low selectivity at elevated temperatures, due to the formation of secondary metathesis products during the metathesis reactions.

In this study, experimental and theoretical studies were combined to gain insight into the mechanism of the metathesis reaction and to predict structural and reactivity trends of the catalytic systems. A number of O,O-, O,N-, O,S- and O,P-bidentate ligands were identified as possible hemilabile ligands for incorporation into Gr1 and Gr2. The steric and electronic environment of the ligands was varied to determine the influence of these parameters on the 1-octene metathesis activity of the precatalysts. This investigation was motivated by the fact that hemilabile ligands can release a free coordination site "on demand" of an incoming nucleophilic substrate while occupying it otherwise. This is believed to increase the thermal stability and activity of the catalytic systems and therefore prevent decomposition via free coordination sites. This was recently shown to be true for a number of Grubbs carbenes in ring-opening metathesis (ROMP) and ring-closing metathesis (RCM) reactions at elevated temperatures. Molecular modelling was used as a tool to design new Grubbs-type precatalysts, which were then synthesised and evaluated for 1-octene metathesis activity. Unfortunately, a number of the ligands could not be successfully incorporated into the Grubbs carbenes, for which possible reasons are discussed in the thesis. It was generally found that the O,O-, O,S- and carboxylic O,P-ligands resulted in the decomposition of the Grubbs carbenes. The yields of these complexes generally ranged from 0 – 10%, which made the purification and analysis process difficult. The incorporation of picolinic acid, a O,N-carboxylic ligand, into Gr1 and Gr2 resulted in a mixture of carbenes which could not be isolated. However, the O,N-alcoholate ligands with different steric bulk could be successfully incorporated into Gr1 and Gr2 with a yield ranging between 40 – 90% with a 98 – 100% purity. The incorporation of the sterically hindered hemilabile O,N-ligands into Gr1 and Gr2 improved the thermal stability, activity, selectivity and lifetime of these complexes towards the metathesis of 1-octene. Compared to Gr1, a 10 – 30% increase in the primary metathesis products (PMP) formation, together with a 4% decrease in isomerisation products (IP) was observed for the first generation hemilabile Grubbs...
precatalysts. However, although no significant increase in PMP was observed after 7 h for the second generation analogues in comparison to Gr2, a 4 – 10 % increase was visible after 20 h, with a 5 – 15% increase in secondary metathesis products (SMP). A decrease in the activity of Gr1 and Gr2 was additionally observed after incorporating a hemilabile O,N-ligand with two phenyl groups into the system, while increasing their lifetime.

The 1H NMR investigation of a first and second generation system with a pyridinyl alkoeholate ligand predicted that the Gr2-system would show hemilabile characteristics, but not the Gr1-system. This indicated that two different mechanisms might be involved during the metathesis of 1-octene in the presence of a first and second generation O,N-chelated complex.

Additionally, a conceptual mechanistic model for the alkene metathesis reaction in the presence of Gr1 was postulated and applied to the hemilabile first and second generation Grubbs analogues. A deeper insight into the NMR results was also gained with the use of molecular modelling. The catalytically active species which preferentially forms during the 1-octene metathesis reactions with Gr1 and Gr2 was identified and verified experimentally and theoretically. However, the results for the hemilabile complexes are still inconclusive and more in-depth studies should be done with a combination of 1H and 31P NMR. This must be done to obtain information on the hemilability of the precatalysts as well as the influence of the alkene on releasing a free coordination site. A number of research possibilities were identified which should be investigated in order to gain more insight into the mechanism of 1-octene metathesis with a hemilabile complex.
Eksperimentele en teoretiese onderzoek van nuwe Grubbs-tipe katalisatore vir die metatase van alkene

Ondanks die hoë selektiwiteit van die eerstegenerasie Grubbs-prekatalisator (Gr1) gedurende die metatase van terminale alkene, het dit 'n kort leeftyd by verhoogde temperature. Die ontwikkeling van die tweedegenerasie Grubbs-prekatalisator (Gr2) het die probleem tot 'n mate opgelos. Die vervanging van 'n PCy₃-ligand met 'n N-hetemsikliese karbeen het 'n sisteem met verbeterde aktiwiteit en stabilité gelever. Nogtans toon Gr2 'n laagere selektiwiteit by verhoagde temperature waens die vorming van sekondêre metataseprodukte gedurende die metatase-reaksies.

Gedurende die studie is eksperimentele en teoretiese studies gekombineer om insig te kry in die meganisme van die metatase-reaksie en om struktuur- en reaktiwiteitstendense van die katalitiële sisteem te voorspel. 'n Aantal O,O-, O,N-, O,S- and O,P-bidentate ligande is as moontlike hemilabile ligande vir inkorporering in Gr1 en Gr2 geïdentificeer. Die stereiese en elektroniële omgewing van die ligande is gevarieer om die invloed van hierdie parameters op die 1-okteenmetataseaktiwiteit van die prekatalisatitore te bepaal. Die ondersoek is gemotiveer deur die feit dat die ligande van die katalitiële sisteem verhoog en dus ontbinding via die vry koördinasieposisie vermy. Dit is onlangs as waar vir 'n aantal Grubbs-karbene in ringopeningmetatasepolimerisasie (ROMP) en ringsluitingsmetatasesereaksies (RCM) by verhoogde temperature aangetoon. Molekuulmodellering is as hulpmiddel gebruik om die nuwe Grubbs-tipe prekatalisatitore te ontwerp, wat dan gesintetiseer en vir 1-okteen-metataseaktiviteit geëvalueer is.

Ongelukkig kon 'n aantal van die ligande nie suksesvol in die Grubbs-karbene gekoppel nie, waarvoor moontlike redes in die proefskrif bespreek word. Dit is algemeen gevind dat die O,O-, O,S- en karboksiliese O,P-ligande tot die ontbinding van die Grubbs-karbene lei het. Die opbrengs van die kompleks het algemeen in die gebied van 0 – 10% geval, wat die suiwering en analiseproses bemoeilik het. Die inkorporering van pikoliensuur, 'n O,N-karboksiliese ligand, in Gr1 en Gr2 het 'n mengsel van karbene tot gevolg gehad wat nie geïsoleer kon word nie. Nogtans kon die O,N-alkoholaatligande met verskillende stereiese volume suksesvol in Gr1 en Gr2 gekoppel word met 'n opbrengs wat in die gebied van 40 – 80% geval het met 'n suiverheid van 98 – 100%. Die inkorporering van die steries gehinderde O,N-ligande in Gr1 en Gr2 het die termiële stabilité, aktiwiteit, selektiwiteit en leeftyd van hierdie kompleks teenoor die metatase van 1-okteen verbeter. In vergelyking met Gr1 is 'n 10 – 30% toename in die vorming van primære
metateseprodukte (PMP) tesame met 'n 4% toename in isomerisasieprodukte (IP) vir die eerste- en tweedegenerasie Grubbs-prekatalisatoren waargeneem. Nietemin, alhoewel geen beduidende toename in PMP na 7 h waargeneem is vir die tweedegenerasie analoë in vergelyking met Gr2 nie, is 'n 4 - 10% toename na 20 h waargeneem, tesame met 'n 5 - 15% toename in sekondêre metateseprodukte (SMP). 'n Afname in die aktiwiteit van Gr1 en Gr2 is addisioneel waargeneem nadat 'n hemilabile O,N-ligand met twee fenielgroepse in die sisteem geïnkorporeer is, terwyl dit hul leefyd verhoog het.

Die ¹H-KMR-ondersoek van 'n eerste- en tweedegenerasie sisteem met 'n piridiniealkoholaat-ligand het voorspel dat die Gr2-sisteem, maar nie die Gr1-sisteem nie, hemilabile eienskappe vertoon. Dit het daarop gedui dat twee verskillende meganimes daal betrokke mag wees gedurende die metatese van 1-okteen in die teenwoordigheid van 'n eerste- en tweedegenerasie O,N-gecheelde kompleks.

Addisioneel is 'n konseptueel-meganisistiese model vir die alkeenmetatesereaksie in die teenwoordigheid van Gr1 gepostuleer en op die hemilabile eerste- en tweedegenerasie Grubbs-analoë toegepas. 'n Dieper insig in die KMR-resultate is ook met behulp van molekuilmodellering verkry. Die katalities-aktiewe spesies wat by voorkeur tydens die 1-okteenmetatese met Gr1 en Gr2 vorm, is geïdentifiseer en eksperimenteel en teoreties geverifieer. Die resultate vir die hemilabile kompleks is egter nog onbeslis en meer diepgaande studies behoort nog met 'n kombinasie van ¹H- en ³¹P-KMR gedoen te word. Dit moet gedoen word om inligting oor die hemilabiiteit van die prekatalisatore sowel as die invloed van die alkeen op die vrystelling van 'n vry koördinasieposisie te verkry. 'n Aantal navorsingsmoontlikhede is ook geïdentifiseer wat verder ondersoek moet word om meer insig in die meganisme van 1-okteenmetatese met 'n hemilabile kompleks te verkry.
Parts of this study resulted in the following publications (see enclosed CD for copies):

1.1 INTRODUCTION

Research in coordination and organometallic chemistry, strongly supported in the last decade by theoretical studies,1-13 has provided much insight into the mechanism of catalytic processes involving M-C or M-H bonds. Alkene metathesis is one example of a catalytic process involving M-C bonds that has been successfully applied in both academic and industrial environments with combined experimental and theoretical support.8,10,14 The term \textit{metathesis} is derived from the Greek words $\mu\varepsilon\tau\alpha$ (change) and $\tau\iota\theta\epsilon\iota\mu\alpha$ (place), which refers to an interchange of atoms between molecules. It is an equilibrium-driven reaction where the total number of double bonds remains unchanged.15 The alkene metathesis reaction, which is extensively used in catalysis and synthesis reactions, has opened up new routes to important petrochemicals, polymers and specialty chemicals.15-19

The largest application of the alkene metathesis reaction, \textit{inter alia} the field of petrochemicals, is the Shell higher olefins process (SHOP), which produces more than 10^5 tons of C\textsubscript{10} and C\textsubscript{20} alkenes annually.20 In South Africa, Sasol Ltd. is using the Fisher-Tropsch process to make alkenes from synthesis gas, which can be obtained from coal or natural gas. With the use of existing process technologies such as the alkene metathesis reaction, the low value alkenes (1-heptene) are converted to high value alkenes (6-dodecene) which are used as detergent alcohol feedstock.21

A large number of catalytic systems are known to catalyse the ring-opening metathesis polymerisation (ROMP), ring-closing metathesis (RCM), etc. of alkenes, but only a limited number initiate the metathesis of terminal alkenes.15,22,23 The main metals employed in these systems are ruthenium, molybdenum, rhenium or tungsten.15 In this study, the well-defined ruthenium-based Grubbs systems, RuCl\textsubscript{2}(PCy\textsubscript{3})L(=CHPh) [L = PCy\textsubscript{3} (Gr1) or H\textsubscript{2}Mes (Gr2)] are of interest due to their high metathesis activity and robustness to a wide range of substrates.23-25 It is well known that Gr1 is thermally unstable despite its high selectivity during the metathesis of alkenes.22,23,26 The development of second generation Grubbs catalysts has improved the thermal stability, lifetime and activity of Gr1 by replacing one PCy\textsubscript{3} group with a N-heterocyclic carbene (NHC) ligand.27,28 The increasing interest in more stable and catalytically active systems for metathesis reactions, which was also a driving force for this study, has encouraged various researchers to modify Gr1 and Gr2 (see Chapter 2).23-42
Randl et al. suggested that the activity in metathesis reactions is strongly dependent on the electronic properties of the Ru-carbene complex. He observed that 1 is extremely stable towards air and water during various alkene metathesis reactions, displaying a high selectivity towards cross-metathesis. The use of bidentate ligands with a relatively rigid backbone might therefore be a way of increasing selectivity of catalytically active complexes. For example, the selectivity of the Rh-catalysts in the hydroformylation of styrene was improved by incorporating bidentate phosphite or phosphine ligands into the system.

Hemilabile ligands, which are a class of bidentate ligands, have the ability to place two or more donor atoms with very different electronic properties close to the metal atom (Scheme 1.1).
The concept of hemilability of bidentate ligands predicts higher lifetime and stability by releasing a free coordination site "on demand" of inter alia an alkene (such as norbornene) and occupying it otherwise – thus preventing decomposition via free coordination sites. Electronic properties, steric demands as well as ring size and rigidity of these bidentate ligands can influence the stability of the bidentate complexes and therefore their catalytic performance.

It is generally accepted that alkene metathesis reactions catalysed by Gr1 and Gr2 proceed according to the simplified mechanism outlined in Scheme 1.2.

In both cases, the first step of the reaction involves dissociation of bound PCy3 to form a 14-electron intermediate of the general form RuCl2L(=CHPh), B. This intermediate can be trapped by free PCy3 to regenerate the starting alkylidene or can bind substrate to undergo metathesis. The steps following the initiation of the precatalyst consist of several successive formal [2+2] cycloadditions to form a ruthenacyclobutane (similar to H) and cycloreversions to form the respective catalytically active species.

Therefore, modification of the Grubbs carbenes to include ligands that could increase the electron density on the Ru-centre should be considered. This would lead to the stabilisation of the Ru'H ruthenacyclobutane (H) and thereby increase the thermal stability of these systems as was observed for Gr2.
1.2 **AIM AND OBJECTIVES**

For a catalyst to be successfully implemented in an industrial process, such as 1-alkene metathesis, certain prerequisites have to be fulfilled. The ideal catalyst has to combine high efficiency (i.e. effective use of starting materials, and minimal waste emission), high selectivity (i.e. optimal conversion to the desired product), and high total turnover (i.e. amount of product formed per given amount of catalyst) with durability (i.e. high stability and lifetime) and low overhead expenditure (i.e. cheap catalyst and little maintenance). Deckers believes that understanding how catalyst structure and properties can affect these parameters, combined with chemical curiosity, can be the driving force for improvement and development of catalytic systems, which we strived to do in this study.

In an attempt to improve the thermal stability, activity and lifetime of Gr1 and Gr2 for the metathesis of linear alkenes, a number of first and second generation Grubbs-type precatalysts with hemilabile bidentate ligands were synthesised and evaluated for the metathesis of 1-octene. This was done due to the recent improvement of the activity of various ruthenium carbene (Ru=CR) systems for ROMP and RCM reactions at elevated temperatures through incorporation of a hemilabile ligand into the system.

To reach the aim of the study the following objectives are stated:

1. Systematically and extensively search the published literature on the metathesis of linear alkenes, with special emphasis on Ru=C catalytic systems, to gain a better understanding of the reaction and the reaction mechanism.

2. Use molecular modelling as a tool to design new Grubbs-type precatalysts with hemilabile bidentate ligands and to understand the mechanism of the reaction.

3. Synthesise and evaluate new Grubbs-type precatalysts with hemilabile bidentate ligands for 1-octene metathesis activity.

1.3 REFERENCES

34. Louie, J. and Grubbs, R.H., Organometallics, 2002, 21, 2153
38. Slugovc, C., Burtscher, D., Stelzer, F., and Merreiter, K., Organometallics, 2005, 24, 2255

2.1 Introduction

Calderon\(^1\) introduced the term alkene metathesis in 1967 to describe the disproportionation of alkenes. Alkene metathesis can be defined as a metal-catalysed carbon skeleton redistribution reaction in which all carbon-carbon double bonds are cut and rearranged in a statistical fashion (Scheme 2.1).\(^2,3\)

![Scheme 2.1](attachment:image.png)

\(R, R', R'', R''' = H, \text{alkyl, aryl}\)

Scheme 2.1 Schematic representation of the alkene metathesis reaction.

Apart from the acyclic cross-metathesis reaction given in Scheme 2.1, a further four types of alkene metathesis reactions can be correlated with respect to each other as depicted in Scheme 2.2: ring-opening metathesis polymerisation (ROMP), ring-closing metathesis (RCM), ring-opening metathesis (ROM) and acyclic diene metathesis (ADMET).\(^4\)

![Scheme 2.2](attachment:image.png)

Scheme 2.2 Types of alkene metathesis reactions.\(^4\)
In this study the focus will be on the metathesis of 3-alkenes with ruthenium alkylidene complexes, which can occur either through cross-metathesis or self-metathesis of the alkenes. Cross-metathesis takes place between two different alkene substrates (Scheme 2.1), while self-metathesis occurs between the same alkene substrates, which may be either productive (Scheme 2.3) or unproductive (Scheme 2.4).

\[
\begin{align*}
R = H; R' = \text{alkyl, aryl} \\
\text{Scheme 2.3} & \quad \text{Productive self-metathesis of an unsaturated, unsymmetrical alkene.} \\
\end{align*}
\]

\[
\begin{align*}
R = H; R' = \text{alkyl, aryl} \\
\text{Scheme 2.4} & \quad \text{Unproductive self-metathesis of an unsaturated, unsymmetrical alkene.} \\
\end{align*}
\]

Although today the alkene metathesis reaction is a well-known reaction, it took several years for scientists to understand these reactions. In the last decade new insights into the mechanism of the alkene metathesis reaction were gained both through experimental and theoretical investigations. This is mainly due to fast technological development in computational chemistry as well as analytical techniques for identifying intermediate complexes forming during the reaction.

2.2 Historical Overview

In 1931, Schneider and Fröhlich observed the pyrolytic combination of propene molecules to form ethene and butene, which was a non-catalytic metathesis reaction. Although it is generally thought that Banks and Bailey discovered the metathesis reaction in 1964, Eleuterio actually already patented it in 1957. He observed the formation of a propene-ethene copolymer from propene in the presence of a MoO₃/Al₂O₃/LiAlH₄ catalytic system. Banks and Bailey applied the
process of Evering and Peters5,10 for the transformation of propene into ethene and 2-butene on supported molybdenum oxide in 1964 in the Phillips Triolefin Process.11 The first open publication on alkene metathesis, foreshadowed by the abovementioned patents, was a report by Truett et al.12 in 1960 on the ROMP of norbornene. The reaction was initially known as alkene disproportionation until the term "alkene metathesis" was used in 1967 with the discovery of the first homogeneous \(\text{WCl}_6/\text{EtOH/EtAlCl}_2 \) catalytic system, which produced both metathesis and polymerisation products.1 It was not until the discovery of heterogeneous and homogeneous catalysts, which could promote the reaction at lower temperatures and minimise side-reactions, that the potential of the metathesis reaction was realised.2

The time line of milestones in the field of alkene metathesis is displayed in Figure 2.1 to show the important acceleration in catalyst precursor discoveries and the increasing use of ruthenium catalysts for metathesis.

![Figure 2.1 Time line of milestones in the development of alkene metathesis catalysts.13,14](image-url)
2.3 Development of catalytic systems

From the late 1960's through the early 1980's, the majority of alkene metathesis reactions were carried out with ill-defined multicomponent heterogeneous and homogeneous systems. They consisted of transition metal salts deposited on solid supports or combined with main group alkyllating agents. Some of the classic combinations included WCl₆/SnBu₃, WOCl₆/ETAICl₂, MoO₃/Al₂O₃ and Re₂O₇/Al₂O₃, which were highly active for the metathesis of acyclic alkenes, but readily deactivated in the presence of air, water or polar functional groups. The first single-component homogeneous catalysts for alkene metathesis were discovered during the late 1970's and early 1980's. These included bis(cyclopentadienyl) titanacyclobutanes, tris(aryloxide) tantalacyclobutanes and various dihalo-alkoxide-alkylidene complexes of tungsten, which showed high activity towards ROMP of norbornene.

In the mid seventies, when the development of transition metal carbene complexes started, two different patterns of reactivity were discovered. At that time these complexes were divided into two classes, i.e., the Fischer- and Schrock-type carbenes, named after their discoverers. Various other types of carbene complexes are also known today e.g. Casey carbene, Grubbs carbene etc., but they are all just variants of either the Fischer or Schrock carbene.

At this point it will be useful to define the term metal carbene complex, which refers to compounds of the general type $L_nM=CRR'$, where the carbene moiety, $=CRR'$, is coordinated to a transition metal atom, M, and L_n represents the various other coordinated ligands. The first carbene complexes were evidently prepared in 1915, but it was not until the synthesis of $(OC)₃W=C(OMe)Ph$ by Fischer in 1964, that they were recognised as carbene complexes. Fischer carbenes are characterised by electrophilic reactivity of the carbene ligand containing π-donor substituents such as $\sim QMe$ or $\sim NMe$. The carbene moiety is typically bound to electron-rich, low oxidation state metals, having π-acceptor ligands L_n. Schrock carbenes have nucleophilic carbene ligands bound to higher oxidation state, early-transition metals, having non π-acceptor ligands and non σ-donor R groups. The Grubbs carbenes can be related to the Schrock carbenes, in that they also have a nucleophilic carbene moiety, with the metal centre susceptible to nucleophilic attack. The molecular orbital diagrams in Figure 2.2 depict the bonding in Fischer and Schrock metal carbene complexes. Various forms of Fischer carbenes were shown to have metathesis activity, but they were rarely energetically favourable and the reaction with alkenes usually resulted in cyclopropanation. Nonetheless, the research into these complexes was significant because it identified many of the basic organometallic processes that were intertwined with early mechanistic thinking.
In general, metal carbene complexes where the carbene substituents are exclusively composed of carbon and hydrogen or alkyl substituents, are referred to as either alkylidenes or (substituted) methylidenes. Therefore, the term alkylidene(s) will be used hereafter to describe systems where the carbene moiety =CRR' contains no heteroatom substituents. For example, for R = H and R' = Ph the alkylidene is referred to as a benzylidene, while a methylidene contains R = R' = H. Therefore, the R' group determines the name of the alkylidene.

The molybdenum and tungsten alkylidenes of the general formula M(NAr)(OR')2(=CHR) were the first Schrock-type carbones to become widely used, particularly the alkoxy imido molybdenum complex 2. The high activity of 2 allowed it to react with both terminal and internal alkenes and to ROMP low-strain monomers, as well as to ring-close sterically demanding and electron-poor substrates. However, this catalyst and others based on the early transition metals were limited by the high oxophilicity of the metal centres, which rendered them extremely sensitive to oxygen and moisture.
The prospect of solving the problems related to oxophilicity and functional group tolerance most likely inspired the continuous search for more stable and catalytically active complexes for the alkene metathesis reaction. In 1980, Tsuji et al.32 summarised the challenge facing alkene metathesis in the following statement:

"In order to exploit the metathesis reaction as a truly useful synthetic methodology, it is essential to discover a new catalyst system which can tolerate the presence of functional groups in olefin molecules."

Therefore, the key to improved functional group tolerance in alkene metathesis would be the development of a catalyst that reacts preferentially with alkenes in the presence of heteroatomatic functionalities.

Grubbs33 had been interested in the metathesis reaction early on, as indicated by his mechanistic proposal of a metallocyclopentane intermediate in the early 70's. After some exploration, which started in the mid-eighties, of ill-defined catalysts that were prepared from late metal salts, Novak and Grubbs34,35 found that ruthenium trichloride was active for the ROMP of strained cyclo-alkenes (such as norbornene) in organic solvents. This suggested that ruthenium might be the metal of choice for a potentially well-defined late transition metal alkene metathesis catalyst.36 After applying the methodology for the synthesis of tungsten alkylidenes to the synthesis of a ruthenium catalyst, the first well-defined, metathesis-active ruthenium alkylidene complex was synthesised (Scheme 2.5).37,38 The combination of \textit{tris}-triphenylphosphine-ruthenium(II) chloride with 3,3-diphenylcyclopropene led to the isolation of 3 as a mixture of cis- and trans-bis(phosphine) isomers.38,39 This catalyst (3) was active for the ROMP of highly strained cyclo-alkenes, but inactive for the metathesis of acyclic alkenes.30 The activity of 3 was extended to the metathesis of less strained cyclic alkenes and acyclic alkenes with the replacement of the triphenylphosphine ligands with bulkier and more basic tricyclohexylphosphine (PCy\textsubscript{3}) ligands (4).40 The synthesis of these complexes remained difficult, due to the difficulty of synthesising diphenylcyclopropene, which limited the availability of these complexes.41

\begin{center}
\textbf{Scheme 2.5} Development of well-defined metathesis active ruthenium alkylidenes.36,36
\end{center}
Schwab et al. developed an alternative route (Scheme 2.6) for the synthesis of ruthenium alkylidenes in the late 1990's, in which ruthenium(II) species were found to insert into α-diazoalkanes. The reaction of *tris*-triphenylphosphineruthenium(II) chloride with phenyldiazomethane and PCy₃ led to the development of a ruthenium(II) benzylidene (Scheme 2.6, 5a) complex of wide academic and commercial utility, known as the first generation Grubbs catalyst (GrI).³⁶

Scheme 2.6 Synthesis of ruthenium alkylidenes by insertion into α-diazoalkanes.³⁵,⁶¹

However, the diazo route shown in Scheme 2.6 was not ideal for large-scale reactions, due to the use of unstable reagents and large amounts of solvent.¹³ For this reason, several groups developed new synthetic routes (eqs. 1-5) for the synthesis of ruthenium alkylidene complexes with the general formula RuCl₂(PR₃)₂(=CHR).¹⁴-²² These Grubbs-type catalysts (benzylidene and vinylalkylidene) have been shown to be highly active for metathesis, moderately sensitive to air and moisture and significantly tolerant of functional groups.³⁸,⁴⁰,⁴¹,⁴⁴-⁴⁷

The development of single-component catalysts allowed the relationships between structure and reactivity to be more clearly defined. Grubbs and co-workers noted that functional group tolerance and activity followed opposing periodic trends as the catalyst systems were varied from left to right and bottom to top on the periodic table. Therefore, these catalysts react more selectively with alkenes as the metal centres are varied in the abovementioned way.⁴⁵ This trend is illustrated for titanium, tungsten, molybdenum, and ruthenium in Table 2.1. The late transition metals showed higher reactivity towards alkenes than the early transition metals, which reacted readily with polar functional groups such as carbonyls.⁴⁹ This trend makes it possible to increase the functional group tolerance of an alkene metathesis catalyst by focusing on a later transition metal, such as ruthenium.
An increasing interest in obtaining better reactivity and adapting the ruthenium carbene complexes to specific catalytic conditions, made the investigation of various modifications to Gr^1 feasible. With the variation of the ligand sphere around the ruthenium centre, a number of alkylidene complexes with higher substrate tolerance and increased reactivity were generated.54 For the class of RuX$_2$L$_2$(=CHR) complexes, the X- and L-type ancillary ligands were varied, as well as substituents on the functional alkylidene ligand. It has been found that changes in this ligand sphere can have profound and largely unpredictable effects on catalytic activity, stability and selectivity.13,55 The alkylidene39,41,44,45 and the phosphine61,44,58 ligand as well as the exchange of the halogen,49 have been investigated by several groups.
Table 2.1 Functional group tolerance of early and late transition metal alkene metathesis catalysts.58

<table>
<thead>
<tr>
<th>Titanium</th>
<th>Tungsten</th>
<th>Molybdenum</th>
<th>Ruthenium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td>Acids</td>
<td>Acids</td>
<td>Alkenes</td>
</tr>
<tr>
<td>Alcohols, Water</td>
<td>Alcohols, Water</td>
<td>Alcohols, Water</td>
<td>Acids</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>Aldehydes</td>
<td>Aldehydes</td>
<td>Aldehydes</td>
</tr>
<tr>
<td>Ketones</td>
<td>Ketones</td>
<td>Ketones</td>
<td>Ketones</td>
</tr>
<tr>
<td>Esters, Amides</td>
<td>Alkenes</td>
<td>Esters, Amides</td>
<td>Esters, Amides</td>
</tr>
<tr>
<td>Alkenes</td>
<td>Esters, Amides</td>
<td>Esters, Amides</td>
<td>Esters, Amides</td>
</tr>
</tbody>
</table>

Increasing reactivity of metal-carbene complexes with alkenes in preference over other functional groups.

Since phosphines suffer from significant P-C degradation at elevated temperatures,57-59 the sterically demanding imidazolylidene ligands, which can mimic phosphine behaviour as well as show stability at higher temperatures,60 were investigated. The replacement of both PCy\textsubscript{3} ligands in Gr\textsubscript{1} by N,N-disubstituted imidazolylidene moieties (6) gave a catalytic system that was too stable and hence did not demonstrate an improved activity profile.61 This problem was overcome by the use of a mixed ligand system, through combining one kinetically inert, electron-donating N-heterocyclic carbene (NHC) ligand with a coordinatively labile ligand. These complexes were termed "second generation" catalysts due to the incorporation of an NHC-type ligand into Gr1. The more strongly electron-donating NHC ligand might therefore enhance the dissociation of the more labile trans-phosphine from the metal centre. Then, the steric bulk and electron-donating properties of the NHC ligand, should stabilise the electron-deficient intermediates and promote alkene metathesis.62,63

Three different research groups reported almost simultaneously on the preparation and catalytic properties of a variety of "second generation" ruthenium alkylidene complexes as illustrated by complexes 7-9.57,63-65 The replacement of the phosphine ligand in Gr1 by a NHC57,63,67 improved the lifetime and reactivity of Gr1.64 This is due to the bulkiness and increased basicity of the NHC ligand compared to PCy\textsubscript{3}. Various authors66-72 have referred to both 7 and 8a as the second generation Grubbs catalyst (Grubbs 2 or Gr2), which can be rather confusing, since these systems are structurally similar, differing only in the backbone of the NHC-ring (4,5-position).
In 8a, the 4,5-position is saturated, making the NHC ligand more electron-rich and only this complex is commercially available as Gr2. Catalyst 8a has also been reported to be more active than 7, particularly in the polymerisation of high strained alkenes such as DCPD. In this thesis, 8a will hereafter be referred to as Gr2.

In 1998, Dias et al. used an organometallic moiety as ligand to generate bimetallic carbene complexes 10a-c from Gr1. These complexes showed higher activities towards ROMP of 1,5-cyclooctadiene than Gr1, which was dependant on the nature of the second metal, decreasing in the order Rh > Os > Ru.
In the last decade, several groups followed different design concepts (Figure 2.3) to obtain ruthenium carbene thermally switchable initiators for ROMP and/or RCM reactions. This was in all probability motivated by the increasing interest in more stable and catalytically active systems for metathesis reactions.

The strategy behind the design concepts of these initiators were to slow down or even prevent the dissociation of L^2 at room temperature. Up to now, this could not be applied to motif A, where an inert ligand L^2 in a position trans to L^1, which is mostly a phosphine such as PCy$_3$ or an NHC such as 1,3-bis(mesityl)-4,5-dihydroimidazol-2-ylidene (H$_2$Mes), was shown to be too labile at room temperature. Several groups overcame this with the use of chelating ligands, where L^2 is either attached to the carbene (motif B, Hoveyda-type catalysts) or via X (motif C, where X is for example an oxygen) to the central ruthenium atom.

For motif C, Grubbs, and later Verpoort, introduced bidentate O,N-chelated Schiff-base ligands on Gr1 to give complexes 11. The development of these systems were motivated by the increasing interest into controlling cis/trans selectivity in alkene metathesis processes and maintaining high activity in polar protic solvents. Their catalytic activity for RCM and ROMP increased with an increase in reaction temperature.
The significance of finding a well-defined alkene metathesis initiator possessing the ideal balance between activity and stability inspired Verpoort et al. to develop a bimetallic ruthenium carbene system (12). The combination of the labile p-cymene with Schiff-base ligands produced catalytic systems that exhibited very high thermal stability and activity for both RCM and ROMP.

The low reactivity of 11 at room temperature was mainly attributed to the additional stability of the chelating ligand. The thermal stability and activity of these complexes were increased through the combination of the Schiff-base ligand with a NHC ligand (13). The presence of the bulky NHC ligand trans to the decoordinating part of the Schiff-base stabilised the reactive catalytic intermediate and/or prevented the decomposition of the carbene.
Another example for motif C is the first and second generation ruthenium benzyldiene complexes, synthesised by Herrmann and co-workers,78 bearing a hemilabile pyridinyl alcoholate ligand (14). The NHC catalytic systems showed low activity for ROMP at room temperature due to their resting state stabilisation.78 The catalytic activity of these systems increased with an increase in temperature, which was comparable to Gr2. However, the performance of the Gr1-type systems has not been tested for catalytic activity in any metathesis reaction. Hafner et al.65 have patented another example, where the ruthenium alkylidene system is complexed by a tri-isopropylphosphine and pyridinyl alcoholate (15). Although no catalytic activity was reported for these systems, it has been claimed that these systems are active for ROMP and RCM reactions.59

\[
\begin{align*}
R' &= R = Me \\
R' &= NO_2; R = Me \\
R' &= H, R = 2,6-Me_2-4-BrC_6H_2 \\
R' &= NO_2; R = 2,6-Me_2-4-BrC_6H_2 \\
R' &= H, R = 2,6-iPrC_6H_3 \\
R' &= NO_2; R = 2,6-iPrC_6H_3
\end{align*}
\]

Hoveyda and co-workers46 synthesised an active metathesis catalyst which contained an internal metal-oxygen chelate (motif B, 16), which was readily obtained by the sequential treatment of Cl\textsubscript{2}Ru(PPh\textsubscript{3})\textsubscript{3} with (2-isopropoxyphenyl)-diazomethane and PC\textsubscript{3}H\textsubscript{3}. They readily mediate the RCM of five-, six-, seven-, and eight-membered carbo- and heterocycles and are easily recovered chromatographically in high yield after the reaction is complete. This is mainly due to their excellent stability to air and moisture.
Biechert et al. modified complex 16, by introducing a NHC-ligand, to show that O-chelating benzylidene moieties can be used for the synthesis of ruthenium complexes with a non-phosphine leaving ligand (17) to obtain different selectivities and reactivities towards alkene metathesis reactions as compared to Gr2. For example, the ring closure of dienes such as 18 to form 19 is completed in less than 15 min at room temperature using 17, whereas Gr2 requires higher temperatures. In contrast to Gr2, which proved to be an excellent catalyst for yne-ene CM, analogous reactions with catalyst 17 yielded only traces of the desired products.

In D. Fischer-type carbenes (where X = O, N or S) (20, 21) instead of Schrock carbenes were used to design a thermally switchable complex. These catalytic systems have been mainly used for ROMP and/or RCM experiments at elevated temperatures.
The various modifications to the Grubbs carbenes, as briefly outlined above, illustrate that the steric and electronic properties of the ligands coordinated to the ruthenium carbene (Ru=C) centre can improve the stability, activity and selectivity of Gr1 and Gr2. During the last decade, new insights into the ruthenium-mediated alkene metathesis reaction have been gained through extensive synthetic, mechanistic and theoretical investigations. Through progress in computer technology, computational chemistry has become a powerful tool to resolve the effect of ligand coordination and to gain deeper insights into the mechanism of catalytic reactions. For example, with the use of simple substrates and simplified ligands, a number of postulated mechanistic pathways have been investigated for the alkene metathesis reaction in order to resolve certain aspects of the reaction mechanism, which includes whether the metathesis reaction progresses according to an associative or dissociative mechanism (§ 2.6.2).

In 2005 the Nobel prize was awarded to the pioneers in metathesis i.e. Chauvin, Schrock and Grubbs. The committee awarding the prize said:

"This represents a great step forward for 'green chemistry,' reducing potentially hazardous waste through smarter production. Metathesis is an example of how important basic science has been applied for the benefit of man, society and the environment."

This exemplifies the importance of the metathesis reaction for both academic and industrial use for the production of new molecules.

2.4 Properties of organometallic catalysts

The design of new transition metal complexes with enhanced activity and selectivity for application in alkene metathesis reactions is of great importance. In these complexes, the metal atom itself may have a number of roles, based on its coordination geometry, oxidation state and magnetic, electronic or photochemical behaviour. The properties of the complex can be tuned or completely altered by the ligands (molecules or ions) that are bonded to the metal. Therefore, various factors can influence the catalytic activity and selectivity of the transition metal complexes as summarised under the following headings:

1. Bonding ability of transition metals
2. Variability of the coordination number of the transition metal
3. Variability of the oxidation state of the transition metal
4. Choice of ligands
5. Ligand effects
2.4.1 Bonding ability of transition metals

A transition metal ion has nine valence shell orbitals, i.e. five nd^-, one $(n+1)s$- and three
$(n+1)p$-orbitals. The availability of these valence orbitals gives transition metals the ability to form
both σ- and π-bonds with other moieties or ligands, which plays a major role in the catalytic activity
of transition metals and their complexes. An example of this ability of transition metals can be
seen in Figure 2.4 for the bonding of ethene to a transition metal centre. The filled π-orbital of the
ethene molecule overlaps with one of the empty metal orbitals to form a σ-bond. This metal-
ethene σ-overlap is shown in Figure 2.4 (a). A π-bond is formed through the interaction of the
unoccupied antibonding π-orbitals on ethene with the filled σ-orbitals of the metal. This metal-
ethene π-overlap, which is known as metal-to-ligand back donation, is illustrated in Figure 2.4 (b).
The combined bonding is shown in Figure 2.4 (c). The bonding components illustrate a
synergy, i.e. they reinforce and/or complement each other. In the σ-component, the electron
density flows from an ethene bonding orbital to the metal, while in the π-component, electron
density is transferred from the metal to the ethene antibonding orbitals. A weakening or reduction
in the bond order of the ethene carbon-carbon single bond results from these transferences.

The coordination of an alkene to a metal centre therefore alters the electron density in the carbon-
carbon single bond and in many cases makes it more susceptible to a nucleophilic attack by OH$^-$,
H$^+$ and R$^-$ species.

![Molecular orbital representation of ethene bonded to a transition metal.](image)

Trivalent phosphorus compounds are important ligands in many transition metal catalyst
systems. In principle, these ligands can bond to transition metals by making use of both σ- and π-
orbitals in much the same way as C$_2$H$_4$ and carbonyl ligands. The σ-component is formed by
donation of the phosphine lone pair to an empty σ-orbital on the metal. The π-component of the
bonding is formed by back donation from a filled metal orbital to an empty orbital on the phosphine
ligand. This empty phosphorous orbital has been described as being either a d-orbital or an
antibonding σ-orbital (σ^*), both of which have π-symmetry with respect to the metal ligand bond
(Figure 2.5).
As was the case for the alkene, the σ-component results in a transfer of electron density from the ligand to the metal and the π-component in metal-to-ligand back bonding. The σ-donating capacity of the phosphine ligand tends to decrease as electron-withdrawing (electronegative) groups are placed on the phosphorous atom. At the same time, the energy of the π-acceptor (σ^*) on phosphorous is lowered in energy, providing an increase in back bonding ability. Therefore, phosphines can exhibit a range of σ-donor and π-acceptor capabilities, and the electronic properties of a metal centre can be tuned by the substitution of electronically different but isosteric phosphines. Transition metal elements can therefore readily form strong bonds with compounds containing π-electron systems or which have orbitals of suitable symmetry/energy to form $d\pi$-bonds in order to change the catalytic activity of the catalysts.

2.4.2 Variability of the oxidation state of the transition metal

Theoretically, transition metals have access to a number of formal positive oxidation states, due to the available valence d- and s-electrons. This implies that transition metals can form an array of complexes with different oxidation states, but not all of these complexes are stable.

However, the ability to readily interchange between oxidation states during the course of a reaction is perhaps more important than the number of oxidation states available for the transition metal. For example, rhodium undergoes a I \rightarrow III \rightarrow I oxidation/reduction cycle for every catalytic cycle during the hydrogenation of alkenes (Figure 2.6). In a typical hydrogenation reaction at ambient conditions the rhodium must be capable of going through this sequence every minute. The Group 8 transition metals have the ability to readily enter into redox cycles, which is one of the main factors that contribute to their wide range of catalytic activity.
2.4.3 Variability of the coordination number of the transition metal

The ability of a transition metal to accommodate different ligands in its coordination sphere is important if it contributes to the catalytic reaction between one or more substrates. Transition metal complexes containing as many as nine ligands in the coordination sphere are well established, inter alia ReH$_6^2$ and WH$_6$(PR)$_3$. However, transition metal complexes with coordination numbers between four and six are more commonly encountered.

As in the case of oxidation state (§ 2.4.2), the ability to adopt different coordination numbers and consequently different stereochemistries as well as change between them, is of great importance to the catalytic activity of the transition metal complex. For example, during the hydrogenation reaction catalysed by RhCl(PPh$_3$)$_3$ (Figure 2.7), the rhodium goes from a four coordinated square planar structure to a six coordinated octahedral structure, to a five coordinated square pyramidal structure, to a six coordinated octahedral structure, to a five coordinated square pyramidal structure, to a four coordinated trigonal structure and back to a four coordinated square planar structure during one catalytic cycle of the reaction.

![Figure 2.6](image)

Figure 2.6 A catalytic cycle for the hydrogenation of alkenes in the presence of RhClL$_2$ complexes

![Figure 2.7](image)

Figure 2.7 Stereochemical changes during the hydrogenation of alkenes catalysed by RhClL$_3$ (L = PPh$_3$).
2.4.4 Choice of ligands

In the context of transition metal coordination chemistry, a ligand can be defined as any element or combination of elements, which forms chemical bonds with a transition element. This ligand can even be a transition metal. In order to coordinate to a metal, a ligand must have electron density that is available to donate to an empty metal orbital. For many ligands, this electron density resides in a lone pair of electrons making these ligands nucleophilic, while the metal ion is electrophilic due to the available empty d-orbitals that can accept the lone pair electrons. Transition metals can form bonds with almost every element in the periodic table as well as with any organic molecule. It is this property which results in the rich coordination chemistry of transition metals and leads to their role in catalysis.

Three different types of ligands can be identified, i.e. monodentate, bidentate and multidentate ligands. Monodentate ligands can form one coordinate bond with a central metal ion, while bidentate ligands (Figure 2.8) form two and multidentate (Figure 2.9) three/more coordinate bonds with a central metal ion.

![Examples of bidentate ligands with two heteroatoms.](image)

![Examples of multidentate ligands with three/more heteroatoms.](image)

Monodentate ligands can basically be divided into two groups:
1. ligands with a formal ionic charge, e.g. Cl⁻, H⁺, OH⁻, CN⁻, alkyl⁻, aryl⁻ and COCH₃⁻; and
2. neutral ligands, e.g. CO, alkene, alkyne, tertiary-, secondary- and primary-phosphine, -arsine or -phosphite, H₂O and amine.
The distinction between ionic and neutral ligands is useful in determining the oxidation state of the metal centre and in describing reactions. In most transition metal complexes, ionic ligands form covalent, rather than ionic bonds.99 In most cases, the charge separation in the bond between the metal centre and neutral ligands is larger than in the bond between a metal centre and ionic ligands.99 The majority of ligands are anions or neutral molecules which function as electron-pair donors.108 Based on the nature of the donating electron pairs, ligands can be classified as lone pair, π-bonding and σ-bonding electron pair donors. Examples of ligands with donating electron pairs are illustrated in Figure 2.10.

![Figures 2.10](image)

Figure 2.10 Examples of various ligands with donating electron pairs.

Ligands that donate electron pairs to form a M-L σ-bond are called σ-donors, but some of these ligands might behave like π-acceptors due to their orbitals having the appropriate π-symmetry as illustrated in Figure 2.11.104

![Figures 2.11](image)

Figure 2.11 Origins of π-bonding.104

It is important to make a further distinction between ligands, namely ligands that form part of the products (participative ligands) and those that do not form part of the products (non-participative ligands) during the catalytic cycle. Although the latter group of ligands does not physically contribute to the direct products of the catalysed reaction, they influence the activity and selectivity of the catalytic system.99,106
The ability of transition metal complexes to accommodate both participative and non-participative ligands within their coordination sphere offers researchers the possibility of directing the course of a reaction between participating ligands. This is achieved by modifying the structural and electronic properties (σ-donating, π-donating or -accepting abilities) of the non-participating ligands. Changing the donor atom of the ligand can modify its coordination ability and therefore the electronic properties of the ligand. Modifying the steric and electronic environment of the active position of the ligand, i.e. the position where the participative ligand combines with the metal centre, can influence the behaviour of a transition metal catalyst. The resulting effect is usually a combination of both electronic and steric parameters. For example, the solubility of a ligand, and hence that of the resultant complexes, can be affected by the substituents on the ligand. Functional groups can be added to a ligand in order to enhance solubility in a particular solvent.

Although no real theories exist regarding the contribution of the different parameters to the final influence of the ligands, a number of concepts can be used to determine the influence of the non-participative ligand, i.e. the trans-effect, the ligand electron donor/acceptor properties and the cone angle of, for example, phosphine ligands.

As mentioned in §2.4.4, monodentate as well as chelating ligands, i.e. bi- and multidentate ligands, can coordinate to the metal centre. In chelating ligands, the distance between, and the orientation of, the donor atoms are important as these influence the nature of the interactions between the ligands and the metal. The term chelate effect refers to the generalisation that chelate ligands form more stable complexes than analogous monodentate ligands. Relating this to ring structure, it is the enhanced stability of a complex system containing chelate rings as compared to the stability of a system that is similar but contains none or fewer rings coordinated to the metal. The thermodynamic relationship of this entropically driven effect is:

\[\Delta G^o = -RT \ln \beta \]
\[\Delta G^o = \Delta H^o - T \Delta S^o \]

with \(\Delta G^o \) the standard Gibbs energy change, \(\Delta H^o \) the standard enthalpy change, \(\Delta S^o \) the standard entropy change, \(R \) the gas constant, \(T \) the temperature and \(\beta \) the stability constant.

This indicates that \(\beta \) increases as \(\Delta G^o \) becomes more negative, while a negative \(\Delta G^o \) can result from making \(\Delta H^o \) more negative or making \(\Delta S^o \) more positive. The question still remains - what makes certain ligands coordinate to certain metal ions? This can be explained by the hard and soft acid-base (HSAB) principle, whereby hard (Lewis) acids tend to combine with hard (Lewis) bases, whilst soft acids prefer soft bases (Table 2.2).
Pearson,112 building on earlier work by Ahrland, Chatt and Davies,113 developed the concept of hard and soft acids and bases in the 1960's. Essentially, small non-polarisable or hard donor atoms tend to form stable complexes with small, high charge density, or hard cations, whereas large polarisable or soft donors tend to form stable complexes with large, low charge density, or soft cations.112 This indicates that, in general, high oxidation state metals, e.g. Cr^{3+} and Al^{3+}, which are low in electron density and require good donor ligands, tend to bind with saturated ligands, e.g. NH_3, H_2O or F^-, known as hard bases.114 By virtue of their reduced state, soft metals possess an excess electron density and therefore prefer ligands with which a covalent bond can be formed. These ligands must also have empty orbitals available into which some of the excess electron density can be donated, known as back bonding.114 In general, ligands are nucleophilic because they have available electron lone pairs and metal ions are electrophilic because they have available empty d-orbitals to accept the lone pair electrons. Therefore, transition metal ions act as Lewis acids, which can bind to Lewis bases (ligands) to give a coordination complex ML_n.

2.5 Chelating ligands: hemilability

The chemistry of transition metal complexes with chelating ligands containing mixed functionalities is enjoying an increase in popularity, as the different features associated with each donor atom give unique reactivity to their metal complexes.115-117 Hemilabile ligands, which are a class of chelating ligands, have the ability to place two or more donor atoms with very different electronic properties close to the metal atom. The relevance of these ligands is increasing in coordination and organometallic chemistry, since they can reversibly create and/or occupy a vacant coordination site at the metal, with consequent stabilisation of reactive intermediates or enhancement of reactivity in catalytic reactions.118,119 Therefore, these ligands are ideal for

Table 2.2 The classification of Lewis acids and bases.111

<table>
<thead>
<tr>
<th></th>
<th>Hard</th>
<th>Borderline</th>
<th>Soft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td>H^+, Li^+, Na^+, K^+</td>
<td>Fe^{2+}, Co^{2+}, Ni^{2+}</td>
<td>Cu^+, Ag^+, Au^+, Ti^+, Hg^+</td>
</tr>
<tr>
<td></td>
<td>Be^{2+}, Mg^{2+}, Ca^{2+}</td>
<td>Cu^{2+}, Ru^{2+}, Zn^{2+}, Pb^{2+}</td>
<td>Pd^{2+}, Cd^{2+}, Pt^{2+}, Hg^{2+}</td>
</tr>
<tr>
<td></td>
<td>Mn^{2+}, Cr^{3+}, Fe^{3+}, Al^{3+}</td>
<td>SO_2, Br_2</td>
<td>BH_3</td>
</tr>
<tr>
<td>Bases</td>
<td>F^-, OH^-, H_2O, NH_3</td>
<td>NO_2^-, SO_3^2-, Br^-</td>
<td>H^-, R^-, CN^-, CO, I^-</td>
</tr>
<tr>
<td></td>
<td>CO_2^2-, NO_3^-, O^2-</td>
<td>N_3^-, N_2</td>
<td>SCN^-, PR_3, C_6H_6</td>
</tr>
<tr>
<td></td>
<td>SO_4^{2-}, PO_4^{3-}, ClO_4^-</td>
<td>CaH_2N, SCN^-</td>
<td>R_2S</td>
</tr>
</tbody>
</table>

The underlined element is the site of attachment to which the classification refers.
inducing changes in the properties of the metal centre. Jeffrey et al. first introduced the term “hemilabile” ligand in 1979 for phosphine-amine and phosphine-ether ligands that "would bind well enough to allow isolation but would readily dissociate the hard ligand component, thus generating a vacant site for substrate binding".

These ligands possess both tightly bound (Z) and substitutionally labile (A) bonding groups, via combination of ‘soft’ and ‘hard’ donor atoms, to give systems in which the effective electron donation to the metal centre depends on the coordination mode of the labile group (A) (Scheme 2.7). Therefore, in the presence of small molecule substrates, the labile portion of the ligand (A) will dissociate to allow formation of a metal-small molecule complex, while the tightly bound moiety (Z) keeps the ligand anchored to the metal centre (Scheme 2.7). Upon chelation the hard donor atom will stabilise the higher oxidation state of the metal centre, while the soft donor atom will consequently stabilise the lower oxidation state of the metal centre.

Thus, the concept of hemilability of bidentate ligands predicts higher activity and stability by releasing a free coordination site "on demand" of inter alia an alkene and occupying it otherwise – thus preventing decomposition via free coordination sites. The flexible coordination mode of hemilabile ligands has previously been exploited to maximise the stability of metal complexes while retaining their reactive possibilities, and has been implicated in a number of catalytic reactions. The ether-phosphine ligand o-(diphenylphosphino)anisole (22) was the first to be termed hemilabile in a ruthenium(II) system (23) investigated by Jeffrey and Rauchfuss in 1979 for carbonylation reactions.
Much attention has been given to hemilabile phosphine ligands due to their ability of improving certain properties in transition metal complexes, through binding different functional groups to the phosphorous atom. The electronic and steric properties of the ligands could therefore be altered and used to tune the catalytic activity of the catalytic system. The ability of the hemilabile ligand to furnish open coordination sites and stabilise reactive transition metal centres during the course of the reaction is an important property of these types of ligands. The reversible protection of coordination sites can lead to improved stability and reactivity of the catalytic system. The steric and conformational factors of the ligand backbone dictate the capacity of the weakly coordinated atom to afford an empty coordination site. Since that initial discovery in 1979, a number of hemilabile ligands have been reported and incorporated in the synthesis of transition metal complexes. Various transition metal complexes with hemilabile P,P-, P,N-, P,O-, O,N-, O,N- and S,O-ligands have been synthesised and a number of them applied to catalytic reactions (Tables 2.3a-c and Appendix A). For instance, the hemilabile ligand effects on catalyst selectivity have been observed for hydrogenation of alkenes and ketones, hydroformylation of epoxides and alkenes, alkylene dimerisation, alkene codimerisation, CO/ butadiene coupling reactions, ROMP, RCM and catalytic isomerisation of allyl to vinyl ethers. Some catalytic systems with ether-phosphine ligands (P, O) were not directly applied to catalytic reactions, but the hemilabile nature of these ligands was observed through insertion reactions with small molecules inter alia CO, SO₂, acetonitrile, phenylacetylene, ethene, etc. In these ligands the strength of the metal-oxygen bond depends on the O-basicty, the donor strength of the phosphine, and the coordination abilities of the incoming substrates. It was also shown that the oxygen donors in complexes with two or three hemilabile ether-phosphine ligands compete for one coordination site, revealing a fluxional behaviour in solution that was studied by variable-temperature ³¹P NMR spectroscopy.

In Tables 2.3a-c, various examples of transition metal complexes with hemilabile ligands are displayed with their application in catalytic reactions. A more extensive table is given in Appendix A. The complexes displayed in Tables 2.3a-c contributed to our choice of possible hemilabile ligands for use in the manipulation of the ruthenium carbene complexes for application in alkene metathesis.

Chelating Schiff-base ligands (Table 2.3a, 24), pyridinyl-alcoholate ligands (Table 2.3a, 25) and pyca (Table 2.3b, 26) have been successfully incorporated into the Gr1 and/or Gr2 systems for ROMP and RCM reactions. The use of chelating ligands was most probably motivated by the general agreement that the 14-electron complex coordinated with only one L-type ligand (RuX₂(L=CHR)) is the active metathesis species. This indicates that only one L-type ligand should remain coordinated (the "strong" donor ligand) and the other one should be labile (the "weak" donor ligand).
<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>R₁</th>
<th>R₂</th>
<th>Z⁺A</th>
<th>R''</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru₈₀,₈₁,₁₈₅</td>
<td>H₂Mes, PC₅</td>
<td>Ph</td>
<td>H</td>
<td></td>
<td></td>
<td>R'' = H, R' = 2,6⁻¹PrC₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' = 2,6⁻¹PrC₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' = 2,6-Me-4-MeOC₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' = 2,6-Me-BrC₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' = 2,6-Cl-4-CF₃C₆H₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 6-Me-4-NO₂, R' = 2,6⁻¹PrC₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' = 2,6⁻¹Pr-4-NO₂C₆H₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R'' = 4-NO₂, R' =</td>
<td></td>
</tr>
</tbody>
</table>

Schiff-base

<table>
<thead>
<tr>
<th>Ru²⁸</th>
<th>Ph</th>
<th>H</th>
<th>O⁺N</th>
<th>R'' = (CH₂)₅</th>
<th>R' = R'' = Me</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridinyl alcololate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3b Carbonylation

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>L₂</th>
<th>Z^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd₁³⁹,₁⁵⁸,₁⁵⁷</td>
<td>PPh₃</td>
<td>Me</td>
<td>O^N</td>
<td>R = H</td>
</tr>
<tr>
<td></td>
<td>PMePh₂</td>
<td>Me</td>
<td></td>
<td>R' = H, NO₂</td>
</tr>
<tr>
<td></td>
<td>P(CH₃Ph)₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P(C₆H₁₁)₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPh₃</td>
<td>Me</td>
<td></td>
<td>Ph</td>
<td>R = H, Me</td>
</tr>
<tr>
<td>PMePh₂</td>
<td>Me</td>
<td></td>
<td>Ph</td>
<td>R' = H, NO₂</td>
</tr>
<tr>
<td>P(C₆H₁₁)₃</td>
<td>Me</td>
<td></td>
<td>Ph</td>
<td></td>
</tr>
<tr>
<td>PEt₃</td>
<td>Me</td>
<td></td>
<td>Ph</td>
<td></td>
</tr>
</tbody>
</table>

(26) **pyridinecarboxylate (pyca)**

Table 2.3c Co-dimerisation of styrene with ethylene

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>Z^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd₁⁴¹</td>
<td>η³-propene</td>
<td>N^A(=O) =</td>
<td>methylpicolinate</td>
</tr>
</tbody>
</table>

(28) **methylpicolinate**

(26) **pyridinecarboxylate (pyca)**

(27) **quinolin-8-olate (hoqu)**
Therefore, with the increase in donor strength of one ligand at the expense of the other, the activity of the catalyst could be increased.36 The use of bidentate ligands with a relatively rigid backbone might be a way of increasing the selectivity and stability of the catalytically active complexes. One can mention the hydroformylation reaction with Rh-complexes bearing bidentate phosphite or phosphine ligands146,147 and enantioselective hydrogenation using chiral bidentate ligands158 as examples. Thus, the incorporation of bidentate hemilabile ligands, which can release a free coordination site "on demand" of an alkene, for example norbornene,76 and occupying it otherwise, is another way of increasing the selectivity and stability of the catalytic systems. In general, the stability of the bidentate complexes as well as their catalytic performance is influenced by electronic properties, steric demand as well as ring size and rigidity of the chelating ligand.159

Verpoort et al.88 suggested that the Schiff-base ligands act as hemilabile ligands, with the decoordination and coordination of the N-donor atom instead of the usual PCy3 dissociation, during the metathesis reaction (Scheme 2.8). According to the proposed mechanism, the active intermediate (having a vacancy for alkene coordination) is stabilised or, respectively, destabilised when the steric and electronic parameters are altered. Diminishing the electron density on the nitrogen atom stimulates the decoordination of the N-donor atom, while an increase in the steric bulk of the ligand has an opposite influence on the RCM and ROMP activity of these initiators. In RCM reactions the introduction of more bulkiness in the Schiff-base ligand stabilises the reactive intermediate and thus stimulates the decoordination of the N-donor atom. In ROMP reactions, the growing polymer remains attached to the metal centre and therefore the incoming monomer will be hindered by the "polymer tail" when the Schiff-base is too bulky (Figure 2.12).88

Scheme 2.8 Mechanism for metathesis with catalytic systems with Schiff-base ligands.88
Denk et al.78 synthesised a range of second generation systems with hemilabile pyridinyl alcoholate ligands (14) for the ROMP of norbornene and cyclooctene. These systems showed an increase in activity with an increase in temperature, due to the presence of the strongly binding NHC ligand. Hafner et al.85 patented another example, but no activity data was available. The fact that these ligands are easily accessible through the reaction of 2-lithiopyridine with symmetric ketones106 make them an ideal choice for further investigation.

Pyridinylcarboxylate (pyca. 26) and quinolin-8-olate (hoqu. 27) are derivatives of the pyridinyl alcoholate ligands with increased steric and/or electronic properties. It has been shown126,156,157 that the nitrogen atom in these ligands undergoes partial dissociation from the metal centre during carbonylation reactions. In the catalytic systems containing both phosphine ligands and pyca, the lability of the nitrogen atom increased with an increase in the basicity of the phosphine ligands.139 In contrast, during the codimerisation of styrene with ethene, little to no catalytic activity was observed for the palladium systems complexed with pyca (26) or methylpicolinate (28) and \(\pi^2 \)-propene, indicating that these ligands displayed no hemilabile characteristics.141 Therefore, the hemilability of these ligands might be influenced by the presence of an electron-donating ligand such as phosphines. Two pyca ligands have recently been complexed to Gr2 for application in RCM. However, only after addition of the cocatalyst, HCl, did the system show any activity after 12 h at 40 °C to achieve 70% conversion. To my knowledge, no first or second generation hemilabile complexes have been previously investigated for linear alkene metathesis reactions, apart from our recent publication.161 Therefore, in this study the hemilability of pyca, hoqu and other derivatives of pyridinyl alcoholate, coordinated to Gr1 and Gr2 systems, was investigated for application in 1-alkene metathesis.

A number of catalytic systems, with potentially hemilabile ligands, have also been synthesised and applied to various catalytic reactions, but no hemilabile behaviour was observed for them (Tables 2.3d-g and Appendix B).
Table 2.3d - Epoxidation reactions

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>L₂</th>
<th>Z₁^A₁</th>
<th>Z₂^A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo⁶⁰</td>
<td>O</td>
<td>O</td>
<td>O^N</td>
<td>(29)</td>
<td></td>
</tr>
<tr>
<td>(pyridinyl alcoholate)</td>
<td>O^N = (28) (pyridinyl alcoholate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3e - Alkene polymerisation

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>L₂</th>
<th>Z^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni¹⁴²</td>
<td>PPh₃</td>
<td>Ph</td>
<td>O^P =</td>
<td>R = H, Ph</td>
</tr>
<tr>
<td>py</td>
<td></td>
<td></td>
<td></td>
<td>R' = H, Ph</td>
</tr>
<tr>
<td>PPhMe₂</td>
<td></td>
<td></td>
<td></td>
<td>R* = H, Ph</td>
</tr>
</tbody>
</table>

(30)
Table 2.3f Metathesis reactions

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>R₁</th>
<th>R₂</th>
<th>Z^A</th>
<th>R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru²⁷,₁⁶³⁻¹⁶⁵ PcY₃</td>
<td>Ph</td>
<td>H</td>
<td>P^₄P =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru²⁷,₁⁶⁵ Cl</td>
<td>H</td>
<td>CH=CH₂</td>
<td>P^₄P =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3g Catalytic activity not tested

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>L₂</th>
<th>Z^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₁⁵⁹ 'Bu</td>
<td>'Bu</td>
<td>O⁺N =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>M</th>
<th>L₁</th>
<th>L₂</th>
<th>Z₁^A₁</th>
<th>Z₂^A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru, Os₁²⁷ Cl, Br</td>
<td>Cl, Br</td>
<td>O⁺N =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = H, Me</td>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The diagrams and chemical structures are placeholders for the actual images. The text describes metathesis reactions and catalytic systems with various ligands and metals, including Ru and Al, and their corresponding chemical structures.
For example, 29 has been complexed to Mo and subjected to epoxidation reactions, but no hemilabile behaviour was observed. On the other hand, Hermann et al. reported that 29, which was complexed to Gr, has displayed hemilability during ROMP. Although some systems (Table 2.3g) were not tested for catalytic activity and therefore no comment on their hemilability could be made, derivatives of these ligands were shown to display hemilabile behaviour (Table 2.3a & 2.3b). Therefore, these systems are also considered as possibilities for further investigation in this study. A more extensive table of chelating ligands displaying no hemilability is given in Appendix B.

2.6 Reaction mechanism of alkene metathesis

In the seventies, a variety of mechanisms were postulated for the alkene metathesis reaction based on experimental and theoretical studies. The different mechanisms can be divided into two groups, namely pairwise and non-pairwise mechanisms.

2.6.1 Pairwise mechanisms

Initially it was thought that the alkene metathesis reaction mechanism involved the “pairwise” exchange between two alkenes in the coordination sphere of a metal via a weakly held cyclobutane-type complex. The suggested mechanism led to many controversies which gave rise to a variety of proposed intermediates (Figure 2.13) being thought to take part in the alkene metathesis reaction e.g. quasi-cyclobutane- (6), a tetramethylene metal- (7) or a tetramethylene ring complex (8 and 9). Although the quasi-cyclobutane mechanism (6) indicated that the reaction involved the cleavage of the C-C double bonds and not the transfer of groups attached to the double bond, minimal experimental support was received. Therefore Pettit et al. proposed a tetramethylene complex (7), in which four methylene units are bonded to a central metal atom. In a further attempt to explain alkene metathesis, Grubbs proposed that the redistribution of groups around the double bonds was due to a rearranging metallacyclopentane intermediate (Figure 2.13 (8)) and not a tetramethylene complex. Later, he suggested that one mode of rearrangement could lead to formation of a cyclobutane complexed to a metal carbene (9) as illustrated in Figure 2.13. Grubbs’ reaction mechanism received support from studies of the metal catalysed [2+2] cycloaddition reaction e.g. valence isomerisation of cubane to syn-tricyclooctadiene, cycloaddition reactions of norbornadiene and rearrangements of exo-tricyclo[3.2.1.0][octene, but was eventually discarded in favour of the non-pairwise metal carbene chain mechanism (abbreviated to carbene mechanism), in which the propagating species is a metal carbene complex formed from the catalyst/substrate system.
2.6.2 Non-pairwise mechanism

In 1971, Herrisson and Chauvin174 suggested that the alkene metathesis reaction is initiated by a metal carbene. The metal carbene, they proposed, reacts with an alkene to form a metallacyclobutane intermediate that breaks apart to form a new alkene and a new metal carbene, which propagates the reaction (Scheme 2.9).

Initially this proposal received little support, but by 1975 the evidence in its favour became so compelling that the pairwise mechanism was discarded.5 For example, labelling experiments (Scheme 2.10) revealed that the kinetic product of the metathesis of 1,7-octadiene derivatives is a statistical distribution (1:2:1) of d_0, d_2 and d_4-labelled ethene and not a non-statistical distribution (1:1:6:1) as predicted by the pairwise mechanism.175-177
With the discovery of well-defined carbene complexes of Ta, Mo, W, Re and Ru, which would act as initiators without the need for activation by heat, light or cocatalyst, spectroscopic techniques could be used to detect the propagating metal-carbene and intermediate metallacyclobutane complexes in some of these systems. This provided additional support for the Chauvin mechanism.

Mechanistic studies have played an important role in the development of ruthenium-based alkene metathesis catalysts. The performance of ruthenium carbene complexes has been improved by extensive synthetic, mechanistic and theoretical investigations, which provided increased activity, improved functional group tolerance and higher thermal stability. Initial investigation of the alkene metathesis mechanism with ruthenium carbenes, which focused on the ring-closing metathesis of diethyl diallylmalonate (Scheme 2.11), established that the pathway involves substitution of an alkene for a phosphine. Whether alkene binding preceded the loss of phosphine (associative pathway, Scheme 2.12) or phosphine dissociation preceded alkene binding (dissociative pathway, Scheme 2.13) was unclear.
Through subsequent kinetic and mechanistic studies, it was shown that the dissociative pathway is the operative mechanism. In support of this mechanism, Chen et al. have provided mass spectrometric evidence for the dissociative substitution of a phosphine ligand with an alkenic substrate during the ruthenium catalysed alkene metathesis reaction in the gas phase.

The currently accepted mechanism for alkene metathesis reactions, which is consistent with Chauvin's metallocyclobutane mechanism discovered in 1971, involves:

(i) the coordination of an alkene to the metal centre,

(ii) [2+2] cycloaddition between the metal carbene and the alkene to form a metallocyclobutane,

(iii) rupture of the metallocyclobutane to regenerate a carbene and an alkene, and

(iv) displacement of the coordinated alkene with a new alkene to begin the cycle again.

A simplified mechanistic pathway for the alkene metathesis reaction is illustrated in Scheme 2.14 with the precursor complex A reacting with the supplied alkene to form either E or H (E is preferred). Species F and I can also undergo unproductive metathesis (not included in Scheme 2.14), which are illustrated in Scheme 2.15 for an alkylidene complex. In the unproductive case, the same methylidene complex is generated, while in the productive step, the alkylidene compound F (or analogues of it) is formed.
Scheme 2.14 A simplified mechanistic pathway for the alkene metathesis reaction.

Scheme 2.15 Productive vs. unproductive alkene metathesis reaction.
The catalytic activity of A is dictated by the relative rates of three processes:153, 154, 181

- phosphine dissociation (initiation) \((k_1)\)
- phosphine recoordination \((k_r)\)
- alkene binding \((k_2)\)

High catalytic activity is expected when catalyst initiation is efficient (i.e. \(k_1\) is large) and when the resulting 14-electron intermediate \((B)\) reacts rapidly with the alkene substrate relative to free phosphine (i.e. \(k_1/k_2\) is small). Although neither \(k_1\) nor \(k_2\) have been measured directly for Gr1 in solution, the ratio of rate constants for phosphine versus alkene binding \((k_1/k_2)\) have been determined experimentally153 for the reaction of Gr1 and Gr2 with ethyl vinyl ether. This ratio can be a measure of the extent to which a catalyst prefers to remain in the catalytic cycle. Love et al.181 determined the \(k_1/k_2\) ratio, according to eq. 10, under pseudo first-order conditions in the alkene by applying the steady state approximation to the proposed intermediate B, assuming all steps following alkene binding are fast.

\[
\frac{1}{k_{\text{obs}}} = \frac{k_1[\text{PCy}_3]}{k_1k_2[\text{alkene}]} + \frac{1}{k_1}
\]

Although the initiation of Gr1 \((9.6 \pm 0.2 \text{ s}^{-1})\) is faster than that of Gr2 \((0.13 \pm 0.01 \text{ s}^{-1})\), the \(k_1/k_2\) ratio of Gr1 \((1.53 \times 10^4)\) is up to four orders of magnitude greater than Gr2 \((1.25)\), indicating that the rate of metathesis catalysed by Gr2 can be up to twice that of Gr1.153, 154, 181 The large \(k_1/k_2\) ratio for Gr1 indicates that the unsaturated intermediate \((B)\) must have a high affinity for binding free PCy3, even in the presence of an excess of highly coordinating, electron-rich alkene substrates.153 The activity of Gr1 and Gr2 is therefore related to the phosphine dissociation rate \(k_1\), as well as the ratio of \(k_1\) and \(k_2\), which determines whether the catalyst binds alkene or returns to its resting state.

2.7 Molecular modelling in catalysis

The term \textit{theoretical chemistry} may be defined as a mathematical description of chemistry, whereas \textit{computational chemistry} is used when a mathematical method is developed to a point where it can be automated for implementation on a computer.182 In theoretical chemistry, algorithms and computer programs are usually developed by chemists together with physicists to predict atomic and molecular properties and reaction paths for chemical reactions. Computational chemists, on the other hand, simply apply existing computer programs and methodologies to answer specific chemical questions.182 \textit{Molecular modelling} is a combination of theoretical methods and computational techniques to model or mimic the behaviour of molecules.183
Therefore, one of the main questions or aims of a computational study has to be the exploration of the mechanism of a given reaction, and in our case that of the alkene metathesis reaction. Molecular modelling can be used to investigate reactions in which the active species either has a very short lifetime, or is present in very low concentrations, so that it cannot be easily isolated. Through the construction of a potential energy surface (PES), viz. a plot of energy vs. reaction coordinate, a number of quantities which are of interest in molecular modelling, *inter alia* equilibrium and transition state (TS) geometries and energies, can be directly obtained. An example of a PES is given in Figure 2.14. Although it is possible to derive TS energies experimentally from kinetic data relative to reactants and/or products, only a qualitative idea of the TS structure can be obtained. This is mainly due to the fact that the techniques available for structure elucidation are either too slow or not sensitive enough. Molecular modelling or theoretical methods can therefore be used to describe TS structures and can also be applied to the design of new catalytic systems.

![One-dimensional potential energy surface (PES)](image)

The energy minima and maxima points on the PES are usually referred to as stationary points. The energy minima, also referred to as local minima, correspond to stable molecules (reactants and products), while energy maxima correspond to transition states (TS's). An intermediate on the PES refers to species that may be too reactive during a reaction to allow easy isolation and characterisation. The term global minimum (not depicted in Figure 2.14) refers to the lowest energy minimum point on the PES.
The energy minima along the PES given in Figure 2.14 correspond to equilibrium geometries with the relative energies relating to thermochemical stabilities. Therefore, the overall process in Figure 2.14 is thermodynamically favoured (exothermic). The position of TS's along the reaction coordinate usually corresponds to TS geometries and their energies to kinetic or activation energies, relative to the local minima. The reaction step that involves the highest energy TS is referred to as the rate-limiting step of the reaction.

Studies of transition metal mediated reactions with molecular modelling have increased exponentially over the past decade, due to the improvement of computer hardware and theoretical methods. Theoretical studies on hydroformylation of alkenes, the Dötz reaction, hydrogenation of CO2, CO197,200 and alkenes,197,199,202 polymerisation, oligomerisation, trimerisation of ethene and several other catalytic reactions have been covered in numerous publications and review articles. Since the inclusion of all these studies will be impractical and the primary focus of this study is alkene metathesis, only this reaction will be looked at in more detail.

2.7.1 Computational investigation of alkene metathesis

In the last few years, in all probability encouraged by the current available experimental data for mechanistic studies on ruthenium carbene complexes both in solution and gas phase, several computational studies have appeared. Although substantial experimental evidence exists that the dissociative pathway (Scheme 2.13) is favoured for the alkene metathesis reaction, the subsequent steps in the catalytic cycle has not yet been characterised experimentally. Thus, it has been indicated that the tetracoordinated 14-electron complex [RuX2(PR3)(=CHR)] or [RuX2(NHC)(=CHR')] is the reactive catalytic species that forms from the pentacoordinate [RuX2(PR3)(=CHR)] or [RuX2(PR3)(NHC)(=CHR')] precatalysts, respectively. However, it has remained unclear whether the incoming alkene will coordinate to the 14-electron intermediate complex in the cis or trans position relative to the ancillary ligand, and whether the metallacyclobutane is an intermediate or just a transition state. With the use of quantum-chemical calculations (computational studies), some of these issues can be investigated.

Most of the computational studies considered only selected parts of the catalytic cycle, focusing either on the formation of the ruthenium carbene or looking at some intermediates of the catalytic cycle. Only a few studies have treated the complete mechanism (Scheme 2.16 path 2/7) and/or alternative reaction pathways up to the cleavage of the metallacyclobutane. A summarised overview of the possible reaction pathways investigated in these studies is given in Scheme 2.16. In the majority of the computational studies a truncated model system (inter alia PH3 instead of PCy3) was investigated for the alkene.
metathesis reaction. For example, Meier et al. performed molecular dynamic studies at the DFT level on \(\text{PH}_3 \) Gr1-model systems for pathways 1/4 and 2/6. A higher reactivity for the 14-electron complex B was reported relative to the 16-electron complex A. Vyboishchikov et al. investigated the associative path 1/4 as well as the cis- and trans-dissociative pathways 2/5 and 2/7 for the first and second generation truncated systems. A preference for the dissociative path 2/7 was found in the \(\Delta G^0 \) surface with trans-orientation of the incoming alkene, since a high barrier for initial alkene coordination impeded the other possibilities.

DFT calculations on a \(\text{RuCl}_2(\text{PM}_{3})_2(=\text{CH}_2) \) system by Forman et al. indicated that phenol might play a number of roles in the metathesis cycle. Although the initiation rate \((k_i, \text{Scheme 2.15}) \) of Gr1 is slowed and \(k_i \) impeded, it is predicted that phenol enhances the electrophilic character of the alkylidene carbon, therefore enhancing the probability of reaction with an alkene substrate. This was supported by experimental results, which indicated that the addition of phenol improved the activity and lifetime of Gr1 in certain self-metathesis, cross-metathesis and ethenolysis reactions. Grubbs et al. noted a similar result for second generation ruthenium alkylidene systems, in which the initiation rate \((k_i) \) was found to be roughly

Scheme 2.16 Schematic representation of postulated mechanisms for alkene metathesis by Grubbs-type ruthenium carbene complexes.
generation ruthenium alkylidene systems, in which the initiation rate \((k_i) \) was found to be roughly proportional to the dielectric constant of the reaction medium. Forman et al. suggested that the phenol coordinates through a hemilabile interaction of the OH group with the metal centre to stabilise the 14-electron intermediate species (Scheme 2.16, B) as illustrated in Scheme 2.17.

![Scheme 2.17 Hemilabile stabilisation effect of phenol on Ru-alkylidene complexes.](image)

Although the use of truncated model systems have contributed a great deal to the clarification of the alkene metathesis mechanism, the steric and electronic influences of the real ligands and substrates are not taken into consideration during these computations. The size of the ligands (Tolman cone angles for PCy₃ and PH₃ are 170° and 87°, respectively), their electronic properties and conformational flexibility have a great influence on the catalyst stability - the 16-electron complex \((\text{PH}_3)_{2}\text{C}_2\text{Ru}=	ext{CH}_2\) has never been isolated nor detected - as well as the catalytic reactivity of these systems.

A few studies, incorporating the whole ligand system, have investigated either only path 2̇ or concluded it to be favoured over the associative pathway 1̇ or even suggested a more favourable variant (path 2̇ or 1̇). Cavallo et al. focused on substituents, ligand and solvent effects, indicating that the role of the solvent is mainly to facilitate phosphine dissociation while not affecting alkene coordination. Adhara et al. recently extensively re-investigated all these pathways (Scheme 2.16) to determine the role of ligands (PCy₃ and H₂IMes) and substrates (norbornene, ethyl vinyl ether and styrene) on the activity of the ruthenium carbene complexes as compared to the truncated systems. Previous computations have been carried out with ethene as substrate, starting with the methylidene or benzylidene complex, or used the methylidene complex with propene as starting substrate. They indicated that the reaction strongly depends on the alkene substrate as well as the ancillary ligands. For example, the presence of electron-withdrawing phosphine ligands will destabilise the 14-electron metallacyclobutane intermediate (D, Scheme 2.16) relative to the 14-electron carbene species (Scheme 2.16, B), because electron deficiency in B is partly compensated by conjugation with the carbene, while in the metallacyclobutane the compensation for electron deficiency is interrupted. The metallacyclobutane was also found to be an intermediate which is more stable than the alkene carbene.
complex for the NHC-containing systems, but less stable for the phosphine systems. Adilhart et al. found this to be true during the degenerate alkene metathesis reaction of Gr1 with ethene, but experimentally concluded that the metallacyclobutane is a transition state rather than an intermediate. In contrast, Piers et al. recently provided experimental evidence that the ruthenacyclobutane is an intermediate. With the use of 400 MHz 1H-NMR, they directly observed the 14-electron ruthenacyclobutane intermediate (35), which is formed from the highly active 14-electron ruthenium alkene metathesis catalyst 36.

The stabilisation of the Ru(IV) species through the strongly σ-donating NHC ligand made this observation possible. This has not yet been observed for Gr1-systems and therefore the debate of whether the metallacyclobutane is a transition state or an intermediate will continue, but is beyond the scope of this study.

We recently reported our theoretical and experimental results for the 1-octene metathesis reaction in the presence of Gr1. Using DMol3 DFT calculations, we described the 1-octene metathesis reaction by a dissociative mechanism. The formation of the catalytically active heptylidene species was found to be kinetically and thermodynamically favoured, with trans-tetradecene the more thermodynamically favoured product to form. The computational results were in agreement with the experimental results obtained with NMR and GC/MSD experiments.

In a recent communication by Janse van Rensburg et al., it was indicated through theoretical and experimental investigations that substrate-induced decomposition of Ru-alkylidene metathesis complexes is possible. It is proposed that the decomposition involves a β-hydride transfer from a ruthenacyclobutane intermediate to form a coordinatively unsaturated Ru-complex (Scheme 2.18), which should be inactive for metathesis. Molecular modelling can therefore be of immense use in understanding catalytic reactions and to postulate the source of side reactions e.g. isomerisation, which is sometimes difficult to determine experimentally. It is proposed that the isomerisation of alkenes during the Ru-catalysed metathesis reaction arises from the substrate-induced decomposition of the catalyst.
Scheme 2.18 Substrate-induced catalyst decomposition during ruthenium-catalysed alkene metathesis.533

Forman et al.508 eliminated the competing isomerisation process that takes place during metathesis reactions by developing an improved, more active first generation ruthenium alkylidene system (37).

![Scheme 2.18](image)

$R = \text{Ph, C=C(Me)$_2$}$

Fundamental insight into the reactivity and stability of 37 as compared to Gr1 and Gr2 was obtained through theoretical investigations of the metathesis mechanisms.310 They believe that the higher conversions obtained for 37 are attributed to its similarity to Gr2 instead of Gr1. This is likely due to the phoban-Cy ligand of 37 displaying two-fold symmetry similar to the NHC ligands, despite not having a formal two-fold symmetry as opposed to the three-fold symmetry of PCY$_3$.310

While the focus of a computational study is to reproduce experimental data, as well as verify previous computational investigations, the goal must also be to predict what will happen when new catalytic systems are used in the reaction scheme. To my knowledge, no computational investigation of ruthenium carbene complexes with chelating ligands has been reported. This study will look at possible hemilabile ruthenium carbene complexes for the alkene metathesis reaction as compared to the Gr1 and Gr2.
2.8 References

76. Dias, E.L. and Grubbs, R.H., Organometallics, 1998, 17, 2758

82. Louie, J. and Grubbs, R.H., Organometallics, 2002, 21, 2153

85. Slugovc, C., Burnscher, D., Stelzer, F., and Mereiter, K., Organometallics, 2005, 24, 2255

113. Ahrland, S., Chatt, J., and Davies, N.R., Quart. Rev., 1958, 12, 265

Experimental

3.1 GENERAL

3.1.1 Reagents and solvents

The complexes RuCl₂(PCy₃)L(=CHPh) [L = PCy₃ or H₂Mes] and substrate 2-(hydroxymethyl)-pyridine were purchased from Fluka and used as they were. The following complexes were synthesized for use as starting materials for the synthesis of the hemilabile complexes and used without further purification: RuCl₂(PCy₃)Py(=CHPh) from RuCl₂(PCy₃)(=CHPh) and RuCl₂(H₂Mes)Py₂(=CHPh) from RuCl₂(PCy₃)(H₂Mes)(=CHPh). 1-Octene (Aldrich) was passed through a column of basic alumina and stored on molecular sieves (4Å) under N₂. Chlorobenzene (Merck) and pentane (Merck) were refluxed with CaH₂ and distilled over 4Å molecular sieves under N₂. Dichloromethane (Merck) was refluxed with CaCl₂ and distilled over 4Å molecular sieves under N₂. THF (Aldrich), toluene (Aldrich) and diethyl ether (Labchem) were refluxed with Na/benzophenone and distilled over 4Å molecular sieves under N₂. Thallium ethoxide, butyl-lithium, pyridine-2-carboxylic acid, 2-hydroxypyridine, 2-(2-hydroxyethyl)pyridine, 2-(hydroxymethyl)tetrahydropyran, 8-quinolinol, furan-2-carboxylic acid, guaiacol, 2-(diphenylphosphino)benzoic acid, 2-thiophene carboxylic acid and 2-thiophene carboxamide were purchased from Aldrich and used as received. Airflow supplied all the gasses used during the study.

3.1.2 Apparatus

All reactions were carried out under an argon (Ar) or N₂ atmosphere using standard Schlenk and vacuum techniques. A schematic representation of the experimental setup is given in Figure 3.1. Initially a moisture trap, filled with 4Å molecular sieves, was placed between the gas inlet and bubbler 2 to avoid any moisture entering the reaction vessel from the N₂ gas. Due to the generation of oxygen from the molecular sieves (§ 3.1.2.4), the trap was removed and argon was used directly from a cylinder during the synthesis of ruthenium complexes. The double manifold allows for the evacuation of air and flushing with inert gas of the Schlenk glassware as well as the evaporation of small amounts of liquids via condensation into the cooling traps.¹ The setup usually includes two bubblers containing silicon oil, one (bubbler 2) to indicate the gas flow from the inert gas source, and the second (bubbler 1), with an anti suck-back valve, to prevent air from flowing in from the environment when evacuating and flushing the Schlenk glassware with inert gas and to avoid pressure build-up in the system.¹ One of the solvent traps was cooled with a mixture of acetone and dry ice to prevent any solvents from entering the vacuum pump.
Figure 3.1 Experimental setup for performing a reaction in a Schlenk tube.

Syringes (GASTING® (Hamilton) and disposable (Norm-ject)) were assembled and fitted with stainless steel or terumo needles and flushed with a stream of Ar before transferring liquids to the Schlenk tube.

3.1.2.1 General procedure for the removal of solvents under vacuum

Solvents were removed under vacuum via condensation from a Schlenk tube into one of the solvent traps (cooled with acetone/dry ice) of the manifold. Care was taken not to suck the liquid into the tubing and the manifold. Firstly, the Schlenk tube was evacuated with the valve closed and then one of the following two procedures was used to remove the solvent:

1. With stirring: the valve was carefully opened until slightly open (never opened fully) while stirring magnetically.
2. Without stirring: the Schlenk tube was tilted in a slightly horizontal position to increase the surface area of the liquid, while pointing the valve to the top of the fume cupboard. The valve was then carefully opened until slightly open (never opened fully).

When the liquid started to cool down and/or convectional streams (in clear liquids) formed, it was an indication that condensation of the solvent was taking place. The valve was opened wider
when no condensation was visible with sinking liquid level. The Schlenk tube was also slightly heated (with non-volatile solvents) to speed up the process. When the liquid was removed completely, the tube was allowed to warm to room temperature. The tube was then flushed with Ar and disconnected from the manifold.

3.1.2.2 General procedure for the filtration of a suspension under inert gas

One of the following procedures was used for the filtration of a suspension under inert gas:

1. Filtration via a sintered funnel (Figure 3.2)

 A Schlenk tube was connected to a sintered funnel as shown in Figure 3.2. The system was evacuated and then flushed with argon. The suspension to be filtered was then transferred into the sinter filter vessel via a syringe and the filtrate collected in the Schlenk tube.

2. Filtration via a syringe filter

 The suspension was drawn into a gas-tight syringe under inert gas conditions. A commercially available syringe filter (Whatman GD/X (polypropylene membrane, pore size 0.45 µm, diam. 25mm (Aldrich) or Acrodisc (membrane GHPP, 0.45 µm, diam. 25mm (Aldrich or Separations)) was placed quickly between the syringe and a new stainless steel needle. The contents of the syringe were then slowly filtered into another Schlenk tube. The syringe filter with precipitate was discarded.

![Figure 3.2](image-url) Filtration of a suspension under inert gas via a sintered funnel.
3.1.2.3 General procedure for pump freezing solvents

A Schlenk tube was quarter-filled with activated 4Å molecular sieves before adding the deuterated solvent to ⅔ above the level of the sieves. The Schlenk tube was suspended in liquid nitrogen, with the valve closed, to completely freeze the solvent. The Schlenk tube was removed from the liquid nitrogen and then carefully evacuated until the first liquid droplets formed. The Schlenk tube was then flushed with Ar until the solvent completely liquefied. The procedure, from suspending the tube in liquid nitrogen, was repeated twice.

3.1.2.4 Detection of oxygen generated from molecular sieves

It is well known that Gr1 and Gr2 exhibit both high reactivity and high tolerance toward functional groups. In addition, the precatalysts are only mildly sensitive to oxygen, since a slow decomposition of Gr1 and Gr2 in solution was experimentally observed. For example, for Gr2 this is visualised as a change in colour in the reaction mixture, which turns from red to greenish-brown. Therefore, the presence of large amounts of oxygen in the reaction mixture can be detrimental to any attempt to manipulate the Grubbs systems. In order to ensure that no oxygen would be present during the synthesis of the new complexes, the gasses, as well as the experimental setup as seen in Figure 3.1, which originally had a moisture trap between the gas inlet and bubbler 2, were tested for the presence of oxygen with and without the trap present. A colourless [Cu(NH₃)₄]⁺ solution was used to test for the presence of oxygen in the system, since it is known that this solution will readily absorb oxygen to form the blue [Cu(NH₃)₄]²⁻ complex. The solution was prepared in a Schlenk tube under an inert atmosphere, so that no atmospheric oxygen could influence the testing process. The Schlenk tube was then connected to the manifold via a Pasteur pipette, while still maintaining a closed system, and the gas bubbled through the solution. With the moisture trap present, the solution turned dark blue within seconds, while only a light blue solution formed after several hours when the trap was removed. This indicated that oxygen was generated from the molecular sieves in the moisture trap, which was therefore removed from the setup.

Synthesis of [Cu(NH₃)₂]⁺ solution

3 g cupric sulphate was added to ca. 40 mL ammonia in a Schlenk tube to form a blue tetraaminecopper [Cu(NH₃)₄]²⁺ solution. 2 g copper turnings were added to the solution and left for 2-3 days until the solution was colourless. The Cu⁴⁺-ion was therefore reduced to Cu¹ by metallic copper according to eq. 3.1.⁴

\[[\text{Cu(NH₃)}₄]^{2+} + \text{Cu}^{2+} = 2[\text{Cu(NH₃)}₂]^{+} \]

(3.1)
3.2 SYNTHESIS OF THE LIGAND SALTS

The following alcohols, carboxylic acids and an amide (Table 3.1) were investigated as possible hemilabile ligands for the synthesis of hemilabile ruthenium carbene complexes. The tertiary alcohols L1-L4 (Table 3.1) were synthesised according to literature following a simple two-step synthesis route, while all other ligands were purchased and used as received.

The literature survey revealed that lithium, thallium, silver, potassium and sodium salts have been previously used to manipulate the ruthenium carbene complexes. The thallium salts were more generally used than the others. Due to the toxicity of thallium ethoxide and the instability of the resulting thallium salts, other possibilities were first explored. However, among the various salts investigated for manipulation of Gr1 and Gr2, the thallium and lithium salts proved to be the most efficient and were subsequently used in all the substitution reactions.

Table 3.1

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>L6</td>
<td>L7</td>
<td>L8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>L10</td>
<td>L11</td>
<td>L12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>L14</td>
<td>L15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.1 Synthesis of pyridinyl alcoholato ligands

The reaction was performed in a round bottom flask under Ar, which was initially flushed with a stream of Ar for 5 min before adding the reagents. After lithiation of 2-bromopyridine at the ortho-position, the resulting organometallic species underwent a nucleophilic attack at the carbonyl group of the ketone followed by the protonation of the resulting lithium salt (eq. 4.1 and eq. 4.2).

\[
\text{Br} \quad + \quad \text{CuH}_{2}\text{Li} \quad \xrightarrow{1. \text{Et}_2\text{O}, -78 \degree \text{C}, 15 \text{ min}} \quad \text{Li} \quad \xrightarrow{2. \cdot \text{CuH}_{2}\text{Br}}
\]

Through the use of various symmetric ketones (Table 3.2), the steric and electronic characteristics of these ligands could be changed. The deprotonated alcohols have been previously described as chelating, anionic bidentate ligands, which complex a metal centre with a coordinative bond (through the nitrogen of the pyridine ring) and a covalent single bond (through the alcoholate oxygen of the former hydroxyl group). These ligands form a five-membered ring when bound to the metal centre, which is generally thermodynamically more stable than six-membered rings. The ligands L1-L4 have been previously complexed to molybdenum to give highly active catalytic systems for the oxidation of 1-octene with elemental oxygen at atmospheric pressure. Denk et al. incorporated L1 and L3 into a second generation Grubbs carbene variant for ROMP of norbornene at 60 °C. The analogous Gr1-system with L1 was also synthesised, but not tested for any catalytic activity.
Table 3.2 Reaction of selected ketones with 2-pyridyllithium

<table>
<thead>
<tr>
<th>Used ketone</th>
<th>Resulting alcohol</th>
<th>Ligand</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexanone</td>
<td>1-(2'-pyridyl)cyclohexanol</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>Benzophenone</td>
<td>1,1-Diphenyl-1-(2'-pyridyl)methanol</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Propan-2-one</td>
<td>2-(2'-pyridyl)propan-2-ol</td>
<td>L3</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylpentan-3-one</td>
<td>2,4-Dimethyl-3(2'-pyridyl)pentan-3-ol</td>
<td>L4</td>
<td></td>
</tr>
</tbody>
</table>

3.2.1.1 General procedure for the synthesis of L1-L4

100 mL diethyl ether was cooled to -78 °C. After addition of 100 mmol (10 mL of a 10 M or 40 mL of a 2.5 M) butyllithium solution in hexane to the cooled ether, a yellow solution was formed. Addition of 95 mmol (9.05 mL) of 2-bromopyridine in 25 mL diethyl ether to the yellow solution proceeded over a period of 15 min. While adding the 2-bromopyridine the colour of the solution changed from yellow to dark-red. After stirring the reaction mixture at -78 °C for 15 min, it was allowed to warm up to -20 °C. The desired ketone (105 mmol) was added to the reaction mixture at -20 °C. The solution was stirred for 2 h at -20 °C and then allowed to warm to room temperature. After careful hydrolysis, the ether phase was extracted with 5 x 20 mL of a 2 M HCl solution. After neutralisation of the water phase with a 2 M NaOH solution, the phase was extracted with diethyl ether. After drying the ether phase with MgSO₄, it was decanted and allowed to slowly evaporate. A light-yellow solution resulted, which was treated with activated charcoal and filtered. Colourless crystals were obtained for L1 and L2, while L3 and L4 were colourless oils.
3.2.1.2 Spectroscopic data of the ligands L1-L4

The spectral data of these ligands (§ 3.1.3.1) were comparable to literature, which only provided 1H-NMR data.\(^5\)

IR-spectra: (KBr, cm\(^{-1}\)) ν_{max} 3415 (O-H stretch), 3069 – 3020 (C-H stretch, aromatic), 2932 – 2855 (C-H stretch, aliphatic), 1593 – 1570 (C=C and C=N stretch).

1H-NMR data: [CDCl\(_3\), 300 MHz, ppm]: δ \(8.487\) (1H, d, H_a), 7.657 (1H, dd, H_b), 7.365 (1H, d, H_c), 7.143 (1H, dd, H_d), 4.812 (1H, s, OH), 1.9-1.6 (10H, m, CH).

13C-NMR data: [CDCl\(_3\), 75 MHz]: \(\delta_c\) 22.09 (C_0), 25.56 (C_0), 30.51 (C_0), 72.73 (C_0), 118.87 (C_0), 121.71 (C_0), 136.78 (C_0), 147.43 (C_0), 166.113 (C_0).

MS-spectrum: (MSD): 177 m/z

IR-spectra: (KBr, cm\(^{-1}\)) ν_{max} 3347 (O-H stretch), 3054 – 3018 (C-H stretch, aromatic), 1591 – 1571 (C=C and C=N stretch).

1H-NMR data: [CDCl\(_3\), 300 MHz, ppm]: δ \(8.574\) (1H, d, H_a), 7.612 (1H, dd, H_b), 7.3-7.19 (11H, d, H_a + Phenyl rings), 7.103 (1H, dd, H_b), 6.258 (1H, s, OH).

13C-NMR data: [CDCl\(_3\), 75 MHz]: \(\delta_c\) 80.829 (C_0), 122.300 (C_0), 122.880 (C_0), 127.270 (C_0), 127.884 (C_0), 128.122 (C_0), 136.342 (C_0), 146.113 (C_0), 147.704 (C_0), 163.228 (C_0).

MS-spectrum: (MSD): 261 m/z
IR-spectra: (KBr) v_{max} 3383 (O-H stretch), 3080 - 3057 (C-H stretch, aromatic), 2966 - 2876 (C-H stretch, aliphatic), 1593 - 1570 (C=C and C=N stretch).

1H-NMR data: [CDCl$_3$, 300 MHz]: δ_H 8.484 (1H, d, H_a), 7.636 (1H, dd, H_b), 7.240 (1H, d, H_d), 7.173 (1H, dd, H_b), 5.534 (1H, s, OH), 2.268 (2H, dt, CH), 0.752 (2H, dd, CH$_2$).

13C-NMR data: [CDCl$_3$, 75 MHz]: δ_C 16.686 (C$_g$), 17.452 (C$_d$), 34.244 (C$_f$), 79.668 (C$_i$), 120.610 (C$_b$), 121.637 (C$_a$), 135.856 (C$_o$), 146.821 (C$_a$), 161.520 (C$_j$).

MS-spectrum: (MSD): 193 m/z

IR-spectra: (KBr) v_{max} 3200 (O-H stretch), 3200 - 3100 (C-H stretch, aromatic), 2990 - 2890 (C-H stretch, aliphatic), 1593 - 1570 (C=C and C=N stretch).

1H-NMR data: [CDCl$_3$, 300 MHz]: δ_H 8.469 (1H, d, H_a), 7.646 (1H, dd, H_c), 7.340 (1H, d, H_d), 7.150 (1H, dd, H_b), 5.022 (1H, s, OH), 1.512 (6H, s, CH$_3$).

13C-NMR data: [CDCl$_3$, 75 MHz]: δ_C 30.592 (C$_g$), 71.679 (C$_o$), 118.87 (C$_a$), 121.71 (C$_a$), 136.889 (C$_d$), 147.415 (C$_a$), 165.990 (C$_j$).

MS-spectrum: (MSD): 137 m/z
3.2.2 Synthesis of sodium salts

Alcohols can react with sodium ethoxide (method 1), metallic sodium (method 2) or sodium hydride (method 3) to produce the corresponding sodium salt.16,17 The resulting salts are called alkoxides, with the general formula RO"Na". These alkoxide ions (RO-) are very good nucleophiles.18 Carboxylic acids react with strong bases, such as sodium ethoxide, and metals to form carboxylate salts in which the hydrogen of the -OH group is replaced with the metal ion (method 1).19

Due to the magnitude of possible sodium sources, a variety of methods were investigated for the synthesis of the sodium salts of the corresponding alcohol and carboxylic acid ligands. The sodium salts of only a small selection of the ligands in Table 3.1 were initially investigated and then terminated, because the synthesis of the new hemilabile ruthenium carbene complexes deemed unsuccessful with the use of these salts after several attempts at different ambient temperatures (§ 3.4.1). The experimental setup as described in § 3.1.2 was used for the synthesis of the sodium salts.

\textbf{a) Method 1}

\[
\text{R-OH} + \text{NaOEt} \rightarrow \text{R-O'Na} + \text{EtOH}
\]

\[
\text{R-OOH} + \text{NaOEt} \rightarrow \text{R-OO'Na} + \text{EtOH}
\]

1.8 mmol (0.122g) NaOEt was added to a solution of ca. 2 mmol (see Table 3.3 for specifications) alcohol or carboxylic acid in 5-10 mL THF under Ar. The reaction mixture was stirred for 3 h after which all the solvent was removed under reduced pressure (§ 3.1.2.1) and the precipitate dried under vacuum. The yields and product properties of the salts are given in Table 3.3.

\textbf{b) Method 2}

\[
2 \text{R-OH} + 2 \text{Na} \rightarrow \text{H}_2 \uparrow + 2 \text{R-O'Na}
\]

1.8 mmol (0.0414 g) Na was added to a solution of 2 mmol (see Table 3.3 for specifications) alcohol in 5-10 mL THF under Ar. The reaction mixture was stirred until all the Na was dissolved. The formation of small bubbles of hydrogen gas was an indication that the reaction was taking place. All the solvent was then removed under reduced pressure (§ 3.1.2.1) and the precipitate dried under vacuum. The yields and product properties of the salts are given in Table 3.3. This method was not used for the carboxylic acids, since more reactive metals, such as Mg, are needed to produce the carboxylate salt with formation of hydrogen gas.19
c) Method 3

\[\text{R-OH} + \text{NaH} \rightarrow \text{H}_2 \uparrow + \text{R-O}^-\text{Na}^+ \]

1.8 mmol (0.0432 g) NaH was added to a solution of 2 mmol (see Table 3.3 for specifications) alcohol in 5-10 mL THF under Ar. The reaction mixture was stirred until all the NaH was dissolved. The formation of small bubbles of hydrogen gas was an indication that the reaction was taking place. All the solvent was removed under reduced pressure (§ 3.1.2.1) and the precipitate dried under vacuum. The yields and properties of the salts are given in Table 3.3. S2 was not used for any manipulation reactions, due to difficulties experienced during the weighing process, as the ligand was too sticky.

| Table 3.3 Synthesised sodium salts of the alcohols and carboxylic acids |
|------------------------|---------|---------|
| Salt | Method # | Mass\text{Ligand} (g) | Yield (%) | Product |
| S1 | 2 | 0.214 (0.048) | 23 | Light-yellow powder with orange gel on sides of Schlenk |
| S2 | 2 | 0.246 (0.094) | - | Orange sticky gel – (could not be weighed for further reactions) |
| S3 | 1 | 0.328 (0.158) | 70 | Yellow powder (light sensitive) |
| S4 | 1 | 0.288 (0.156) | 85 | Beige powder |
| S5 | 1 | 0.256 (0.160) | 78 | White powder |
3.2.3 Synthesis of thallium salts

The yields and properties of the salts are summarised in Tables 3.4 to 3.5. Due to the instability of the thallium salts in air and moisture, no analysis was performed.

Table 3.4 Synthesised thallium salts of the amide, carboxylic acid and alcohol ligands of Table 3.1.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Mass ligand (g)</th>
<th>TIOEt (mL)</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>0.246</td>
<td>0.142</td>
<td>95</td>
<td>White powder</td>
</tr>
<tr>
<td>S7</td>
<td>0.224</td>
<td>0.142</td>
<td>-</td>
<td>Black residue</td>
</tr>
<tr>
<td></td>
<td>0.220</td>
<td>0.140</td>
<td>90</td>
<td>White powder (unstable)</td>
</tr>
<tr>
<td>S8</td>
<td>0.261</td>
<td>0.412</td>
<td>85</td>
<td>Beige, fine crystals that turn pink after a few hours and were therefore discarded</td>
</tr>
<tr>
<td>S9</td>
<td>0.361</td>
<td>0.084</td>
<td>85</td>
<td>White powder</td>
</tr>
<tr>
<td>S10</td>
<td>0.254</td>
<td>0.117</td>
<td>85</td>
<td>White powder</td>
</tr>
<tr>
<td>S11</td>
<td>0.205</td>
<td>0.142</td>
<td>95</td>
<td>Beige, fine crystals</td>
</tr>
</tbody>
</table>
Table 3.5 Synthesised thallium salts of the alcohol ligands of Table 3.1.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Mass<sub>Ligand</sub> (g)</th>
<th>TIOEt (mL)</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12</td>
<td>0.218</td>
<td>0.140</td>
<td>-</td>
<td>Beige, thick oil</td>
</tr>
<tr>
<td>S13</td>
<td>0.250</td>
<td>0.140</td>
<td>-</td>
<td>Brown, thick oil</td>
</tr>
<tr>
<td>S14</td>
<td>0.280</td>
<td>0.143</td>
<td>95</td>
<td>Yellow powder</td>
</tr>
<tr>
<td>S15</td>
<td>0.697</td>
<td>0.425</td>
<td>-</td>
<td>Grey, thick oil</td>
</tr>
<tr>
<td>S16</td>
<td>0.249</td>
<td>0.140</td>
<td>92</td>
<td>White flakes</td>
</tr>
<tr>
<td>S17</td>
<td>0.518</td>
<td>0.140</td>
<td>95</td>
<td>White powder</td>
</tr>
<tr>
<td>S18</td>
<td>0.251</td>
<td>0.146</td>
<td>85</td>
<td>Green crystals</td>
</tr>
</tbody>
</table>
Thallium ethoxide (TIOEt) (ca. 1.8 mmol, 0.449 g) was added dropwise to a solution of ca. 2 mmol ligands L1-12 in THF (10 – 20mL) at room temperature under an inert atmosphere. In most cases, after the addition of TIOEt, a precipitate formed immediately and the reaction mixture was stirred for 2 h at room temperature. The solvent was then removed under reduced pressure to give the thallium salts in quantitative yields. Where no precipitate formed after addition of the TIOEt, the solution was stirred for 2 h with subsequent removal of the solvent under reduced pressure giving the desired salt as a powder. The salts were immediately used in the synthesis of ruthenium carbene complexes without further purification.

3.2.4 Synthesis of lithium salts

The yields and properties of the salts are given in Table 3.6 and 3.7.

20 mL THF was added to 2 mmol of the desired alcohol or carboxylic acid (Table 3.1) at room temperature under Ar. 2 mmol (0.2 mL of a 10 M or 0.9 mL of a 2.5 M solution in hexane) BuLi was added dropwise to the reaction mixture. In most cases after the addition of BuLi, a precipitate formed immediately and the reaction mixture was stirred for 2 h at room temperature. The solvent was then removed under reduced pressure to give the lithium salts in quantitative yields.

If no precipitate formed after addition of the BuLi, the solution was stirred for 2 h with formation of the desired salt after removal of the solvent under reduced pressure. After washing the salt with 2 x 5 mL pentane, the solvent was removed with a syringe and the salt dried under vacuum. No analysis of the salts was performed.

Table 3.6 Synthesised lithium salts of the alcohol ligands of Table 3.1.

<table>
<thead>
<tr>
<th>Salt #</th>
<th>MassLigand (g)</th>
<th>VBuLi (mL)</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orange-brown, fine crystals</td>
</tr>
<tr>
<td>S19</td>
<td>0.280</td>
<td>0.150</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 M BuLi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orange powder</td>
</tr>
<tr>
<td>S20</td>
<td>0.218</td>
<td>0.200</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 M BuLi)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7 Synthesised lithium salts of the carboxylic acid and remaining alcohol ligands of Table 3.1.

<table>
<thead>
<tr>
<th>Salt</th>
<th>#</th>
<th>Mass_{Ligand} (g)</th>
<th>V_{BuLi} (mL)</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S21</td>
<td>0.250</td>
<td>0.200</td>
<td></td>
<td>White, sticky residue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M BuLi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S22</td>
<td>0.4115</td>
<td>0.660</td>
<td>95</td>
<td>Beige powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.5 M BuLi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S23</td>
<td>0.294</td>
<td>0.900</td>
<td>90</td>
<td>White powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.5 M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S24</td>
<td>0.288</td>
<td>0.15</td>
<td>85</td>
<td>Light-yellow-orange powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S25</td>
<td>0.22 mL</td>
<td>0.200</td>
<td>95</td>
<td>Beige powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S26</td>
<td>0.228 mL</td>
<td>0.200</td>
<td>95</td>
<td>Beige powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S27</td>
<td>0.397</td>
<td>0.200</td>
<td>97</td>
<td>Orange flakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S28</td>
<td>0.400</td>
<td>0.200</td>
<td>97</td>
<td>Light-yellow flakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 M)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 SYNTHESIS OF RuCl₂(L)(C₆H₅N)₂(=CHPh)

The synthesis of the following starting complexes was adapted from literature.²⁰,²¹

3.3.1 RuCl₂(PCy₃)(C₆H₅N)₂(=CHPh) (Gr₁-Py)

Gr₁ (455 mg, 0.553 mmol) was dissolved in toluene (4 mL), with subsequent addition of an excess pyridine (5 mL, 0.062 mol). The reaction was stirred for 20 min during which time a colour change from purple to light-green was observed. The reaction mixture was transferred into 54 mL of cold (-10 °C) pentane, and a green solid precipitated. The precipitate was filtered, washed with 4 x 50 mL of pentane, and dried under vacuum to afford Gr₁-Py as a green powder (330 mg, 85% yield).

3.3.2 RuCl₂(H₂IMes)(C₆H₅N)₂(=CHPh) (Gr₂-Py)

Gr₂ (230 mg, 0.271 mmol) was dissolved in toluene (4 mL), with subsequent addition of an excess pyridine (3.5 mL, 0.043 mol). The reaction was stirred for 20 min during which time a colour change from red to light-green was observed. The reaction mixture was transferred into 54 mL of cold (-10 °C) pentane, and a green solid precipitated. The precipitate was filtered, washed with 4 x 50 mL of pentane, and dried under vacuum to afford Gr₂-Py as a green powder (180 mg, 92% yield).

3.4 SYNTHESIS OF HEMILABILE RUTHENIUM CARBENE COMPLEXES

3.4.1 Use of sodium salts

3.4.1.1 RuCl(PCy₃)(O^N)(=CHPh) (O^N = L11)

a) Method 1

6 mL THF was added to a combined mixture of 0.6 mmol (132.5 mg) Gr₁ with 0.19 mmol (28 mg) S₄ while stirring vigorously. A colour change of purple to brownish-green was observed after 3 h. The reaction was stirred a further 12 h and a mixture of 2 mL toluene with 10 mL DCM was added. The reaction mixture was transferred to a second Schlenk via a syringe filter and the volume reduced to ca. 1 mL. A green precipitate formed after addition of 30 mL cold pentane to the concentrated reaction mixture. TLC analysis indicated the presence of 3 products. The products were separated by means of column chromatography with a 3 mL hexane : 6 mL EtOAc eluent mixture. NMR analysis of the products indicated that no carbenes were present.
b) Method 2

6 mL THF was added to a combined mixture of 0.02 mmol (20 mg) Gr1 with 0.23 mmol (34 mg) S4 while stirring vigorously. After stirring the reaction mixture for 1 h at 45 °C, a green precipitate started to form. The reaction mixture was stirred for a further 3 h and the mixture filtered via a sinter filter (Figure 3.2). NMR analysis of the precipitate indicated that no carbene was present. The reaction was repeated, but not reproducible since no precipitate formed during the reaction.

c) Method 3

10 mL THF was added to a combined mixture of 0.16 mmol (133 mg) Gr1 with 0.30 mmol (45 mg) S4 while stirring vigorously. After stirring the reaction mixture for 1 h at 35 °C, a green solution with white precipitate formed. The reaction mixture was stirred for a further 3 h. The reaction mixture was transferred to a second Schlenk via a sinter filter (Figure 3.2) and the volume of the filtrate reduced to ca. 1 mL. A green precipitate formed after addition of 30 mL cold pentane to the concentrated filtrate. NMR analysis of the white precipitate indicated that no carbene was present, but one carbene was present in the green precipitate fraction.

3.4.1.2 RuCl(PCy3)(O^N)(=CHPh) (O^N = L6, L8)

10 mL THF was added to a combined mixture of 0.06 mmol (50 mg) Gr1 with 0.07 mmol (10 mg) S1 or S3 while stirring vigorously. A colour change of purple to dark-green was observed for the reaction with S1 and brownish-yellow for the reaction with S3 after 3 h. The reaction was stirred for a further 12 h after transferring the reaction mixture to a second Schlenk via a syringe filter. The volume of the reaction mixture was reduced to ca. 1 mL and 30 mL cold pentane added. No NMR analysis was performed for these complexes, due to very low yields.

3.4.1.3 RuCl(PCy3)(O^N)(=CHPh) (O^N = L12)

10 mL DCM was added to a combined mixture of 0.18 mmol (145 mg) Gr1 with 0.23 mmol (31 mg) S5 while stirring vigorously. The reaction mixture was stirred for 6 h at 45 °C and transferred to a second Schlenk via a syringe filter. The volume of the filtrate was then reduced to ca. 1 mL. A purple precipitate formed after addition of 30 mL cold pentane to the concentrated reaction mixture, which was identified as the starting carbene Gr1. The reaction was repeated in THF to give a black solution after 24 h.

It was evident that the sodium salts could not be successfully used for the replacement of one PCy3 and Cl ligand on Gr1 with a chelating ligand. Therefore, the following step was to test the thallium and lithium salts (§ 3.4.2), which deemed to be more successful.
3.4.2 Use of thallium and lithium salts

The first step, which was determined by the solubility of the ligand salts in THF, was the addition of the salt to the starting ruthenium alkylidene complex (Gr1, Gr2, Gr1-Py or Gr2-Py):

1. If the salt was soluble in THF, a solution of 2 mmol salt in THF (5 mL) was added dropwise to a solution of 2 mmol starting ruthenium alkylidene in THF (5-10 mL).
2. If the salt was insoluble in THF, 10-15 mL THF was added to the combined mixture of 2 mmol salt and 2 mmol starting ruthenium alkylidene while stirring vigorously.

The reaction was stirred at room temperature (RT) for 1 h. If the TLC indicated that the starting complex was not being consumed, by indication of new spots on the TLC, the reaction mixture was heated to 30 – 45 °C, or kept at RT with addition of a spatula point salt. The reaction mixture was then stirred until the TLC indicated that the starting complex was not present any more. One of the following procedures was then followed:

Procedure 1: No precipitate forms during the reaction

After evaporation of the solvent, the residue was dissolved in a minimal amount of toluene. The metal chloride, i.e. lithium chloride, was then removed by filtration via a syringe filter and the volume of the filtrate reduced to 0 mL (§ 3.1.2.1). After adding 1 mL THF to the residue, cold pentane (10-15 mL) was layered onto the THF and the Schlenk placed in the fridge to await precipitation of the desired complex. After removal of the pentane via syringe, the desired complex was washed with cold pentane, filtered and then dried under vacuum. In most instances, the solid thus obtained still contained impurities. Therefore the purification method was modified to include sonification of the complex in 5-10 mL pentane for 10 min after the initial wash process followed by removal of the pentane via syringe. The solid obtained was then dried under vacuum.

Procedure 2: Precipitate forms during the reaction

The reaction mixture was transferred to a second Schlenk via a syringe filter to remove the metal chloride, i.e. thallium chloride, that formed. The volume of the filtrate was reduced to ca. 1 mL (§ 3.1.2.1) and 10-15 mL cold pentane layered onto the filtrate. The reaction vessel was then placed in the fridge awaiting precipitation of the desired complex. After removal of the pentane via syringe, the desired complex was washed with cold pentane, filtered and dried under vacuum. Similar to procedure 1, the method was modified after it was found that the complex still contained impurities. The complex was therefore sonificated in 5-10 mL pentane for 10 min after the initial wash process followed by removal of the pentane via syringe. The solid obtained was then dried under vacuum.
A summary of the reactions investigated in this study, with the use of the above procedures, is given in Table 3.9 – Table 3.22. The reactions were repeated several times at different periods of the year with consistent results, with the exception of C9. The synthesis of C9 resulted in either an oily residue containing no carbene, or a brown powder with the desired carbene that was inseparable from the other impurities, or a green powder with only the desired carbene present. Due to the apparent air and moisture sensitivity of the C9, the synthesis could not be successfully repeated.

The carbene signals, as well as 31P NMR signals are reported for the individual complexes. The carbene and 31P NMR signals of the starting complexes together with the 31P-signals of the free PCy$_3$ ligand, the oxidised form of PCy$_3$ (O=PCy$_3$) and the proposed decomposition product of the Grubbs systems are given in Table 3.8.

Table 3.8 Assignment of carbene and 31P NMR signals

<table>
<thead>
<tr>
<th>Carbene signal/ppm</th>
<th>31P-signal/ppm</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.034 (s)</td>
<td>35.638</td>
<td>Gr1</td>
</tr>
<tr>
<td>19.188 (s)</td>
<td>28.928</td>
<td>Gr2</td>
</tr>
<tr>
<td>19.981 (d)</td>
<td>38.195</td>
<td>Gr1-Py</td>
</tr>
<tr>
<td>19.225 (s)</td>
<td>-</td>
<td>Gr2-Py</td>
</tr>
<tr>
<td>-</td>
<td>50.457</td>
<td>O=PCy$_3$</td>
</tr>
<tr>
<td>-</td>
<td>11.260</td>
<td>Free PCy$_3$</td>
</tr>
<tr>
<td>24 – 26</td>
<td>[Ru(PCy$_3$)$_2$CIPhCO]</td>
<td></td>
</tr>
<tr>
<td>47 – 48</td>
<td>[Ru(PCy$_3$)$_2$ClHCO]</td>
<td></td>
</tr>
<tr>
<td>22 – 23</td>
<td>[Ru(PCy$_3$)(H$_2$Mes)CIPhCO]</td>
<td></td>
</tr>
<tr>
<td>46 – 47</td>
<td>[Ru(PCy$_3$)(H$_2$Mes)ClHCO]</td>
<td></td>
</tr>
</tbody>
</table>

Mo et al.22 identified [Ru(PCy$_3$)$_2$ClHCO] as the metathesis inactive impurity at δ 25.4 ppm in the 31P NMR spectrum, which forms on reaction of Gr1 with primary alcohols, water and oxygen in solution. The hydride species [Ru(PCy$_3$)$_2$ClHCO], where Ph is substituted with H, appears at δ 47.55 ppm in the 31P NMR spectrum.22 Further studies showed that the second generation Grubbs system (Gr2) also reacts with primary alcohols, water and oxygen to form carbonyl ruthenium complexes.23 These systems have been shown to be excellent 1-alkene isomerisation catalysts at elevated temperatures.22,23
Table 3.9 Synthesised complexes from Gr1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>m</sub>/mg</th>
<th>Salt used</th>
<th>Reaction</th>
<th>m<sub>product</sub>/mg</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S<sub>6</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>182.6</td>
<td>(75)</td>
<td></td>
<td>10 (-)</td>
<td>Green powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RT</td>
<td>43.37 31.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S<sub>6</sub></td>
<td></td>
<td>65 (42)</td>
<td>Green powder</td>
<td>19.942 (s)</td>
<td>50.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.756 (d)</td>
<td>43.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.556 (d)</td>
<td>31.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.99 17.65 11.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S<sub>243</sub></td>
<td>35</td>
<td>118 (74)</td>
<td>Brown powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>209.5</td>
<td>(42.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.91 48.59 34.24</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>168.8</td>
<td>S<sub>8</sub></td>
<td></td>
<td>12 (-)</td>
<td>Brown powder</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100)</td>
<td>RT</td>
<td></td>
<td></td>
<td>49.38 30.302 26.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.20 27.99 17.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S<sub>8</sub></td>
<td></td>
<td>2 (-)</td>
<td>Grey residue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>(92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC_m: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes
| Complex | SC_{m}/mg | Salt used
(Sm_{m}/mg) | Reaction T
/$^\circ$C | m_{product}/mg
Yield a/% | Product | Carbene signal/ppm | ^{31}P/ppm |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>358.4</td>
<td>S24 (52)</td>
<td>322.5</td>
<td>(90)</td>
<td>Purple powder</td>
<td>19.94 (s)</td>
<td>35.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>116</td>
<td>S16 (33)</td>
<td>1</td>
<td>(-)</td>
<td>White residue</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>189.6</td>
<td>S25 (30.5)</td>
<td>17</td>
<td>(12)</td>
<td>Brown residue</td>
<td>20.02</td>
<td>51.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.84</td>
</tr>
<tr>
<td>C5</td>
<td>226.2</td>
<td>S14 (100)</td>
<td>2</td>
<td>(-)</td>
<td>Brown residue</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>165</td>
<td>S26 (24.5)</td>
<td>18</td>
<td>(14)</td>
<td>Green powder</td>
<td>20.02</td>
<td>51.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.82</td>
</tr>
</tbody>
</table>

SC_{m}: mass of the starting Ru=C
Sm_{m}: mass of the salt used in the synthesis
a: Yields were only provided for complexes containing carbenes
Table 3.11 Synthesised complexes from Gr1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SCₘ/mg</th>
<th>Salt used (Sₘ/mg)</th>
<th>Reaction T°C</th>
<th>mₚrodₑₜₐₜ/mg (Yield a %)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>³¹P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>233</td>
<td>S20 (47)</td>
<td></td>
<td>34</td>
<td>Dark-green powder</td>
<td>20.74 (d)</td>
<td>50.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.04 (s)</td>
<td>38.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.63</td>
<td>35.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>S20 (82.8)</td>
<td>RT</td>
<td>47 (-)</td>
<td>Brown powder</td>
<td>None</td>
<td>33.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.18</td>
<td>11.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>255.5</td>
<td>S20 (50)</td>
<td></td>
<td>32 (-)</td>
<td>Greenish-brown powder</td>
<td>None</td>
<td>53.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.89</td>
<td>36.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>154.9</td>
<td>S19 (34)</td>
<td></td>
<td>15 (-)</td>
<td>Greyish-green powder</td>
<td>None</td>
<td>50.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>S19 (78)</td>
<td>RT</td>
<td>8 (-)</td>
<td>Greyish-green powder</td>
<td>None</td>
<td>50.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.03</td>
<td>29.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>S19 (112.6)</td>
<td></td>
<td>141 (60)</td>
<td>Green powder</td>
<td>17.77 (d)</td>
<td>41.55</td>
</tr>
<tr>
<td></td>
<td>478.7</td>
<td>S19 (130)</td>
<td></td>
<td>317.5 (85)</td>
<td>Dark-brown powder</td>
<td>17.77 (d)</td>
<td>40.69</td>
</tr>
</tbody>
</table>

SCₘ: mass of the starting Ru=C
Sₘ: mass of the salt used in the synthesis
a: Yields were only provided for complexes containing carbenes
Table 3.12 Synthesised complexes from Gr1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>m</sub>/mg</th>
<th>Salt used (S<sub>m</sub>/mg)</th>
<th>Reaction T°C</th>
<th>m<sub>product/mg</sub> (Yield a/%)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>406.6</td>
<td>S27 (80)</td>
<td>25</td>
<td>150 (47)</td>
<td>Dark-brown powder</td>
<td>17.54 (d)</td>
<td>42.33</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>S26 (72.6)</td>
<td>12 (7)</td>
<td>Brown powder</td>
<td>17.82 (d)</td>
<td>51.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>S26 (110)</td>
<td>120 (35)</td>
<td>Green powder</td>
<td>17.83 (d)</td>
<td>39.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>956.5</td>
<td>S26 (290.5)</td>
<td>RT = 12</td>
<td>15 (-)</td>
<td>Brown powder</td>
<td>None</td>
<td>11.78</td>
</tr>
</tbody>
</table>

SC_m: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis

* Yields were only provided for complexes containing carbenes.
Table 3.13 Synthesised complexes from Gr1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC\textsubscript{m}/mg</th>
<th>Salt used (S\textsubscript{m}/mg)</th>
<th>Reaction T °C</th>
<th>m\textsubscript{product}/mg (Yield a/%)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy_3P</td>
<td>197.4</td>
<td>S17 (115)</td>
<td></td>
<td>40 (22)</td>
<td>Brown powder</td>
<td>17.67 (d)</td>
<td>50.35</td>
</tr>
<tr>
<td>RuCl\textsubscript{2}Ph</td>
<td>104.7</td>
<td>S22 (51)</td>
<td>RT</td>
<td>24 (25)</td>
<td>Brown powder</td>
<td>17.67 (d)</td>
<td>40.49</td>
</tr>
<tr>
<td>C10</td>
<td>210</td>
<td>S22 (70.68)</td>
<td></td>
<td>120 (61)</td>
<td>Greyish-brown powder</td>
<td>17.62 (d)</td>
<td>41.07</td>
</tr>
<tr>
<td>Cy_3P</td>
<td>115.2</td>
<td>S14 (50.5)</td>
<td></td>
<td>71 (77)</td>
<td>Brown, crystalline residue</td>
<td>20.01 (s)</td>
<td>50.67</td>
</tr>
<tr>
<td>RuCl\textsubscript{2}Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.43 (d)</td>
<td>36.29</td>
</tr>
<tr>
<td>C11</td>
<td>300</td>
<td>S14 (143.5)</td>
<td>RT</td>
<td>13 (-)</td>
<td>Brown, oily residue</td>
<td>19.04 (d)</td>
<td>33.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.26</td>
</tr>
</tbody>
</table>

a Yields were only provided for complexes containing carbenes

a Yields were only provided for complexes containing carbenes
Table 3.14 Synthesised complexes from Gr1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>S<sub>C</sub> mg</th>
<th>Salt used (S<sub>m</sub> mg)</th>
<th>Reaction T °C</th>
<th>m<sub>product</sub>/mg (Yield <sup>a</sup>%)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12</td>
<td>158.4</td>
<td>S9 (129.3)</td>
<td>RT</td>
<td>1 (-)</td>
<td>Brown residue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>S9 (91.6)</td>
<td>18 (13)</td>
<td>Green powder</td>
<td>19.94 (s)</td>
<td>49.74</td>
<td>35.64</td>
</tr>
<tr>
<td>C13</td>
<td>76.7</td>
<td>S13 (32.6)</td>
<td>18 (-)</td>
<td>Green powder</td>
<td>None</td>
<td>49.85</td>
<td>25.38</td>
</tr>
<tr>
<td></td>
<td>183.8</td>
<td>S13 (74.6)</td>
<td>25 (-)</td>
<td>Green powder</td>
<td>None</td>
<td>49.76</td>
<td>34.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>S21 (50)</td>
<td>30 (19)</td>
<td>Green powder</td>
<td>19.94 (s)</td>
<td>50.24</td>
<td>35.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.98</td>
<td>25.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.33</td>
<td></td>
</tr>
</tbody>
</table>

SC_C: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis

Yields were only provided for complexes containing carbenes
<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>mg</sub></th>
<th>Salt used (S<sub>mg</sub>/mg)</th>
<th>Reaction T/°C</th>
<th>m<sub>product</sub>/mg (Yield/%)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
</table>
| ![C15](image)
| 100 | S20 (25) | RT | 20 (-) | Orange, crystalline residue | None | 51.18 | 46.65 |
| ![C16](image)
| 135.3 | S23 (30.6) | 33 (24) | Green powder | 20.11 (d) | 50.86 |
| ![C16](image)
| 92.5 | S6 (45) | RT | 35 (38) | Green powder | 19.83 (d) | 37.03 |
| ![C16](image)
| 200 | S6 (95) | 100 (49) | Green powder | 19.82 (d) | 33.70 |
| ![C16](image)
| 124 | S19 (48.1) | RT | 20 (15) | Reddish-brown powder | 17.75 (d) | 50.39 |

SC_{mg}: mass of the starting Ru=C
S_{mg}: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes
Table 3.16 Synthesised complexes from Gr1-Py.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC_m/mg</th>
<th>Salt used (S$_m$/mg)</th>
<th>Reaction T °C</th>
<th>m$_{product}$/mg (Yield% yield)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18</td>
<td>20</td>
<td>S14 (17)</td>
<td>5</td>
<td>Brown powder</td>
<td>-</td>
<td>50.03</td>
<td>43.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>S14 (180.4)</td>
<td>50</td>
<td>Brown powder</td>
<td>20.23 (s)</td>
<td>19.41 (d)</td>
<td>41.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>91</td>
<td>S7 (44)</td>
<td>40</td>
<td>Green powder</td>
<td>20.13 (d)</td>
<td>19.84 (dd)</td>
<td>37.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>202.7</td>
<td>S24 (35.8)</td>
<td>30</td>
<td>Green powder</td>
<td>None</td>
<td>26.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>105.2</td>
<td>S10 (65.3)</td>
<td>RT</td>
<td>Brown powder</td>
<td>None</td>
<td>50.67</td>
<td>30.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC_m: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes.
Table 3.17 Synthesised complexes from Gr1-Py.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC_{m}/mg</th>
<th>Salt used (S$_m$/mg)</th>
<th>Reaction T °C</th>
<th>m$_{\text{product}}$/mg (Yield *%)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>^{31}P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21</td>
<td>162.4</td>
<td>S15 (79)</td>
<td>RT</td>
<td>15</td>
<td>Black residue</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>S15 (56.1)</td>
<td></td>
<td>15</td>
<td>Brown powder</td>
<td>None</td>
<td>49.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.13</td>
</tr>
<tr>
<td>C22</td>
<td>200</td>
<td>S13 (131.9)</td>
<td>RT</td>
<td>18</td>
<td>Caramel powder</td>
<td>None</td>
<td>49.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.38</td>
</tr>
<tr>
<td>C23</td>
<td>66.8</td>
<td>S11 (30)</td>
<td>RT</td>
<td>15</td>
<td>Blue-greyish residue</td>
<td>None</td>
<td>50.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.23</td>
</tr>
</tbody>
</table>

SC_{m}: mass of the starting Ru=C
S$_m$: mass of the salt used in the synthesis

* Yields were only provided for complexes containing carbenes.
Table 3.18 Synthesised complexes from Gr2.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC_{m}/mg</th>
<th>Salt used (Sm/mg)</th>
<th>Reaction $T/\degree\text{C}$</th>
<th>$m_{\text{product}}/\text{mg}$ (Yield $%$)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>$^{31}\text{P}/\text{ppm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$IMes $\begin{array}{c} \text{Ru} \equiv \text{Cl} \equiv \text{Ph} \ \text{O} \end{array}$</td>
<td>102.7</td>
<td>S14 (62.8)</td>
<td></td>
<td>22.6 (28)</td>
<td>Brown powder</td>
<td>19.09 (s)</td>
<td>18.94 (s) 18.33 (s) Not analysed</td>
</tr>
<tr>
<td>C24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$IMes $\begin{array}{c} \text{Ru} \equiv \text{Cl} \equiv \text{Ph} \ \text{O} \end{array}$</td>
<td>70</td>
<td>S14 (45)</td>
<td>RT</td>
<td>12.5 (-)</td>
<td>Brown powder</td>
<td>None</td>
<td>Not analysed</td>
</tr>
<tr>
<td>C24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$IMes $\begin{array}{c} \text{Ru} \equiv \text{Cl} \equiv \text{Ph} \ \text{O} \end{array}$</td>
<td>200</td>
<td>S14 (150)</td>
<td></td>
<td>41.8 (26)</td>
<td>Orange-brown powder</td>
<td>18.43 (s)</td>
<td>None</td>
</tr>
<tr>
<td>C25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$IMes $\begin{array}{c} \text{Ru} \equiv \text{Cl} \equiv \text{Ph} \ \text{O} \end{array}$</td>
<td>180</td>
<td>S26 (30.5)</td>
<td>40</td>
<td>40 (-)</td>
<td>Brown powder</td>
<td>None</td>
<td>51.55 46.83 30.02 (other smaller peaks)</td>
</tr>
<tr>
<td>C25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$IMes $\begin{array}{c} \text{Ru} \equiv \text{Cl} \equiv \text{Ph} \ \text{O} \end{array}$</td>
<td>180</td>
<td>S25 (28.5)</td>
<td>40</td>
<td>25 (17)</td>
<td>Brown residue</td>
<td>19.123(s)</td>
<td>51.17 35.22 29.50</td>
</tr>
<tr>
<td>C26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC_{m}: mass of the starting Ru=C
Sm: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes.
Table 3.19 Synthesised complexes from Gr2.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>n</sub>/mg</th>
<th>Salt used (S<sub>n</sub>/mg)</th>
<th>Reaction T/°C</th>
<th>m<sub>product/mg</sub> (Yield %)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211.6</td>
<td>S6 (102.8)</td>
<td>RT</td>
<td>70</td>
<td>Green powder</td>
<td>19.18 (s)</td>
<td>18.57 (s)</td>
<td>18.08 (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.6</td>
<td>S6 (75)</td>
<td>30</td>
<td>54</td>
<td>Green powder</td>
<td>19.04 (s)</td>
<td>18.62 (s)</td>
<td>18.30 (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.9</td>
<td>S6 (46.9)</td>
<td>35</td>
<td>40</td>
<td>Green powder</td>
<td>23.03 (d)</td>
<td>18.65 (s)</td>
<td>18.19 (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155.6</td>
<td>S23 (26.9)</td>
<td>45</td>
<td>50</td>
<td>Green powder</td>
<td>19.19</td>
<td>19.11</td>
<td>34.299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>S19 (57)</td>
<td>40</td>
<td>112.8</td>
<td>Light-green powder</td>
<td>17.96 (s)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>S19 (120)</td>
<td></td>
<td>370</td>
<td>Forest-green powder</td>
<td>18.02 (s)</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

SC_n: mass of the starting Ru=C

S_n: mass of the salt used in the synthesis

* Yields were only provided for complexes containing carbenes.
<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>m</sub>/mg</th>
<th>Salt used (S<sub>m</sub>/mg)</th>
<th>Reaction T/°C</th>
<th>m<sub>product</sub>/mg (Yield *)/%</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th><sup>31</sup>P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H<sub>2</sub>IMesRuCl<sub>2</sub></td>
<td>470.2</td>
<td>S27 (90)</td>
<td>40</td>
<td>205 (55)</td>
<td>Dark-green powder</td>
<td>17.82 (s)</td>
<td>None</td>
</tr>
<tr>
<td>C29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>IMesRuCl<sub>2</sub></td>
<td>192</td>
<td>S28 (48)</td>
<td>40</td>
<td>6 (1)</td>
<td>Dark-green powder</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>IMesRuCl<sub>2</sub></td>
<td>308</td>
<td>S28 (82)</td>
<td>35</td>
<td>150 (57)</td>
<td>Dark-green (almost black) powder</td>
<td>18.52 (s)</td>
<td>None</td>
</tr>
<tr>
<td>C31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>IMesRuCl<sub>2</sub></td>
<td>189</td>
<td>S22 (59.7)</td>
<td>62.5 (33)</td>
<td>Light-green powder</td>
<td>17.18 (s)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>IMesRuCl<sub>2</sub></td>
<td>155</td>
<td>S22 (51.6)</td>
<td>40</td>
<td>112 (75)</td>
<td>Light-green powder</td>
<td>-</td>
<td>Not analysed</td>
</tr>
<tr>
<td>C31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>S22 (58.0)</td>
<td>140 (91)</td>
<td>Light-green powder</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC_m: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes
Table 3.21 Synthesised complexes from Gr2.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>m</sub>/mg</th>
<th>Salt used (S<sub>m</sub>/mg)</th>
<th>Reaction T/°C</th>
<th>m<sub>product</sub>/mg (Yield %)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>330</td>
<td>S20 (55)</td>
<td>35</td>
<td>30 (-)</td>
<td>Dark-brown, almost black powder</td>
<td>None</td>
<td>24.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.22 Synthesised complexes from Gr2-Py.

<table>
<thead>
<tr>
<th>Complex</th>
<th>SC<sub>m</sub>/mg</th>
<th>Salt used (S<sub>m</sub>/mg)</th>
<th>Reaction T/°C</th>
<th>m<sub>product</sub>/mg (Yield %)</th>
<th>Product</th>
<th>Carbene signal/ppm</th>
<th>31P/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76.8</td>
<td>S16 (40)</td>
<td>RT</td>
<td>15 (20)</td>
<td>Reddish-brown powder</td>
<td>None</td>
<td>Not analysed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.5</td>
<td>S14 (35)</td>
<td>RT</td>
<td>21 (31)</td>
<td>Reddish-brown powder</td>
<td>None</td>
<td>Not analysed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SC_m: mass of the starting Ru=C
S_m: mass of the salt used in the synthesis
* Yields were only provided for complexes containing carbenes.
The characterisation of the complexes that were successfully synthesised, i.e. had a carbene signal present in the 1H NMR, will be discussed in Chapter 4. Reasons for the unsuccessful synthesis of the other complexes will also be provided. It should be noted that the reactions were not just repeated within the same week, but also at different times of the year. Therefore, even with improvement of experimental skills, various reactions remained unsuccessful, indicating that a number of the ligands decompose the Grubbs carbenes.

3.5 METATHESIS REACTIONS

3.5.1 General procedures for the metathesis of 1-octene

The metathesis of 1-octene in the presence of Gr1 was performed on a small- (§ 3.5.1.1) and large-scale (§ 3.5.1.2) experimental setup. The small-scale reaction was done to characterise the products formed during the reaction by GC/MSD without quenching the reaction. Esters, aldehydes and ketones are usually visible in the GC/MSD analysis of the samples that are quenched with tert-butyl-hydrogen peroxide (Chromatogram 3.4). This is most likely due to the reaction of the precatalyst with the peroxide before being completely deactivated. The characterisation results aided us in postulating a mechanistic model (§ 3.7.3) for the 1-octene metathesis reaction in the presence of Gr1.

In the rest of the study, the activity investigations of the hemilabile Grubbs precatalysts were executed on the large-scale setup (§ 3.5.1.2), as implemented by the Sasol Technology R&D team of Dr. Wolfgang Meyer,24 in order to compare the activity of our novel complexes with analogous systems investigated under similar experimental conditions.25,26

3.5.1.1 Small-scale reaction

The procedure for the small-scale metathesis experiment is illustrated in Figure 3.3. The reaction flask (Θ) was thoroughly flushed with Ar (Θ) before weighing Gr1 (13.2 mg, 1 mol) into the reaction flask (Θ). Chlorobenzene (1.25 mL) and 1-octene (2.5 mL, 1000 mol) were then added with Hamilton GASTIGHT® syringes to the reaction flask (Θ and Θ). Chlorobenzene served as solvent and internal standard for quantification of the GC results. Following the addition, the reaction flask was placed in the autoinjector sample tray (Θ) at 25 °C and the progress of the reaction was monitored by GC/FID. Aliquots (0.2 μL) of the reaction mixture were injected at approximately 40 min intervals with the autoinjector. After 3 h, the same volume was analysed by GC/MSD to characterise the mixture. The response factor of an authentic sample of each major alkene component was determined and used in the conversion calculations.
3.5.1.2 Large-scale reaction (100 mL reaction flask – ethene liberated)

The metathesis reactions were carried out in a 100 mL 3-necked flask fitted with a Liebig-condensor and Ar inkt line as illustrated in Figure 3.4. The flask was flushed for 5 min with a steady stream of Ar before adding the reagents. The condenser was cooled by water that was cooled to 2 °C by an external cooling unit (HAAKE EK 51-1 cold finger with HAAKE B circulation bath). The reaction temperatures were obtained by controlling the temperature of an oil bath with an electronic temperature controller (Heidolph MR 3001K), while using a thermometer to control the temperature of the reaction mixture.

Initially, the influence of reaction temperature and precatalyst concentration on the activity of selected first and second generation hemilabile complexes was investigated to determine the optimum reaction temperature and precatalyst concentration where these systems showed high metathesis activity. Consequently, a comparative study between the remaining hemilabile complexes and Gr1 and Gr2 was done with regards to their 1-octene metathesis activity at the optimum temperature and concentration.
In a typical metathesis experiment, the ruthenium carbene precatalyst (0.015 mmol) was added to a solution of 20 mL 1-octene (0.127 mol) and 1 mL nonane that was preheated to 60 °C. Nonane served as an internal standard for quantification. Samples (0.3 mL) were extracted in various time intervals of 5 to 30 min. The samples were then added to a GC vial (1 mL) filled with a solution of 2 drops tert-butyl-hydrogen peroxide and 0.3 mL toluene. Toluene was used to make up the volume of the sample in order to extract 0.2 µL aliquots with the autoinjector. The tert-butyl-hydrogen peroxide was used to quench the reaction. The progress of the metathesis reaction was monitored by GC/FID. The sample collected after 3 h was also analysed by GC/MSD to characterise the mixture. The presence of esters, aldehydes and ketones were noted for all the samples quenched with tert-butyl-hydrogen peroxide, as illustrated in Chromatogram 3.4 (§ 3.6.2.2).
3.5.1.3 NMR Investigation of the 1-octene metathesis reaction

A 1 mL NMR tube was placed in a Schlenk tube and the air removed under vacuum. The Schlenk was then flushed with Ar, and the procedure repeated twice. The precatalyst (0.031 mmol) was weighed into the NMR tube and again placed in the Schlenk to put the sample under Ar. Deuterated solvent (0.75 mL CDCl$_3$) was added to the sample and the tube was closed and shaken to dissolve the solids. The 1-octene (0.05 mL) was added just before inserting the NMR tube into the instrument to keep the initial reaction time of the precatalyst with the alkene as short as possible. The reaction was monitored at 30 to 50 °C over 5 h, with spectra obtained at regular time intervals. The peak integration values of the formed carbenes were normalised against the benzylidene proton signal.

3.6 ANALYTICAL METHODS

3.6.1 Characterisation of hemilabile complexes

3.6.1.1 Nuclear Magnetic Resonance (NMR)

1H-NMR (300, 400 or 500 mHz) and 31P-NMR (121, 162 or 202 mHz) spectra were obtained by using a Varian Gemini 300 (NWU), Varian 400 (SASOL) and the Bruker Avance 500 Spectrometer (SASOL). NMR samples were prepared by dissolving the precatalyst (15 - 30 mg) in a suitable deuterated solvent.

The deuterated solvent was pump freeze before use (§ 3.1.2.3).

3.6.1.2 Infrared spectroscopy (IR)

IR-spectra were obtained by using a Nicolet FTIR 550 spectrophotometer. The pellets were prepared by thoroughly mixing the sample (0.005 g) with dry KBr (0.28 g), which was then pressed into a disc. For liquid samples, the KBr pellets were first pressed into a disc and a drop of liquid was added onto the disc. The spectra were taken at a resolution of 4 cm$^{-1}$ over a wave number range of 400 - 4000 cm$^{-1}$ and number of scans = 10.

3.6.1.3 Elemental analysis (CHN analysis)

Elemental analysis (C, H, N) was obtained on a Leco CHNS 932 analyser with a VTF-900 furnace by Dr. Naidoo at the University of KwaZulu-Natal, Howard College. Samples were also analysed at LCR by Mr. M Philphott from whom the instrumental specifications could not be obtained.
EXPERIMENTAL

The carbon (C) values of some of the complexes were lower than expected. This is most likely due to a dilution effect from CDCl₃ present in the samples, which caused a lower %C than expected from a pure sample. The CDCl₃ was present in the samples as a result of the addition of NMR samples to the complex after NMR analysis, drying it under vacuum and not washing the complex afterwards. A correction was therefore made to the C values with the help of the solvent correction CHN calculator program (v1.30) from Heriot-Watt University. The program calculates the possible solvent content of a sample and adjusts the CHN analysis accordingly.

3.6.2 Progress of the metathesis reaction

3.6.2.1 Gas Chromatography (GC)

Samples of the metathesis reactions were quenched with a solution of 2 drops tert-butyl-hydrogen peroxide and 0.5 mL toluene in a GC autosampler vial (1 mL) and analysed on an Agilent 6890 gas chromatograph equipped with an Agilent 7683 autoinjector. HP-5 capillary column (30 m x 320 μm x 0.25 μm) and a flame ionisation detector (FID). The general GC settings were as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet temperature</td>
<td>200 °C</td>
</tr>
<tr>
<td>N₂ carrier gas flow rate</td>
<td>2 mL min⁻¹ at 20 °C</td>
</tr>
<tr>
<td>Injection volume</td>
<td>0.2 μL (auto injection)</td>
</tr>
<tr>
<td>Split ratio</td>
<td>50:1</td>
</tr>
<tr>
<td>Oven programming</td>
<td>60 to 110 °C at 25 °C min⁻¹</td>
</tr>
<tr>
<td></td>
<td>110 °C for 16 min</td>
</tr>
<tr>
<td></td>
<td>110 to 290 °C at 25 °C min⁻¹</td>
</tr>
<tr>
<td></td>
<td>290 °C for 10 min</td>
</tr>
<tr>
<td>Detector</td>
<td>FID at 250 °C</td>
</tr>
<tr>
<td>H₂ flow rate</td>
<td>40 mL min⁻¹ at 20 °C</td>
</tr>
<tr>
<td>Air flow rate</td>
<td>450 mL min⁻¹ at 20 °C</td>
</tr>
</tbody>
</table>

A representation of a typical chromatogram of an unquenched sample of the 1-octene metathesis with Gr1, after 60 min at 25 °C, is given in Chromatogram 3.1. Chromatogram 3.2 represents a typical chromatogram of a quenched sample of the 1-octene metathesis reaction with a first generation hemilabile complex (C7), after 60 min at 60 °C. A similar chromatogram (not shown here) was obtained for the reaction with second generation hemilabile systems, with the exclusion of the O=PCy₃ peak, since no phosphines are present in these systems. The self-metathesis of 1-octene typically leads to the formation of two isomers, cis- and trans-7-tetradecene, which combined with ethene (not observed by GC) represent the PMP of the reaction.
Chromatogram 3.1 GC/FID chromatogram of the reaction mixture of 1-octene in the presence of Grf at 25 °C after 1 h (solvent = chlorobenzene, 1-octene/Ru = 1000, FID response enlarged). (small-scale reaction)

Chromatogram 3.2 GC/FID chromatogram of the reaction mixture of 1-octene in the presence of GrfCy at 60 °C after 1 h (no solvent, 1-octene/Ru = 9000, FID response enlarged, inset of phosphine region). (large-scale reaction)
The internal standard method (with nonane as internal standard) was used to determine the mole percentage 1-octene converted to the primary and secondary metathesis products (PMP and SMP), respectively. The GC response factor (rf) was calculated from a calibration curve plotted of $A_{\text{nonane}}/A_{\text{octene}}$ against $V_{\text{nonane}}/V_{\text{octene}}$, for solutions with different volume ratios 1-octene to nonane (Table 3.22). The internal standard was kept constant. A response factor of 1.03 for 1-octene was calculated from the slope of the calibration curve. The calibration results obtained are shown in Table 3.22 and represented graphically in Figure 3.5.

Table 3.22 Table of GC calibration data for 1-octene with nonane as internal standard

<table>
<thead>
<tr>
<th>Volume Ratio (nonane : 1-Octene)</th>
<th>$V_{\text{nonane}}/V_{\text{octene}}$</th>
<th>$A_{\text{nonane}}/A_{\text{octene}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 : 1.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25 : 0.75</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>0.25 : 0.50</td>
<td>0.50</td>
<td>0.51</td>
</tr>
<tr>
<td>0.25 : 0.25</td>
<td>1.00</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Figure 3.5 Calibration curve for determining the GC response factor.
The following equation was used to determine the mol percentage (mol%) conversion of 1-octene to 7-tetradecene:

\[\text{mol\%C}_8 = 100 \times rf \times \frac{V_a}{V_{ca}} \times \frac{A_{ca}}{A_a} \]

- C8 = 1-octene
- rf = GC response factor
- Vls = Volume of the internal standard at t = 0
- Vca = Volume of the 1-octene at t = 0
- Aca = Area of 1-octene
- Aa = Area of internal standard

The following equation was used to determine the mol percentage 7-tetradecene or other alkenes formed during the reaction:

\[\text{mol\%C}_n = 2 \times rf \times \left(\frac{V_a}{V_{ca}} \times \frac{A_{ca}}{A_a} \right) \times \frac{\rho_{ca}}{\rho_{ca} \times \rho_{ca}} \times \frac{M_{ca}}{M_{ca}} \times 100 \]

- Cn = alkene
- rf = GC response factor
- Vls = Volume of the internal standard at t = 0
- Vca = Volume of the 1-octene at t = 0
- Aca = Area of the alkene
- Aa = Area of internal standard
- Mca = Molecular mass of Cn
- Mc8 = Molecular mass of 1-octene
- \(\rho_{ca} \) = Density of Cn
- \(\rho_{ca} \) = Density of 1-octene

3.6.2.2 Gas Chromatography/Mass Spectrometry (GC/MS)

For product verification, the reaction mixtures were also analysed using an Agilent 6890 gas chromatograph equipped with an Agilent 7683 autosampler, HP-5 capillary column and an Agilent 5973 mass selective detector (MSD). The same oven program was used with either a 6 min solvent delay or the detector switched off between 5.5 and 5.8 min to exclude the toluene or chlorobenzene. He was used as carrier gas with a 1 mL min\(^{-1}\) flow rate at 20 °C.
A typical example of the chromatogram obtained under the above-mentioned conditions is illustrated in Chromatogram 3.3 for a small-scale reaction sample not quenched with tert-butyl-hydrogen peroxide. Chromatogram 3.4 illustrates a typical chromatogram obtained for a large-scale reaction sample quenched by tert-butyl-hydrogen peroxide. The alkene products in Chromatogram 3.4 are denoted C_n, with n indicating the chain length of the alkene. Apart from the allocated internal and terminal alkenes forming during the 1-octene metathesis reaction, various by-products also formed as depicted by the letters a – i in Chromatogram 3.4, of which not all are necessarily associated with the reaction. Table 3.23 gives the product assigned to the individual letters.

Chromatogram 3.3 GC/MSD chromatogram of the reaction mixture of 1-octene in the presence of GrI at 25 °C after 3 h (solvent = chlorobenzene, 1-octene/Ru = 1000, solvent delay = 6 min, small scale reaction, MSD response enlarged).
Chromatogram 3.4 GC/MSD chromatogram of the reaction mixture of 1-octene in the presence of Gr2 at 35 °C after 3 h (No solvent, 1-octene/Ru = 9000, detector off between 5.4 - 5.8 min to exclude toluene, large-scale reaction, MSD response enlarged).

Table 3.23 Assigning the by-products observed in Chromatogram 3.3 to the given letters a – i.

<table>
<thead>
<tr>
<th>Product #</th>
<th>Product assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Acetone (Wash solvent for autosampler syringe)</td>
</tr>
<tr>
<td>b</td>
<td>2-methyl-2-propanol</td>
</tr>
<tr>
<td>c</td>
<td>Benzene</td>
</tr>
<tr>
<td>d</td>
<td>tert-butyl-hydrogen peroxide (to quench reaction)</td>
</tr>
<tr>
<td>e</td>
<td>Various ketones and aldehydes formed during the reaction</td>
</tr>
<tr>
<td>f</td>
<td>Nonane (internal standard)</td>
</tr>
<tr>
<td>g</td>
<td>Styrene</td>
</tr>
<tr>
<td>h</td>
<td>Decane (solvent of tert-butyl-hydrogen peroxide)</td>
</tr>
<tr>
<td>i</td>
<td>cis- and trans-1-phenyl-1-octene (or hexyl styrene).</td>
</tr>
</tbody>
</table>
3.7 COMPUTATIONAL METHODS

3.7.1 Hardware

Two types of hardware were used for the molecular modelling: a personal computer with one CPU and two clusters with 4 and 52 CPU's, respectively.

The specifications of the personal computer (HP) was as follows:
- Operating system: Microsoft Windows® 2000 with Service Pack 4
- Processor: Intel Pentium 4 2.8 GHz
- Memory: 1GB RAM

The specifications of the clusters were as follows:

a) 4 CPU cluster (HP Proliant CP4000):

1 x Master node: HP DL380 – 1 x 2.0 GHz XEON
1 GB RAM, 2 x 36.4 GB HDD
2 x Compute nodes: HP DL360 – 2 x 2.4 GHz XEON
1 GB RAM, 1 x 72.8 GB HDD

Operating system on compute nodes: Redhat Enterprise Linux 2.4.18-3
Cluster operating system: OSCAR software

b) 52 CPU cluster (HP Proliant CP4000 Linux Beowulf with Procurve Gb/E Interconnect on compute nodes):

1 x Master node: HP DL385 – 2 x 2.8 MHz AMD Opteron 64,
2 GB RAM, 2 x 72 GB HDD
12 x Compute nodes: HP DL145G2 – 2 x 2.8 MHz AMD Opteron 64,
2 GB RAM, 2 x 36 GB HDD

Operating system on compute nodes: Redhat Enterprise Linux 4
Cluster operating system: HPC CMU v3.0 cluster

This cluster was only recently obtained (November 2006) and therefore it was only available for a short period of time to start with vibrational calculations, as well as intrinsic reaction path (IRP) calculations for TS studies, which are usually time consuming.
3.7.2 Computational details: Software

All computational results in this study were calculated by using the DMOI3 DFT (Density Functional Theory) code28-30 as implemented in Accelrys Materials Studio6 3.2.31 DFT was used since it usually gives realistic geometries, relative energies and vibrational frequencies for transition metal compounds. The non-local generalised gradient approximation (GGA) functional by Perdew and Wang (PW91)32 was used for all geometry optimisations. The convergence criteria for these optimisations consisted of threshold values of 2×10^{-5} Ha, 0.004 Ha/Å and 0.005 Å for energy, gradient and displacement convergence, respectively, while a self-consistent field (SCF) density convergence threshold value of 1×10^{-5} Ha was specified. The multiplicity was specified as auto, in order to determine the ground spin state using a spin-unrestricted calculation. DMOI3 utilizes a basis set of numeric atomic functions, which are exact solutions to the Kohn-Sham equations for the atom.33 These basis sets are generally more complete than a comparable set of linearly independent Gaussian functions and have been demonstrated to have small basis set superposition errors.33 In this study a polarised split valence basis set, termed double numeric polarised (DNP) basis set has been used. All geometry optimisations employed highly efficient delocalised internal coordinates.34 The use of delocalised coordinates significantly reduces the number of geometry optimisation iterations needed to optimise larger molecules, compared to the use of traditional Cartesian coordinates.

Some of the geometries optimised were also subjected to full frequency analyses at the same GGA/PW91/DNP level of theory to verify the nature of the stationary points. Equilibrium geometries were characterised by the absence of imaginary frequencies. Preliminary transition state (TS) geometries were obtained by the integrated linear synchronous transit/quadratic synchronous transit (LST/QST) algorithm available in Materials Studio6 3.2. This approach was used before in computational studies in homogeneous trimerisation35 and metathesis.36 These preliminary structures were then subjected to full TS optimisations using an eigenvector following algorithm. For selected transition state geometries confirmation calculations, involving intrinsic reaction path (IRP) calculations, were performed in which the path connecting reagents, TS and products were mapped. The IRP technique used in Materials Studio6 3.2 also corresponds to the intuitive minimum energy pathway (MEP) connecting two structures and is based on the nudged elastic band (NEB) algorithm of Henkelman and Jonsson.37 The IRP calculations, performed at the same GGA/PW91/DNP level of theory, ensured the direct connection of transition states with the respective reactant and product geometries. Most of the transition structure geometries that were subjected to vibrational analysis exhibited more than one imaginary frequency in the reaction coordinate. This indicates that the structures need to be refined and TS optimisations need to be done. In most cases, one of the imaginary frequencies was representative of a possible transition structure and should therefore be investigated further.
All results were mass balanced for the isolated system in the gas phase. The energy values that are given in the results are the electronic energies at 0 K and therefore only the electronic effects were in consideration in this study.

The following aspects were investigated with the use of molecular modelling:

- The effect of ligand dissociation \((L_2)\), i.e. precatalyst initiation, on the mechanism of activation of benzylidene-type precatalysts \(\text{RuCl}_2(L)(L\,\equiv\,	ext{CHPh})\) \((L = \text{PCys}, \text{H}_2\text{IMes}, L_1 = \text{PCy}_3)\) by a dissociative pathway. This approach was chosen due to the fact that the presence of the respective ligands \((L\) and \(L_1)\) has a significant impact on the initiation rates.\(^{38}\) Therefore, the initiation and activation steps of the dissociative mechanism were investigated for selected precatalysts with different hemilabile ligands \((L_1-L_4)\), whereby the labile atom \((L_1)\) dissociates or \(L\) dissociates as compared to Gr1 and Gr2.

- Calculation of the formation energies of the individual hemilabile complexes from Gr1 and Gr2 according to Scheme 4.10 (see Chapter 4). These energies can give an indication of the stability of the formed complexes.

- The mechanism of 1-octene metathesis with Gr1 was investigated to gain insight into the observed experimental results. At the GGA-PW91/DNP level, the complete geometry optimisation and the activation energy of various activation steps and catalytic cycles in the dissociative mechanism (§ 6.2.3) were performed.

3.7.3 Model system and notations

Conceptually, the productive metathesis of 1-octene in the presence of Grubbs carbene complexes is illustrated in Scheme 3.1 and 3.2. This mechanistic model is mainly based on the dissociative mechanism proposed by Grubbs et al.\(^{21,38}\) modelled by Chen et al.\(^{40}\) and our experimental results.

The generic labels A - I were given to the individual ruthenium carbene and derived species involved in the reaction mechanism. The mechanism consist of the initial loss of PCy\(_3\) from the precatalyst \((A)\) to yield \(\text{RuCl}_2(L)(\text{CHPh})\) \((L = \text{PCy}_3\) or \(\text{H}_2\text{IMes}\)) \((B)\). The different stereochemical approaches of 1-octene towards the catalytically active species \((B, F1, F3\) and \(F4)\) lead to four activation steps \((1\) to \(4)\) notations in Scheme 3.1) and six catalytic cycles \((a\) and \(b)\) notations in Scheme 3.2). To identify which step is under consideration, a numerical suffix \((1\) to \(4)\) is associated with the labels C to I \((e.g. C1\) to \(F1)\) represented activation step \(1)\) and the additional alphabetic suffixes \(a\) and \(b\) indicate the different catalytic cycles. Transition states are denoted analogously, e.g. \(G3a-H3a\) is the transition state for the conversion of \(G3a\) to \(H3a\).
The mechanism is initiated by the dissociation of a phosphine ligand from the 16-electron benzylidene complex A to form the 14-electron active species B (Scheme 3.1). This is followed by activation steps (Scheme 3.1) and catalytic cycles (Scheme 3.2) based on the stereochemical approaches of the 1-octene towards the different carbene species. These steps/cycles consists of several successive formal [2+2] cycloadditions to form a metallacyclobutane, and cycloreversions to form the respective catalytically active species. Before the precatalyst can enter the catalytic cycle, there is an initiation phase (activation) in which the precatalyst first has to be converted from the benzylidene complex (A) to the methyldiene (F1, the second activation step will also yield F1) or heptyldenes (F3 and F4). This takes place through the coordination of 1-octene to the metal centre of the 14-electron intermediate to form a π-complex, which undergoes a formal [2+2] cycloaddition to form a metallacyclobutane ring, which in turn can revert to a new π-complex. The liberation of the alkene from the new π-complex leads to the new catalytically active alkylidene species that enters the catalytic cycle.
Scheme 3.2 Catalytic cycles in the mechanism of productive 1-octene metathesis using RuCl₂(PCy)₂(=CHPh).

Activation steps 1 and 2 leads to the formation of the methylidene complex with the liberation of cis- and trans-1-phenyl-1-octene. In the other two activation steps, styrene is liberated to form the heptylidene species with the alkyl chain of the carbene facing out of (F3) or into (F4) the plane, depending on the coordination orientation of 1-octene relative to the phenyl ring of the carbene that is facing into the plane. Within the catalytic cycles, the heptylidene is converted to the methylidene, which is then again converted back to the heptylidenes until all the 1-octene has been consumed or the precatalyst has decomposed. During the conversion of the heptylidene to the methylidene, cis- and trans-7-tetradecene is formed, while ethene forms when the methylidene is converted to the heptylidene.

The dissociation and activation steps given in Scheme 3.1 were applied to the first and second generation hemilabile ruthenium alkylidene complexes \(\text{RuCl}_2(\text{L})(\text{O}^\text{N})(=\text{CHPh}) \) (\(\text{L} = \text{H}_2\text{IMes} \) (Gr2Cy) or PCy₃ (Gr1Cy), \(\text{O}^\text{N} = 1-(2'-\text{pyridinyl)cyclohexan-1-olate}) \), bearing a chelating pyridinyl alcoholate ligand to give Scheme 3.3 and 3.4. The notation used in Scheme 3.1 was
applied to both schemes, with the addition of a subscript N or L to the generic labels A – F in Scheme 3.3 and 3.4 respectively. The subscript N refers to the dissociation of the labile N-atom of the O,N-ligand, while L refers to the dissociation of L (L = PCy₃ or H₂Mes) from the hemilabile complexes. The model in Scheme 3.3 consists of the initial dissociation of the labile N-atom of the O,N-ligand from Gr1Cy or Gr2Cy (A₁) to yield RuCl₂(L)(O¹N-open)(=CHPh) (L = PCy₃ or H₂Mes) (B₁). In the second model (Scheme 3.4), the precatalysts initiate through the initial loss of L (L = PCy₃ or H₂Mes) from A₁ to yield RuCl₂(O¹N)(=CHPh) (B_L). The same mechanistic considerations as described above for the Grubbs carbenes were followed for both models of the hemilabile complexes and will be further discussed in Chapter 6.

Scheme 3.3 Dissociation (A_N to B_N) and activation (B_N to F_N) steps in the mechanism of productive 1-octene metathesis using RuCl₂(L)(O¹N)(=CHPh) (L = PCy₃ or H₂Mes, O¹N = 1-(2'-pyridinyl)cyclohexan-1-olate).
Scheme 3.4 Dissociation (A to B) and activation (B to F) steps in the mechanism of productive 1-octene metathesis using RuCl₂(L)(O*')(=CHPh) (L = PCy₃ or H₂IMes, O*' = 1-(2'-pyridinyl)cyclohexan-1-olate).

3.8 REFERENCES

114 CHAPTER 3

22. Dinger, M.B. and Mol, J.C., Organometallics, 2003, 22, 1089
4.1 INTRODUCTION

Although a number of factors, inter alia steric and electronic effects of the coordinated ligands, can influence the activity of the catalytically active species in a chemical reaction, two main aspects remain of utmost importance: (a) coordination of the ligand to the metal centre, and (b) the application of the coordination complexes in metal catalysed reactions. Therefore, when designing a new catalytic system or ligand for a specific metal, one should keep in mind the type of reaction it will be applied to. Thus, the focus of this study was the development of new Grubbs-type precatalysts with a hemilabile ligand for application in the metathesis of linear alkenes.

Hemilabile ligands are more frequently being used in coordination and organometallic chemistry, as a result of their ability to reversibly create and/or occupy a vacant coordination site at the metal (Scheme 4.1). The reaction intermediates are therefore stabilised with subsequent enhancement of the catalytic activity of the complexes. It is presumed that these ligands act as chelating ligands at room temperature and at elevated temperatures will liberate one coordination site 'on demand' of a competing substrate, such as an alkene inter alia norbornene. The incorporation of hemilabile ligands into the Grubbs carbene complexes should therefore increase the stability and, hopefully, the activity of these systems for 1-alkene metathesis.

A number of ruthenium carbene systems with hemilabile ligands for application in ROMP and RCM have been published (Figure 4.1). Grubbs, and later Verpoort, introduced bidentate O,N-chelated Schiff-base ligands on Gr1 and Gr2 to give complexes 11 and 13. The thermal stability and activity of 10 towards ROMP and RCM were increased through the combination of the Schiff-base ligand with a NHC ligand to give 13. 2-Pyridinylcarbinol (HL) is another type of O,N-chelated ligand, which has been well established in tungsten (VI) catalyst precursors for ROMP reactions.
Established hemilabile ruthenium precatalysts for alkene metathesis

Several groups incorporated this type of ligand into the Gr1 and various second generation Grubbs systems to give complexes 14, 15 and 38, which were shown to be active for RCM and/or ROMP. Although Denk et al. have synthesised 14a, they did not report on its metathesis activity. Complex 14a was only used as an intermediate in the synthesis of 14b and 14c, which catalysed the ROMP of norbornene and cyclooctene, respectively in 78% and 98% yield within 60 min. This type of ligands has also found application in the design of periphery-functionalsed dendritic precatalysts (38) for RCM reactions. Van Koten et al. reported a 100% conversion of diethyl dialyl malonate to diethyl-3-cyclopentene carboxylate after 30 min at 80 °C.
The 2-pyridinylcarbinol-containing ruthenium carbene precatalysts are therefore very active for metathesis reactions. To my knowledge, the catalytic activity of these types of systems towards the self-metathesis of linear alkenes has not been previously investigated or reported. We have recently published our findings on the metathesis of 1-octene in the presence of 14a and the Gr2-analogues at 60 °C.

In this study, a variety of chelating ruthenium carbene complexes were prepared with modifications to the literature methods (see Chapter 3). The hemilability of these systems could not be determined with any certainty, but 1H NMR investigations of the 1-octene metathesis reaction in the presence of C7 and C28, suggested hemilabile activity of the pyridinyl alcoholate ligands (see Chapter 5). The hemilability of the other ligands could not be verified during this study, due to the unsuccessful incorporation of these ligands into the Grubbs carbenes. Observations during the synthesis, as well as spectroscopic data, are reported within the following sections. The application of the precatalysts towards the metathesis of 1-octene will be discussed in Chapter 5.

4.2 SYNTHESIS OF PYRIDINYL ALCOHOLATO LIGANDS

The results of the synthesis of the pyridinyl alcoholate ligands have been given in Chapter 3, with the spectral data available in Appendix C1.

4.3 SYNTHESIS OF HEMILABILE GRUBBS CARBENE COMPLEXES

A variety of pyridinyl alcohol as well as carboxylic acid bidentate ligands (see L1 – L15 § 3.2) were investigated in order to determine the influence of ring size, steric bulk and electronic factors on the synthesis and catalytic activity of the new Ru=C precatalysts C1 – C32.

Firstly, bidentate ligands that can form 4- to 6-membered chelate rings with the Ru-centre were investigated. It was found that the 5-membered chelate rings were more stable than the 4- and 6-membered chelate rings. Secondly, carboxylic acid systems in which the labile donor atom was varied, inter alia O,N-, O,O-, O,P- and O,S-ligands, were investigated to determine the influence of electronic effects on the synthesis of the precatalysts. Finally, the influence of steric bulk was investigated by varying R' and R" in HL (pyridinyl alcohol). Scheme 4.2 and 4.3 illustrates the various first and second generation chelating Grubbs systems investigated during the course of this study. The red circles represent the complexes that were successfully synthesised and tested for metathesis activity, while the green circles are the complexes that formed a carbene complex, but could not be isolated and therefore contained various impurities during catalytic activity investigations. The blue circles represent the complexes that were synthesised from the Grubbs carbenes as intermediates for the hemilabile Grubbs-pyridine complexes.
Scheme 4.2 Schematic representation of the first generation Grubbs and Grubbs-pyridine systems investigated [red circles = successfully synthesised carbene complexes, green circles = impure carbene complexes, blue circles = Grubbs pyridine intermediates for synthesis of hemilabile pyridine carbene complexes].
Scheme 4.3 Schematic representation of the second generation Grubbs and Grubbs-pyridine systems investigated [red circles = successfully synthesised carbene complexes, blue circles = Grubbs pyridine intermediates for synthesis of hemilabile pyridine carbene complexes].

The procedure followed for the synthesis of the precatalysts C1 to C32 consisted of stirring Gr1 or Gr2, respectively, with a metal salt S of the corresponding alcohol or carboxylic acid. The salt was obtained through the reaction of the alcohol or carboxylic acid with either butyllithium, thallium ethoxide or a sodium related source to give the desired metal salt (Scheme 4.4).[6,15]

Scheme 4.4 Schematic representation of the synthesis of precatalysts C1 to C32

\[\text{Scheme 4.4 Schematic representation of the synthesis of precatalysts C1 to C32} \]
The reaction was stirred between 2 and 6 days in tetrahydrofuran (THF) at room temperature for Gr1 and 35 °C for Gr2, depending on the salt used. The progress of the reactions was monitored by TLC to determine whether any substrate was present in the reaction mixture, and therefore the reactions were stirred for a longer period than what was reported by Denk et al. The formation of MCI (M = Li, Ti or Na) drove the reaction and was removed either through filtration or, when MCI was soluble in THF, removed through extraction of the product with toluene. The high solubility of LiCl in THF may be the reason why reactions with these salts took up to 2 days to complete. The free phosphine was removed by sonification (10 min) of the raw product in pentane with the subsequent removal of the pentane by syringe. The complexes were finally obtained in moderate (from Li-salts) to low (from Ti- and Na-salts) yields as microcrystalline powders through recrystallisation from THF/pentane. However, if the complexes were found to be soluble in pentane, the mixture was sonificated for 10 min, followed by slow vacuum condensation of pentane to produce the desired complex in moderate yield.

A large number of the systems that were investigated could not be successfully synthesised after numerous attempts, i.e. no carbene signal was observed in the 1H NMR. These systems are shown without circles in Scheme 4.2 and 4.3. Several factors can contribute to the unsuccessful synthesis of catalytic complexes, since not only do the reagents, metal and ligand play a role during the synthesis, but also the choice of solvent, molarity, temperature and reaction time. Another important factor to consider is the ligand-to-metal ratio, which can have a vast effect on the structure of the obtained complexes. Too much ligand can lead to undesired systems in which two or more ligands are coordinated to the metal, especially when bidentate, heteronuclear chelating ligands are incorporated into the system. On the other hand, insufficient addition of the ligand will lead to low yields and incomplete formation of the desired complex.

Due to the large number of systems that were unsuccessfully synthesised, only a select few will be discussed to illustrate the reasons why they were unsuccessful. Appendix C1 contains the 1H NMR spectra of all the successfully synthesised complexes with the rest given in Appendix C2, as discussed in this chapter. The spectroscopic data of all the complexes not discussed here will be included on a CD (Appendix C3) to indicate that the absence of a carbene signal deemed them unsuccessful.

4.3.1 Unsuccessful syntheses

It was noted for the reaction of Gr1 and Gr2, respectively, with the O,O-ligand salts, that the Grubbs carbenes either remained unchanged (Gr1 + S24, Table 3.10, Spectrum C.65 and C.66) or decomposed to form Ru(PCy3)(L)(Cl)(R)(CO) (L = PCy3 or H2Mes, R = Ph or H), free PCy3 and O=PCy3 with little or no carbene (either Grubbs or new complex) present afterwards (see
Table 3.9 - 3.21, Chapter 3 and Spectrum C.65 - C.73). However, an additional large 31P NMR peak at δ 36.5 ppm and 29.5 ppm was observed for C4 and C26, synthesised respectively from the reaction of Gr1 (δ 35.6 ppm) and Gr2 (δ 35.2 ppm) with the thallium (Tl) or lithium (Li) salts of L10. This unidentified complex showed no hydride or carbene resonances in the 1H NMR. It is postulated that the product 39 (Scheme 4.5) formed, which is supported by the 1H NMR (Spectrum C.67, C.68, C.71 and C.72 in Appendix C2). A strong singlet appeared at ca. δ 2.2 - 2.4 ppm for Hb, due to the electron-withdrawing effect of the oxygen attached to Cb (Scheme 4.5). Another strong singlet appeared at ca. δ 0.2 - 0.5 ppm, which might be assigned to Ha, due to the influence of the Ru-centre on Cb, together with the electron donating effect of phenyl.

Scheme 4.5 Possible decomposition product of the Grubbs carbenes in the presence of guaiacol (L10).

However, Fogg et al.16 recently successfully incorporated a chelating sulfonato-aryloxide (Scheme 4.6) and catecholato (Scheme 4.7) ligand, which are two O,O-chelating ligands, into Gr2-Py. A five- and six-membered chelated Ru=C complex resulted, whereby both chlorine-groups were substituted, accompanied by the dissociation of one of the pyridine ligands. This suggested that O,O-chelating ligands would more easily facilitate the displacement of a pyridine ring than a bulky, more basic PCy3 ligand. Therefore, reactions of Gr2-Py and Gr1-Py with the lithium and thallium salts of L9 and L10 were investigated, but no carbene signals were observed. This reaction was not investigated further, and therefore alternative ligands were considered.

Scheme 4.6 Synthesis of a chelating sulfonato-aryloxide derivative of a second generation Grubbs system.18
Scheme 4.7 Synthesis of a chelating catecholato derivative of a second generation Grubbs system.16

Subsequently, a number of O,N-ligands were investigated to determine whether the synthesis, as well as the stability and activity (discussed in Chapter 5), of the precatalysts would improve by changing the donor ability of the labile atom. This was done since it has been shown that O,N-ligands can improve the stability and activity of the Grubbs carbenes towards various metathesis reactions.6,7,9-12

During the synthesis of C14, additional S11 (Ti-salt of 2-hydroxypyridine) was added due to the presence of Gr1 in the reaction mixture after 24 h, according to TLC analysis. This might have caused an S11:Gr1 molar ratio of 1.5 to 2, leading to complexes other than the desired C14. Fogg et al.17 recently indicated that the reaction of Gr1 with 2 mol phenoxide anion, which is analogous to S11-anion, yields alkylidyne 41 via the deprotonation of the benzylidene ligand and liberation of phenol (see Scheme 4.8). Although Fogg et al.17,18 mentioned that modelling studies were performed on these systems; no results have to my knowledge been published. It was suggested that the modelling results showed that the bulky trialkylphosphine ligands within the five-coordinate intermediates (40 and 42) would force the aryloxide oxygen into the proximity of the benzylidene proton. The steric pressure would then be relieved through the elimination of an alcohol to produce the alkylidyne.17,18 Therefore, due to the absence of a carbene α-H (H_2) signal in the 1H NMR of C14 (Spectrum C.75 and C.76, Appendix C2) and the similarity of the phenoxide and pyridinyloxide anion, it was thought that carbnyne 46 might have formed according to route a-b in Scheme 4.9.

Unfortunately, due to an insufficient amount of sample no ^{13}C NMR spectrum could be obtained, which might have indicated the presence or absence of a quaternary carbnyne carbon to support our postulations. According to Fogg et al.,17 the nucleophilicity of the aryloxide does not have an influence on the formation of the alkylidyne, since they have shown that the treatment of Gr1 with TiOCH$_3$F$_3$ produces the alkylidyne 43 (Scheme 4.8), while the corresponding reaction with tert-butoxide produced the alkylidene 44.18
Scheme 4.8 Reaction of Gr1 with phenoxides or alkoxides.17

Scheme 4.9 Various reaction routes for the reaction of Gr1 with a pyridinyloxide anion (10OPy).
Therefore, since the nucleophilicity of 2-hydroxy-pyridine (pKa = 11.65) is similar to phenol (pKa = 10), as measured by its pKa value, it might suggest that a similar reaction could occur. However, our modelling results (GGA/PW91/DNP) on the intermediates 40, 42 and 45 clearly indicated that the PCy3 ligands do not exert enough steric pressure to force the aryloxide oxygen into proximity of the benzylidene proton, as suggested by Fogg et al.17 Figure 4.2 illustrates the distances obtained from the aryloxide oxygen to the benzylidene proton for the intermediates 40 (2.241 Å), 42 (2.294 Å) and 45 (2.330 Å) in this study.

Figure 4.2 Optimised geometries for the intermediates 40, 42 and 45. The hydrogen atoms on the ligands are omitted for clarity and the unit of the indicated bond lengths are angstrom (Å).
Due to insufficient information on the computational details of their studies, their results cannot be fully evaluated. It was, however, communicated20 to me that the OFF (Open Force Field) code (a low level of theory - molecular mechanics) was used in contrast to the DMol3 code (a high level of theory - DFT) used in this study. OFF usually contains a database of molecular mechanics force fields to support the property prediction modules of the molecular modelling software program.21 If the bond distances and angles of the individual metal-ligand bonds were obtained with a high level of theory and then used as parameters in OFF, the structures could be accurately optimised.22,23 However, Fogg20 could not elaborate on which molecular modelling software they used, since their workstation was non-operational and no results were published. The danger of using a low level of theory is that, although the geometry optimisation of the structures might be accurate, the energies are totally overestimated. Dr. Steynberg24 suggested that a conformational search should be done on the various structures to obtain the global minimum structure for re-evaluation, due to the contrasting results. However, this was not investigated at the time of completing this study, due to time constraints. Another important comment to make is that one cannot just mention modelling results in articles without either including it as supporting material, or keeping a record of it for other authors to view. This prevents others to reproduce or evaluate the results, which might suggest that the results were questionable to start with, otherwise it would have been included in the article.

The energy profile (Figure 4.3) of the reaction of Gr1 with S11 was modelled and compared to the proposed17 reaction of Gr1 with a phenoxide ion (see Scheme 4.8). Although the thermodynamic effects caused by the precipitation of TICI (s) were not included in the calculations, which were based on gas phase reactions, the relative electronic energies of the complexes were comparable to determine reaction trends.25 To do an estimation on the thermodynamic effect of the salt, the thallium was replaced by a hydrogen atom (it is standard practice in molecular modelling to use truncated systems), which resulted in only a 2% difference in the reaction energies. This supported the fact that the salt was irrelevant and no thermodynamic effects were included. The energy required for the substitution of two chloride ligands in Gr1 with phenoxide ligands was -2.27 kcal/mol, while 25.42 kcal/mol was needed for substitution with pyridinylxide ligands (Figure 4.3). This indicated that a stable intermediate was initially formed during the reaction with thallium phenoxide, while the reaction with the thallium pyridinylxide might require some form of heat. No additional energy was required for the formation of carbyne 46 from intermediate 45, while 23.08 kcal/mol was needed to form 41 from 40. The modelling results indicate that the formation of 41 from 40 according to Scheme 4.8 is unfavourable. Coalter et al.26 reported that an unprecedented phosphine loss results from the reaction of Gr1 with phenoxide, yielding a four-coordinate carbene Ru(=CHPh)(OR)\textsubscript{2}L. This indicates that another route to 41 might be involved, contrary to the proposed scheme of Fogg and coworkers.17 Additionally, if
energy in the form of heat is applied to the reaction of Gr1 with thallium pyridinylxide, it might result in the decomposition of Gr1, since it is known to be thermally unstable.²⁷,²⁸

Therefore the carbyne might not have formed, but due to insufficient spectroscopic data on the identity of the formed product, this route can not be completely excluded. Other reaction possibilities were also suggested, as illustrated in Scheme 4.9, for the reaction of Gr1 with thallium pyridinylxide with an S11/Gr1 molar ratio of 1. The energy profiles of these reactions were modelled and compared to the reaction of Gr1 with thallium phenoxide and pyridinylxide with an S12/Gr1 = 2 (see Figure 4.3 and 4.4 respectively). The substitution of one Cl ligand with a pyridinylxide (13.23 kcal/mol) is more favourable than the substitution of two of the Cl ligands (25.42 kcal/mol). Additionally, the formation of 50 is endergonic by 108.22 kcal/mol, compared to the formation of 48 (22.90 kcal/mol), 49 (26.68 kcal/mol) and 49 (15.74 kcal/mol) from Gr1. This indicates that this is not a viable explanation for the absence of the H₆-signal in the 'H NMR. The formation of carbyne 48 is unfavourable, due to an additional 13.45 kcal/mol energy required for the deprotonation of the carbene with loss of 2-hydroxyxydine. Complex 49, which is the desired carbene, requires an additional 2.45 kcal/mol to form, most likely due to the strain of the 4-membered chelate ring formed upon coordination of the N-atom of the O,N-ligand.

![Figure 4.3](image)

Figure 4.3 Electronic energy profiles of the various reaction routes for the reaction of Gr1 with a pyridinylxide anion (OPy), compared to the reaction with a phenoxide anion (OPh).
The chelate ring size of C14 was increased by increasing the chain length of the alcohol moiety on the pyridine ring of the chelating O,N-ligand. This resulted in the investigation of L6 (2-(hydroxymethyl)pyridine) and L7 (2-(2-hydroxyethyl)pyridine), which could potentially form a 5-membered (C6) and 6-membered (C13) chelate ring with the Ru-centre, respectively. Similar to C14 (4-membered chelated complex), no Hα resonance signals were observed for either of the complexes (Spectrum C.77 – C.78, Appendix C2). Compared to C7 – C10, which were successfully synthesised, these systems differ only in the R groups on C2 of HL, and additionally the size of the chelate ring formed with the Ru-centre for C13. The lack of steric bulk on C2 of L6 and L7 might have brought the hydrogens on C2 into proximity of the benzylidene proton, due to free rotation around the O-C bond. This indicates that steric shielding of C2 is required to prevent the decomposition of the carbene moiety through a possible exchange of H atoms on C2 with Hα. A deuterium labelling study should therefore be considered to determine whether this exchange is possible. One possibility is to replace the H-atoms on C2 of L6 with deuterium before reacting the salt with the Grubbs carbenes or to replace Hα with deuterium. To determine what effect electronic variations of HL would have on the syntheses of the new complexes, a range of carboxylic acids with different labile donor groups were investigated. Gr1 remained mostly unchanged during the reaction with the thallium salts of the O,P-, O,O- and O,S-carboxylic acids, producing a mixture of

Figure 4.4 Electronic energy profiles of the various reaction routes for the reaction of Gr1 with a pyridinyloxide anion (OPy).
decomposition products of which the identities could not be determined. The reaction of Gr1 or Gr2 with the thallium or lithium salt of picolinic acid (L11, the anion hereafter referred to as pyca), resulted in multiple H\textsubscript{a} signals being observed for C1 and C27 in the 1H NMR (Spectrum C.55 – C.58 and C.61 – C.62 respectively, Appendix C1). None of these carbenes could be individually isolated, due to their solubility in THF and other solvents used for recrystallisation. Cavell et al.29,30 mentioned in a study of Pd-complexes containing pyridine-carboxylate chelating ligands (pyca and analogues), that the pyridine of pyca was unable to displace phosphines more basic than PPh\textsubscript{3}, e.g. PCy\textsubscript{3}. Contrary to Cavell, Hahn et al.31 successfully incorporated two pyridinecarboxylate ligands into Gr2 with the use of the silver salt of L11 at 60 °C, to produce a halide free complex with two 5-membered chelated rings after 6 h. To my knowledge, no first generation analogues have been previously reported. The reported conditions necessary to displace PCy\textsubscript{3} with the pyridine ring of pyca in Gr2 will initiate the decomposition of Gr1, since it is known to be thermally unstable.27,28,32 Therefore, since the synthesis of C1 was performed at 25 – 35 °C and Gr1 contains two PCy\textsubscript{3} groups, pyca might only be coordinated through the O-atom by substitution of one or both Cl ligands on Gr1. However, the identity of the different carbene complexes associated with the H\textsubscript{a} signals in the 1H NMR could not be obtained due to insufficient spectroscopic data. Similarly, the synthesis of C27 was performed at too low a temperature (25 – 45 °C), which might have resulted in more than one pyca coordinated to the Ru-centre in a monodentate fashion. Contrary to the reaction with the thallium and lithium salts of L11, only one H\textsubscript{a} resonance was observed from reacting Gr1 with the sodium salt of L11 at 35 °C. The 1H NMR of the resulting carbene (Spectrum C.59 – C.60 in Appendix C1) suggested more than one pyca was coordinated to the Ru=C, since the integration values accounted for more than the required H’s of C1. However, the 31P NMR indicated the presence of a number of impurities after several purification attempts. This made assignment of the 1H and 31P NMR peaks difficult and therefore the structure could not be determined with any certainty.

The above discussions for the unsuccessful synthesis of selected individual complexes can also be applied to the complexes with analogous chelating ligands that were unsuccessfully synthesised, and will therefore not be discussed in any further detail. Although the synthesis of C11 and C24 was to some extent successful (Spectrum C.33 – C.35 and C.51 – C.53 in Appendix C1), the synthesis and purification steps were made difficult by the fact that these two complexes were partially soluble in most of the alkane solvents used during the purification steps (§ 4.3.2 for purification details). Complexes C7 – C10, as well as the second generation analogues were successfully synthesised and will be characterised in § 4.3.2.

Sanford et al.33 synthesised a second generation complex that contained two substitutionally labile pyridine ligands (S1, hereafter referred to as Gr2-Py), which could be easily displaced with a wide variety of phosphines. They predicted that other incoming ligands might react similarly,
providing that they are not too sterically hindered and are electron rich, since they found that no reaction occurred with \(\text{P}((\text{o-toly})_3 \) \((\text{cone angle } (\theta) \text{ of } 194^\circ \text{ compared to } \text{PCy}_3 \text{ with } \theta = 170^\circ) \) \) or the electron-poor phosphine \(\text{P(Fe}_6\text{)} \). As a result of their success, a select few of the 0,0- and O,N-chelating ligands were incorporated into Gr2-Py and the Gr1 analogous Gr1-Py, to determine whether the substitution of the pyridine rings would be more facile compared to \(\text{PCy}_3 \). Unfortunately, only C16 and C17 were successfully synthesised, while no \(\text{H}_2 \text{r} \) resonance signals were observed for the other pyridine derived complexes. No microanalysis was done on these two samples, since they both contained impurities in the form of \(\text{O=PCy}_3 \) and starting material or decomposition products of Gr1-Py. Additional information regarding the ease of synthesis and stability of the complexes were obtained from calculating the formation energy (\(E_{\text{f}} \)) of each complex (Scheme 4.10).

Scheme 4.10 Calculation of the formation energy of the chelating complexes.
The electronic reaction energies of the reactants and products were used for calculating E_a. In practice the electronic reaction energies correspond to a static system at 0 K, which is not an accurate comparison to experiment. Therefore, Gibbs free energy (ΔG) corrections still need to be done to the electronic energies for vibrational, translational and rotational energies of the molecules to determine the thermodynamic properties of the reaction. This would have required the computationally expensive calculation of vibrational modes of atoms in the molecule, which could not be done due to time constraints. However, preliminary mechanistic trends can be obtained from a PES constructed from the electronic energies of a system, for example identifying the more thermodynamically or kinetically favoured intermediates in a reaction mechanism, evaluating the possibility of synthesising complexes, etc. The energies of the individual species under investigation are usually lower after ΔG corrections are made, with some exceptions,\(^{35}\) which indicate that the electronic energies are usually sufficient for evaluating systems.

Due to the observed precipitation of TlCl during the reaction of Grl with the thallium salts, it was assumed that the O-atom had already coordinated to the Ru-centre (52) as illustrated in Scheme 4.10. Therefore, the formation energy of the complex was calculated as the energy required for coordination of A to the Ru-centre through dissociation of PCy$_3$ to produce 53.

The formation energies of the various hemilabile complexes investigated in this study are summarised in Table 4.1 and 4.2. From the calculated E_a energies, it is predicted that the synthesis of the first generation O,O-chelating complexes (endothermic E_a values) would be difficult compared to the second generation analogues (exothermic E_a values). This indicates that reactions of Grl with the O,O-ligands requires heat, which would lead to the decomposition of the carbene moiety, since it is known that Grl is thermally unstable.\(^{27,28}\) The high negative (exothermic) E_a values for the first (C7 to C10) and second (C28 to C32) generation O,N-chelated Grubbs systems (Table 4.1) indicate that the coordination of the labile N-atom should be favourable. The formation energies of the pyridine related complexes and Gr2-analogues of Table 4.2 could not be determined at the time of completing this study. The ease of synthesis, as predicted by the calculated formation energies, does not always prevail, in view of the fact that, although the synthesis of C6, Gr1Pico and C26 was predicted to be possible, (low E_a values) the opposite resulted. This is due to the fact that solvent effects, steric effects, air and moisture sensitivity of complexes, etc., are not taken into consideration during these calculations.
Table 4.1 Comparing the formation energies (E_{d}) of first and second generation chelating complexes

<table>
<thead>
<tr>
<th>First generation system</th>
<th>E_{d} (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1Cy</td>
<td>-13.05</td>
</tr>
<tr>
<td>Gr1Me</td>
<td>-12.18</td>
</tr>
<tr>
<td>Gr1Pr</td>
<td>-33.83</td>
</tr>
<tr>
<td>Gr1Ph</td>
<td>-19.84</td>
</tr>
<tr>
<td>Gr1Quino</td>
<td>-8.95</td>
</tr>
<tr>
<td>Gr1Pico</td>
<td>-5.29</td>
</tr>
<tr>
<td>C4</td>
<td>6.43</td>
</tr>
<tr>
<td>C6</td>
<td>-12.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second generation system</th>
<th>E_{d} (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr2Cy</td>
<td>-22.11</td>
</tr>
<tr>
<td>Gr2Me</td>
<td>-28.28</td>
</tr>
<tr>
<td>Gr2Pr</td>
<td>-47.03</td>
</tr>
<tr>
<td>Gr2Ph</td>
<td>-38.06</td>
</tr>
<tr>
<td>Gr2Quino</td>
<td>-13.36</td>
</tr>
<tr>
<td>Gr2Pico</td>
<td>-3.05</td>
</tr>
<tr>
<td>C26</td>
<td>-0.01</td>
</tr>
<tr>
<td>C32</td>
<td>-14.48</td>
</tr>
</tbody>
</table>
Table 4.2 Formation energies (E_{a2}) of various other first generation chelating complexes investigated in this study.

<table>
<thead>
<tr>
<th>First generation system</th>
<th>E_{a2} (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram of C3]</td>
<td>21.69</td>
</tr>
<tr>
<td>![Diagram of C2]</td>
<td>18.94</td>
</tr>
<tr>
<td>![Diagram of C14]</td>
<td>15.74</td>
</tr>
<tr>
<td>![Diagram of C5]</td>
<td>2.24</td>
</tr>
<tr>
<td>![Diagram of C13]</td>
<td>-3.11</td>
</tr>
<tr>
<td>![Diagram of C12]</td>
<td>-3.87</td>
</tr>
</tbody>
</table>

4.3.2 Characterisation of the successfully synthesised complexes

In the following section the characterisation of the complexes that were successfully synthesised, i.e. had a carbene signal present in the 1H NMR, will be discussed. Throughout the course of this investigation a higher success rate, i.e. higher yield and more pure complexes, were obtained from reacting the Grubbs carbenes with a lithium salt, compared to the thallium and sodium salts (§ 3.4). Therefore, all complexes discussed in this section were synthesised from the reaction of Gr1 or Gr2 with a lithium salt of the chelating pyridinyl alcoholate ligand.
The 1H and 31P NMR spectra of the starting materials, i.e. Gr1, Gr2, Gr1-Py and Gr2-Py are illustrated in Spectrum C.13 – C.20 in Appendix C1, which were comparable to literature.$^{30,36-38}$ These spectra were included to serve as reference point for the newly synthesised complexes. The new complexes were characterised with the use of CHN analysis, together with 1H, 31P and COSY NMR. The slow diffusion of pentane into a saturated solution of the complexes in THF failed to produce suitable crystals for X-ray analysis.

The 1H, 31P and COSY NMR spectra of the following first generation hemilabile complexes:

- Benzyldiene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium,
- Benzyldiene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)propan-2-olato]ruthenium,
- Benzyldiene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato]ruthenium,
- Benzyldiene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-1,1-diphenyl-methanolato]ruthenium,
- Benzyldiene-chloro(tricyclohexylphosphine)-[8-quinolinolato]ruthenium,
- Benzyldiene-chloro(tricyclohexylphosphine)pyridine-[pyridine-2-carboxylato]ruthenium
- Benzyldiene-chloro(tricyclohexylphosphine)pyridine-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.

are illustrated in Spectrum C.21 to C.38 in Appendix C1 with Gr1Pico-Py in Spectrum C.62 to C.64 in Appendix C2. For selected complexes, P-H correlation spectra were obtained to confirm assignment of the phosphorous peak to the corresponding H_a resonance. The 1H and 31P NMR chemical shifts of these systems are respectively summarised in Table 4.3 - 4.8. The yield, product description and CHN analysis of each complex are given beneath the NMR table of each complex to further support the successful synthesis of these complexes. The 1H NMR resonance signals that are not assigned and are not a solvent signal are presumably impurities inter alia unreacted ligand, decomposed complex or oxidised PCy$_3$ (O=PCy$_3$). According to the 31P NMR, Gr1Cy, Gr1Me and Gr1Ph were 98 - 100% pure, while Gr1Pr, Gr1Quino, Gr1Pico-Py and Gr1Cy-Py had ca. 20 - 50% impurities present in the sample. No microanalysis was done on the impure samples.

Overlap of resonance signals in the aliphatic region, due to the large amount of CH$_2$-protons of PCy$_3$ that resonates in this region,35 caused difficulties in assigning the resonance signals to the aliphatic protons. The task of assigning the resonance signals to the aromatic protons was made easier with COSY NMR. As a result of the air and moisture sensitivity of Gr1Pr, no COSY spectra could be obtained. 1H NMR analysis of Gr1Pr indicated that a carbene signal was present (δ 17.83 ppm), while analysis of the complex 2 h after a small crack was detected in the Schlenk tube showed that no carbene was present anymore. The decomposition of Gr1Pr was probably a result of air or moisture entering the Schlenk tube through the crack after vacuum drying the combined NMR sample with Gr1Pr. All attempts to repeat the synthesis of Gr1Pr failed. The absence of a COSY made it difficult to assign chemical shifts to the aromatic protons as well as determine the multiplicity of the signals, due to overlap of the signals (Spectrum
CHAPTER 4.

C.29). No COSY NMR or CHN analysis was obtained for Gr1Cy-Py, due to loss of sample after purification attempts. Thus, due to the presence of impurities, assignment of 1H NMR peaks in the aliphatic and aromatic region was not attempted. It was also noted that only a minute amount of carbene (H_e, 1H $(d) \delta 17.76$ ppm) was present, since the signal was enlarged 10-fold. The 31P NMR indicated the presence of various peaks at $\delta 26.6$, 40.9 and 44.2 ppm, which could not be assigned with any certainty to the carbene complex. Although no COSY NMR could be obtained for Gr1Pico-Py, the assignment of 1H NMR signals was facilitated with the help of Dr. W. H. Meyer, who previously synthesised and characterised the complex with the aid of a COSY spectrum.\footnote{1}

Table 4.3. 1H and 31P NMR dataa of Gr1Cy

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>δ (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P of PCy$_3$</td>
<td>41.5</td>
</tr>
<tr>
<td>a</td>
<td>17.85 (d)</td>
</tr>
<tr>
<td>c</td>
<td>7.085 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.965 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.380 (l)</td>
</tr>
<tr>
<td>f</td>
<td>8.95 (bs)</td>
</tr>
<tr>
<td>g</td>
<td>6.900 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>6.965 (dd)</td>
</tr>
<tr>
<td>i</td>
<td>7.025 (d)</td>
</tr>
</tbody>
</table>

CH$_2$ of PCy$_3$ & C$_6$H$_{10}$

0.850 - 2.450

(43H's + Cy)

a 1^H spectrum: 300 MHz, 31P spectrum: 121 MHz

b Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 317.5 mg (0.465 mmol, 85%)

Product: dark-brown microcrystalline powder

CHN analysis: $C_{39}H_{53}ClINOPR_{11}$ (683.78 g/mol)

C_{Calc} 63.24% C_{Exp} 62.82%

H_{Calc} 7.81% H_{Exp} 8.05%

N_{Calc} 2.05% N_{Exp} 1.77%
Table 4.4. 1H and 31P NMR data of Gr1Me

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P of PCy$_3$</td>
<td>42.333</td>
</tr>
<tr>
<td>a</td>
<td>17.585 (d)</td>
</tr>
<tr>
<td>c</td>
<td>7.265 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.885 (d)</td>
</tr>
<tr>
<td>e</td>
<td>7.365 (t)</td>
</tr>
<tr>
<td>f</td>
<td>9.145 (d)</td>
</tr>
<tr>
<td>g</td>
<td>6.945 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.015 (dd)</td>
</tr>
<tr>
<td>l</td>
<td>7.045 (d)</td>
</tr>
</tbody>
</table>

1H NMR: 300 MHz, 31P NMR: 121 MHz

b Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 150 mg (0.233 mmol, 47%)

Product: dark-brown microcrystalline powder

CHN analysis: C$_{33}$H$_{40}$CINOPRu (843.25 g/mol)

<table>
<thead>
<tr>
<th>C$_{Calc}$</th>
<th>C$_{Exp}$</th>
<th>H$_{Calc}$</th>
<th>H$_{Exp}$</th>
<th>N$_{Calc}$</th>
<th>N$_{Exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.62%</td>
<td>61.14%</td>
<td>7.68%</td>
<td>7.28%</td>
<td>2.18%</td>
<td>1.81%</td>
</tr>
</tbody>
</table>
Table 4.5. 1H and 31P NMR dataa of Grt1Pr

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P of PCy$_3$</td>
<td>39.987</td>
</tr>
<tr>
<td>a</td>
<td>17.825 (d)</td>
</tr>
<tr>
<td>c</td>
<td>7.76-6.71 (m)</td>
</tr>
<tr>
<td>d</td>
<td>7.76-6.71 (m)</td>
</tr>
<tr>
<td>e</td>
<td>7.35 (t)</td>
</tr>
<tr>
<td>f</td>
<td>9.01 (bs)</td>
</tr>
<tr>
<td>g</td>
<td>6.90 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.76-6.71 (m)</td>
</tr>
<tr>
<td>i</td>
<td>6.98 (d)</td>
</tr>
<tr>
<td>CH$_3$ (O$^\wedge$N ligand) + CH$_2$ of PCy$_3$</td>
<td>0.9-2.2 (45H's)</td>
</tr>
<tr>
<td>CH (O$^\wedge$N ligand)</td>
<td>2.22 (m, 2H's)</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz, 31P spectrum: 121 MHz

b Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 120 mg (0.172 mmol, 35%)
Product: Green microcrystalline powder
CHN analysis: $C_{37}H_{32}ClNOPRu$ (699.36 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>C_{Calc}</th>
<th>C_{Exp}</th>
<th>H_{Calc}</th>
<th>H_{Exp}</th>
<th>N_{Calc}</th>
<th>N_{Exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>63.54%</td>
<td>-</td>
<td>8.21%</td>
<td>-</td>
<td>2.00%</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.6. 1H and 31P NMR dataa of Gr1 Ph

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P of PCy$_3$</td>
<td>40.481</td>
</tr>
<tr>
<td>α</td>
<td>17.637 (d)</td>
</tr>
<tr>
<td>c</td>
<td>6.545 (d)</td>
</tr>
<tr>
<td>d</td>
<td>7.01 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.203 (t)</td>
</tr>
<tr>
<td>f</td>
<td>9.615 (d)</td>
</tr>
<tr>
<td>g</td>
<td>7.14 (d)</td>
</tr>
<tr>
<td>h</td>
<td>7.343 (dd)</td>
</tr>
<tr>
<td>l</td>
<td>6.78 (d)</td>
</tr>
<tr>
<td>l</td>
<td>7.10 and 7.27 (d)</td>
</tr>
<tr>
<td>m</td>
<td>7.01 and 7.14 (dd)</td>
</tr>
<tr>
<td>n</td>
<td>7.34 (dd)</td>
</tr>
<tr>
<td>CH$_2$ of PCy$_3$</td>
<td>0.6-2.5 (m (33H’s))</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz, 31P spectrum: 121 MHz
b Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 120 mg (0.156 mmol, 61%)
Product: dark-brown microcrystalline powder
CHN analysis: C$_{43}$H$_{23}$CINOPRu (767.40 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>C_{Calc}</th>
<th>C_{Exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>67.30%</td>
<td>66.86%</td>
</tr>
<tr>
<td>H</td>
<td>6.96%</td>
<td>6.88%</td>
</tr>
<tr>
<td>N</td>
<td>1.83%</td>
<td>1.62%</td>
</tr>
</tbody>
</table>
Table 4.7. 1H and 31P NMR dataa of Gr1 Quino

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P of PCy$_3$</td>
<td>32.69</td>
</tr>
<tr>
<td>a</td>
<td>19.42 (d)</td>
</tr>
<tr>
<td>c</td>
<td>7.16 (m)</td>
</tr>
<tr>
<td>d</td>
<td>6.84 - 6.94 (m)</td>
</tr>
<tr>
<td>e</td>
<td>7.24 - 7.34 (m)</td>
</tr>
<tr>
<td>f</td>
<td>7.86 (d)</td>
</tr>
<tr>
<td>g</td>
<td>6.98 (br d)</td>
</tr>
<tr>
<td>h</td>
<td>6.76 (d)</td>
</tr>
<tr>
<td>i</td>
<td>6.84-6.94 (m)</td>
</tr>
<tr>
<td>j</td>
<td>6.98 (br d)</td>
</tr>
<tr>
<td>k</td>
<td>8.38 (d)</td>
</tr>
<tr>
<td>CH$_2$ of PCy$_3$</td>
<td>0.7 - 2.2 (m)</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz, 31P spectrum: 121 MHz

b Solvent CDCl$_3$: s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 41.6 mg (0.064 mmol, 39%)
Product: brown powder

CHN analysis: C$_{43}$H$_{43}$CINO$^+_{}$PRu (651.23 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>C$_{Calc}$</th>
<th>C$_{Exp}$</th>
<th>H$_{Calc}$</th>
<th>H$_{Exp}$</th>
<th>N$_{Calc}$</th>
<th>N$_{Exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>62.71%</td>
<td>-</td>
<td>6.96%</td>
<td>-</td>
<td>2.15%</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.8. \(^1\)H and \(^{31}\)P NMR data\(^a\) of Gr1Pico-Py

<table>
<thead>
<tr>
<th>Phosphor / Hydrogen</th>
<th>(\delta^b) (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P of PCy(_2)</td>
<td>34.10</td>
</tr>
<tr>
<td>a</td>
<td>19.82 (d)</td>
</tr>
<tr>
<td>c</td>
<td>8.01 (bd)</td>
</tr>
<tr>
<td>d</td>
<td>6.83 (t)</td>
</tr>
<tr>
<td>e</td>
<td>7.34 (t)</td>
</tr>
<tr>
<td>f</td>
<td>8.31 (d)</td>
</tr>
<tr>
<td>g</td>
<td>7.20 (m)</td>
</tr>
<tr>
<td>h</td>
<td>7.63 (t)</td>
</tr>
<tr>
<td>i</td>
<td>7.54 (d)</td>
</tr>
<tr>
<td>p</td>
<td>8.11 (d)</td>
</tr>
<tr>
<td>q</td>
<td>7.20 (m)</td>
</tr>
<tr>
<td>r</td>
<td>8.01 (bd)</td>
</tr>
<tr>
<td>CH(_2) of PCy(_3) & C(6)H({10})</td>
<td>0.9 – 2.2 (m)</td>
</tr>
</tbody>
</table>

\(^a\) \(^1\)H spectrum: 300 MHz, \(^{31}\)P spectrum: 121 MHz

\(^b\) Solvent CDCl\(_3\), s = singlet, d = doublet, t = triplet and m = multiplet. bd refers to observation of a broad doublet.

Yield: 100 mg (0.141 mmol, 49%)
Product: Green powder
The \(^1\text{H}, \, ^{31}\text{P}\) and COSY NMR spectra of the following first generation hemilabile complexes:

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(1-(2'-pyridinyl)cyclohexan-1-olato)ruthenium,

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(1-(2'-pyridinyl)propan-2-olato)ruthenium,

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(1-(2'-pyridinyl)2,4-dimethylpentan-3-olato) ruthenium,

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(1-(2'-pyridinyl)1,1-diphenylmethanolato) ruthenium,

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(2-pyridinecarboxy-lato)-ruthenium and

Benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(8-quinolinolate)ruthenium

are illustrated in Spectrum C.39 to C.54 in Appendix C1 with Gr2Pico in Spectrum C.60 to C.61 in Appendix C2. No suitable crystals for X-ray analysis could be obtained through the slow diffusion of pentane into a saturated solution of the complexes in THF. It was, however, noted that crystal chunks formed for some of the second generation complexes after placing the pentane/THF mixture in the fridge for ca. 12 h, but due to insufficient experience in crystal growth, no suitable crystals could be obtained. The \(^1\text{H}\) NMR chemical shifts of the second generation hemilabile complexes are, respectively, summarised in Table 4.9 - 4.13. The resonance signals, which are not represented in the tables and are not a solvent signal, are most likely impurities from the synthesis procedure inter alia unreacted ligand or decomposed complex. No attempts were made to assign the \(^1\text{H}\) NMR signals of Gr2Pico, due to the presence of impurities and 4 carbene complexes resulting in signal overlap.

The yield, product description and CHN analysis of each complex are given beneath the NMR table of each complex to further support the successful synthesis of these complexes.
Table 4.9. 1H NMR dataa of Gr2Cy

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>17.962 (s)</td>
</tr>
<tr>
<td>c</td>
<td>7.245 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.88 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.045-7.145 (m)</td>
</tr>
<tr>
<td>f</td>
<td>9.55 (d)</td>
</tr>
<tr>
<td>g</td>
<td>6.78 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.045-7.15 (m)</td>
</tr>
<tr>
<td>i</td>
<td>6.60 (d)</td>
</tr>
<tr>
<td>l</td>
<td>1.25</td>
</tr>
<tr>
<td>m</td>
<td>1.45</td>
</tr>
<tr>
<td>n</td>
<td>1.65</td>
</tr>
<tr>
<td>p/p'</td>
<td>3.85 (4H's, m)</td>
</tr>
<tr>
<td>s/s'</td>
<td>6.66/6.88 (bs, 4H's)</td>
</tr>
<tr>
<td>u</td>
<td>2.15</td>
</tr>
<tr>
<td>v</td>
<td>2.40</td>
</tr>
<tr>
<td>v'</td>
<td>2.55</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz

b Solvent CDCl$_3$. $s = $ singlet, $d = $ doublet, $t = $ triplet and $m = $ multiplet.

Yield: 370 mg (0.521 mmol, 84%)

Product: forest-green microcrystalline powder

CHN analysis: $\text{C}_{38}\text{H}_{77}\text{ClN}_3\text{ORu}$ (710.33 g/mole)

C_{Calc} 65.94% C_{Exp} 66.45%

H_{Calc} 6.67% H_{Exp} 6.58%

N_{Calc} 5.92% N_{Exp} 5.29%
Table 4.10. 1H NMR data of Gr2Me

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>δ^p (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>17.815 (s)</td>
</tr>
<tr>
<td>c</td>
<td>7.15 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.85 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.05 (dd)</td>
</tr>
<tr>
<td>f</td>
<td>9.15 (d)</td>
</tr>
<tr>
<td>g</td>
<td>6.75 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.1 (dd)</td>
</tr>
<tr>
<td>i</td>
<td>6.6 (d)</td>
</tr>
<tr>
<td>l</td>
<td>1.2 (s (6H's))</td>
</tr>
<tr>
<td>p/p'</td>
<td>4.015 (4H's)</td>
</tr>
<tr>
<td>s/s'</td>
<td>6.85 / 6.7 (4H's)</td>
</tr>
<tr>
<td>u</td>
<td>2.2</td>
</tr>
<tr>
<td>v</td>
<td>2.6</td>
</tr>
<tr>
<td>v'</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* 1H spectrum: 300 MHz
* Solvent CDCl$_3$. s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 205 mg (0.436 mmol, 55%)

Product: green microcrystalline powder

CHN analysis: C$_{36}$H$_{32}$ClN$_2$ORu (670.28 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>C_{Calc}</th>
<th>C_{Exp}</th>
<th>H_{Calc}</th>
<th>H_{Exp}</th>
<th>N_{Calc}</th>
<th>N_{Exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{Calc}</td>
<td>64.51%</td>
<td>64.03%</td>
<td>8.47%</td>
<td>5.89%</td>
<td>6.27%</td>
<td>5.81%</td>
</tr>
</tbody>
</table>

* Yield: 205 mg (0.436 mmol, 55%)
* Product: green microcrystalline powder
* CHN analysis: C$_{36}$H$_{32}$ClN$_2$ORu (670.28 g/mol)

C_{Calc} 64.51% C_{Exp} 64.03%
H_{Calc} 8.47% H_{Exp} 5.89%
N_{Calc} 6.27% N_{Exp} 5.81%
Table 4.11. 1H NMR dataa of Gr2Pr

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>δ (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>18.52 (s)</td>
</tr>
<tr>
<td>c</td>
<td>7.65 (d)</td>
</tr>
<tr>
<td>d</td>
<td>7.35 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.55 (dd)</td>
</tr>
<tr>
<td>f</td>
<td>9.65 (d)</td>
</tr>
<tr>
<td>g</td>
<td>7.15 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.55 (dd)</td>
</tr>
<tr>
<td>i</td>
<td>7.05 (d)</td>
</tr>
<tr>
<td>l</td>
<td>2.15 (dt (2H's))</td>
</tr>
<tr>
<td>m</td>
<td>0.1-0.5 (2xd (6H's))</td>
</tr>
<tr>
<td>n</td>
<td>1.0-1.35 (2xd (6H's))</td>
</tr>
<tr>
<td>p/p'</td>
<td>4.45 (4H's)</td>
</tr>
<tr>
<td>s/s'</td>
<td>7.15 / 7.35 (4H's)</td>
</tr>
<tr>
<td>u</td>
<td>2.59</td>
</tr>
<tr>
<td>v</td>
<td>2.89</td>
</tr>
<tr>
<td>v'</td>
<td>3.05</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz
b Solvent CDCl$_3$. s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 150 mg (0.207 mmol, 57%)
Product: green microcrystalline powder
CHN analysis: C$_{46}$H$_{51}$ClN$_3$ORu (726.39 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>Calc</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>66.14%</td>
<td>65.68%</td>
</tr>
<tr>
<td>H</td>
<td>7.08%</td>
<td>6.73%</td>
</tr>
<tr>
<td>N</td>
<td>5.78%</td>
<td>5.08%</td>
</tr>
</tbody>
</table>
Table 4.12. 1H NMR data* of Gr2Ph

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>δ^H (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>17.183 (s)</td>
</tr>
<tr>
<td>c</td>
<td>6.43 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.77 (dd)</td>
</tr>
<tr>
<td>e</td>
<td>7.19 (dd)</td>
</tr>
<tr>
<td>f</td>
<td>9.67 (d)</td>
</tr>
<tr>
<td>g</td>
<td>7.036 (dd)</td>
</tr>
<tr>
<td>h</td>
<td>7.19 (dd)</td>
</tr>
<tr>
<td>l</td>
<td>6.64 (d)</td>
</tr>
<tr>
<td>m</td>
<td>7.12-7.19 m (10H's)</td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>p/p'</td>
<td>4.05 (4H's)</td>
</tr>
<tr>
<td>s/s'</td>
<td>6.71 / 6.99 (4H's)</td>
</tr>
<tr>
<td>u</td>
<td>2.20</td>
</tr>
<tr>
<td>v</td>
<td>2.30 (18H's 3xs)</td>
</tr>
<tr>
<td>v'</td>
<td>2.65</td>
</tr>
</tbody>
</table>

* 1H spectrum: 300 MHz
* Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 140 mg (0.176 mmol, 91%)
Product: light-green microcrystalline powder
CHN analysis: C$_{46}$H$_{42}$ClN$_3$ORu (794.42 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>Calc</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{cal}</td>
<td>69.55%</td>
<td>69.97%</td>
</tr>
<tr>
<td>H_{cal}</td>
<td>5.96%</td>
<td>6.33%</td>
</tr>
<tr>
<td>N_{cal}</td>
<td>5.29%</td>
<td>5.16%</td>
</tr>
</tbody>
</table>
Table 4.13. 1H NMR dataa of Gr2Quino

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>δ^b (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>18.25 (s)</td>
</tr>
<tr>
<td>c</td>
<td>6.85 (d)</td>
</tr>
<tr>
<td>d</td>
<td>6.72-6.65 (m)</td>
</tr>
<tr>
<td>e</td>
<td>7.35 (t)</td>
</tr>
<tr>
<td>f</td>
<td>7.75 (d)</td>
</tr>
<tr>
<td>g</td>
<td>7.05-6.89 (m)</td>
</tr>
<tr>
<td>h</td>
<td>6.40 (d)</td>
</tr>
<tr>
<td>i</td>
<td>6.72-6.65 (m)</td>
</tr>
<tr>
<td>j</td>
<td>7.05-6.89 (m)</td>
</tr>
<tr>
<td>k</td>
<td>8.58 (d)</td>
</tr>
<tr>
<td>p/p'</td>
<td>3.95 (4H's)</td>
</tr>
<tr>
<td>s/s'</td>
<td>6.52 (bs, 2H's)</td>
</tr>
<tr>
<td></td>
<td>6.33 (bs, 2H's)</td>
</tr>
<tr>
<td>u</td>
<td>2.25</td>
</tr>
<tr>
<td>v</td>
<td>2.05</td>
</tr>
<tr>
<td>v'</td>
<td>1.95</td>
</tr>
</tbody>
</table>

a 1H spectrum: 300 MHz
b Solvent CDCl$_3$, s = singlet, d = doublet, t = triplet and m = multiplet.

Yield: 41.8 mg (0.062 mmol, 26%)
Product: orange-brown powder
CHN analysis: C$_{27}$H$_{35}$ClN$_3$ORu (678.26 g/mol)

<table>
<thead>
<tr>
<th></th>
<th>Calc</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>65.52%</td>
<td>65.04%</td>
</tr>
<tr>
<td>H</td>
<td>5.80%</td>
<td>5.40%</td>
</tr>
<tr>
<td>N</td>
<td>6.20%</td>
<td>6.13%</td>
</tr>
</tbody>
</table>
Three carbene complexes formed during the synthesis of Gr2Quino, as seen in the 1H NMR spectrum (Spectrum 4.1) of Gr2Quino before purification. The absence of Gr2 in the 31P NMR spectrum (Spectrum 4.2) illustrates that Gr2 has been completely converted to the three new carbene species of which two were completely soluble in pentane, with the third only partially soluble. As a result of the solubility differences of the 3 carbenes in pentane, two product layers were formed upon slow vacuum condensation. The dark-brown top-layer contained the carbene species that were soluble in pentane, with H$_6$ resonance signals at δ 19.09 and 18.92 ppm. The bottom orange-brown layer contained the partially soluble Gr2Quino with a H$_6$ resonance signal at δ 18.31 ppm, (Spectrum 4.3) with no PCy$_3$ peaks present in the 31P NMR spectrum (see Appendix C1, Spectrum C.52). Microanalysis of the orange-brown powder corresponds to the expected composition of Gr2Quino.

![Spectrum 4.1](image)

1H NMR spectrum of the reaction mixture of Gr2 with the lithium salt of 8-quinolinol (L8) before purification.
Spectrum 4.2 31P NMR spectrum of the reaction mixture of Gr2 with the lithium salt L8 before purification.

Spectrum 4.3 1H NMR spectrum of the orange-brown product formed after purification of the reaction mixture of Gr2 with the lithium salt L8.
The infrared (IR) spectra of the various first and second generation complexes are illustrated in Spectrum D.1 - D.7 in Appendix D. The IR spectra of the hemilabile complexes are compared with the free chelating ligands and Gr1 or Gr2, respectively, to obtain information regarding the coordination of the chelating ligands. The IR spectra of these complexes contain many sharp bands of different intensities due to additional vibrations arising from the coordinated benzylidene moiety together with the Cl−, PC\textsubscript{y}\textsubscript{3} and/or NHC ligands. Therefore, these spectra are complex in nature and no attempts have been made to assign the individual bands in the fingerprint region. Consequently, a general assignment of the most important bands in the spectra of the ligands and respective complexes are given below.

Peaks at 1606 and 1604 cm-1 are assigned to the C=N stretch vibrations of the pyridine ring, while C=C stretch vibrations appears at 1430 – 1450 cm-1. The sharp band appearing at 1260 – 1265 cm-1 in all the second generation systems is assigned to the C-N stretching vibration of the NHC ligand. The aromatic and aliphatic C-H stretch vibrations appear at 2800 – 2950 cm-1, while the P-C vibrations of PC\textsubscript{y}\textsubscript{3} appear at 1443 – 1445 cm-1.

It has been reported41 that, upon coordination of pyca to a Ni-centre to form a 5-membered chelate ring, an increase of 14 – 18 cm-1 was observed in the IR frequency of the pyridine ring deformations as compared to the free ligand. Upon coordination of the various pyridinyl alcoholato ligands to the Ru-centre, a positive shift of 5 – 7 cm-1 was observed for the C=N stretch vibrations, compared to the free ligands. This might be an indication of coordination of the pyridyl nitrogen to the Ru-centre. No IR data was obtainable for analogous ruthenium complexes to which our data could be compared to confirm our observations.

4.3.2.1 Discussion of the NMR results of the successfully synthesised complexes

The 1H NMR chemical shifts of the carbene \textalpha-H signal (denoted H\alpha in the structures) and pyridine \textalpha-H signal (denoted as H\gamma in the structures) for the first and second generation systems are summarised in Table 4.14 and 4.15, respectively, with inclusion of the 31P signals for the first generation systems in Table 4.14. The H\textsubscript{a} signals for the first generation hemilabile complexes are strongly shifted upfield relative to Gr1 and appeared as doublets. This indicates that the dihedral angle P-Ru-C\textalpha-H\textsubscript{a} in these systems must be close to 0\degree or 180\degree and that only one PC\textsubscript{y}3 group is left.42 Various authors who investigated chelating systems observed the H\textsubscript{a} signal as a doublet. The chelating complexes varied from our systems in that the chelating ligand is attached to the carbene as illustrated in structure 54, rather than via X as seen in structure 55.
Table 4.14 Selected \(^1\)H and \(^31\)P NMR signals of the first generation hemilabile complexes in comparison to the free O,N-ligands and Gr1.

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>(\delta_{\text{H}}) (ppm)(^a)</th>
<th>(\delta_{\text{H'}}) (ppm)(^b)</th>
<th>(\delta_{\text{P}}) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1</td>
<td>20.03 (s)</td>
<td>-</td>
<td>35.6</td>
</tr>
<tr>
<td>Gr1Cy</td>
<td>17.85 (d)</td>
<td>8.95 (d)</td>
<td>8.48 (d)</td>
</tr>
<tr>
<td>Gr1Pr</td>
<td>17.83 (d)</td>
<td>9.15 (bs)</td>
<td>8.52 (d)</td>
</tr>
<tr>
<td>Gr1Me</td>
<td>17.57 (d)</td>
<td>9.15 (d)</td>
<td>8.49 (d)</td>
</tr>
<tr>
<td>Gr1Ph</td>
<td>17.64 (d)</td>
<td>9.62 (d)</td>
<td>8.50 (d)</td>
</tr>
</tbody>
</table>

* carbene \(\alpha\)-H signal (denoted \(H')\) and pyridine \(\alpha\)-H signal (denoted as \(H'^{\prime}\)) of the hemilabile complexes

* pyridine \(\alpha\)-H signal (denoted as \(H'^{\prime}\)) of the pyridinyl carbinal ligands

Table 4.15 Selected \(^1\)H NMR signals of the second generation hemilabile complexes in comparison to the free O,N-ligands and Gr2.

<table>
<thead>
<tr>
<th>Catalytic system</th>
<th>(\delta_{\text{H}}) (ppm)(^a)</th>
<th>(\delta_{\text{H'}}) (ppm)(^b)</th>
<th>(\delta_{\text{P}}) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr2</td>
<td>19.19 (s)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gr2Cy</td>
<td>17.96 (s)</td>
<td>9.55 (d)</td>
<td>8.48 (d)</td>
</tr>
<tr>
<td>Gr2Pr</td>
<td>18.52 (s)</td>
<td>9.65 (d)</td>
<td>8.52 (d)</td>
</tr>
<tr>
<td>Gr2Me</td>
<td>17.82 (s)</td>
<td>9.15 (d)</td>
<td>8.49 (d)</td>
</tr>
<tr>
<td>Gr2Ph</td>
<td>17.18 (s)</td>
<td>9.67 (d)</td>
<td>8.50 (d)</td>
</tr>
<tr>
<td>Gr2Quino</td>
<td></td>
<td></td>
<td>8.77 (d)</td>
</tr>
</tbody>
</table>

* carbene \(\alpha\)-H signal (denoted \(H'^{\prime}\)) and pyridine \(\alpha\)-H signal (denoted as \(H'^{\prime}\)) of the hemilabile complexes

* pyridine \(\alpha\)-H signal (denoted as \(H'^{\prime}\)) of the pyridinyl carbinal ligands
Grubbs et al. proposed a Karplus-type relation between the dihedral angle Φ-Ru-C$_a$-H$_a$ and the observed coupling constant J_{PH} for first generation Grubbs systems. In general, this relation implies that the magnitude of the coupling between phosphine ligands and the α-proton of a carbene unit depends on their relative spatial orientation or geometry. Although the decoupler was off during the acquisition of the 31P NMR spectra no P-H$_a$ coupling was observed. Relative to Gr1, the 31P NMR resonances of Gr1Cy, Gr1Me, Gr1Pr and Gr1Ph, which appeared as singlets, were strongly shifted upfield, indicating that the chelating O,N-ligands have strong effects on the chemical shifts of the relevant NMR resonances. Similar to the first generation hemilabile complexes, a strong upfield shift is observed in the H_a signals of the second generation hemilabile complexes. Relative to Gr2, the H_a signals also appeared as singlets. As expected, no 31P NMR resonances were observed, since no phosphorus group should theoretically be coordinated to the Ru-centre after substitution with the O,N-chelated ligands.

The calculated Hirshfeld charges of selected atoms of the first and second generation Ru=C hemilabile systems and free pyridinyl carbonyl ligands are given in Table 4.16. The upfield shift of the H_a^* peak in the 1H NMR of the first and second generation hemilabile complexes, compared to Gr1 and Gr2 (Table 4.14 and 4.15), is due to a change in the electronic environment induced by the chelating ligand. The change in the electron environment of H_a^* is mainly caused by the donation of the free electron pair of the N-atom to the carbene moiety upon coordination with the Ru-centre. This is evident from the reduced electron density on the O- and N-atoms of the ligand after coordination with the Ru-centre, which is distributed to C$_a$. The charges on the carbene moiety of Gr1 (-0.069) and Gr2 (-0.069) decreased by ca. 0.04, with a simultaneous increase of ca. 0.09 in the electrophilic character of the Ru-centre. This suggests that the hemilabile complexes might be more active due to the high susceptibility of the Ru-centre for nucleophilic attack from inter alia an alkene. Additionally, a downfield shift in the pyridine α-H signal was observed for the first and second generation hemilabile complexes, indicating that the electronic environment of the ligand has changed. This implies that the N-atom has coordinated to the Ru-centre, since a
downfield shift of a proton resonance signal is indicative of reduced electron density of the attached C-atom.39 When comparing the calculated Hirshfeld charges of the N-atoms of the free ligand to the coordinated N-atoms, it is seen that the coordinated atoms are much more positively charged. Therefore, the electron density of the pyridine ring has been distributed towards the Ru=C moiety, supporting the downfield shift of α-H1.

Table 4.16 Calculated Hirshfeld charges of selected atoms of the Ru=C systems and free carbinol ligands

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atom</th>
<th>Ru</th>
<th>\equivC=</th>
<th>N</th>
<th>O</th>
<th>Free Ligand</th>
<th>Atom</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrI</td>
<td>0.212</td>
<td>-0.069</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr2</td>
<td>0.187</td>
<td>-0.069</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr1Me</td>
<td>0.298</td>
<td>-0.108</td>
<td>-0.068</td>
<td>-0.237</td>
<td></td>
<td></td>
<td>-0.177</td>
<td>-0.635</td>
<td></td>
</tr>
<tr>
<td>Gr2Me</td>
<td>0.319</td>
<td>-0.096</td>
<td>-0.074</td>
<td>-0.246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr1Ph</td>
<td>0.295</td>
<td>-0.099</td>
<td>-0.069</td>
<td>-0.238</td>
<td></td>
<td></td>
<td>-0.181</td>
<td>-0.535</td>
<td></td>
</tr>
<tr>
<td>Gr2Ph</td>
<td>0.316</td>
<td>-0.088</td>
<td>-0.073</td>
<td>-0.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr1Cy</td>
<td>0.298</td>
<td>-0.108</td>
<td>-0.088</td>
<td>-0.235</td>
<td></td>
<td></td>
<td>-0.175</td>
<td>-0.503</td>
<td></td>
</tr>
<tr>
<td>Gr2Cy</td>
<td>0.320</td>
<td>-0.097</td>
<td>-0.074</td>
<td>-0.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr1Pr</td>
<td>0.301</td>
<td>-0.111</td>
<td>-0.065</td>
<td>-0.230</td>
<td></td>
<td></td>
<td>-0.127</td>
<td>-0.224</td>
<td></td>
</tr>
<tr>
<td>Gr2Pr</td>
<td>0.323</td>
<td>-0.095</td>
<td>-0.072</td>
<td>-0.235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr2Quino</td>
<td>0.313</td>
<td>-0.069</td>
<td>-0.081</td>
<td>-0.220</td>
<td></td>
<td></td>
<td>-0.165</td>
<td>-0.167</td>
<td></td>
</tr>
</tbody>
</table>

4.4 REFERENCES

20. Fogg, D.E. (dfogg@uottawa.ca) 23 October 2006. Communication with regards to their modelling results. E-mail to: Jordaan, M. (chem@puk.ac.za (at time of communication))

42. Fürstner, A., Thiel, O.R., and Lehman, S.E., Organometallics, 2002, 21, 331

5.1 INTRODUCTION

The ruthenium carbene complexes developed by the Grubbs group, RuCl$_2$PCy$_3$L(=CHPh) (L = PCy$_3$ (Gr1) and L = NHC (Gr2)) are among a limited number of well-defined catalytic systems that initiate the metathesis of terminal alkenes.$^{1-3}$ These systems are of interest because of their high metathesis activity, stability towards polar functional groups and ease of manipulation.4,5 The lifetime and reactivity of Gr1 have been improved through the replacement of one phosphine ligand by a more bulky and basic N-heterocyclic carbene ligand to produce Gr2.9,10 The higher activity of Gr2 can also be attributed to electronic and steric effects that influence the dissociation of the phosphine ligand as well as the ratio of alkene to phosphine coordination during the mechanistic cycle (see Chapter 6).11

![Diagram of Gr1 and Gr2 complexes]

A number of manipulations to the Grubbs precatalysts were investigated during this study in an attempt to improve the efficiency of Gr1 and Gr2 towards the metathesis of 1-octene. Figure 5.1 illustrates the various parameters that influence the efficiency of a precatalyst as defined by Grubbs and coworkers.12 They define ‘selectivity’ as the ability of a precatalyst to react with certain types of alkenes, ‘activity’ as the reaction-rate observed with a given precatalyst and ‘stability’ as the lifetime of the precatalyst during the course of the reaction. The degree of activity can be expressed in terms of the turnover number (TON), while the turnover frequency (TOF in h$^{-1}$) can be used to describe the overall efficiency of a precatalyst.13 In this study the effective TON, which is the total number of 1-octene molecules converted to metathesis products per molecule of the precatalysts, was used to describe the degree of activity. This was used in view of the fact that Dinger and Mol15 pointed out that the total TON of 1-octene couldn’t be calculated with any degree of certainty because the metathesis events cannot be accurately followed. The term ‘reactivity’ will be used to describe the activity of a given precatalyst qualitatively in terms of the mol% PMP formed. ‘Selectivity’ and ‘stability’ will be used as described by Grubbs.
In this study a number of successfully synthesised O,N-chelated ruthenium carbene complexes (see Figure 5.2) were tested for 1-octene metathesis activity at elevated temperatures in the absence of any solvent. 1H NMR studies of the 1-octene metathesis reaction were also done to gain insight into the mechanism of the reaction with the first and second generation Grubbs systems and their hemilabile analogues.

Figure 5.1 Parameters that influence the efficiency of precatalysts.12

Figure 5.2 O,N-chelating ruthenium carbene complexes investigated for the metathesis of 1-octene.

5.2 METATHESIS OF 1-OCTENE WITH RUTHENIUM CARBENE COMPLEXES

During the metathesis of 1-octene, a mixture of products can form due to alkene isomerisation and metathesis (self- and cross metathesis) reactions, which can occur simultaneously as the reaction proceeds (Table 5.1).14,15 As a result of double bond isomerisation, secondary cross metathesis between the various alkenes can take place yielding a range of C$_2$ – C$_{14}$ alkene products. Therefore, three major groups of products can be identified, i.e. primary metathesis products (PMP), isomserisation products (IP) and secondary metathesis products (SMP). All the possible side reactions that can occur during the metathesis of 1-octene as a result of cross-metathesis of the isomerisation products are illustrated in Appendix E.
Table 5.1 Possible reactions of 1-octene in the presence of metathesis precatalysts.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Substrate</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary metathesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-metathesis</td>
<td>C=C_7</td>
<td>C=C + C_7 = C_7</td>
</tr>
<tr>
<td>Isomerisation</td>
<td>C=C_7</td>
<td>C_2=C_6 + C_3=C_5 + C_4=C_4</td>
</tr>
<tr>
<td>Secondary metathesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-metathesis</td>
<td>C=C_7 + C_2=C_3</td>
<td>C_2=C_7 + C=C_6 + C=C_2 + C=C_2</td>
</tr>
<tr>
<td>Self-metathesis</td>
<td>C_2=C_6</td>
<td>C_2=C_2 + C_4=C_4</td>
</tr>
</tbody>
</table>

^a^ Hydrogens are omitted and geometrical isomers not shown for simplicity.

^b^ Primary metathesis products (PMP) refers to the homometathesis products of 1-octene i.e. C_7=C_7 and C=C.

^c^ Isomerisation products (IP) refers to the double bond isomerisation reaction of terminal to internal alkenes.

^d^ Secondary metathesis products (SMP) refers to the metathesis of the isomerisation products of 1-octene.

Initially, the influence of temperature on the catalytic conversion of 1-octene to 7-tetradecene in the presence of Gr1 and Gr2 was investigated to provide a benchmark against which the new systems could be evaluated. Additionally, the metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy was investigated to determine optimum conditions for high reactivity with limited side-reactions. These conditions were applied to the remaining hemilabile complexes and compared to Gr1 and Gr2. Additionally, NMR investigations of the 1-octene metathesis reaction in the presence of Gr1, Gr2, Gr1Cy and Gr2Cy were done to gain insight into the mechanism.

5.2.1 Metathesis in the presence of Gr1 and Gr2

5.2.1.1 Optimisation of reaction conditions

The activity of Gr1 and Gr2 towards the metathesis of 1-octene was measured at a temperature range of 35 – 80 °C with a 1-octene/Ru molar ratio of 9000. Samples (0.3 mL) were withdrawn by syringe at regular time intervals and quenched with a solution of toluene (0.3 mL) and tert-butyl-hydrogen peroxide (2 drops). The reaction mixture was monitored by GC/FID to determine which different products formed during the metathesis of 1-octene; these products were identified by GC/MSD. The initiation rate constants (k_{init}/mol s^{-1}) were determined as a function of the mol 7-tetradecene formed over time. It should be noted that the 1-octene already contained 0.85% 4-octene, 0.10% 3-octene and 0.05% 2-octene which could not be removed from the
reaction mixture. Therefore, the reported IP's exclude the initial isomers present in the reaction mixture, but the cross-metathesis of the irremovable isomers could have contributed to the observed SMP percentages.

During the course of this study, I received different batches of Gr1 and Gr2 from the suppliers, which differed in the texture of the precatalyst, i.e.

Batch 1: light-purple (Gr1_B1) and light-brown (Gr2_B1) fine powder
Batch 2: dark-purple (Gr1_B2) and dark-brown (Gr2_B2) microcrystalline powder

It was interesting to note that different reactivity results were obtained from the two batches, since one should expect the behaviour of the precatalysts to be similar throughout the different batches (see Table 5.3).

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S</th>
<th>k_{	ext{int}} (mol s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1_B1</td>
<td>39.1</td>
<td>0.7</td>
<td>8.4</td>
<td>81.12</td>
<td>3.78 x 10^{-5}</td>
</tr>
<tr>
<td>Gr1_B2</td>
<td>21.2</td>
<td>0.3</td>
<td>4.8</td>
<td>80.61</td>
<td>4.65 x 10^{-5}</td>
</tr>
<tr>
<td>Gr2_B1</td>
<td>65.0</td>
<td>37.1</td>
<td>0.3</td>
<td>63.48</td>
<td>1.36 x 10^{-4}</td>
</tr>
<tr>
<td>Gr2_B2</td>
<td>81.6</td>
<td>3.6</td>
<td>0.0</td>
<td>95.77</td>
<td>1.89 x 10^{-4}</td>
</tr>
</tbody>
</table>

* Selectivity towards PMP

A decrease in the PMP formation was observed for Gr1_B2 with a simultaneous decrease in SMP and IP formation compared to Gr1_B1. The PMP formation pattern between the Gr2 batches differed as illustrated in Figure 5.3. For batch 1, a drop in reactivity from 75 to 60% was observed after 10 min with a slight increase in reactivity to reach 65% PMP after 7 h. In contrast, batch 2 showed no drop in activity after reaching 75% PMP formation within 10 min. A similarly slow continuous increase in activity was observed in which 81% PMP's were obtained after 7 h. The drop in reactivity for Gr2_B1 might be attributed to secondary metathesis reactions occurring as the reaction proceeds. A dramatic decrease in SMP formation from 36 to 4% was observed in the presence of Gr2_B2, with no IP formation. Although the IP formation in the presence of Gr2_B1 is negligibly small, it was noted that there was an increase in IP formation to a maximum of 0.8% after an initial induction period of 15 min, followed by a slow decrease to 0.3% (see Figure 5.4). The IP formation contributed to the SMP formation due to cross-metathesis of the IP's.
Figure 5.3 PMP formed during the metathesis of 1-octene in the presence of the different batches Gr2 at 60 °C.
[▲ Gr2_B1 ■ Gr2_B2]

Figure 5.4 IP formed during the metathesis of 1-octene in the presence of the different batches Gr2 at 60 °C.
[▲ Gr2_B1 ■ Gr2_B2]
All further investigations were carried out with Batch 2 precatalysts, since only a limited amount of the first batch was initially available, and lower SMP and IP formations were obtained with the second batch of precatalysts. For simplicity, Gr1_B2 and Gr2_B2 will be referred to as Gr1 and Gr2, respectively, in the following sections. The influence of reaction temperature on the metathesis of 1-octene in the presence of Gr1 and Gr2 are illustrated in Figure 5.5 to 5.7 and Figure 5.8 to 5.10, respectively. Table 5.4 summarises the catalytic activity and selectivity of these systems over a temperature range of 35 – 80 °C. As illustrated in Figure 5.5 and 5.8, not only the reaction rate, but also the lifetime of the precatalyst is influenced by temperature, since at temperatures above 35 °C, both systems are inactive for PMP formation after ca. 15 min. According to Forman et al., Gr1 is usually intolerant of reaction temperatures above 50 °C, leading to a shorter lifetime of the precatalyst. A similar trend was observed in this study as illustrated in Figure 5.5. At temperatures above 35 °C, a maximum of only 20% PMP’s was formed within 5 min, relative to 40% formed at 35 °C over a time period of 180 min. This indicates that an increase in temperature decreases the lifetime of Gr1, most likely due to catalyst decomposition and/or competing side reactions. The shape of the curves in Figure 5.5 and 5.8 reveals important information concerning the reaction mechanism of Gr1- and Gr2-catalysed alkene metathesis. At temperatures above 35 °C, an initial period of high activity is observed for both catalytic systems within the first 10 min to produce 20% and 80% PMP, respectively. After this period, the reaction rate slows down dramatically and continues to completion at a much slower rate within 7 h. Regardless of the initial induction period of Gr2 at temperatures below 40 °C, which is consistent with slower precatalyst initiation, a higher degree of reactivity is displayed relative to Gr1, i.e. 61% relative to 41% PMP after 420 min.

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>T/°C</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S<sup>a</sup></th>
<th>k<sub>kin</sub> (mol s<sup>-1</sup>)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1</td>
<td>35</td>
<td>40.8</td>
<td>0.3</td>
<td>0.4</td>
<td>98.31</td>
<td>1.24 x 10<sup>-5</sup></td>
<td>4136</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>21.2</td>
<td>0.3</td>
<td>4.8</td>
<td>80.61</td>
<td>4.65 x 10<sup>-5</sup></td>
<td>2175</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>18.6</td>
<td>0.3</td>
<td>8.7</td>
<td>67.39</td>
<td>6.37 x 10<sup>-5</sup></td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>20.5</td>
<td>0.3</td>
<td>25.3</td>
<td>44.47</td>
<td>7.41 x 10<sup>-5</sup></td>
<td>2056</td>
</tr>
<tr>
<td>Gr2</td>
<td>35</td>
<td>60.8</td>
<td>1.3</td>
<td>0.0</td>
<td>97.91</td>
<td>2.40 x 10<sup>-5</sup></td>
<td>6601</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>81.6</td>
<td>3.6</td>
<td>0.0</td>
<td>95.77</td>
<td>1.89 x 10<sup>-4</sup></td>
<td>8881</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>82.2</td>
<td>11.3</td>
<td>0.0</td>
<td>87.91</td>
<td>3.08 x 10<sup>-2</sup></td>
<td>8929</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>78.8</td>
<td>12.8</td>
<td>0.1</td>
<td>85.93</td>
<td>3.68 x 10<sup>-2</sup></td>
<td>8988</td>
</tr>
</tbody>
</table>

^a Selectivity towards PMP
Figure 5.5 PMP formed during the metathesis of 1-octene in the presence of Gr1 at various temperatures (enlarged inset of the first 30 min).
[• 35 °C ■ 60 °C ○ 70 °C ▲ 80 °C]

Figure 5.6 SMP formed during the metathesis of 1-octene in the presence of Gr1 at various temperatures (break inserted between 1 and 20 mol% SMP).
[• 35 °C ■ 60 °C ○ 70 °C ▲ 80 °C]
Figure 5.7 IP formed during the metathesis of 1-octene in the presence of Gr1 at various temperatures.
[◆ 35 °C ■ 60 °C ● 70 °C △ 80 °C]

Figure 5.8 PMP formed during the metathesis of 1-octene in the presence of Gr2 at various temperatures (enlarged inset of the first 30 min).
[◆ 35 °C ■ 60 °C ● 70 °C △ 80 °C]
Figure 5.9 SMP formed during the metathesis of 1-octene in the presence of Gr2 at various temperatures (break inserted between 15 and 30 mol% SMP).

[● 35 °C ■ 60 °C ● 70 °C ▲ 80 °C]

Figure 5.10 IP formed during the metathesis of 1-octene in the presence of Gr2 at various temperatures (break inserted between 1 and 15 mol% IP).

[● 35 °C ■ 60 °C ● 70 °C ▲ 80 °C]
All reactions carried out at temperatures above 60 °C only produced a maximum of 20% PMP's for Gr1 and 80% for Gr2. A TON of 6601 for Gr2, relative to 4136 for Gr1 at 35 °C, indicates that Gr2 exhibits superior activity over Gr1. Increasing the reaction temperature from 35 to 60 °C sharply decreases the activity and selectivity of Gr1 towards the formation of PMP (see Figure 5.11). In contrast, Gr2 showed a steady increase in PMP formation up to 70 °C with a decrease in reactivity when the temperature increased above 70 °C (see Figure 5.11). Although a steady increase in the TON was observed for Gr2 at elevated temperatures with a steady decrease in selectivity, a sharp reduction in both selectivity and TON was noted for Gr1 at temperatures above 60°C (Table 5.4). This supports the fact that the replacement of one PCy3 with an NHC ligand has improved the activity, selectivity and stability of Gr1. The relative stability of the precatalysts at different temperatures can be illustrated by plotting $\ln(1$-octene$)$ as a function of time. According to Grubbs et al., the curvature of the logarithmic plot is indicative of pseudo first-order rate kinetics (linear plot) or decomposition of the precatalyst over the course of the reaction. Graphical representations of the stability of Gr1 and Gr2, respectively, are illustrated in Figure 5.12 and 5.13 for the first 120 min of the reaction. At temperatures above 35 °C, the stability of Gr1 and Gr2 is sharply reduced, since both systems already start to decompose within the first 10 min with a temperature increase of 10 – 25 °C. The reduced stability of these systems at high temperatures prevents high efficiency due to increased IP and SMP formation. It is known that alkene isomerisation is a major side-reaction of ruthenium catalysed metathesis reactions. In contrast to findings of Lehman et al., Gr1 significantly promotes the isomerisation of terminal alkenes at temperatures above 50 °C with a 1-octene/Ru molar ratio of ca. 9000. An exponential increase in IP, with no significant SMP formation (see Figure 5.14 and 5.15), was observed during the metathesis of 1-octene in the presence of Gr1 as the temperature increased. Lehman’s observation was made at a 1-octene/Ru molar ratio of 1000, where he noted that only Gr2 promoted the isomerisation of 1-octene at a temperature of 50 – 60 °C. In contrast, at low Gr2-concentrations a linear increase in SMP formation was observed with an increase in temperature, with no significant IP’s present in the reaction mixture. This indicates that the isomers are immediately consumed for cross-metathesis reactions. It was also noted that, in the presence of Gr2 at 80 °C, the mol% IP increases to a maximum within the first 10 min, followed by a sharp decrease to ca. 0% within 30 min as the reaction proceeded (Figure 5.10), most probably due to cross-metathesis of the IP’s to form SMP’s. It is known that Gr1 and Gr2 are thermally decomposed to hydride species. In this study Argon was used as inert gas, which is known to contain trace amounts of oxygen as contaminants (§ 3.1.2.4). In the presence of oxygen, Gr1 and Gr2 can form a carbonyl species (56 and 57), which is converted to the corresponding hydride species (58 and 59) upon reaction with a terminal alkene. This could be the cause of the isomerisation of 1-octene through a hydride mechanism. Therefore, this study indicates that Gr1 is catalytically active for the isomerisation of terminal alkenes at high temperatures even at low precatalyst concentrations, while SMP formation is limited. On the other hand, at low Gr2-
concentrations, cross-metathesis occurs concurrently with the isomerisation of 1-octene, since no significant IP's were observed.

Figure 5.11 The observed trend for the mol% PMP with an increase in reaction temperature during the metathesis of 1-octene in the presence of precatalysts Gr1 and Gr2 after 420 min.

[■ Gr1, ● Gr2]
Figure 5.12 Logarithmic plot of Gr1 to describe its relative stability as a function of time.

[● 35 °C ● 60 °C ● 70 °C ▲ 80 °C]

Figure 5.13 Logarithmic plot of Gr2 to describe its relative stability as a function of time.

[● 35 °C ● 60 °C ● 70 °C ▲ 80 °C]
Figure 5.14 A linear increase in the mol% SMP with an increase in temperature during the metathesis of 1-octene in the presence of precatalysts Gr1 and Gr2 after 420 min.

[■ Gr1 ○ Gr2]

Figure 5.15 An exponential increase in the mol% IP with an increase of temperature during the metathesis of 1-octene in the presence of precatalysts Gr1 and Gr2 after 420 min.

[■ Gr1 ○ Gr2]
The rate of initiation \((k_{\text{ini}} \text{ mol s}^{-1}) \) for the formation of 7-tetradecene increased linearly with temperature for both catalytic systems (Figure 5.16). The sharp increase in the slope of the curve for Gr2 i.e. \(9.82 \times 10^6 \text{ (mol s}^{-1} \text{ K}^{-1}) \) relative to \(1.70 \times 10^6 \text{ (mol s}^{-1} \text{ K}^{-1}) \) for Gr1, indicates that Gr2 is catalytically more active than Gr1 at elevated temperatures.

![Figure 5.16 Linear increase in \(k_{\text{ini}} \) as a function of temperature.](image)

It is well known that the Arrhenius equation (Equation 5.1) can be used to describe the temperature dependence of the first-order rate constant, \(k \), for determining the activation energy \((E_a) \).

\[
\ln k = \ln A - \frac{E_a}{RT}
\]

(Eq. 5.1)

with \(k \) the measured first-order rate constant, \(E_a \) the experimental activation energy, \(A \) the pre-exponential factor, \(R \) the gas constant and \(T \) the temperature. The two units, \(E_a \) and \(A \), are known as the Arrhenius parameters. The rate constants of a reaction can be predicted from the Arrhenius equation at a specific temperature if a linear graph is obtained for \(\ln k \) as a function of \(1/T \). According to Frost et al., there are situations where a nonlinear curve is obtained for the Arrhenius plot, in which two competing reactions with different activating energies may occur.
simultaneously. This results in a curve with two parts, with each part approaching linearity as illustrated in Figure 5.17. The graph representing the rate constants in the Arrhenius equation for Gr1 and Gr2 is given in Figure 5.18. Although both graphs are curved in an opposite direction to the illustrated graph in Figure 5.17, similar conclusions can be made. It is evident from the experimental results that SMP and/or IP formation is a major competing reaction occurring at temperatures above 70 °C for both Gr1 and Gr2, with PMP formation limited. This supports the shape of the graphs in Figure 5.18, in which two parts are identified, both approaching linearity. This indicates that, at high temperatures, the competing side-reactions are significantly influencing the activity and selectivity of the precatalyst. Therefore, if you look at the first part of the graph, excluding the data at temperatures above 70 °C, a linear graph is obtained in which the side-reactions are negligibly small (Figure 5.19). From the data in Table 5.4, the activation energy was calculated as 42.03 kJ mol⁻¹ for Gr1, and 65.33 kJ mol⁻¹ for Gr2 with a pre-exponential factor of 1.70 × 10⁵ min⁻¹ and 2.98 × 10⁰ min⁻¹, respectively. The second part of the graph in Figure 5.18 was not considered further, since insufficient information was available to obtain Eₐ values.

![Figure 5.17](image-url)
Figure 5.17 Graphical representation of a nonlinear curve for the Arrhenius plot.²²
Figure 5.18 Arrhenius plot for the 1-octene metathesis reaction in the presence of Gr1 and Gr2.

[■ Gr1 ○ Gr2]

Figure 5.19 Arrhenius plot for the 1-octene metathesis reaction in the presence of Gr1 and Gr2, with the exclusion of T = 80 °C.

[■ Gr1 ○ Gr2]
5.2.1.2 NMR investigation

I investigated the metathesis of 1-octene in the presence of Gr1 and Gr2 with 1H NMR to gain some insight into the reaction mechanism. The 1H NMR spectra obtained during these investigations are presented in Appendix F.

NMR investigation: metathesis with Gr1

The metathesis of 1-octene was investigated in the presence of Gr1 at 30 °C and 50 °C in CDCl$_3$, with a 1-octene/Ru molar ratio of 10. P van Helden23 investigated the reaction at 30 °C as part of his honours study in 2004 in support of the current study. The involvement of the three carbene species are clearly illustrated in Figure 5.20 for the reaction at 30 °C. The H$_a$ signal (denoted H*) of the benzylidene Gr1 appears at δ 20.02 ppm, of the heptylidene [RuCl$_2$(PCy$_3$)$_2$(=CHC$_6$H$_{1})$] at δ 19.31 ppm and the methylidene [RuCl$_2$(PCy$_3$)=CH$_2$] at δ 18.95 ppm. The shift of the H$_a$ peak of the benzylidene to lower field to produce a doublet and a singlet is due to the change in the electronic environment of the ligand attached to the carbene carbon. Due to the fast initiation rate (9.6 ± 0.2 s$^{-1}$)24 of Gr1 during the metathesis reaction, all three carbene signals are already present after 14 min. The change in the size of the H$_a$ signals of the three carbene species involved in the metathesis of 1-octene with time is given in Figure 5.21. The size of the benzylidene signal gradually decreases (Figure 5.21(a)), suggesting the conversion of the benzylidene to the heptylidene and methylidene; after 300 min all of the Gr1 has been converted (see also Figure 5.20).

![Figure 5.20](image)

1H NMR spectra of the carbene proton region at different time intervals of a 1-octene/Gr1 reaction mixture in CDCl$_3$ at 30 °C.
Figure 5.21 ¹H NMR signals at different time intervals of the H₆'s in a 1-octene/Gr1 reaction mixture in CDCl₃ at 25 °C.

[(a) Ru=CHPh, (b) Ru=CHHx, (c) Ru=CH₂]
The simultaneous decomposition of the benzyldiene to some other species cannot be ruled out. The sharp increase to a maximum of the heptylidene signal within 14 min is followed by a gradual decrease as the reaction proceeds (Figure 5.21(b)), while the methyldiene signal gradually increases to a maximum within 2 h, followed by a slow decrease (Figure 5.21(c)), possibly due to catalyst decomposition. In the presence of 1-octene, it seems that the benzyldiene is rapidly converted to the heptylidene, while the formation of the methyldiene proceeds at a much slower rate at 30 °C. Ulman et al. also observed that the alkylidene is generally more reactive in comparison to the methyldiene in the metathesis of alkenes with Gr1.

The reaction was also performed at 50 °C to determine the influence of temperature on the formation of the individual carbene species. The involvement of the three carbene species is illustrated in Figure 5.22. As noted, an additional 7 min was needed to obtain the first spectrum at 50 °C, in comparison to 30 °C, to allow for temperature stabilisation of the cold sample inserted into a warm sample tube. It appeared that the benzyldiene was more rapidly converted to the methyldiene and heptylidene within 20 min at 50 °C in comparison to 30 °C. The change in the size of the H signals of the three carbene species involved in the metathesis of 1-octene at 50 °C over time is given in Figure 5.23. No benzyldiene signal is present after 20 min at the time of obtaining the first spectrum (Figure 5.23(a)), suggesting a rapid conversion of the benzyldiene to the heptylidene and methyldiene (see also Figure 5.22).

![Figure 5.22](image-url)

Figure 5.22. 1H NMR spectra of the carbene proton region at different time intervals of a 1-octene/Gr1 reaction mixture in CDCl3 at 50 °C.
The simultaneous decomposition of the benzylidene to some other species cannot be ruled out. The sharp increase to a maximum of the heptylidene and methylidene signal within 20 min is followed by a sharp decrease of the heptylidene to a minimum within 10 min, while the methylidene gradually decreases as the reaction proceeds (Figure 5.23(b) and (c)). After 300 min, no carbene species are present any more. Figure 5.24 illustrates the change in the peak integration values of the individual carbene species as a function of time. Due to the fact that 20 min have passed before the first spectrum was obtained and the fast initiation rate of Gr1, no substantial conclusions can be made regarding the identity of the initial carbene species that formed during the reaction.

(a) $\delta = 20.05$ ppm

(b) $\delta = 19.377$ ppm

(c) $\delta = 18.981$ ppm

Figure 5.23 ¹H NMR signals at different time intervals of the carbene α-H's in a 1-octene/Gr1 reaction mixture in CDCl₃ at 50 °C.

[(a) Ru=CHPh, (b) Ru=CHC₆H₁₃, (c) Ru=CH₂].
The 1H NMR peak integration values of the carbenes involved in the metathesis reaction of 1-octene in the presence of Gr1 at 50 °C.

![NMR spectrum](image)

$\text{NMR investigation: metathesis with Gr2}$

The metathesis of 1-octene was investigated in the presence of Gr2 at 50 °C in CDCl$_3$, with a 1-octene/Ru molar ratio of 10. Contrary to the reaction in the presence of Gr1, an additional car bene signal was observed at δ 18.55 ppm (Figure 5.25). Mtshatsheni26 made a similar observation during an NMR investigation of the 1-octene metathesis reaction with 1-octene/Gr2 = 5 at 25 °C. However, the multiplicity of the split of this signal could not be visually determined and therefore she made no conclusions with regards to the identity of the car bene species.

The H_a signal (denoted H^+) of the benzylidene Gr2 appears at δ 19.21 ppm (singlet), of the heptylidene $[\text{RuCl}_2(\text{PCy}_3)(\text{H}_2\text{IMes})(\text{=CH}_2\text{H}_4)]$ at δ 18.72 ppm (triplet) and the methylidene $[\text{RuCl}_2(\text{PCy}_3)(\text{H}_2\text{IMes})(\text{=CH}_2)]$ at δ 17.83 ppm (singlet). The additional car bene signal appears at δ 18.55 ppm (quartet or doublet of doublets). The question arises: is the additional signal a quartet or a doublet of doublets? Since a high degree of isomerisation and secondary metathesis occurs at high concentrations of Gr2 at elevated temperatures,2 the appearance of a quartet can be due to the formation of an ethylidene (60) and hexylidene (61) from 2-octene. The chemical shift of the hexylidene and heptylidene will be similar, since the alkyl chain will not greatly influence the shift of the H_a, while a quartet will appear for the ethylidene H_a. In contrast, a doublet of doublets will imply that a tertiary carbon has to be present in the form illustrated in 62.
The formation of such a complex is difficult to visualise, since it implies the cyclisation of the alkyl chain of the heptylidene moiety to form 62. Therefore by reason of the improbability of cyclisation of the alkyl chain occurring and assigning a likely peak intensity ratio of 1:3:3:1 to the signal, a split multiplicity of quartet is assigned to the signal at δ 18.55 ppm.

![Figure 5.25](image.png)

Figure 5.25 1H NMR spectra of the carbene proton region at different time intervals of a 1-octene/Gr2 reaction mixture in CDCl$_3$ at 50 °C.
Figure 5.26 illustrates the change in peak integration values for the benzylidene and methylidene species as a function of time. Due to difficulties in separating the triplet and quartet, only a visual plot of the signals could be obtained without integration (see Figure 5.27(b)). The plot of the signals at δ 18.72 – 18.46 was differently compiled than the others in order to distinguish between the two signals and to expand the region. The change in the size of the H₆ signals of the four carbene species involved in the metathesis of 1-octene in the presence of Gr2 at 50 °C over time is given in Figure 5.27. The size of the benzylidene signal decreases sharply to a minimum within 80 min (Figure 5.27(a)); after 90 min all of the Gr2 has been converted (see also Figure 5.25). The simultaneous decomposition of the benzylidene to some other species cannot be ruled out. The methylidene signal increases to a maximum within 40 min, followed by a slow decrease (Figure 5.27(c)). From the results obtained by Mtshatsheni,²⁶ it is noted that, at room temperature, the triplet increases to a maximum within 1 h, followed by a very slow decrease, while after approximately 2 h, an additional carbene signal starts to form. An increase in reaction temperature caused the quartet to sharply increase to a maximum within 60 min, followed by a slow decrease (Figure 5.27(b)), while an initial sharp increase to a maximum of the triplet signal within 20 min was followed by a gradual decrease as the reaction proceeded (Figure 5.27(b)).

![Figure 5.26](image_url)

Figure 5.26 The ¹H NMR peak integration values of the carbenes involved in the metathesis reaction of 1-octene in the presence of Gr2 at 50 °C.

[■ δ 19.21 ppm, ▲ δ 18.83 ppm]
(a) $\delta = 19.21$ ppm

(b) $\delta = 18.72 - 18.46$ ppm

(c) $\delta = 17.83$ ppm

Figure 5.27 1H NMR signals at different time intervals of the carbene α-H's in a 1-octene/Gr2 reaction mixture in CDCl$_3$ at 50 °C.

[(a) Ru=CHPh, (b) Ru=CH$_2$C$_6$H$_{13}$, (c) Ru=CH$_3$]
5.2.2 Metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy

The following section determines the optimum temperature and 1-octene/Ru molar ratio at which the hemilabile complexes would give high activity, while retaining a high degree of selectivity towards PMP with a limited amount of SMP and IP formation. It was decided to benchmark the Gr1Cy and Gr2Cy systems, which are analogous to those reported by Denk et al.\(^\text{29}\) (14) and Van der Schaaf et al.\(^\text{28}\) (15) for RCM and ROMP reactions, differing in ligand L which is attached to the Ru-centre. Investigations on the self- or cross-metathesis of linear alkenes with these types of systems, to my knowledge, have not been reported in the last decade. However, we have recently published our findings on the self-metathesis of 1-octene with Gr1Cy and Gr2Cy.\(^\text{15}\)

5.2.2.1 Optimisation of reaction conditions

It has been reported that the phosphine and NHC based ruthenium carbene systems with an O,N-chelating ligand are not very active for RCM and ROMP metathesis reactions at room temperature.\(^\text{8,26,29}\) As a result, experiments were carried out at temperatures ranging from 35 – 80 °C to determine the effect of temperature on the 1-octene metathesis activity and selectivity of Gr1Cy and Gr2Cy at a 1-octene/Ru molar ratio of 9000. Both Gr1Cy and Gr2Cy showed a rather low activity for the metathesis of 1-octene at 35 °C, i.e. approximately 10% and 3% PMP after 420 min, respectively. It was, however, noted that, at temperatures above 35 °C, Gr2Cy only dissolved after 15 min in the 1-octene, while the reaction mixture at 35 °C remained murky for the duration of the reaction. Gr1Cy dissolved within a few minutes in the 1-octene at 35 °C. This might suggest that, at low temperatures, Gr2Cy might rather act as a heterogeneous catalyst.
Table 5.5 summarises the catalytic activity and selectivity of Gr1Cy and Gr2Cy towards the metathesis of 1-octene over a temperature range of 35 – 80 °C. Although a linear increase in the activity of Gr1Cy towards the formation of PMP was observed with an increase in temperature, an exponential increase in IP and SMP was noted (see Figure 5.28 to 5.30). In contrast, Gr2Cy shows a sharp increase in PMP formation up to 70 °C, with an even sharper decrease in activity when the temperature increases above 70 °C, with an exponential increase in SMP (see Figure 5.28 to 5.30).

The major SMP products were found to be nonene (C9) and tridecane (C13) for both systems. A 5% and 2.5% increase in C13 and C9 was, respectively, observed for Gr1Cy with a 45 °C increase in temperature, while the combined contribution of the other SMP products was increased by 0.5%. An increase in temperature from 35 to 70 °C for Gr2Cy resulted in a 20% increase in C13, together with a 15% increase in C9, with the other SMP products contributing 2% to the total SMP's. It was interesting to note that a further increase of 10 °C for Gr2Cy resulted in an additional 20% increase in C13, while C9 only increased to a maximum of 10% within the first 10 min, followed by a slow decrease to 2%. The observed increase in undecene (C12) to 12% could be a result of cross metathesis between the isomers of C8, which would explain the observed decline. The presence of 1-propene and 1- and 2-butene was explicitly noted in the reaction samples of Gr2Cy at 80 °C; identified by GC/MSD (Chromatogram 5.1), while to a lesser degree for both systems at the lower temperatures. These products were not as explicitly observed in the Gr1- and Gr2-catalysed 1-octene metathesis reaction samples in comparison to Gr2Cy. Janse van Rensburg et al. has recently shown that the formation of propene during the metathesis of ethene in the presence of the methylidene intermediates of Gr1 or Gr2 species can cause irreversible substrate-induced decomposition of the Ru=C functionality (Scheme 5.1). Therefore, the reaction of the methylidene intermediate of Gr2Cy with the liberated ethene during the metathesis of 1-octene might lead to the formation of 1-propene and 1- and 2-butene according to the proposed substrate-induced decomposition route. Alternatively, the formation of propene and 1- and 2-butene by cross-metathesis of 1- and 2-octene, followed by the isomerisation of 1-butene (by reversible allyl-hydride formation), cannot be excluded.

\[
\begin{array}{c}
\text{Scheme 5.1 Substrate-induced catalyst decomposition during ruthenium-catalysed alkene metathesis.}^{18}
\end{array}
\]
Table 5.5: Catalytic activity and selectivity of Gr1Cy and Gr2Cy towards the metathesis of 1-octene at 35 - 80 °C (1-octene/Ru = 9000, no solvent) after 420 min.

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>T/°C</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP%/</th>
<th>%S<sup>a</sup></th>
<th>k<sub>init</sub> (mol s<sup>-1</sup>)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1Cy</td>
<td>35</td>
<td>10.2</td>
<td>0.1</td>
<td>0.0</td>
<td>98.87</td>
<td>5.48 x 10<sup>-6</sup></td>
<td>1143</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>53.2</td>
<td>0.4</td>
<td>0.5</td>
<td>98.34</td>
<td>2.06 x 10<sup>-6</sup></td>
<td>5907</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>59.6</td>
<td>1.2</td>
<td>1.5</td>
<td>95.97</td>
<td>5.55 x 10<sup>-6</sup></td>
<td>6652</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>90.3</td>
<td>8.1</td>
<td>2.2</td>
<td>89.80</td>
<td>6.39 x 10<sup>-6</sup></td>
<td>10119</td>
</tr>
<tr>
<td>Gr2Cy</td>
<td>35</td>
<td>3.3</td>
<td>0.6</td>
<td>0.0</td>
<td>85.40</td>
<td>6.00 x 10<sup>-6</sup></td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>81.1</td>
<td>12.9</td>
<td>0.0</td>
<td>86.28</td>
<td>5.19 x 10<sup>-6</sup></td>
<td>9214</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>91.8</td>
<td>26.1</td>
<td>0.0</td>
<td>77.83</td>
<td>1.35 x 10<sup>-5</sup></td>
<td>10428</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>59.9</td>
<td>58.5</td>
<td>0.3</td>
<td>50.48</td>
<td>2.82 x 10<sup>-5</sup></td>
<td>6811</td>
</tr>
</tbody>
</table>

^a Selectivity towards PMP

Figure 5.28: The observed trend for the mol% PMP with an increase of temperature during the metathesis of 1-octene in the presence of precatalysts 4a and 7 after 420 min.

[■ Gr1Cy ● Gr2Cy]
Figure 5.29 An exponential increase in the mol% SMP with an increase in temperature during the metathesis of 1-octene in the presence of precatalysts Gr1Cy and Gr2Cy after 420 min.

[■ Gr1Cy ● Gr2Cy]

Figure 5.30 An exponential increase in the mol% IP with an increase of temperature during the metathesis of 1-octene in the presence of precatalysts Gr1Cy and Gr2Cy after 420 min.

[■ Gr1Cy ● Gr2Cy]
Chromatogram 5.1 GC/MSD chromatogram of the reaction mixture of 1-octene in the presence of Gr2Cy at 80 °C after 3 h (No solvent, 1-octene/Ru = 9000, detector off between 5.4 - 5.8 min to exclude toluene, MSD response enlarged, only alkene products labelled – see Chapter 3 for identity of the other products).

It was also noted, that in the presence of Gr1Cy, the mol% IP increases to a maximum within the first 10 min, followed by a sharp decrease to ca. 0% within 30 min as the reaction proceeds (Figure 5.31), most probably due to cross metathesis of the IP's to form SMP's. Although a steady increase in the TON was observed for both Gr1Cy and Gr2Cy at elevated temperatures, a sharp reduction in the selectivity and TON was noted for Gr2Cy at temperatures above 70°C (Table 5.5).

The optimum working temperature whereby both catalytic systems gave high activity while retaining a high degree of selectivity towards PMP, with a limited amount of SMP and IP formation, was found to be 60 °C.

The influence of temperature on the relative stability of Gr1Cy and Gr2Cy are illustrated in Figure 5.32 and Figure 5.33, respectively, as a result of plotting ln([1-octene]) as a function of time. For both systems, a linear plot is obtained at 35 °C as well as at 60 °C for Gr2Cy, indicating pseudo first-order rate kinetics over the course of the reaction. The very slight curvature in the logarithmic plot for Gr1Cy at temperatures above 35 °C indicates that the precatalyst is starting to gradually decompose. Gr2Cy also shows a slight curvature in the logarithmic plot at 70 °C, but at 80 °C the precatalyst is starting to decompose rapidly, which might explain why SMP formation is increasing radically, i.e. approximately a 30% increase with a 10 °C increase in temperature. Although replacing the PCy3 with a NHC carbene increases the stability, lifetime and reactivity of Gr1Cy, the selectivity of the precatalyst decreases with an increase in temperature.
Figure 5.31 The mol% IP formed during the self-metathesis of 1-octene in the presence of Gr2Cy over a temperature range of 35 – 80 °C (1-octene/Ru = 9000, enlarged inset of the first 30 min excluding 80 °C).

[● 35 °C ■ 60 °C ● 70 °C △ 80 °C]

Figure 5.32 Logarithmic plot for Gr1Cy as a function of time at various temperatures.

[● 35 °C ■ 60 °C ● 70 °C △ 80 °C]
To determine the activation energy of the reaction in the presence of Gr1Cy and Gr2Cy, the initiation rate constants (k_{init} mol$^{-1}$ s$^{-1}$) for both systems were determined as a function of the mol 7-tetradecene formed over time (Table 5.5). A linear increase in k_{init} for the formation of 7-tetradecene was observed in the presence of Gr1Cy, while k_{init} increased exponentially for Gr2Cy with an increase in temperature (Figure 5.34). The graph representing the rate constants in the Arrhenius equation for Gr1Cy and Gr2Cy is given in Figure 5.35. The shape of the curves is identical to the illustrated graphs for Gr1 and Gr2 in Figure 5.18, in which two parts are identified, both approaching linearity. Similar to the results of the Gr1- and Gr2-induced 1-octene metathesis, the experimental results for Gr1Cy and Gr2Cy showed that at temperatures above 70 °C, SMP and/or IP formation significantly increases, with PMP formation being limited. By excluding the data above 70 °C, a linear graph was obtained for the first part of the graphs, in which the side reactions are negligibly small (Figure 5.37). From the data in Table 5.5, the activation energy was calculated as 117.58 kJ mol$^{-1}$ for Gr1Cy, and 139.41 kJ mol$^{-1}$ for Gr2Cy, with a pre-exponential factor of 4.95×10^{12} min$^{-1}$ and 2.85×10^{16} min$^{-1}$, respectively. The higher activation energy, compared to Gr1 and Gr2, suggests that the initiation of these systems might be due to bond breakage rather than the spontaneous dissociation of a ligand. This might also contribute to the higher stability of these systems relative to Gr1 and Gr2. The second part of the graph was not considered further, since insufficient data was available to obtain E_a values from the graph.
Figure 5.34 Initiation rate (k_{init}) as a function of temperature
[■ Gr1Cy, ● Gr2Cy]

Figure 5.35 Arrhenius plot for the 1-octene metathesis reaction in the presence of Gr1Cy and Gr2Cy.
[■ Gr1Cy, ● Gr2Cy]
5.2.2.2 Influence of catalyst concentration

I also investigated the influence of the 1-octene/Ru molar ratio on the performance of Gr1Cy to determine whether the precatalyst will be active at lower precatalyst concentrations. Table 5.5 summarises the catalytic activity and selectivity of Gr1Cy towards the metathesis of 1-octene at 60 °C, varying the 1-octene/Ru molar ratio from 2000 - 100 000. The activity of Gr1Cy towards the formation of PMP increases with a decrease in the 1-octene/Ru molar ratio, as illustrated in Figure 5.37, with a simultaneous increase in both the SMP and IP (Table 5.6).

![Figure 5.36](image)

Figure 5.36 Arrhenius plot for the 1-octene metathesis reaction in the presence of Gr1Cy and Gr2Cy, with the exclusion of $T = 80$ °C.

[■ Gr1Cy ● Gr2Cy]

<table>
<thead>
<tr>
<th>1-octene/Ru molar ratio</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S</th>
<th>k_{init} (mol s$^{-1}$)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>68.0</td>
<td>1.5</td>
<td>0.9</td>
<td>96.59</td>
<td>2.62 x 10$^{-5}$</td>
<td>1728</td>
</tr>
<tr>
<td>9000</td>
<td>53.2</td>
<td>0.4</td>
<td>0.5</td>
<td>98.34</td>
<td>2.06 x 10$^{-6}$</td>
<td>5907</td>
</tr>
<tr>
<td>100 000</td>
<td>32.0</td>
<td>0.2</td>
<td>0.5</td>
<td>97.86</td>
<td>5.52 x 10$^{-7}$</td>
<td>3569</td>
</tr>
</tbody>
</table>

*Selectivity towards PMP
Although the initiation rate of Gr1Cy increased with an increase in the precatalyst concentration, a sharp decrease in the TON was observed after reaching a maximum at a 1-octene/Ru molar ratio of 9000. Therefore, in order to have a high activity and selectivity of Gr1Cy towards PMP, with a limited amount of SMP and IP, an 1-octene/Ru molar ratio = 9000 was used for further investigations.

5.2.2.3 NMR investigation

In addition, I investigated the metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy with 1H NMR at 50 °C in CDC$_3$$_3$, to gain some insight into the reaction mechanism. The reaction was not investigated at 30 °C, due to limited availability of the precatalysts. The 1H NMR spectra obtained during these investigations are presented in Appendix F.

NMR investigation: metathesis with Gr1Cy (for simplicity referred to as C7 in the NMR section)

The H$_a$ signal (denoted H*) of the coordinated benzylidene C7 (C7a-H*) appears at δ 17.846 ppm, of the heptylidene [RuCl(PCy$_3$)(O*N)(=CHC$_8$H$_{13}$)] (C7ab-H*) at δ 17.002 ppm and the methylidene [RuCl(PCy$_3$)(O*N)(=CH$_2$)] (C7ac-H*) at δ 16.190 ppm. The shift of the H$_a$ peak of the benzylidene to a lower field to produce a triplet and a doublet is due to the change in the electronic environment of the ligand attached to the carbene carbon.
The change in the size of the pyridine α-H signals over time is illustrated in Figure 5.38. The change in the shift in the pyridine α-H signal (denoted as H^1) was also observed during the course of the reaction, indicating that the electronic environment of the ligand is changing, most probably due to the coordination and decoordination of the N-donor atom as the reaction continues. The pyridine α-H signal of the coordinated benzylidene ($C7a-H^1$) appears at $\delta 9.04$ ppm, but the other signals cannot be assigned with certainty to the other intermediates. Only three carbene species were observed during the metathesis of 1-octene in the presence of $C7a$ (Figure 5.39). Theoretically, six carbenes should be involved, but neither of the H_a signals for the uncoordinated $C7a$-related intermediates ($C7a\text{-open-}H^*$, $C7ab\text{-open-}H^*$ and $C7ac\text{-open-}H^*$) was observed. This might be due to the fast nature of the reaction, and the fact that ca. 13 min was needed for each NMR spectrum to be recorded over a period of 5 h. The reaction may therefore proceed at such a fast rate that some of the carbene signals are not observed within the time of recording the NMR spectrum. Figure 5.40 illustrates the change in the peak integration values of the individual carbene species as a function of time. The change in the size of the H_a signals of the three carbene species involved in the metathesis of 1-octene over time is given in Figure 5.41. The methylidene intermediate seems to follow a different pattern than that reported for Gr1, in which it seems the signal increases to a maximum with a gradual decrease without being depleted in the 5 hours as the reaction proceeds (Figure 5.41(c)). The benzylidene signal gradually decreases, suggesting the conversion of the benzylidene to the heptylidene and methylidene; after 200 min all of the Gr1Cy has been converted. The heptylidene and methylidene signals increase to a maximum, followed by a gradual decrease to a minimum as the reaction proceeds. The simultaneous decomposition of the benzylidene to some other species cannot be ruled out. In the presence of 1-octene it seems as if the benzylidene is simultaneously converted to the heptylidene and the methylidene as the reaction proceeds.
Figure 5.38 1H NMR signals at different time intervals of the pyridine α-H's in a 1-octene/C7 reaction mixture in CDCl$_3$ at 50 °C.
Figure 5.39 1H NMR spectra of the carbene proton region at different time intervals of a 1-octene/Gr1Cy reaction mixture in CDCl$_3$ at 50 °C.

Figure 5.40 The 1H NMR peak integration values (normalised) of the carbenes involved in the metathesis reaction of 1-octene in the presence of C7.
[■ δ 17.846 ppm, ● δ 17.002ppm, ▲ δ 16.170 ppm]
Figure 5.41 1H NMR signals at different time intervals of the carbene α-H's in a 1-octene/C7 reaction mixture in CDCl$_3$ at 50 °C

[(a) Ru=CHPh, (b) Ru=CH$_2$H$_5$, (c) Ru=CH$_3$]
NMR investigation: metathesis with Gr2Cy (for simplicity referred to as C28 in the NMR discussion)

I also investigated the metathesis of 1-octene in the presence of C28 with 1H-NMR at 50 °C in CDCl$_3$. In contrast to Gr1Cy, five carbene species were observed during the metathesis of 1-octene in the presence of C28, which might relate to the open and coordinated intermediates as illustrated in Figure 5.42. The H_a signal of the uncoordinated C28-related heptylidene intermediate (C28b-open-H$^+$) was not observed. The H_a signal of the coordinated benzylidene C28 (C28-H$^+$) appears at δ 18.053 ppm, of the heptylidene $[\text{RuCl}(\text{H}_2\text{IMes})(\text{O}^\cdot\text{N})(=\text{CHC}_9\text{H}_13)]$ (C28b) at δ 16.711 ppm and the methylidene $[\text{RuCl}(\text{H}_2\text{IMes})(\text{O}^\cdot\text{N})(=\text{CH}_2)]$ (C28c) at δ 16.079 ppm.

Figure 5.42: 1H NMR spectra of the carbene proton region at different time intervals of a 1-octene/C28 reaction mixture in CDCl$_3$ at 50 °C.
The shift of the H_a peak of the benzylidene to a lower field to produce a doublet and singlet is due to the change in the electronic environment of the ligand attached to the carbene carbon. The appearance of singlets at δ 19.484 ppm and δ 19.758 ppm can be attributed to the decoordination of the N-donor to produce the open benzylidene (C_{28}-H^1) and methylidene (C_{28c}-H^1) intermediates. The downfield shift of the carbene signals is due to the decrease in electron density around the Ru-C moiety and therefore the H_a becomes less shielded. A shift in the pyridine α-H signal was also observed during the course of the reaction (Figure 5.43), indicating that the electronic environment of the ligand is changing, most probably due to the coordination and decoordination of the N-donor atom as the reaction continues. The pyridine α-H signal of the coordinated benzylidene C_{28} (C_{28}-H^1) appears at δ 9.476 ppm, but the other signals cannot be assigned with certainty to the coordinated and uncoordinated heptylidene and methylidene intermediates nor the uncoordinated benzylidene. As seen in Figure 5.43, a number of the signals are overlapped, which made integration of the signals difficult and therefore no definite trend could be obtained.

Figure 5.44 illustrates the change in the size of the H_a signals of the three main carbene species involved in the metathesis of 1-octene with C_{28} over time. The two additional carbene signals that form during the metathesis reaction are given in Figure 5.45. The change in the peak integration values of the individual carbene species as a function of time is given in Figure 5.46. The form of the graph for signals δ 19.48 ppm and δ 16.71 ppm follows the same pattern, which suggests that these signals might be connected to each other in the form of the uncoordinated and coordinated heptylidene species, respectively. In the presence of 1-octene, it seems that the benzylidene is rapidly converted to the heptylidene, while the formation of the methylidene proceeds at a much slower rate. The individual species seem to follow a similar pattern as was reported for Gr1, in which it has been shown that the heptylidene is thermodynamically and kinetically favoured above the methylidene species.15

The sharp decrease of the benzylidene signal (Figure 5.45(a)) suggests a fast conversion of the benzylidene to either the uncoordinated benzylidene intermediate (C_{28}-open) or the heptylidene and methylidene; after 50 min all of the C_{28} has been converted. The simultaneous decomposition of the benzylidene to some other species cannot be ruled out. The increase to a maximum of the heptylidene signal within 26 min is followed by a gradual decrease as the reaction proceeds (Figure 5.45(b)), while the methylidene signal gradually increases to a maximum within 3 h, followed by a slow decrease (Figure 5.45(c)), possibly due to catalyst decomposition or formation of the uncoordinated methylidene intermediate (C_{28c}-open), which might be correlated to the gradual formation of the H_a signal at δ 19.76 ppm.
Figure 5.43 1H NMR signals at different time intervals of the pyridine α-H's in a 1-octene/C28 reaction mixture in CDCl$_3$ at 50 °C.
Figure 5.44 1H NMR signals at different time intervals of the carbene α-H's in a 1-octene/C$_{28}$ reaction mixture in CDCl$_3$ at 50 °C.

[(a) Ru=CHPh, (b) Ru=CHC$_6$H$_{13}$, (c) Ru=CH$_2$]
Figure 5.45 \(^1\)H NMR signals at different time intervals of the additional carbene \(\alpha\)-H's that formed in the 1-octene/C28 reaction mixture in CDCl\(_3\) at 50 °C.
[(a) Ru=CHPh-open (C28-open-H*) (b) Ru=CH\(\alpha\)-open (C28c-open-H*)]

Figure 5.46 The \(^1\)H NMR peak integration values (normalised) of the carbenes involved in the metathesis reaction of 1-octene in the presence of C28.
[\(\nabla\) \(\delta\) 19.758 ppm, \(\diamondsuit\) \(\delta\) 19.484 ppm, \(\Box\) \(\delta\) 18.053 ppm, \(\bullet\) \(\delta\) 16.711 ppm, \(\Delta\) \(\delta\) 16.079 ppm]
5.2.3 Comparing Grubbs systems with hemilabile Ru=C complexes

In § 5.2.2, optimum conditions were identified to obtain high 1-octene metathesis activity in the presence of a hemilabile complex. Consequently, a comparative study was made between the Grubbs carbenes (Gr1 and Gr2) and the hemilabile complexes with regards to the 1-octene metathesis activities and selectivities at the identified optimum conditions. The fact that most of the activity investigations were not repeated might lead to inaccurate representation of the initiation rates, but the given results can be used to give an initial indication of the reaction kinetics.

5.2.3.1 Metathesis with first generation hemilabile complexes

In Table 5.7, the 1-octene metathesis activity and selectivity of the first generation hemilabile precatalysts are compared to Gr1 after 420 min. The reactions were performed at 60 °C with a 1-octene/Ru molar ratio of 9000. A graphical representation is given in Figures 5.47 to 5.49. The catalytic activity of Gr1Pr could not be determined, as a result of its air and moisture sensitivity leading to the decomposition of the system before the reaction could be executed (see Chapter 4).

Table 5.7: Catalytic activity and selectivity of the various first generation hemilabile Ru=C complexes in comparison to Gr1 at 60 °C (1-octene/Ru = 9000, no solvent) after 420 min.

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S</th>
<th>k_{init} (mol s^{-1})</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1</td>
<td>21.2</td>
<td>0.2</td>
<td>4.8</td>
<td>80.92</td>
<td>4.65 x 10^{-5}</td>
<td>2172</td>
</tr>
<tr>
<td>Gr1Ph</td>
<td>30.5</td>
<td>0.0</td>
<td>0.8</td>
<td>98.07</td>
<td>1.26 x 10^{-6}</td>
<td>3740</td>
</tr>
<tr>
<td>Gr1Me</td>
<td>34.1</td>
<td>0.0</td>
<td>0.4</td>
<td>98.84</td>
<td>1.88 x 10^{-7}</td>
<td>4125</td>
</tr>
<tr>
<td>Gr1Cy</td>
<td>53.2</td>
<td>0.4</td>
<td>0.5</td>
<td>98.34</td>
<td>2.06 x 10^{-6}</td>
<td>5907</td>
</tr>
</tbody>
</table>

*a Selectivity towards PMP

Although the initiation rate of the hemilabile precatalysts are slower compared to Gr1, the TON, selectivity and lifetime of the precatalysts were improved. After 20 h, all the catalysts still showed activity towards the metathesis of 1-octene, i.e. approximately 69, 52 and 42% PMP for Gr1Cy, Gr1Me and Gr1Ph, respectively, while Gr1 (21% PMP) was inactive (see Figure 5.47). The selectivity towards the formation of PMP increased with ca. 30% in the presence of the hemilabile complexes compared to Gr1. IP formation remained below 1% for the hemilabile Gr1-type precatalysts while a 5% increase was observed in the presence of Gr1. SMP formation remained below 0.5% for all the systems, including Gr1. This indicates that the incorporation of a hemilabile ligand into Gr1 will improve the lifetime, activity and selectivity of Gr1 towards 1-alkene metathesis at higher temperatures. Denk et al. and van Koten et al. have also shown that the incorporation of a hemilabile ligand into the Grubbs system improves the activity of the precatalyst for ROMP and RCM reactions.
The relative stability of the precatalysts, as determined by plotting $\ln([1\text{-octene}])$ as a function of time, is compared to Gr1 in Figure 5.50. Due to the linear logarithmic plot for Gr1Me, compared to the slight curvature in the plots for Gr1Cy and Gr1Ph, it appears that Gr1Me is more stable than the other two systems. However, Gr1Cy and Gr1Ph decompose very slowly compared to the dramatic decomposition of Gr1 at 60 °C. This indicates that the hemilabile complexes are more stable than Gr1.

Electronic as well as steric effects can play an important role on the behaviour of transition metal precatalysts. Since the development of the cone angle theory by Tolman31 in the 1970s, it has been shown that steric effects are generally at least as important as electronic effects, and that they can dominate in many cases. Nolan et al.32,33 has recently defined a spherical volume to describe the steric influence of NHC-type ligands on catalyst activity. Since O,N-chelating ligands cannot be seen in the same light as phosphine or NHC ligands, the atomic volume of the complete system, as determined by DFT calculations, was used to quantify the steric influences of these ligands.

Figure 5.47 PMP formed during the metathesis of 1-octene in the presence of Gr1 related complexes at 60 °C.

[■ Gr1 ○ Gr1Ph ▲ Gr1Me ▲ Gr1Cy]
Figure 5.48 SMP formed during the metathesis of 1-octene in the presence of Gr1 complexes at 60 °C (enlarged inset of the first 30 min).

[■ Gr1 ○ Gr1Ph ♦ Gr1Me ▲ Gr1Cy]

Figure 5.49 IP formed during the metathesis of 1-octene in the presence of Gr1 related complexes at 60 °C (enlarged inset of the first 30 min).

[■ Gr1 ○ Gr1Ph ♦ Gr1Me ▲ Gr1Cy]
Figure 5.50 Comparing the logarithmic plot of Gr1 with hemilabile first generation Grubbs analogues at 60 °C

[■ Gr1 ● Gr1Ph ● Gr1Me ▲ Gr1Cy]

The atomic volume of the precatalysts increased in the order Gr1Me < Gr1Cy < Gr1Ph as the steric bulk of the alkyl substituents (R' and R2) on the 2-pyridinylcarbinolate ionic ligand (HL1) increased. Figure 5.51 illustrates the influence of atomic volume on both PMP formation and \(k_{\text{init}} \). A linear increase in both PMP formation and initiation rate is observed with an increase in steric bulk. However, a dramatic decrease in activity was observed for Gr1Ph. This might be due to the free rotation of the phenyl-rings on C2 of HL1, which increases the steric bulk around the Ru-centre and therefore obstructs coordination of the 1-octene to the Ru=C-moiety. The stability of the complex might also be influenced by electronic effects, which can cause low activity, but was not investigated in much detail during this study.
Since Gr1Quino, Gr1Cy-Py and Gr1Pico-Py were to some extent successfully synthesised (see Chapter 4), it was deemed necessary to determine the activity of these systems towards 1-octene metathesis. A large quantity of Gr1Quino and Gr1Cy-Py was lost in the process of purifying the complexes before executing the metathesis reactions, and therefore no data could be obtained for these two systems. On the other hand, after further purification of Gr1Pico-Py, the metathesis activity was investigated at 60 °C with a 1-octene/Ru molar ratio of 9000. Although Gr1Pico-Py showed a selectivity of 89% towards PMP formation, only 2.5% PMP formation was achieved after 420 min at 60 °C along with 0.3% IP formation. This gives an indication that changing the electronic environment of the C2 of HL1 has a dramatic effect on the activity of the ruthenium carbene, and should therefore be investigated in more detail.

5.2.3.2 Metathesis in the presence of second generation hemilabile complexes

In Table 5.8, the 1-octene metathesis activity and selectivity after 420 min of the second generation hemilabile precatalysts are compared to Gr2. Graphical representations of the 1-octene metathesis reactions at 60 °C with a 1-octene/Ru molar ratio of 9000 are given in Figure 5.52 to 5.54.
Similar to the first generation hemilabile complexes, the lifetime and activity of the second generation analogues have been improved, regardless of the slow initiation rate of these systems compared to Gr2 at 60 °C. However, an approximate 10 – 20% decrease in the selectivity of Gr2Cy, Gr2'Pr and Gr2Me towards the formation of PMP was evident after 420 min, compared to Gr2, while the selectivity of Gr2Ph slightly increased. After 20 h, all the catalytic systems still showed activity towards the metathesis of 1-octene, i.e. approximately 88, 82, 70 and 93% PMP for Gr2Cy, Gr2Me, Gr2Ph and Gr2'Pr, respectively, while Gr2 (82% PMP) was inactive after ca. 7 h (see Figure 5.52). Therefore, a 4 – 10 % increase in PMP formation for Gr2Cy, Gr2'Pr and Gr2Me was observed after 20 h compared to a 40% increase for Gr2Ph, indicating the high stability and activity of these complexes. The SMP formation for all the precatalysts remained almost unchanged with only a 1 – 2% increase leading to an approximate 2% decrease in the selectivity of Gr2Cy, Gr2'Pr and Gr2Me towards the formation of PMP. However, a 20% increase in the selectivity of Gr2Ph was observed after 20 h. The fact that no IP formation was observed after 420 min for the hemilabile complexes or Gr2, indicates that cross metathesis occurred simultaneously with the isomerisation of 1-octene. Although the observable IP's for all the complexes remained below 0.2% (Figure 5.54), an increase to a maximum within the first 5 – 10 min was followed by a sharp decrease to ca. 0% within 10 – 30 min as the reaction proceeded (Figure 5.54), most probably due to cross metathesis of the IP's to form SMP's. Additionally, a second increase in IP formation is noted for Gr2Me within 3 h, followed by a slow decrease to 0% after 7 h (Figure 5.54). The major SMP product was found to be tridecene (C13) for all the systems, which is mainly a result of the cross metathesis of 1- and 2-octene (see Appendix E for a detailed outline of all the possible side reactions of 1-octene metathesis).

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S*</th>
<th>k_{init} (mol s^{-1})</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr2Ph</td>
<td>34.0</td>
<td>0.9</td>
<td>0.0</td>
<td>97.42</td>
<td>9.23 x 10^7</td>
<td>3861</td>
</tr>
<tr>
<td>Gr2Me</td>
<td>74.0</td>
<td>21.8</td>
<td>0.0</td>
<td>77.24</td>
<td>4.66 x 10^6</td>
<td>7644</td>
</tr>
<tr>
<td>Gr2Cy</td>
<td>81.1</td>
<td>12.9</td>
<td>0.0</td>
<td>86.28</td>
<td>5.19 x 10^6</td>
<td>9214</td>
</tr>
<tr>
<td>Gr2</td>
<td>81.6</td>
<td>3.6</td>
<td>0.0</td>
<td>95.77</td>
<td>1.89 x 10^4</td>
<td>8881</td>
</tr>
<tr>
<td>Gr2'Pr</td>
<td>87.0</td>
<td>13.0</td>
<td>0.0</td>
<td>87.00</td>
<td>7.54 x 10^6</td>
<td>11 729</td>
</tr>
</tbody>
</table>

* Selectivity towards PMP
Figure 5.52 PMP formed during the metathesis of 1-octene in the presence of Gr2 related complexes at 60 °C.

[■ Gr2 ◇ Gr2Ph ▲ Gr2Me △ Gr2Cy ▼ Gr2'Pr]

Figure 5.53 SMP formed during the metathesis of 1-octene in the presence of Gr2 related complexes at 60 °C (enlarged inset of the first 30 min).

[■ Gr2 ◇ Gr2Ph ▲ Gr2Me △ Gr2Cy ▼ Gr2'Pr]
The influence of atomic volume on the PMP formation (Figure 5.55) and initiation rate (Figure 5.56) of the second generation hemilabile Grubbs systems is graphically represented in Figure 5.55 and 5.56, respectively. A linear increase in the PMP formation is observed with an increase in steric bulk, while an exponential increase in the initiation rate is noted. However, a similar dramatic decrease in activity is observed for Gr2Ph as was observed for Gr1Ph, which is likely to also be due to the free rotation of the phenyl-rings on C2 of HL1 leading to an increased steric bulk around the Ru-centre.

The stability of the precatalysts is graphically compared to Gr2 in Figure 5.57. The linear plot of Gr2Ph, Gr2Me and Gr2Cy, compared to the curved plots of Gr2'Pr and Gr2, indicates that the aforementioned systems are more stable. However, despite the high thermal stability of Gr2Me and Gr2Cy, low selectivities are displayed towards PMP formation. On the other hand, high selectivity and stability is observed for Gr2Ph despite its slow activity.
Figure 5.55 Influence of atomic volume on PMP formation of the second generation hemilabile complexes.

[■ Gr2Me ◆ G2Cy ▲ Gr2Pr ● Gr2Ph]

Figure 5.56 Influence of atomic volume on the initiation rate of the second generation hemilabile complexes.

[■ Gr2Me ◆ G2Cy ▲ Gr2Pr ● Gr2Ph]
Figure 5.57 Comparing the logarithmic plot of Gr2 with hemilabile second generation Grubbs analogues at 60 °C.

To determine whether temperature would increase the 1-octene metathesis activity of Gr2Ph, which has a very long lifetime at 60 °C, the reaction was investigated at 120 °C. A graphical representation of the reaction progress is given in Figure 5.58. An increase in temperature results in a 26% decrease in PMP formation, with a simultaneous 72% increase in SMP formation within 60 min. The mol% IP increases to a maximum within the first 10 min, followed by a sharp decrease to ca. 0% within 60 min as the reaction proceeds (Figure 5.58). This indicates that the isomerisation activity of Gr2Ph increased with an increase in temperature, which led to an increase in SMP formation due to cross-metathesis of the IP's. The isomerisation can probably occur either by reversible allyl-hydride formation, or due to the decomposition of the precatalyst to form a monophosphine Ru-hydride intermediate.\(^\text{16,21}\) These mechanisms have been previously explained in much detail for the Grubbs carbenes and are applicable to our system.\(^\text{18,21}\)
Figure 5.58 Reaction of 1-octene in the presence of Gr2Ph at 120 °C (no solvent, 1-octene/Ru = 9000).

A more detailed study should therefore be launched to investigate the alkene isomerisation probability of Gr2Ph and the other first and second generation complexes to be able to elaborate in more detail on the above observations.

Since Gr2Quino and Gr2Pico were to some extent successfully synthesised (see Chapter 4), it was deemed necessary to determine the activity of these systems towards 1-octene metathesis. The metathesis activity of these two systems was investigated at 60 °C with a 1-octene/Ru molar ratio of 9000. Similar to the first generation system Gr1-PyPico, the activity of the ruthenium carbene was significantly influenced by varying the electron environment of C2 on HL1. Gr2Quino and Gr2Pico showed low activity towards the formation of PMP's, with Gr2Pico only achieving 0.1% PMP formation compared to 0.4% for Gr2Quino.

Table 5.9 Catalytic activity and selectivity of Gr2Pico and Gr2Quino at 60 °C (1-octene/Ru = 9000, no solvent) after 420 min.

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>PMP/%</th>
<th>SMP/%</th>
<th>IP/%</th>
<th>%S⁵</th>
<th>kₖᵢₙᵢₜ (mol s⁻¹)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr2Pico</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>100.00</td>
<td>2.41 × 10⁻⁷</td>
<td>1</td>
</tr>
<tr>
<td>Gr2Quino</td>
<td>0.4</td>
<td>0.0</td>
<td>0.2</td>
<td>61.61</td>
<td>6.37 × 10⁻⁷</td>
<td>39</td>
</tr>
</tbody>
</table>

⁵ Selectivity towards PMP
5.3 REFERENCES

6.1 INTRODUCTION

The Hérisson-Chauvin metal carbene mechanism is the generally accepted mechanism for the alkene metathesis reaction (Scheme 6.1).\(^1\) The mechanism consists of successive [2+2] cycloadditions followed by cycloreversions. This involves the coordination of the alkene to the metal centre to form a \(\pi\)-complex, followed by the formation of a metallacyclobutane intermediate, which in turn can revert to a new \(\pi\)-complex to yield the products after dissociation.

![Scheme 6.1: Hérisson-Chauvin metal carbene mechanism.](image)

Theoretical studies can be of immense use to resolve the effect of ligand coordination and to gain deeper insights into the mechanism of catalytic reactions. There has been a few recent studies that calculated mechanistic parameters or combined experimental work with computational studies on the alkene metathesis mechanism with ruthenium carbenes.\(^2\)\(^-\)\(^12\) In these studies, the catalytic cycle and ligand dissociation of the methylidene species \(\text{RuCl}_2(\text{PR}_3)_2(=\text{CH}_2)\) (F1 in Scheme 6.2) were extensively explored. Many of these studies made use of model \(\text{PR}_3\) (\(R = \text{H}, \text{Me}\)) ligands and/or ethene as model substrate with the methylidene complex F1, mainly to reduce the computing cost. This leaves room for interpretation concerning the steric and electronic influences of the actual ligands (\(\text{PCy}_3\) versus \(\text{PR}_3\), \(R = \text{H}, \text{Me}\)) and substrates (1-octene versus ethene) with the benzylidene complex (versus methylidene complex) as precatalyst.

Adlhart et al.\(^3\) have postulated a number of mechanistic pathways which can be divided into 2 main categories, i.e. an associative and dissociative mechanism. Recent studies indicate that the dissociative mechanism, which is initiated by the dissociation of a phosphine ligand from \(\text{RuX}_2(\text{PR}_3)_2(=\text{CHR})\) to form a 14-electron species, is preferred.\(^2\)\(^,\)\(^3\)\(^,\)\(^13\) Chen et al.\(^4\) confirmed this by the identification of the 14-electron species by gas-phase ESI-MS/MS. The rate of phosphine dissociation and initiation of the alkene metathesis reaction by \(\text{RuX}_2\text{L(PR}_3)_2(=\text{CHR})\)-type precatalysts have been investigated theoretically and experimentally by Sanford et al.\(^2\)
Although many aspects of the alkene metathesis mechanism in the presence of Gr1 were elucidated by various techniques including kinetic measurements, there are still aspects that need to be investigated. This includes the determination of the species that are most active in the metathesis reaction as well as elucidating the mechanism followed when the benzyldiene, and not the methylidene, is used as precatalyst. We have recently published a conceptual model of the complete mechanism for the productive dissociative mechanism of the 1-octene metathesis reaction in the presence of Gr1 (Scheme 6.2 and 6.3), which will be discussed in the following sections.

In this study, I report on aspects of the mechanism of 1-octene metathesis with Gr1, Gr2, Gr1Cy and Gr2Cy. A conceptual model of the complete mechanism in the presence of Gr1 is presented (see Scheme 3.1 and 3.2 in Chapter 3) and applied to Gr2 (Scheme 3.1 and 3.2) and the hemilabile complexes Gr1Cy and Gr2Cy (Scheme 3.3 in Chapter 3). Due to insufficient crystallographic data for the hemilabile complexes on the coordination position of the O- and N-atoms, it is assumed, according to various publications, that the O,N-ligand coordinates according to Figure 6.1.

![Figure 6.1](image-url) Illustration of the coordination positions of the O- and N-atoms of the O,N-ligand.

The conceptual model for Gr1 was based on the dissociative mechanism proposed by Grubbs et al., modelled by Chen et al. and our experimental results. To experimentally determine the various by-products that form during the catalytic conversion of 1-octene to 7-tetradecene with Gr1, the large-scale experimental setup (§ 3.5) was changed to a small-scale setup to exclude quenching of the samples. This was done to eliminate the formation of esters, aldehydes and ketones as a result of quenching the samples with tert-butyl-hydrogen peroxide (§ 3.5.1.2). Therefore, the reaction was performed at room temperature (25 °C) at a 1-octene/Ru molar ratio of 1000 in a 5 mL mini reaction bottle with continuous monitoring of the reaction by GC/FID. The various products formed during the reaction were identified by GC/MSD (§ 3.6.2.2). The two isomers, cis- and trans-7-tetradecene (see Chromatogram 3.1, Chapter 3), which form part of the PMP, are the main products of the homometathesis of 1-octene. Although cross-metathesis occurs as a side reaction to produce a range of C_2 - C_4 alkene products (SMP), this reaction was
not included in the conceptual model since the focus was mainly on the productive metathesis of 1-octene to form 7-tetradecene.

After 3 h, the following by-products were also identified in the reaction mixture with the aid of GC/MSD (see Chromatogram 3.3, Chapter 3), i.e. styrene, cis- and trans-1-phenyl-1-octene (or hexyl styrene), PCy3 and O=PCy3. The presence of PCy3 in the reaction mixture is consistent with the dissociation step leading to the active 14-electron benzylidene species. Furthermore, the presence of the styrenes is indicative of the formation of ruthenium methylidene and heptylidene species. The different orientation possibilities of 1-octene coordination to the Gr1 benzylidene metal centre lead to the formation of a heptylidene species with the liberation of styrene, or the methylidene species with the liberation of the hexyl styrenes. Therefore, the observation of the various by-products aided us in composing the mechanistic models for the initiation, activation and catalytic steps of the Gr1-catalysed 1-octene metathesis reaction, which will be discussed in detail in the following sections.

For the purpose of this study the minimum structure obtained from the geometry optimisation (GGA/PW91/DNP) of 1-octene was used in further calculations. In this structure, the hexyl chain was "straight" and remained so in most of the optimisations of intermediates. The influence of the various confirmations of 1-octene on the energetics of the reaction pathway was not considered in this study. The optimised structures along with the located transition states for the various transformations for the relevant catalytic systems are presented on the included CD. The car files (hidden files) as well as xsd files of the structures are included together with the outmol data files. The energies of the various starting complexes as well as TS's in the Gr1-energy profiles are different than the published values, since after confirmation calculations were performed on a number of the steps, structures were obtained which more closely resembled the desired π-complex and ruthenacyclobutane intermediates. The distances in some of the original structures were too large and/or did not represent the true equilibrium structure.

6.2 METATHESIS OF 1-OCTENE IN THE PRESENCE OF GRUBBS CARBENES

The quantum mechanical calculations that were employed in this study were applied to the RuCl2(PCy3)L(=CHPh) and RuCl2L(O^N)(=CHPh) (L = PCy3 or H2IMes and O^N = 1-(2'-pyridinyl)-cyclo-hexan-1-olate) complexes with a closer focus on the trans addition of 1-octene to the catalytically active species. For Gr1, the coordination of the alkene trans with respect to the ligand L is the most favourable pathway, due to the fact that large phosphines, like PCy3, have a Tolman cone angle of 170° and the position trans with respect to the carbene would be avoided due to the strong σ-donor effect of the carbene bond. This is shown to be the case according to the
computational studies of Adlhart et al.\(^3\) (ADF program, BP86 functional) in which the coordination of the alkene \textit{trans} towards L is one of the two most favourable pathways in the catalytic cycle. The coordination of the alkene \textit{trans} towards L was applied to the other systems to make a comparison with Gr1. The \textit{trans} coordination of the alkene with respect to the ligand L will most probably also reduce steric crowding around the metal, since the steric bulk increases with the incorporation of the O,N-ligands investigated in this study.

According to Janse van Rensburg et al.,\(^{12}\) the alkyldiene CR\(_2\) plane of the precatalysts "A" may be orientated either parallel (A1) or perpendicular (A2) to the Cl-Ru-X plane (X = Cl or O), as illustrated in Figure 6.2 for Grubbs first and second generation catalysts and their hemilabile analogues. They\(^{12}\) indicated that, for the methyldiene precatalyst of Gr1 and Gr2, different CH\(_2\) orientations could account for the most stable precatalyst complex, i.e. a parallel orientation of CH\(_2\) for Gr2, and perpendicular orientation for Gr1.

![Figure 6.2 Illustration of the possible orientation of the alkyldiene moiety for the Ru-carbene precatalysts.](image)

Due to time constraints, the various possibilities were not investigated in this study. Complexes corresponding to A1 (for Gr1 and Gr2) and AN1 (for hemilabile complexes) were used as starting complexes before any optimisation attempts were commenced. This resulted either in the spontaneous rotation of the alkyldiene moiety toward a perpendicular orientation (as seen for Gr1Cy and Gr2Cy in Figure 6.3(b)) or remained parallel (as seen for Gr1 and Gr2 in Figure 6.3(a)) after optimisation of the structures. It is interesting to note that the Ph-ring on the alkyldiene moiety rotates downward towards the O,N-ligand for Gr2Cy, while it does so in the opposite direction for Gr1Cy. This is most probably due to the steric influence of the mesityl groups on the NHC ligand, while the Cy groups on PCy\(_3\) can rotate to relief steric crowding.
Figure 6.3(a) Optimised geometries for the lowest energy Gr1 and Gr2 complexes. The hydrogen atoms on the ligands are omitted for clarity and the unit of the indicated bond lengths is angstrom (Å).

Figure 6.3(b) Optimised geometries for the lowest energy Gr1Cy and Gr2Cy complexes. The hydrogen atoms on the ligands are omitted for clarity and the unit of the indicated bond lengths is angstrom (Å).
In an attempt to get a better idea of the validity of the computational method used in this study, comparisons of key bond lengths and angles of Grl were made. The calculated bond lengths and angles are compared with crystallographic data obtained by Nguyen et al.22 and calculated values obtained by Adhart et al.23 (Table 6.1). An acceptable correlation is obtained with bond lengths being overestimated and bond angles generally being underestimated in the calculations.

Table 6.1 Crystallographic and theoretical values of key bond lengths and angles of Grl.

<table>
<thead>
<tr>
<th>Bond Lengths (Å)</th>
<th>Nguyen22</th>
<th>Calculated*</th>
<th>Calculated23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru=C</td>
<td>1.838(2)</td>
<td>1.878</td>
<td>1.860</td>
</tr>
<tr>
<td>Ru-Cl\textsubscript{avg}</td>
<td>2.390(1)</td>
<td>2.452</td>
<td>2.420</td>
</tr>
<tr>
<td>Ru-P\textsubscript{avg}</td>
<td>2.415(1)</td>
<td>2.490</td>
<td>2.435</td>
</tr>
<tr>
<td>Bond Angles (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl-Ru-Cl</td>
<td>168.21(2)</td>
<td>160.97</td>
<td>162.4</td>
</tr>
<tr>
<td>P(1)-Ru-P(2)</td>
<td>161.90(2)</td>
<td>163.35</td>
<td>-</td>
</tr>
<tr>
<td>Ru=C-R</td>
<td>136.70(2)</td>
<td>136.04</td>
<td>-</td>
</tr>
</tbody>
</table>

*DMol5 GGA/PW91/DNP – full DFT calculation of geometries
Ref.22 (ADF BP86 – QM/MM calculation of geometries)

In the subsequent sections the individual phases or steps in the mechanism will be discussed in more detail under the following headings:
- Catalyst initiation
- Catalyst activation
- Catalytic cycle

6.2.1 Catalyst initiation

It is generally accepted that the Ru-catalysed alkene metathesis reaction proceeds via a dissociative mechanism, which is initiated by the dissociation of a phosphine ligand from RuX\textsubscript{2}(PR\textsubscript{3})L(=CHR) to form a 14-electron species ("B").23,22 In this sense catalyst initiation involves the dissociation of PC\textsubscript{yl} for both Grl and Gr2.

Catalyst Initiation of hemilabile complexes raises a few questions:

a) Since hemilabile ligands are believed24 to release a free coordination site "on demand" of competing substrates and occupying it otherwise, the following question can be asked: Does the ruthenium centre of the hemilabile complexes become coordinatively unsaturated with or without the influence of the incoming alkene (see Scheme 6.2)?
NMR studies of the 1-octene metathesis reaction in the presence of these complexes should be able to give insight into the mechanism *inter alia* monitoring the precatalyst over time in the absence and presence of the alkene with 1H and 31P NMR. From these results, the influence of the alkene on releasing a free coordination site might be obtained. Due to time constraints not all the aspects of this question could be fully addressed. 1H NMR analysis of the 1-octene metathesis reaction in the presence of Gr2Cy (\S 5.2.2.3) indicated the presence of 5 carbene species while only 3 were visible in the presence of Gr1Cy. Due to insufficient information, no concluding remarks could be made on the influence of the alkene, but it was noticeable that two different mechanisms may be involved for the first and second generation complexes. This should be investigated further.

Scheme 6.2 Illustration of the dissociative (a-b) and associative (c) catalyst initiation steps for Gr1Cy and Gr2Cy.

To address this question theoretically, a comparative study on the catalyst initiation steps in Scheme 6.2 is needed to determine which pathway (a-b (dissociative) or c (associative)) would be more favourable. At the time of completing this study, only the dissociative mechanism was addressed and will be discussed in the following sections.

b) Since the above question was not fully answered and the NMR results suggested that two different mechanisms might be involved for the first and second generation hemilabile precatalysts, a second question can be asked: Does precatalyst initiation for Gr1Cy and Gr2Cy involve the dissociation of the labile N-atom of the O,N- ligand (Scheme 6.3 (a)), or does it rather involve the dissociation of ligand L (with $L = PCy_3$ or H_2Mes) (Scheme 6.3 (b))?
This was asked due to the fact that, throughout the catalytic investigation of the 1-octene metathesis reaction in the presence of all the first generation hemilabile complexes, the free PCy₃ ligand was experimentally observed with GC/FID. In the following sections, attempts will be made to answer these questions.

(a) Dissociation of labile N-atom of O,N-ligand

(b) Dissociation of ligand L

Scheme 6.3 Dissociation ("A" to "B") steps in the mechanism of productive 1-octene metathesis using RuCl₂(PCy₃)₂(L)(O=N)(=CHPh).

Since ligand dissociation proceeds prior to the interaction of the alkene with the ruthenium centre, precatalyst initiation requires the formation of an unsaturated 14-electron complex, "B" (Scheme 3.1 and 6.3). Similar to precatalysts "A", various orientations of the alkylidene moiety in "B" is also possible (Figure 6.4), but was not explored in this study. Complexes corresponding to "B1" were used as starting structures prior to optimisations. Spontaneous formation of the perpendicular alkylidene orientation ("B2") resulted during optimisation of the unsaturated Gr½, Gr1Cy and Gr2Cy complexes, while remaining parallel for the second generation Grubbs system (Gr2-B1) as illustrated in Figure 6.5. The Ph-ring of the alkylidene once again rotates upward towards PCy₃ for the first generation systems while the steric bulk on NHC causes the Ph-ring to rotate downward into the open coordination site for Gr2Cy.
Grubbs 1st and 2nd generation catalysts

Grubbs 1st and 2nd generation hemilabile catalysts

Hemiabible analogues with L₁ dissociated

Figure 6.4 Illustration of the possible orientation of the alkylidene moiety for the Ru-carbene unsaturated complexes.

Table 6.2 summarises the calculated electronic (ΔE) energies in kcal/mol for the initiation phase ("A" - "B") of the 1-octene metathesis reaction in the presence of Gr₁, Gr₂, Gr₁Cy and Gr₂Cy according to the dissociation of the N-atom or L ligand.

Dissociation of PCy₃ from the first generation 16-electron precatalyst complex (Gr₁-A₁) proceeds with ΔE = 21.89 kcal/mol and 25.92 kcal/mol for the second generation precatalyst (Gr₂-A₁). This is in agreement with the experimental kinetic studies by Grubb's in which ΔHᵢ values of 23.6 ± 0.5 and 27 ± 2 kcal/mol were obtained for Gr₁ and Gr₂, respectively.

Table 6.2 Calculated electronic (ΔE) energies in kcal/mol for the initiation phase sequence "A" - "B" as catalysed by Gr₁, Gr₂, Gr₁Cy and Gr₂Cy.

<table>
<thead>
<tr>
<th>Mechanistic sequence #</th>
<th>Gr₁</th>
<th>Gr₂</th>
<th>Gr₁Cy</th>
<th>Gr₂Cy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B₁</td>
<td>21.89ᵇ</td>
<td>25.92ᵇ</td>
<td>23.26ᵇ</td>
<td>61.52ᵃ</td>
</tr>
<tr>
<td>B₂</td>
<td>-</td>
<td>-</td>
<td>20.26</td>
<td>16.08</td>
</tr>
</tbody>
</table>

All energies are reported relative to the respective precatalysts "A" and balanced with the energies of the free ligand where necessary.

ᵇ Dissociation of L = H₂Mes; no PCy₃ ligands are present in this complex

ᵃ Dissociation of L = PCy₃
Figure 6.5 Optimised geometries for the lowest energy first and second generation Grubbs unsaturated complexes, as well as their hemilabile analogues. The hydrogen atoms on the ligands are omitted for clarity and the unit of the indicated bond lengths is angstrom (Å).
The dissociation of PCy₃ in the first generation hemilabile analogue GrlCy-A₂ (ΔE = 23.26 kcal/mol) is calculated to be 3 kcal/mol less favourable than the dissociation of the labile N-atom of the O,N-bidentate ligand. This implies that GrlCy might rather initiate via the dissociation of the labile N-atom, which compared to Grl, is ca. 1.5 kcal/mol more favourable. This suggests that the initiation kinetics of GrlCy should be in the same order as Grl, but was shown to be an order of magnitude slower (§ 5.2.3). Although the dissociation of PCy₃ from GrlCy-A₂ (B₄) is ca. 3 kcal/mol less favourable than B₅, it is only 1.5 kcal/mol less favourable than Grl, and should therefore not be completely discarded. Only after investigating the complete mechanism, i.e. initiation, activation and catalytic cycle, can concluding remarks be made with regards to which dissociation step B₄ or B₅ is favoured. The dissociation of H₂Mes in the second generation hemilabile analogue Gr₂Cy-A₂ (ΔE = 61.52 kcal/mol) is found to be more unfavourable (45 kcal/mol) than the dissociation of the labile N-atom. This suggests that Gr₂Cy also initiates via the dissociation of the labile N-atom (ΔE = 16.08 kcal/mol), which compared to Gr₂, is ca. 10 kcal/mol more favourable. Similarly to GrlCy, the initiation kinetics of Gr₂Cy was found to be 2 orders of magnitude slower compared to Gr₂, which is not in agreement with the theoretical study. This is an indication that Gibbs free energy corrections need to be done on the intermediates to include enthalpy and entropy changes. The results will then be more accurately comparable to the experimental work.

The possibility of another mechanistic route dominating inter alia an associative coordination of the alkene prior to dissociation of the labile N-atom, could lead to different initiation rates. This should, therefore, be more extensively explored to elucidate the preferred mechanistic pathway of 1-octene metathesis catalysed with a hemilabile complex.

6.2.2 Catalyst activation

After catalyst initiation, an alkene coordinates to the unsaturated intermediate species "B" to form the corresponding π-complexes "C". The coordination of the alkene in the trans position can be in two discrete, perpendicular orientations for the various Ru=C systems according to the different initiation steps (Scheme 6.4).

In this study, the coordination of the alkene parallel to the Cl-Ru-Cl line and perpendicular or orthogonal to the carbene (Cₚ) was used in the equilibrium geometry calculations of the π-coordination structures (C, E, G and I) for Grl, since the work³ upon which the conceptual model of Grl was based considered this coordination as energetically favourable. If the alkene coordinates in the Cₚ mode (Scheme 6.4), it has to turn approximately 90° to align with the benzylidene carbene bond (Cₘ mode) to yield the metallacyclobutane intermediate (C-D, etc.). In a recent study,¹² it was shown that the coordination of the alkene in the Cₙ mode is more
energetically favoured. Therefore, for Gr2, Gr1Cy and Gr2Cy, both the C\textsubscript{p}-C\textsubscript{II}-D and C\textsubscript{II}-D conversion were investigated, while investigation of the C\textsubscript{II}-D conversion for Gr1 was still ongoing at completion of this study. For the sake of simplicity, all the π-coordination structures are given in the C\textsubscript{p} mode and will be referred to as the C\textsubscript{p} mode when investigating the C\textsubscript{p}-C\textsubscript{II}-D conversions, while the C\textsubscript{II} mode will be used when looking at the C\textsubscript{II}-D conversions.

Since ethene is generally used as substrate in most theoretical studies, we initially modelled the activation steps of Gr1 with ethene to the corresponding metallacyclobutane intermediate and compared our results with the values obtained by other authors (Figure 6.6). This was done to determine the validity of the computational method we used in this study and point out the importance of using the benzylidene precatalyst instead of the methylidene model.

(a) Grubbs 1st and 2nd generation catalysts

(b) Grubbs 1st and 2nd generation hemilabile analogues: Dissociation of labile N-atom

(c) Grubbs 1st and 2nd generation hemilabile analogues: Dissociation of ligand L

Scheme 6.4 Trans alkene coordination in the dissociative pathway for the Grubbs catalysts (L = PC\textsubscript{y} or H\textsubscript{2}Mes).
Figure 6.6 A comparison of the calculated and literature-reported electronic energy profiles of the activation steps of ethene metathesis using Gr1.

The electronic energy profile we calculated (DMoI, GGA-PW91 functional, DNP basis set) was for the Gr1 benzylidene system, while the electronic energies obtained by Adlhart et al. (ADF program, BP86 functional, triple ξ basis set on ruthenium and a polarised double ξ basis set for all other elements), Burdett et al. (Jaguar 4.1 program, B3LYP hybrid functional, LACVP** basis set) and Janse van Rensburg et al. (DMoI, GGA-PW91 functional, DNP basis set) were calculated for the Gr1 methylidene. It has been shown that sterically bulky and electron-donating R groups (e.g. alkyl, Ph) lead to higher initiation rates (phosphine dissociation) because they more effectively promote phosphine dissociation, while small and electronically neutral groups (e.g., H) are less effective at stabilising the phosphine ligand. This is not significantly clear in Figure 6.6. The trend for the formation of the metallacyclobutane ring is similar in all four cases, but a more stable 16-electron complex ("C") as well as a 14-electron metallacyclobutane ("D") is obtained from the benzylidene complex. It was shown that electron-withdrawing phosphine ligands would destabilise the 14-electron metallacyclobutane intermediate ("D") relative to the 14-electron carbene species ("B"). Therefore, the presence of an electron-donating species will have a stabilisation effect on these complexes. This explains the catalytic activity of the methylidene but lack of activation by the benzylidene.
The coordination of the substrate to the 14-electron species ("B" to "C") is a step that is in competition with the recoordination of the phosphine ligand ("B" to "A"). In our model there is only one substrate molecule competing with one phosphine, although in a catalytic system with precatalyst to substrate ratios of 1:500 or more, this competition is statistically favoured towards the substrate. The stoichiometric competition described in our model excludes this statistical competitiveness. The competition can be described by comparing the energy of coordination of the phosphine to the energy of coordination of the substrate by taking the ratio of the respective energy differences. These values are summarised by the ratio $\Delta E_{B-A}/\Delta E_{B-C}$ in Table 6.3 for the metathesis of 1-octene and ethene with Gr1 and Gr2. Grubbs et al.2,13,25 have demonstrated experimentally that the activity of a metathesis catalyst can be correlated to the ratio of the rates for phosphine recoordination (k_1) and ethene coordination (k_2) to the 14-electron complex "B". They have found that k_1/k_2 was 4 orders of magnitude larger for Gr1 in comparison to Gr2, which quantified the better alkene coordination selectivity of Gr2 to its higher experimentally observed activity. A similar trend is observed from the modelling results in which phosphine recoordination is favoured for Gr1, while Gr2 displays a larger affinity for the coordination of 1-octene. However, it was also noted that the affinity of Gr1 and Gr2 towards phosphine slightly increases with an increase in the chain length of the substrate.

<table>
<thead>
<tr>
<th>Table 6.3</th>
<th>Comparison of electronic energies of the π-coordination intermediate RuCl$_2$(PCy$_3$)$_2$(\equivCHPh) containing ethene and 1-octene.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Ratio</td>
<td>$\Delta E_{B-A}/\Delta E_{B-C}$</td>
</tr>
<tr>
<td>Gr1+ethene</td>
<td>2.11</td>
</tr>
<tr>
<td>Gr1+1-octene</td>
<td>2.39</td>
</tr>
<tr>
<td>Gr2+ethene</td>
<td>1.63</td>
</tr>
<tr>
<td>Gr2+1-octene</td>
<td>1.79</td>
</tr>
</tbody>
</table>

If the electronic energy profiles of Gr1 with ethene and 1-octene are compared (Figure 6.7), it is clear that the 1-octene does not coordinate as strongly as the ethene to B ("C"). The electronic energy of activation of "C" to "D" with ethene is 2.87 kcal/mol while the value with 1-octene is 13.85 kcal/mol. Adhart and Chen23 calculated the activation energy (ΔE_f) for the insertion barrier "C" to "D" with styrene as 12.30 kcal/mol. The activation with 1-octene seems to be the less favourable outcome. The metalloccyclobutane intermediates are of similar thermodynamic electronic stability in both cases. The formation of "D" form "C" is exergonic for both ethene (-4.67 kcal/mol) and for 1-octene (-6.49 kcal/mol), with the rate-limiting step in both cases being the decomposition of the metallacyclobutane ("D" to "E"). The overall energy change from "B" to "F" is
endergonic (0.22 kcal/mol) for ethene and exergonic (-3.87) for 1-octene, which can be a small driving force for the 1-octene activation. Thus, if the substrate is changed from a C₂ to a C₈ alkene, deviations in the electronic profiles are observed which could have an impact on the rate of activation of the complexes. One should therefore be careful to directly apply the model with ethene as a simple substrate to systems using larger substrates like 1-octene.

The activation steps for the formation of the methylidene and heptylidene species were investigated in more detail for Gr₁, Gr₂ as well as the hemilabile Gr₁Cy and Gr₂Cy systems to determine which pathway is more favourable. The activation step investigations of the hemilabile complexes will be discussed separately from the Grubbs carbenes in order to distinguish between the different activation phases that formed due to the two distinct initiation phases.

Figure 6.7 Electronic energy profiles of the activation steps of the metathesis of ethene and 1-octene using Gr₁.
6.2.2.1 Activation phase: Gr1- and Gr2-catalysed metathesis reaction

Figure 6.8 - 6.9 illustrate the activation steps for the C\textsubscript{p} mode of Gr1 and Gr2, while Figure 6.10 illustrates the steps for the C\textsubscript{Il} mode of Gr2. Activation step 3 is not shown because of its similarity to activation step 4. Dissociation of the phosphine and association of the alkene are both free of activation enthalpy because they proceed without considerable rearrangement of the complex.

Activation step 4 (B to C\textsubscript{4} to F\textsubscript{4}) is kinetically and thermodynamically more favourable than activation steps 1 (B to C\textsubscript{1} to F\textsubscript{1}) and 2 (B to C\textsubscript{2} to F\textsubscript{1}; note F\textsubscript{2} = F\textsubscript{1}) for both systems in the C\textsubscript{p} mode as well as the C\textsubscript{Il} mode of Gr2. The rate-limiting step for the formation of the alkylidene species in the presence of Gr1 is the decomposition of the rhenacyclobutane ("D" to "E"), while for Gr2 it is rhenacyclobutane formation ("C" to "D"). The activation energy of the rate-limiting step ("D" to "E") for heptylidene formation from Gr1 is 25.45 kcal/mol while methylidene formation requires more than 29 kcal/mol and the overall energy change from "B" to "F" is -3.37 and approximately 17 kcal/mol, respectively. For Gr2 in the C\textsubscript{p} mode, the activation energy of the rate-limiting step ("C" to "D") for heptylidene formation is 42.12 kcal/mol while methylidene formation requires more than 50 kcal/mol. The overall energy change from "B" to "F" is 4.47 and for methylidene formation approximately 20 kcal/mol. Therefore, the heptylidene formation is exothermic for Gr1 and endothermic for Gr2 from "B" to "F", which indicates that Gr2 is thermally more stable than Gr1. The calculated activation energy of the rate-limiting step ("C" to "D") for heptylidene formation in the C\textsubscript{Il} mode of Gr2 is 31.83 kcal/mol, while methylidene formation requires ca. 44 kcal/mol. The overall energy change from "B" to "F" is similar to the C\textsubscript{p} mode since the unsaturated species are identical in both modes.

Whether one reaction pathway is favoured compared to an alternative pathway does not depend on relative energy differences of individual step, but on the absolute energy of the highest transition state.28 Therefore, for Gr2, coordination of the alkene parallel to the carbene and perpendicular or orthogonal to the Cl-Ru-Cl line (C\textsubscript{Il}) seems to be the more energetically favoured pathway, since the activation energy of the rate-limiting step is lower for the C\textsubscript{Il} mode compared to the C\textsubscript{p} mode. Interestingly, the decomposition of the rhenacyclobutane ("D" to "E") for heptylidene formation as well as methylidene formation in step 2 is barrierless in the C\textsubscript{Il} mode, while respective barriers of 5.08 and 1.63 kcal/mol have to be overcome in the C\textsubscript{p} mode. Additionally, during methylidene formation from Gr2, barriers of 11 and 15 kcal/mol have to be overcome in activation step 1 for the decomposition of the rhenacyclobutane ("D" to "E") in the C\textsubscript{Il} and C\textsubscript{p} modes, respectively. This might indicate that D\textsubscript{1}, in which the orientation of the alkyl chain of \textit{1}-octene is \textit{trans} relative to the Ph-ring of the benzylidene moiety, is more stable than D\textsubscript{2}, where the alkyl chain is \textit{cis} relative to the Ph-ring. Therefore, due to steric crowding in D\textsubscript{2}, it spontaneously transforms to E\textsubscript{2} in the C\textsubscript{Il} mode with only a small barrier of 1.63 kcal/mol to overcome in
the C₉ mode. The fact that heptylidene formation is kinetically and thermodynamically more favourable than the formation of methylidene for both Gr1 and Gr2 explains why the ¹H NMR results (§ 5.2.1.2) show a rapid formation of the heptylidene at the onset of the reaction at room temperature.

6.2.2.2 Activation phase: hemilabile Ru=C-catalysed metathesis reaction

a) Metathesis of 1-octene in the presence of Gr1Cy and Gr2Cy

Dissociation of the labile N-atom from Gr1Cy and Gr2Cy

Figure 6.11 and 6.13 illustrate the activation steps for the C₉ mode of Gr1Cy and Gr2Cy, while Figure 6.12 and 6.14 illustrate the steps for the C₁₁ mode according to Scheme 3.3. Activation step 3 is not shown for the hemilabile systems because of its similarity to activation step 4. No energy barriers were calculated for the dissociation of the labile N-atom or the association of the alkene since it was assumed that these steps proceed without considerable rearrangement of the complex. This should be investigated further to take the rotation of the hemilabile ligand around the Ru-O-bond into consideration.

Figure 6.8 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr1 (only the C4 to F4 structures are shown) (C₉ mode).
Figure 6.9 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2 (only the C4 to F4 structures are shown). (C\(_\text{a}\) mode)

Figure 6.10 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2 (only the C4 to F4 structures are shown). (C\(_\text{b}\) mode)
Figure 6.11 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr1Cy (only the C₄ to F₄ structures are shown) (C₄ mode).
Figure 6.12 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr1Cy (only the C4 to F4 structures are shown). (CII mode)
Figure 6.13 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2Cy (only the C₄N₄ to F₄N₄ structures are shown) (C₆ mode).
Figure 6.14 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2Cy (only the C4v to F4v structures are shown) (C₆ mode).
Activation step 4 (BN to CN to FA) is thermodynamically and kinetically more favourable than activation steps 1 (B to C, to FN) and 2 (B to CN to FN; note FN = FN1) for both systems in the C, and C, mode. However, the modelling results for Gr2Cy cannot explain the observed 1H NMR results, in which the carbene signal of FN1 from Gr2Cy is observed to keep growing without being depleted. This indicates that the complete mechanism, with inclusion of the catalytic cycle, should be investigated to make any concluding remarks. It has however been demonstrated by Halpern that the most abundant complex in a solution need not be a part of the most favourable catalytic cycle; it may represent, in fact, a dead end. Therefore, a more in depth study of the complete mechanism is needed. The absence of FN1 in the 1H NMR study of the 1-octene metathesis reaction with Gr1Cy, might suggest that a different mechanistic pathway is followed.

The calculated reaction energy for the formation of the ruthenacyclobutane intermediate (Gr1Cy-CN4) from the π-complex Gr1Cy-CN4 in the presence of Gr1Cy is endergonic (3.31 kcal/mol) for the C, mode with activation energy of 31 kcal/mol. In contrast, the formation of "Dn" from the π-complex "C" is exergonic for both activation steps 1 (-11.95 kcal/mol) and 2 (-4.51 kcal/mol) with activation energies of 66 and 45 kcal/mol, respectively. The decomposition of the ruthenacyclobutane ("Dn" to "En") is endergonic for both the heptylidene (15 kcal/mol) and methyldene (ca. 23 kcal/mol) formation steps with activation energies of ca. 45 and 70 kcal/mol, respectively. The coordination of the 1-octene in the C, mode has a ca. 2 - 5 kcal/mol decrease in ΔE‡ for "Dn" to "En" for all 3 activation steps, as well as for "CN" to "DN" in step 2. Additionally, a 30 kcal/mol decrease in ΔE‡ is observed for the formation of the ruthenacyclobutane in step 1, while step 4 shows a 2 kcal/mol increase. This indicates that the alkene prefers to coordinate to Gr1Cy in the C, mode, in which the steric bulk around the Ru-centre is relieved in steps 1 and 2. This is due to the fact that the alkyl chain of 1-octene in steps 1 and 2 is no longer parallel to the C,Ru-O line, in which the alkyl chain was directly below the O,N-ligand and thereby adding to the steric bulk around the Ru-centre. The rate-limiting step for the formation of the heptylidene, as well as the methyldiene species in the presence of Gr1Cy, is the decomposition of the ruthenacyclobutane ("Dn" to "En") for both coordination modes.

For Gr2Cy, the decomposition of the ruthenacyclobutane ("Dn" to "En") in step 4 for both coordination modes, as well as the formation of "Dn" from "Cn" in step 1 for the C, mode is exergonic, i.e. approximately -13 and -1 kcal/mol, respectively. All the other formation or decomposition steps are endergonic for both the C, and C, modes. In contrast to Gr1Cy, different rate-limiting steps are involved for the formation of the heptylidene species from Gr2Cy in the C, and C, modes i.e. "Dn" to "En" for C, and "Cn" to "Dn" for C, with activation energy of 25.93 and 19.21 kcal/mol, respectively. The decomposition of the ruthenacyclobutane ("Dn" to "En") is considered the rate-limiting step for the formation of the methyldiene species in step 1 (ΔE‡,b1-b2 = 37.63 kcal/mol) and 2 (ΔE‡,b2-b3 = 74.14 kcal/mol) in the C, mode as well as step 2 (ΔE‡,b2-b3 =...
51.66 kcal/mol) in the \(C_p \) mode. The rate-limiting step for the formation of the methyldiene species in step 1 in the \(C_p \) mode is the formation of the ruthenacyclobutane with an activation energy of 67.77 kcal/mol. No conclusions can be made regarding the preferred coordination mode of the alkene to Gr2Cy, since mixed increasing and decreasing effects are observed with regards to the TS's. This might be due to the fact that the preliminary frequency analysis on the various TS’s indicated that only \(D_{in1}-E_{in1} \) (263i cm\(^{-1}\)) and \(C_{in4}-D_{in4} \) (120i cm\(^{-1}\)) in the \(C_p \) mode are close to a transition state. This supports the fact that refinements on the reagents and products need to be done, followed by TS confirmations and TS optimisations within the DFT calculations. These are time-consuming computations, which additionally require vibrational mode calculations that were ongoing at the time of completion of this study. The overall energy change from "\(B_{in} \)" to "\(F_{in} \)" for both the \(C_p \) and \(C_{ll} \) mode for heptylidene formation in the presence of Gr1Cy and Gr2Cy is 16.47 and 7.22 kcal/mol, respectively. For methyldiene formation it is between 27 and 29 kcal/mol, respectively. The 1-octene metathesis reaction in the presence of Gr1Cy and Gr2Cy is therefore strongly endothermic compared to Gr1 and Gr2, which indicates that the hemilabile Ru-carbene complexes are relatively more stable compared to the Grubbs carbenes. The reason why Gr2Cy is less endothermic compared to Gr1Cy, when the opposite is actually expected, is uncertain at this stage and needs to be investigated further. It might be that \(\Delta G \) corrections will provide a different answer, as was illustrated\(^{12} \) for the ethene metathesis reaction with Gr1.

Comparison of the activation steps of Gr1Cy and Gr2Cy for the formation of the heptylidene species in the \(C_{ll} \) mode (which is more favourable than the \(C_{p} \) mode) (see Figure 6.15), suggests that Gr2Cy is more active than Gr1Cy. Due to the endergonic nature of the sequence "\(A_{in} \)" \(\rightarrow \) "\(B_{in} \)" \(\rightarrow \) "\(C_{in} \)" \(\rightarrow \) "\(C_{in}-D_{in} \)" (Figure 6.15) for both systems, the total barrier for ruthenacyclobutane ("\(D_{in} \)") formation may be correlated to the energy change of "\(A_{in} \)" \(\rightarrow \) "\(C_{in}-D_{in} \)".\(^{12} \) The largest barrier is calculated for Gr1Cy (62.03 kcal/mol), with Gr2Cy (46.90 kcal/mol) exhibiting a much lower barrier. Therefore, relative reaction rates for these catalyst in decreasing order are suggested: Gr2Cy > Gr1Cy, which is in qualitative agreement with the relative turnover numbers (§ 5.2.2) of these systems.\(^ {26} \)

Dissociation of ligand L from Gr1Cy and Gr2Cy:

It is generally assumed that ruthenium-catalysed metathesis reactions proceed through 14-electron intermediates.\(^ {24,13} \) Therefore, the possibility of phosphine or NHC ligand dissociation from the respective first and second generation hemilabile carbenes should not be excluded. Consequently, we have postulated a mechanism for the Gr1Cy and Gr2Cy-catalysed 1-octene metathesis reaction (Scheme 3.4 in Chapter 3) whereby the O,N-ligand remains attached to the Ru-centre. Similar to the dissociation of the labile N-atom, a very stable methyldiene species is obtained from Gr1Cy and Gr2Cy after dissociation of L. As seen in Figure 6.16 (a) and (b), the
only difference between the optimised heptylidene and methylidene species is the alkyl chain of the alkylidene moiety, which makes this result inexplicable.

The activation steps for the Cp mode of Gr1Cy and Gr2Cy are graphically represented in Figure 6.17 and 6.19, while Figure 6.18 and 6.20 illustrate the steps for the Cn mode according to Scheme 3.4. Activation step 3 is not shown due to its similarity to activation step 4. No energy barriers were calculated for the dissociation of ligand L (L = PCy3 or H2Mes) or the association of the alkene, since it proceeds without considerable rearrangement of the complex.

Experimental and theoretical evidence has shown that the phosphine, and not the NHC carbene dissociates from Gr2, indicating that the intermediates for catalysis by first and second generation catalysts are different. Due to the higher binding energy of NHC ligands in comparison to phosphine ligands, the dissociation of the NHC ligand during the initiation step of the mechanistic cycle will result in higher dissociation energy. This is most probably due to the increased σ-donor capability and the reduced π-acidity of the NHC ligand in comparison to PR3 ligands, which increase the stability of the second generation catalysts. When applied to the hemilabile second generation systems, it is clearly shown that the dissociation of the NHC ligand, which is 45 kcal/mol higher than the dissociation of the labile N-atom, will be improbable.

The individual steps ("Cn", "Dn", and "En") of the current activation phase in the presence of Gr2Cy are approximately 10–20 kcal/mol higher for both the Cp and Cn modes, compared to the activation phase in which the labile N-atom of the O,N-ligand dissociates (Figure 6.13 and 6.14). This indicates that Gr2Cy most likely initiates according to Scheme 3.3 rather than Scheme 3.4.

Although the dissociation of PCy3 from Gr1Cy is 3 kcal/mol higher compared to the dissociation of the labile N-atom of the O,N-ligand, more stable intermediates form during the activation phase for both the Cp and Cn modes (Figure 6.17 and 6.18). A decrease of approximately 15–30 kcal/mol is observed in the energies of the alkene-coordinated π-complexes, together with a 5–15 kcal/mol decrease in the metallacyclobutane "D" species. A decrease was also noted in the transition states, which varied between 5 to 45 kcal/mol. Additionally, the overall energy changes from "Bl" to "Fl" for both the Cp and Cn modes decrease with 12 kcal/mol. This indicates that Gr1Cy most likely initiates according to Scheme 3.4 rather than Scheme 3.3, which explains why only 3 carbene species are observed during the 1H NMR investigation (§ 5.2.2.3). Since it has been shown that Gr2Cy initiates according to Scheme 3.3, only the activation steps (Scheme 3.4) for the 1-octene metathesis reaction with Gr1Cy, will be discussed in more detail.
Figure 6.15 Comparison of the electronic energy profiles of the activation steps of Gr1Cy and Gr2Cy in the productive 1-octene metathesis (C\textsubscript{2} mode).
(a) Hemilabile unsaturated heptylidene (FL4) species after dissociation of L.

(b) Hemilabile unsaturated methylidene (FL1) species after dissociation of L.

Figure 6.16 Optimised geometries for the heptylidene and methylidene Gr1Cy and Gr2Cy species after dissociation of L. The hydrogen atoms on the ligands are omitted for clarity.
Figure 6.17 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr1Cy (only the C_{14} to F_{14} structures are shown) (C_{6} mode).
Figure 6.18 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr1Cy (only the C₄,4 to F₄,4 structures are shown) (C₅₃ mode).
Figure 6.19 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2Cy (only the C4 to F4 structures are shown) (Cp mode).
Figure 6.20 Electronic energy profiles of the activation steps in the productive 1-octene metathesis using Gr2Cy (only the C4 to FL4 structures are shown) (CII mode).
Activation step 4 (B₄ to C₄ to F₄) is thermodynamically and kinetically more favourable than activation steps 1 (B₁ to C₁ to F₁) and 2 (B₂ to C₂ to F₂; note F₂ = F₁) for GrICy in the C₉ and C₁₁ mode. The calculated reaction energy for the formation of the ruthenacyclobutane intermediate ("D") from the π-complex "C" in the presence of GrICy is endergonic for the C₉ (ca. 11 kcal/mol) and C₁₁ (ca. 9 kcal/mol) mode for all the activation steps. In contrast, the formation of "D₄" from the π-complex "C₄" is exergonic for all the activation steps in the C₉ (ca. -7 kcal/mol) and C₁₁ (ca. -8 kcal/mol) mode. The coordination of the 1-octene in the C₁₁ mode shows only a slight decrease in the activation energy of the ruthenacyclobutane formation and decomposition steps for activation steps 2 (1.92 kcal/mol decrease) and 4 (3.94 kcal/mol decrease), with a 1 kcal/mol increase for step 1. In contrast, a 12.59 kcal/mol increase was observed in ΔEₐ for "D₄" to "E₄" for step 1. This indicates that the alkene can coordinate to GrICy in either mode. The rate-limiting step for the formation of the heptylidene (ΔEₐ = 30 kcal/mol) as well as the methylidene (ΔEₐ = 30 to 42 kcal/mol) species in the presence of GrICy, from which PCy₃ has dissociated, is the formation of the ruthenacyclobutane ("C₄" to "D₄") for both coordination modes.

b) Metathesis of 1-octene in the presence of GrIPh

In an attempt to investigate the activation of the remaining O,N-chelated Ru=C hemilabile complexes, a first glance were given to the GrIPh system, which was experimentally shown to initiate fairly slow. The dissociation of the N-atom of the pyridine requires 23.68 kcal/mol energy (Table 6.4), which is 3.43 kcal/mol higher than GrICy, supporting the slower initiation rate of GrIPh compared to GrICy (§ 5.2.3.1). However, the coordination of 1-octene to GrIPh, either parallel or perpendicular to the carbene (Figure 6.21 (a)) to form the heptylidene intermediate, is unfavourable. This is likely due to the steric pressure exerted by the combined bulk of the O,N-ligand and trialkylphosphine ligand (PCy₃) forcing the alkene out of coordination proximity of the Ru=C (see Figure 6.21 (a)). Conversely, it was noted that optimisation of the starting complex in which the 1-octene was coordinated parallel to the carbene with the alkyl chain of 1-octene cis to the Ph-ring of the benzylidene moiety (Figure 6.21 (b)), 1-octene remained within coordination distance of the Ru-centre. The latter will result in the formation of the methylidene intermediate, which has been shown for GrI Cy to be thermodynamically so stable that it will not react any further, indicating that another mechanism is involved.

The steric constraints may be relieved through coordination of the alkene after dissociation of the PCy₃ ligand. Although this was not investigated for GrIPh, it was shown to be more favourable for GrICy. Investigation of the various initiation routes of the remaining hemilabile complexes together with their activation steps were ongoing at the time of completion of this study and will not be discussed further.
(a) Coordination of 1-octene in C_p for formation of heptylidene

(b) Coordination of 1-octene in C_{II} for formation of methylidene

Figure 6.21 Optimised structures for the coordination of 1-octene to Gr1Ph in the C_p and C_{II} modes
Table 6.4 Electronic energies for the 1-octene metathesis reaction with Gr1Ph and Gr1Cy in the C\textsubscript{11} mode to form the methyldiene active species

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Catalyst</th>
<th>Gr1Ph</th>
<th>Gr1Cy</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>"B"</td>
<td>23.68</td>
<td>20.26</td>
<td></td>
</tr>
<tr>
<td>"C"</td>
<td>30.00</td>
<td>25.66</td>
<td></td>
</tr>
</tbody>
</table>

6.2.3 Catalytic cycle

The catalytic cycles for Gr1, using the heptyliden F4, were further investigated; a 1-octene molecule now coordinates to the catalytically active species to yield H4 (see Scheme 3.2). The catalytic cycles of the other systems were beyond the scope of this study. Stereochemically the coordination of 1-octene can take place in two different modes, the hexyl groups trans (G4a) and the hexyl groups cis (G4b), with their respective electronic energy profiles illustrated in Figure 6.22.

The energies of "G" and "H", as well as the TS's, are different than the published values, since after confirmation calculations were performed on these steps ("G" to "H"), structures were obtained which more closely resembled the desired π-complex and ruthenacyclobutane. The distances in the original structures were too large and "H" did not represent a true ruthenacyclobutane. The two approaches give rise to transition states with different electronic energies; the cis-mode requiring 17.33 kcal/mol and the trans-mode only 11.28 kcal/mol. The calculated reaction energy for the formation of the ruthenacyclobutane intermediate ("H") from the π-complex "G" in the presence of Gr1 is exergonic for the cis-route (ca. -2.60 kcal/mol) and the trans-route (ca. -3.24 kcal/mol). The metallacyclobutane intermediates that form (H3a and H3b) then liberates the PMP's, trans-7-tetradecene and cis-7-tetradecene, and the methyldiene (F1).

The trans/cis-ratio found experimentally (Chromatogram 6.1) correlates roughly with the corresponding activation energy ratio.
Figure 6.22 Electronic energy profile of the trans- and cis-routes from the heptylidene F4 to the methyldiene F1.

Chromatogram 6.1 GC/FID chromatogram of the reaction mixture of 1-octene in the presence of Gr1 at 25 °C after 1 h (solvent = chlorobenzene, 1-octene/Ru = 1000, FID response enlarged).
Finally, the completion of the catalytic cycle, F1 to F4, was modelled. The complete electronic energy profile of A to F4 to F1 to F4 is illustrated in Figure 6.23, with the transition states for the decomposition of the ruthenacyclobutanes H4 and H1 now added to the published energy profile. The conversion to the heptylidene (F1-F4) is thermodynamically favoured over the conversion to the methylidene (F4-F1), with changes in electronic energies of approximately -5 and 6 kcal/mol respectively. The different energies shown in the F1 to F4 cycle are due to the formation of trans- and cis-7-tetradecene carried over in the mass balance used for the calculation.

Only after considering the full mechanistic cycle can a complete picture be obtained with regards to the relative activity of the catalyst, as illustrated for Gr1 in Figure 6.23. The rate-limiting step for the activation step as well as the reaction was identified as the decomposition of the ruthenacyclobutane D4. The activation energy for the decomposition of H4 is ca. 2 kcal/mol lower, making this step a potential rate-determining step, indicating that Gibbs free energy (ΔG) corrections need to be made to the electronic energies for vibrational, translational and rotational energies of the molecules. Thereby the thermodynamic properties of the reaction can be calculated, which will more accurately determine the rate determining step of the reaction. This will require the computationally expensive calculation of vibrational modes of atoms in the molecule, which was ongoing at the time of completion of this study. Janse van Rensburg et al. elegantly illustrated this point for the coordination of ethene to Gr1, where the electronic energies predicted one coordination mode as the lowest energy, while after ΔG corrections were made, another was shown to be the true lowest equilibrium structure.

6.2.4 References
5. Louie, J. and Grubbs, R.H., Organometalics, 2002, 21, 2153
Figure 6.23 Electronic energy profile of a complete pathway in the 1-octene metathesis mechanism using Gr1 (only trans structures are shown from F4 to F4).

Conclusions & Recommendations

7.1 INTRODUCTION

The purpose of this study was to develop new ruthenium carbene complexes with hemilabile bidentate ligands (hereafter referred to as Ru=C hemilabile complexes) for application in linear alkene metathesis. The focus was to improve the thermal stability, activity and lifetime of Gr1 and Gr2 for the metathesis of linear alkenes. It is known that, despite the high selectivity of Gr1 during the metathesis of terminal alkenes, its lifetime decreases with an increase in temperature. The development of Gr2 has to some extent dealt with this drawback by providing a catalytic system with excellent activity and lifetime. However, the selectivity of Gr2 decreases at elevated temperatures. The development of the Ru=C hemilabile complexes were attempted because of the fact that it was recently shown that the activity and selectivity of Gr1 and various second generation Grubbs systems for ROMP and RCM reactions at elevated temperatures improved through the incorporation of a hemilabile ligand into the system.

7.2 SYNTHESIS OF HEMILABILE COMPLEXES

A number of O,O-, O,N-, O,S-, O,P-carboxylate and O,O-, O,N-alcoholate ligands with increased steric and/or electronic properties were investigated as possible hemilabile ligands for incorporation into Gr1 and Gr2. This was achieved by reacting a metal salt of the ligand with Gr1 or Gr2, respectively, at 16 to 35 °C until TLC analysis indicated all of the starting carbene was consumed. Lithium, thallium, silver, potassium and sodium salts have previously been used to manipulate the ruthenium carbene complexes, of which the thallium salts were more generally used than the others. Due to the toxicity of thallium ethoxide and the instability of the resulting thallium salts, other possibilities were first explored. Therefore, the reaction of Gr1 with the sodium salts of selected carboxylate and alcoholate ligands were initially investigated but later terminated, since most of the syntheses were unsuccessful. The reactions generally resulted in the decomposition of Gr1 to form Ru(PCy3)(L)(Cl)(CO) [L = PCy3 or H2IMes, R = Ph or H], free PCy3 and O=PCy3, with little or no carbene (either Gr1 or new complex) present (§ 3.4.1). Only the reaction of Gr1 with the sodium salt of pyca resulted in the formation of a new carbene complex. The identity of this carbene could not be determined with any certainty due to insufficient spectroscopic data as a result of impurities and loss of sample during purification.

The next step was therefore to investigate the thallium and lithium salts of the various ligands, since literature has shown that these types of salts are more frequently used to manipulate the Grubbs carbenes. It was noted that the thallium and lithium salts of the carboxylic acids were
not a viable source for manipulating the Grubbs carbenes. This was due to the fact that the reaction of Gr1 with the lithium or thallium salts of the carboxylate-ligands resulted in either unreacted Gr1 (Gr1 and lithium salt of furoic acid (S25), Table 3.10), formation of a mixture of carbenes (Gr1 and thallium salt of pyca (S7), Table 3.9) or the decomposition of Gr1 with little or no carbene (Gr1 or new complex) present afterwards (see Table 3.9 – 3.21 for the remaining carboxylate complexes). Therefore, since the reaction of Gr1 with the sodium salt of pyca resulted in the formation of a new carbene, similar results might be obtained from the sodium salts of the remaining carboxylic acids, which should be investigated further. However, according to a recent publication,32 two pyca ligands were successfully incorporated into Gr2 at 60 °C, which are harsher conditions than those applied in this study. It might therefore be interesting to investigate the carboxylic acid chelating ligands further to determine the influence of temperature and/or the type of salt used on the successful incorporation of these types of ligands into the Grubbs carbenes.

Although the incorporation of L9 and L10, two O,O-ligands, into Gr1 and Gr2 was unsuccessful, it has been previously shown33 that other O,O-ligands could be successfully incorporated into the Grubbs carbenes. Molecular modelling was used in combination with the experimental work to gain insight into possible reasons for the unsuccessful synthesis of the O,O-chelated ruthenium carbenes. The modelling results (see Chapter 4) suggested that the synthesis of the first generation O,O-chelating complexes would be difficult as a result of the endothermic energy required for coordination of the labile O-atom to the Ru-centre through dissociation of PCy3. Therefore, since the reactions were performed at RT and the formation of TICl was visible, with no carbene forming, other decomposition routes might have dominated. The ¹H-NMR supported the formation of 39 as a possible decomposition product from the reaction of Gr1 or Gr2 with the lithium or thallium salt of L10 (Figure 4.2, § 4.3.1 and Scheme 7.1). Therefore, the results suggest that the type of O,O-ligands to be considered for manipulating the Grubbs carbenes in the future are aromatic systems with no alkyl groups attached to the labile donating O-atom. The absence of an alkyl group is necessary to avoid possible reaction of the alkyl group with the carbene moiety, which will lead to decomposition of the carbene.

To theoretically investigate the possibility of 39 forming, a mechanistic route is postulated in Scheme 7.1, which should be investigated further to determine its feasibility. Although it is generally accepted that PCy3 dissociates from the Grubbs carbenes during a metathesis reaction,34-36 a different mechanism might play a role during synthetic manipulation of the Grubbs carbenes.
Therefore, an associative coordination of the metal-salt to the Ru-centre is proposed leading to the substitution of the Cl-atom with the non-labile O-donor of the O,O-ligand with subsequent formation of the metal chloride salt. The proposed mechanism for formation of 39 is based on a modification for the dehydrogenation of alcohols with Gr1, whereby the alkyl group is in close proximity to the carbene moiety to react as proposed by Mol et al.27 (Scheme 7.2). The formation of an aldehyde as suggested during the dehydrogenation of alcohols would be chemically unfavourable and therefore a carbanion is formed. The carbanion can then react with the Ru-centre with subsequent loss of PCy\textsubscript{3}.

Scheme 7.1 Postulated mechanistic route for the decomposition of the Grubbs carbenes.

Scheme 7.2 Proposed dehydrogenation of alcohols with Gr1.27
The synthesis of first and second generation O,N-chelated ruthenium carbene complexes proved to be more successful, indicating that a more stable complex is formed with a neutral N-donor atom compared to a neutral O-donor atom. However, it was observed that the C₂ carbon of HL required steric shielding to prevent decomposition of the carbene moiety through a possible exchange of H-atoms with H₂.

\[\text{HL} \]

\[R', R'' = \text{H, alkyl, aryl} \]

A deuterium labelling study should provide the necessary information with regards to possible exchange reactions that can occur during the reaction. One possibility is to replace the H-atoms on C₂ of L₆ with deuterium before reacting the salt with the Grubbs carbenes, or to replace H with deuterium.

In general, a higher success rate, i.e. higher yield and more pure complexes, were obtained from reacting the Grubbs carbenes with a lithium salt in comparison to the thallium or sodium salts (§3.4). However, it appears that sodium salts, rather than lithium or thallium salts, should be used to incorporate carboxylate ligands into the Grubbs carbenes. The possibility of using silver salts should also be investigated, since reactions of the Grubbs carbenes with these salts appeared to be rather successful, and the toxicity of these salts are lower than that of the thallium salts.

To get an indication of the stability of the complexes during the synthesis process, a \(^1\)H and \(^{31}\)P NMR investigation should be launched in which the reaction is performed in an NMR tube. The reaction is then monitored over time to determine the rate at which the carbene disappears and if new carbenes form at any stage of the reaction. This would give an indication of how the synthesis procedures should be adapted to attempt separation of newly formed carbenes from the mixtures. The viability of such a study should be discussed with the NMR operator, since the formation of the metal salt might severely hamper the ability of obtaining readable spectra, i.e. without significant signal distortions due to saturation of the sample.
7.3 Catalytic Activity

The catalytic activity of the successfully synthesised O,N-chelated ruthenium carbene complexes (Figure 7.2) were tested for the metathesis of 1-octene and compared to Gr1 and Gr2.

\[
\begin{align*}
R' &= R^+ = \text{Me (Gr2Me)} \\
R' &= = \text{Ph (Gr2Ph)} \\
R' &= = \text{Cy (Gr1Cy)}
\end{align*}
\]

Figure 7.2 O,N-chelating ruthenium carbene complexes investigated for the metathesis of 1-octene.

Initially, the influence of reaction temperature and precatalyst concentration on the 1-octene metathesis activity of Gr1Cy and Gr2Cy was performed and compared to the Gr1 and Gr2. This was done to determine the optimum conditions of which these systems would display high metathesis activity with limited isomerisation and cross metathesis. The influence of temperature on the reactivity of Gr1Cy and Gr2Cy in comparison to Gr1 and Gr2 is illustrated in Figure 7.3 and 7.4, respectively.

As expected, Gr1Cy and Gr2Cy showed low reactivity at 35 °C in comparison to Gr1 and Gr2, due to the additional stabilisation of the chelating ligand. The activity and stability of both systems towards the formation of PMP increased with an increase in temperature relative to Gr1 and Gr2. After 20 h, Gr1Cy and Gr2Cy still showed activity for the metathesis of 1-octene, while Gr1 and Gr2 were inactive. The incorporation of a hemilabile ligand into Gr1 decreased the degree of SMP and IP formation, while increasing the activity and selectivity. However, the activity and selectivity of the second generation analogue (Gr2Cy) dramatically decreased above 70 °C. This was unexpected since it was thought that replacement of the PCy3 ligand in Gr1Cy with an NHC ligand would stabilise Gr1Cy even further, as was observed for Gr1. The decreased activity is either due to thermal instability to produce a ruthenium hydride intermediate, which can facilitate the isomerisation of alkenes, or another mechanism is involved apart from the assumed dissociation of the labile N-donor of the hemilabile ligand.
Figure 7.3 The influence of temperature on the reactivity of the Gr1Cy in comparison to Gr1 (no solvent, 1-octene/Ru = 9000).

Figure 7.4 The influence of temperature on the reactivity of the Gr2Cy in comparison to Gr2 (no solvent, 1-octene/Ru = 9000).
This is suggested since it was observed in the \(^1\)H NMR investigation of Gr2Cy at 50 °C that the aliphatic region of the spectrum dramatically changes as the reaction proceeds (Spectrum F.4 – F.6 and F.9 – F.11 for Gr2 and Gr2Cy, respectively in Appendix F). Therefore, an in-depth NMR study should be launched to investigate the following:

- Thermal decomposition of Gr1, Gr2, Gr1Cy and Gr2Cy, whereby the rate at which H\(_2\) disappears is monitored over time

For a typical thermolytic decomposition study:

Prepare a 0.023 M solution of the carbene complex in \(C_6D_6\) with a drop of pentafluorobenzene (internal standard). Heat the solution to the desired temperature in the NMR probe and acquire spectra at specific intervals. The integral of the carbene proton can then be compared to the integral of pentafluorobenzene to obtain the rate of disappearance of the carbene.

- Monitor the 1-octene metathesis reaction in the presence of Gr2 and Gr2Cy at a temperature range of 35 – 80 °C, to determine whether the NHC ligand participates in the reaction (see § 3.5.1.3 for reaction conditions)

The optimum temperature, for both Gr1Cy and Gr2Cy, to maintain high selectivity towards PMP and limit the formation of SMP and IP during the metathesis of 1-octene was identified as 60 – 70 °C. A subsequent investigation into the influence of precatalyst concentration on the 1-octene metathesis activities of these two systems revealed that a 1-octene/Ru molar ratio of 9000 was optimum for maintaining a high activity and selectivity towards PMP formation.

Consequently, a comparative study was launched to determine the 1-octene metathesis activities of the remaining Ru=C hemilabile complexes at the above optimum conditions identified for Gr1Cy and Gr2Cy. However, reaction temperature and precatalyst concentration studies for these complexes should be done to determine whether the current conditions are in actual fact the optimum conditions for them to achieve high selectivity and activity towards PMP formation.

The reactivity of the various first and second generation hemilabile complexes compared to Gr1 and Gr2, are illustrated in Figure 7.5 and 7.6, respectively. The hemilabile complexes are arranged in increasing order of molecular volume. A linear increase in the PMP formation was observed for the first and second generation Ru=C complexes with an increase in steric bulk. However, a dramatic decrease in activity was observed for Gr1Ph and Gr2Ph. This might be due to the free rotation of the phenyl-rings on C\(_2\) of HL, which increases the steric bulk around the Ru-centre and therefore obstructs coordination of the 1-octene to the Ru=C-moiety. The low activity of Gr1Ph and Gr2Ph was thought to involve possible electronic effects, due to the electron donating effect of the phenyl rings on C\(_2\) of HL.
Figure 7.5 Reactivity of the various first generation hemilabile complexes in comparison to Gr1 (complexes arranged according to increasing steric bulk).

Figure 7.6 Reactivity of the various second generation hemilabile complexes in comparison to Gr2 (complexes arranged according to increasing steric bulk).
Nth the help of molecular modelling, the calculated Hirshfeld charges of the various R groups on C₂ were compared to those of the free ligands (see Table 7.1 and 7.2, respectively). The results indicated that the electronic effects of the various R-groups are negligibly small.

The only significant electronic effect visible was the stabilisation of the Ru=C-moieity through the donation of electrons from the N-atom of the pyridine ring upon coordination to the Ru=C-moiety. This is evident from the reduced electron density on the O- and N-atoms of the ligand after coordination with the Ru-centre, which is distributed to C₀. The charges on the carbene moiety of Gr1 (-0.069) and Gr2 (-0.069) decreased by ca. 0.04, with a simultaneous increase of ca. 0.09 in the electrophilic character of the Ru-center (0.212 and 0.187 for Gr1 and Gr2, respectively). This suggests that the hemilabile complexes might be more active due to the high susceptibility of the Ru-centre for nucleophilic attack from inter alia an alkene.

Table 7.1 Calculated Hirshfeld charges of selected atoms in the first and second generation hemilabile complexes compared to Gr1 and Gr2.

<table>
<thead>
<tr>
<th>Pre-catalyst<sup>x</sup></th>
<th>Atom</th>
<th>G<sup>y</sup></th>
<th>N</th>
<th>O</th>
<th>Ru</th>
<th>=C</th>
<th>C₂</th>
<th>C₀</th>
<th>Aryl ring of O,N-ligand<sup>y</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^x [Ru] = [RuCl₂(CPH) with L = PC₂H₅ (1st) or H₂Mas (2nd)]

^y Indication of first (1st) or second (2nd) generation Grubbs carbone or hemilabile analogues

^z Average charge of carbons in the Ph or Cy groups on O,N-ligand
At this point the focus should also be directed to Gr1Cy, which contains an O,N-chelated ligand that is bulky and sterically directed, due to loss of free rotation.26 The steric demand of the 1-(2'-pyridinyl)cyclohexan-1-olato-ligand (PyCy) when coordinated to a metal-centre is illustrated in Figure 7.9. Conversely, the 1-(2'-pyridinyl)propan-2-olato- (PyMe2), 1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato- (PyPr2) and 1-(2'-pyridinyl)-1,1-diphenyl-methanolate-ligands (PyPh2) are bulky, but not sterically directed, due to free rotation of the alkyl- and aryl-groups on C2 of HL.

Therefore, despite the observed trends for the various hemilabile complexes, the results with regards to steric and electronic effects of the O,N-ligands on the metathesis activity of the precatalysts are inconclusive. This is due to the fact that the one ligand is sterically directed
(PyCy) compared to the free rotation of the others, which can increase steric bulk around the metal
centre. As a result of this observation a broader theoretical and/or experimental investigation
should be launched, to incorporate a variety of O,N-ligands in which the steric and electronic
properties of the ligand are varied. During the theoretical investigation, the R groups should be
systematically varied, even if the resulting ligands are fictitious. This will help elucidate the steric
and electronic effects of the R-groups with regards to the metathesis activity of the complexes.
Typical variations of the R-groups to consider with inclusion of the current ligands are illustrated in
Figure 7.10.

\[R', R'' = H, Me, Pr, 'Pr, 'Bu, Cy, Ph \]

\[\text{X, Y, Z = Me, halogens, O, SO}_3, \text{etc.} \]

\[L = \text{PCy}_3, \text{H}_2\text{Mes} \]

Figure 7.10 A few suggestions for typical ligands to be considered for investigating
steric and electronic influences of the R-groups on C₂.

The high thermal stability of the Ru=C hemilabile complexes can be rationalised by the
increased electron density of the N-atom of the pyridine ring upon coordination to the Ru-centre,
which is delocalised over the Ru=C-moiety and PCy₃ ligand. This delocalisation is elegantly
illustrated in Figures 7.11 and 7.12 by comparing the HOMO-orbitals of a representative first
(Gr₁Ph) and second (Gr₂Ph) generation hemilabile complex with Gr₁ and Gr₂. All the remaining
Ru=C hemilabile complexes displayed similar HOMO orbitals and are illustrated in Appendix G.

The electron density of Gr₁ and Gr₂ appears to be localised over the Ru=C-moiety. However,
the 14-electron intermediates of Gr₁ (Gr₁-B) and Gr₂ (Gr₂-B) are stabilised by the remaining L-
group (PCy₃ or NHC-ligand) after dissociation of the PCy₃. The activity differences of Gr₁ and Gr₂
was initially thought to be as a result of the increased α-donor ability of NHC to decrease the
strength of the Ru-P interaction and therefore facilitate the dissociation of PCy₃.24-26,20,30 However,
the high activity of Gr₂ compared to Gr₁ was shown to be as a result of the NHC's ability to
promote and stabilise metal-to-alkene back bonding to a much greater extent than the phosphine
ligands.24,51 This supported the theoretical observation of the high affinity of Gr₂ to coordinate an
alkene rather than PCy₃ as compared to Gr₁.
Figure 7.11 HOMO-orbitals of Grl, Grl-B and a representative first generation hemilabile Ru=C complex (Gr1Ph).

Aspects surrounding the activity of the hemilabile complexes are more complex in nature, since NMR studies (see Chapter 5) showed different mechanisms might be involved for the first and second generation hemilabile precatalysts. The calculated Hirshfeld charges of the Ru=C hemilabile complexes (Table 7.1) together with the N-Ru bond distances (Table 7.3), implies that the N-atom is more strongly coordinated to the Ru-centre in the first generation complexes as compared to the second generation analogues. Therefore, if the complexes initiate through the dissociation of the labile N-atom of the O,N-ligand, the Gr2-systems would initiate more rapidly compared to the Gr1-systems. This was observed experimentally from the k_{init} results (§ 5.2.3.1). However, no apparent trend could be observed to relate the Ru-N distances to electronic or steric effects. The dissociation of the PCy$_3$ in the first generation precatalysts as a result of the increased electron density of the Ru=C moiety cannot be ruled out at this stage and should be investigated further.
Figure 7.12 HOMO-orbitals of Gr2, Gr2-B and a representative second generation hemilabile Ru=C complex (Gr2Ph).
Table 7.3 Selected bond lengths of the first and second generation hemilabile precatalysts.

<table>
<thead>
<tr>
<th>Precatalyst</th>
<th>Bond length</th>
<th>G<sup>+</sup></th>
<th>Ru=C</th>
<th>Ru-N</th>
<th>Ru-O</th>
<th>Ru-L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>1.878</td>
<td>N/A</td>
<td>N/A</td>
<td>2.471</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2<sup>nd</sup></td>
<td>1.870</td>
<td>N/A</td>
<td>N/A</td>
<td>2.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>1.880</td>
<td>2.136</td>
<td>2.007</td>
<td>2.441</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2<sup>nd</sup></td>
<td>1.883</td>
<td>2.180</td>
<td>2.016</td>
<td>2.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>1.880</td>
<td>2.131</td>
<td>2.012</td>
<td>2.444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2<sup>nd</sup></td>
<td>1.882</td>
<td>2.185</td>
<td>2.011</td>
<td>2.084</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>1.875</td>
<td>2.151</td>
<td>2.025</td>
<td>2.443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2<sup>nd</sup></td>
<td>1.882</td>
<td>2.186</td>
<td>2.038</td>
<td>2.085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>1.880</td>
<td>2.130</td>
<td>2.005</td>
<td>2.451</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2<sup>nd</sup></td>
<td>1.885</td>
<td>2.171</td>
<td>2.015</td>
<td>2.095</td>
<td></td>
</tr>
</tbody>
</table>

¹ [Rul = RuCl(C=CHPh) with L = PCy₃ (1st) or H₂Mes (2nd)]

² Indication of first (1st) or second (2nd) generation Grubbs carbene or hemilabile analogues

With the help of the frontier molecular orbital (FMO) Fukui function as developed by Parr and Yang, the reactivity of the various complexes with respect to nucleophilic attack can be theoretically justified. It is generally accepted that the Grubbs carbene initiate through the loss of PCy₃ to obtain the catalytically active 14-electron intermediate B. As illustrated in Figure 7.9 for the first and second generation intermediates of B, the calculated positions exhibiting nucleophilic Fukui functions (f⁺; i.e., positions activated for nucleophilic attack) are illustrated by the map of f⁺ on the electron isodensity surface of B (Gr1-B-f⁺ and Gr2-B-f⁺ in Figure 7.13 for the first and second generation intermediates, respectively). The relative concentration of red in "B"-f⁺ indicates that Ru, benzylidene carbon and the Cl (in decreasing order) should in principle be susceptible to favourable interaction with a nucleophile. From this qualitative picture, it is thus predicted that the alkene would preferentially interact with the Ru=C in Gr2-B from a position trans to the NHC, since the position cis to the NHC is sterically hindered.
Figure 7.13 Optimised geometry of the 14-electron intermediate (B) of Gr1 and Gr2, together with maps of the nucleophilic (f+) Fukui functions on the electron isodensity surface of B.
The alkene can interact with the Ru=C in Gr1-B from two positions: (a) the position trans to the PCy₃ or (b) the position cis to the carbene along the bisector line of the Cl-Ru=C angle. The nucleophilic Fukui functions of two representative first and second generation hemilabile complexes (with the rest given in Appendix G) are shown in Figure 7.14 – 7.16 and 7.16 – 7.17, respectively, to illustrate the steric effect of the phenyl and cyclohexyl R groups.

![Gr1Ph-f+](image1.png)

![Gr1Ph](image2.png)

![Gr1Ph-180-f+](image3.png)

Figure 7.14 Optimised geometry of Gr1Ph, together with maps of the nucleophile (f+) Fukui functions on the electron isodensity surface of the complexes.

It is evident that the Ph-rings increase the steric bulk around the Ru-centre and direct the attack of the alkene to the Cl-Ru=C bisector line opposite the O,N-ligand (Gr1Ph-180-f+). This will most likely cause the N-atom of the pyridine ring to decoordinate to allow for formation of the ruthenacyclobutane. However, due to the sterically directed cyclohexyl-group, more than one coordination possibility is revealed (see Gr1Cy-f+ and Gr1Cy-180-f+). Although the coordination position in Gr1Cy-f+ is to some extent hindered, the possibility of coordination after decoordination of the N-atom of the pyridine ring should not be ruled out. Therefore, reduced steric bulk around the Ru-centre, might lead to enhanced activity.
Similar to the first generation systems, the steric bulk of the O,N-ligand together with increased bulk due to the NHC ligand, leads to obstruction of alkene coordination in Gr2Ph. On the other hand, in Gr2Cy, coordination of the alkene is possible cis to the carbene from the same side as the O,N-ligand (Gr2Cy-f+). The coordination site on the opposite face (Gr2Cy-f+ as well as Gr2Ph-180-f+) is too sterically hindered to allow for alkene coordination. These results indicate that, in the second generation systems, the decoordination of the N-atom of the pyridine ring or NHC ligand should precede the coordination of the alkene to the Ru-centre. This suggests that the metathesis of 1-octene in the presence of the second generation hemilabile complexes might proceed according to a dissociative mechanism. Since the molecular modelling indicated that the dissociation of the NHC ligand is improbable, it suggests that the C,N-ligand acts like a hemilabile ligand, i.e. opens and closes a free coordination site if coordinated to the Gr2.
Figure 7.16 Optimised geometry of Gr2Ph, together with maps of the nucleophilic (f+) Fukui functions on the electron isodensity surface of the complexes.

This is also supported by the 1H NMR study. On the other hand, for the first generation system, coordination of the alkene to the Ru-centre might proceed according to an associative mechanism, since a coordination point is freely available as illustrated by complexes "$90-f+". The 1H NMR investigation of the 1-octene metathesis reactions in the presence of Gr1Cy and Gr2Cy suggested that different mechanisms were involved for the individual systems. This is due to the fact that only 3 carbene signals were observed for Gr1Cy, compared to 5 observed for Gr2Cy. It would therefore be interesting to investigate the 1-octene metathesis reaction of the other Ru=C hemilabile complexes with NMR, to determine whether similar mechanistic differences are observed.
Due to the fact that all the reactions except the NMR investigations of Gr1, Gr2, Gr1Cy and Gr2Cy were performed neat (without solvent), it would be interesting to see whether a solvent has any influence on the 1-octene metathesis activity of the hemilabile complexes. Monitoring the precatalyst over time in the absence and presence of the alkene with 1H and 31P NMR should be able to give insight into the influence of the alkene and solvent on the release of a free coordination site.

Although only the dissociative mechanism was investigated for the various systems (Chapter 6), the possibility of an associative coordination of the alkene to the Ru-centre should not be excluded. This should be investigated to determine whether different mechanisms play a role in the first and second generation hemilabile complexes. This will also help determine the hemilability of the O,N-ligand.
Since it was shown37 that the activity and selectivity of Gr1 improved through the addition of phenol, it would be interesting to see whether the activity of Gr1Ph and Gr2Ph, which are slow to activate, would improve. The influence of temperature, solvent etc., should also be investigated if proven successful.

Another interesting aspect to investigate theoretically and experimentally would be the influence of alkyl chain length of the substrate. This is suggested since it has been theoretically shown (§ 6.2.2) that the affinity of Gr1 and Gr2 towards phosphine increases with an increase in the chain length of the substrate. This implies that the initiation rate of Gr1 and Gr2 decreases with an increase in alkyl chain length. However, since only ethene and 1-octene was considered as alkene substrates, the theoretical investigation is inconclusive and other substrates should be considered in a future study.

As a general conclusion for this study, since the thermal stability, activity and lifetime of the Grubbs carbenes have been improved after incorporation of a O,N-chelating ligand, it can be said that the purpose of this study has been achieved. In support of the experimental investigation of the 1-octene metathesis reaction, we also looked at the mechanism from a theoretical point of view, which will be discussed in the following section.

\textbf{7.4 MECHANISTIC INVESTIGATION}

A conceptual model for the productive metathesis of 1-octene in the presence of Gr1 was constructed based on literature25,25,34 and experimental results.38 The 1-octene metathesis reaction in the presence of Gr1 is described by a dissociative mechanism. The mechanism is supported by the formation of by-products, i.e. styrene, 1-phenyl-1-octene isomers and PCy\textsubscript{3}. The model for the initiation and activation of Gr1 was additionally applied to Gr2 and adapted for the hemilabile complexes (Gr1Cy and Gr2Cy) to elucidate observed experimental results.

With the use of DFT calculations, electronic energy surfaces for the metathesis mechanism of the individual precatalysts were constructed and compared. The models used for the mechanistic study incorporated the full ligands as used in an experiment with 1-octene as substrate. Ethene was used as substrate with Gr1 during a comparative study with literature to determine the influence of substrate and precatalyst when used in calculations. This was done since most theoretical studies use ethene as substrate with the Ru-methylidene instead of Ru-benzylidene (Gr1) as precatalyst. The DFT calculations compared very well with calculations by other authors. It was found that the same simple models that efficiently describe the metathesis of simple substrates with a methylidene type precatalyst couldn't be used to describe the reaction of real systems. It is clear that the mechanism of metathesis with actual catalytic systems are complex if
it is done with large substrates like 1-octene, and that electronic effects cannot fully account for effects that are observed e.g. the cis/trans-isomerisation of the primary metathesis product. Therefore, this reaction cannot just be considered by using a simple model, since both electronic and steric effects are then excluded which will lead to inconclusive results.

The initiation and activation steps of the various precatalysts, with 1-octene as substrate, were investigated to determine the catalytically active species which preferentially forms from the benzylic precatalyst.

1H NMR studies of the 1-octene metathesis reactions were also done to gain insight into the mechanism of the reaction with Gr1, Gr2 and their hemilabile analogues. The NMR results indicated that the heptylidene was the catalytically active species which preferentially formed in the 1-octene metathesis reaction with Gr1 and Gr2 at 30 °C, as well as with Gr2Cy at 50 °C in CDCl$_3$. In contrast, both the heptylidene and methylidene species formed simultaneously during the 1-octene metathesis reaction with Gr1Cy at 50 °C, while the results of Gr1 and Gr2 at 50 °C were inconclusive due to the long initial time that passed before the first spectra could be obtained. This is also due to the very fast initiation rate of the Grubbs carbenes at elevated temperatures.}

Kinetic information can be obtained from monitoring the disappearance of the benzylic H$_\alpha$, since its disappearance is equal to the activation of the precatalyst. Therefore, the rate of disappearance of the benzylicidene will be equal to the rate of activation of the precatalyst. Figure 7.16 gives an indication of the percentage unactivated precatalyst (Gr1, Gr2, Gr1Cy and Gr2Cy) present at a certain time in the reaction mixture at 30 and 50 °C. Due to the fast disappearance of the benzylicidenes of Gr1, Gr2 and Gr2Cy (see Figure 7.16) at 50 °C, no valuable kinetic data could be obtained. Therefore, kinetic studies of the hemilabile systems should rather be performed at 35 °C or lower to obtain enough data points for the calculation of activation parameters. The activation rate constants for Gr1 and Gr2 at 30 °C, as well as for Gr1Cy at 50 °C, are given in Table 7.4. It is seen that Gr1 activates approximately three times faster than Gr2 at 30 °C, which is expected, since Gr2 is thermally stable, which implies that it will activate slower at lower temperature. It is noted that the activation rate of Gr1 has improved after the incorporation of a hemilabile ligand into the system, while the half-lifetime approximately halved, but the results are inconclusive. More kinetic studies should be done at lower temperatures to be able to make valuable remarks with regards to the stability and activity of the hemilabile complexes, compared to Gr1 and Gr2.
Figure 7.16 Activation of 1-octene metathesis in the presence of Gr1, Gr2, Gr1Cy and Gr2Cy (1-octene/Ru = 10, 0.07 mL CDCl3) at different temperatures.

30 °C: Gr1 ▲ Gr2

50 °C: □ Gr1 △ Gr2 ● Gr1Cy ◆ Gr2Cy

Table 7.4 Activation rate constants for Gr1, Gr2, Gr1Cy and Gr2Cy during the metathesis of 1-octene

<table>
<thead>
<tr>
<th>T / °C</th>
<th>Precatalyst</th>
<th>Activation rate / s⁻¹</th>
<th>Half-life / min</th>
</tr>
</thead>
<tbody>
<tr>
<td>30²</td>
<td>Gr1</td>
<td>3.84 x 10⁴</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Gr2</td>
<td>1.17 x 10⁴</td>
<td>99</td>
</tr>
<tr>
<td>50</td>
<td>Gr1Cy</td>
<td>7.35 x 10⁴</td>
<td>11</td>
</tr>
</tbody>
</table>

* Obtained by P van Helden during his Honours mini project

Additionally, the various regions of the ¹H NMR spectra of Gr1, Gr2, Gr1Cy and Gr2Cy, i.e. aliphatic, aromatic and alkenic regions, were plotted against time (presented in Appendix F) to determine whether any noticeable changes appear. For all systems, the alkenic region changed as a result of 1-octene being converted to 7-tetradecene. The aliphatic regions of Gr1, Gr2 and Gr1Cy remained almost unchanged, with only minute changes visible. On the other hand, for Gr2Cy, the methyl groups of the H₂1Mes ligand disappeared within 40 min from the start of the reaction, together with the signal for the CH₂ group of the NHC-backbone at δ 4.1 ppm changing dramatically (NMR spectra in Appendix F). A similar observation was made for Gr2 at 50 °C, although the signal at δ 4.1 ppm did not follow a similar pattern. This indicates that the NHC ligand...
either participates in the reaction, or the complex decomposes. However, this should be investigated in more detail to get clarity on the participation and decomposition of the NHC ligand and complexes.

Although it is generally accepted that the Grubbs carbenes initiate with the dissociation of PCy₃, this is not necessarily the case for the hemilabile complexes, since only one or no PCy₃ is present in the system. Therefore, these systems either initiate through the decoordination of the labile N-atom of the pyridine ring or through dissociation of L. Since hemilabile ligands are known to release a free coordination site "on demand" of competing substrates such as an alkene and occupying it otherwise, the decoordination of the N-atom was considered as a viable route of initiation. However, this brought about the question whether the ruthenium centre becomes coordinatively unsaturated with or without the influence of the incoming alkene. This was not investigated in detail in this study, but preliminary results show that two different mechanisms might be playing a role in the catalytic conversion of 1-octene with Gr1Cy and Gr2Cy, of which the O,N-ligand in Gr2Cy show hemilability. This should, however, be investigated in more detail to determine the influence of the solvent and alkene on the hemilability of the complexes. Monitoring the precatalyst over time in the absence and presence of the alkene with ¹H and ³¹P NMR should be helpful in answering this question. Nevertheless, the modelling results indicated that the decoordination of the labile N-atom of the pyridine ring for both hemilabile systems was more favourable than the dissociation of L. However, for Gr1Cy this decoordination is only 3 kcal/mol more favourable compared to 46 kcal/mol for Gr2Cy. This indicates that the possibility of PCy₃ dissociation from Gr1Cy should not be excluded, since the formation of O=PCy₃ was experimentally observed for all first generation systems.

The modelling results of the activation steps for Gr1 and Gr2 indicated that the formation of the heptylidene is kinetically and thermodynamically more favourable than the formation of the methylidene. This supported the ¹H NMR results at 25 °C, but due to insufficient data within the first 20 min of the two reactions, no conclusions could be made with regards to the preference of the one species forming before the other. However, for Gr1Cy and Gr2Cy, the formation of the methylidene was shown to be thermodynamically favoured, while the kinetically favoured species was predicted to be the heptylidene, regardless of the preferred initiation step. This supported the observed formation of 5 carbene species for Gr2Cy, since the benzylidene was converted to the heptylidene within 30 min, which would react with 1-octene to form the Ru-methylidene intermediate and 7-tetradecene. The methylidene remained in the reaction mixture for the duration of the reaction without being depleted. The slow decrease in the signal of the methylidene suggested a possible conversion to the uncoordinated species, since the signal of the uncoordinated system kept increasing as the signal of the coordinated species decreased (Figure 5.42 and 5.46). Although modelling results eliminated the possible conversion of the methylidene
to the heptylidene, which would be followed by the formation of the uncoordinated methylidene species, it should not be excluded. This is due to the fact that solvent and temperature effects, which were not taken into consideration with the modelling study, could facilitate these conversions. This indicates that these systems are very complex and all factors should be considered before making any conclusions with regards to the preferred mechanistic route. The modelling results for Gr1Cy does not support the experimental results, since only 3 carbene signals were observed in the 1H NMR. This might indicate that the reaction proceeds at such a fast rate that some of the carbene signals are not observed at the time of recording the NMR spectrum. However, this should then have been applicable to Gr2Cy, which was shown to initiate faster than Gr1Cy at 60 °C (see Chapter 5, Table 5.5). Therefore, a different mechanism is involved during the metathesis of 1-octene with Gr1Cy. This can either be an associative mechanism, or a combination of the dissociative and associative mechanisms. Since the formation of O=PCy$_3$ is observed in the GC analysis, it might be worthwhile to investigate the reaction with 31P-NMR to monitor the disappearance of the Gr1Cy phosphorous signal together with the formation of new signals.

It was also noted that coordination of 1-octene parallel to the carbene and perpendicular to the Cl-Ru-Cl line (C$_h$) was more energetically favoured than coordination parallel to the Cl-Ru-Cl line (C$_p$) for Gr2, Gr1Cy and Gr2Cy. Investigation of the various coordination modes of 1-octene to Gr1 was still ongoing at the time of completion of this study, but this is also expected to be the more favoured route. The observed increase in the energies of the intermediates in the C$_p$ mode is due to the fact that the alkene has to turn approximately 90° to align with the benzylidene carbene bond (C$_h$ mode). Investigation of the catalytic cycle of the hemilabile complexes is necessary to fully understand the mechanism(s) involved during the metathesis of 1-octene and therefore explain the observed experimental results. From investigating the catalytic cycle of Gr1, the formation of trans-tetradecene was shown to be thermodynamically favoured, which supports the experimental results. This indicates that valuable information can be obtained from theoretical investigations.

It is also evident that Gibbs free energy (ΔG) corrections still need to be made to the electronic energies to include vibrational, translational and rotational energies of the molecules. This would provide important thermodynamic information of the reaction, which could be more accurately correlated to experimental observations. This was ongoing at the time of completion of this study and the results are not included in this study.
During the course of this study, a number of theoretical and experimental research possibilities were identified. They are shortly summarised below.

Experimental:
- Investigate the influence of
 - a range of polar and non-polar solvents;
 - temperature;
 - precatalyst concentration;
 - alkene chain length
 - phenol and
 - type of alkene, *inter alia* functionalised alkenes such as fatty acids on the activity of the various first and second generation hemilabile complexes.
- Investigate the ROMP and RCM activity of the various first and second generation hemilabile complexes.
- NMR investigation of:
 - thermolytic decomposition of the hemilabile complexes to monitor rate of disappearance of the carbene α-H
 - 1H and 31P NMR investigation of the first generation hemilabile complexes to determine:
 - the influence of the alkene and/or the solvent on creating an open coordination site
 - the possibility of PCy$_3$ dissociation together with the formation of new complexes
 - Monitor the synthesis of the hemilabile complexes, especially those that were unsuccessfully synthesised, to determine whether any new carbenes form or whether the complex decomposes completely. If carbenes form, the synthesis methods could be adapted to extract the formed complex from the reaction mixture at a certain time period.
 - Investigate the possibility of H exchange between ligands and the carbene moiety with deuterium labelling studies.
- Investigate the isomerisation activity of the hemilabile complexes at temperatures above 80 °C, since the SMP formation of these systems increased exponentially with temperature.
- Investigate the use of silver and sodium salts, rather than lithium or thallium salts, for incorporating carboxylic acids into the Grubbs carbenes.
Theoretical:

- Investigate the influence of the steric and electronic effects of the R groups of the O,N-ligands on the metathesis activity of the hemilabile complexes. As illustrated in Figure 7.10, a variety of O,N-ligands should be considered in which the steric and electronic properties of the ligand are varied, even if the ligands are fictitious.

- Investigate the catalytic cycles of the two dissociative mechanisms of Gr1Cy and Gr2Cy to determine the viability of the proposed mechanism, as well as shed light on the observed experimental results.

- Investigate the initiation, activation and catalytic steps of the remaining hemilabile complexes, alongside with the NMR-studies, to elaborate on the observed higher thermal stability and activity of these complexes in comparison to Gr1 and Gr2.

- Study alternative mechanisms for the first generation hemilabile complexes, such as:
 - the associative coordination of the alkene prior to decoordination of the N-atom of the pyridine ring or dissociation of PCy3,
 - a combined dissociative and associative mechanism:
 - the dissociation of PCy3 is followed by the coordination of the alkene to form either the heptylidene or methylidene intermediate
 - coordination of PCy3 to form the methyldiene or heptylidene precatalyst
 - decoordination of the N-atom of the pyridine ring prior to, or after coordination of the alkene.

- Investigate the possibility of an associative mechanism for the second generation hemilabile complexes.

- Investigate different coordination positions of the alkene to the Ru-centre, such as cis or trans to the carbene instead of trans to L.

- Complete the vibrational analysis studies of
 - the already optimised intermediates to make Gibbs free energy corrections to the electronic energies and
 - optimise the various transition states of the activation and catalytic steps to be able to more accurately determine the rate determining steps, and therefore elucidate experimental results.

Theoretical investigations should be done in combination with experimental work to help researchers gain insight into the reaction mechanisms, explain observed trends, as well as determine reasons for unsuccessful synthesis and/or catalytic reactions.
7.6 REFERENCES

27. Dinger, M.B. and Mol, J.C., Organometallics, 2003, 22, 1089
On completion of this study, I would like to express my sincerest appreciation and gratitude to:

- God Almighty for the opportunity, health, motivation, guidance and love He gave to me during this study.
- My father for his love, encouragement, motivation and for his firm belief in me. My family and friends for their love, support and interest.
- My study leader, prof. H.C.M. Vosloo, for his guidance and countless suggestions, as well as all the times he helped me despite his busy schedule.
- Dr. Johan Jordaan for his motivation, love and support during this study.
- Andre Joubert (North-West University) and Megan Kirk (Sasol Technology R&D) for acquiring the NMR data.
- Drr. Wolfgang H. Meyer (Sasol Technology R&D) and Werner Janse van Rensburg (Sasol Technology R&D) for their valuable discussions.
- Sasol Technology R&D, the THRIP programme (grant # 2789) of the National Research Foundation of South Africa as well as the North-West University (NWU) for their financial contribution towards this study.
- Hendrine Krieg for the language editing of this dissertation.
- Staff and students of the School of Chemistry at the North-West University (Potchefstroom campus) for their friendship and support.
Appendix A

Appendix A (p. 283 – 302) is available on the enclosed CD
Appendix B

Appendix B (p. 303 – 334) is available on the enclosed CD
Appendix C1

1H, 13C and DEPT NMR spectra of the synthesised ligands (L1 - L4):
Spectrum C.2 ^{13}C NMR spectrum of 1-(2'-pyridinyl)cyclohexanol.
Spectrum C.3 DEPT of 1-(2'-pyridinyl)cyclohexanol.
Spectrum C.4 1H NMR spectrum of 1-(2'-pyridinyl)-2,4-dimethylpentan-3-ol.
Spectrum C6. 13C NMR spectrum of 1-(2'-pyridyl)-2,4-dimethylpentan-3.
Spectrum C.7 1H NMR spectrum of 1-(2'-pyridinyl)propan-2-ol.
Spectrum C.8
13C NMR spectrum of 1-(2'-pyridyl)propan-2-ol.
Spectrum C.9 DEPT of 1-(2'-pyridinyl)propan-2-ol.
Spectrum C.10 1H NMR spectrum of 1-((2'-pyridinyl)-2,4-dimethylpentan-3-ol.
Spectrum C.13 1H NMR spectrum of benzylidene-dichloro(bis(tricyclohexylphosphine))ruthenium.
Spectrum C.14 31P NMR spectrum of benzylidene-dichloro(bis(tricyclohexylphosphine))ruthenium.
Spectrum C.16 1H NMR spectrum of benzylidene-dichloro(tricyclohexylphosphine)(1,3-bis-(2,4,6-trimethylphenyl)-2-imadazolidinylidene)-ruthenium.
Spectrum C.16 1H NMR spectrum of benzylidene-dichloro(tricyclohexylphosphine)(1,3-bis-(2,4,6-trimethylphenyl)-2-imadazolidinylidene)-ruthenium.
Spectrum C.17 1H NMR spectrum of benzylidene-dichloro(tricyclohexylphosphine)bis(pyridine)ruthenium.
Spectrum C.18 31P NMR spectrum of benzyldene-dichloro(tricyclohexylphosphine)bis(pyridine)ruthenium.
Spectrum C.19 1H NMR spectrum of benzylidene-dichloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)bis(pyridine)ruthenium.
Spectrum C.20 31P NMR spectrum of benzylidene-dichloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)bis(pyridine)ruthenium.
\(^{1}H, ^{31}P\) and COSY NMR of the successfully synthesised first generation O,N-chelated complexes:
Spectrum C.22 31P NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.
Spectrum C.23 COSY NMR spectrum of benzylidene-chloro(tricyclo-hexylphosphine)-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.
Spectrum C.24 P-H correlation spectrum of benzyldene-chloro(tricyclo-hexylphosphine)-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.
Spectrum C.26 31P NMR spectrum of benzyldene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)propan-2-olato]ruthenium.
Spectrum C.27 COSY NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-propan-2-olato]ruthenium.
Spectrum C.28 1H NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato]ruthenium.
Spectrum C.29 31P NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato]ruthenium.
Spectrum C.30 1H NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridinyl)-1,1-diphenylmethanolato]ruthenium.
Spectrum C.31 31P NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridyl)-1,1-diphenylmethanolato]ruthenium.
Spectrum C.32 COSY NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[1-(2'-pyridyl)-1,1-diphenylmethanolato]ruthenium
Spectrum C.33 1H NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)-[8-quinolinolato]ruthenium.
Spectrum C.34 1H NMR spectrum of benzylidene-chloro(1-cyclohexylyphosphine)-(8-quinolinato)rhodium.

$$\text{Cp}^+\text{RuCl}_2\text{C}_6\text{Ph}$$

$$\text{C11 (GrQuinoo)}$$
Spectrum C.37 1H NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)pyridine-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.
Spectrum C.38 31P NMR spectrum of benzylidene-chloro(tricyclohexylphosphine)pyridine-[1-{2'-pyridinyl}cyclohexan-1-olato]ruthenium.
H. "P and COSY NMR of the successfully synthesised second generation O,N-chelated complexes:

Spectrum C.39 1H NMR spectrum of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(1-(2'-pyridinyl)cyclohexan-1-olato)ruthenium.
Spectrum C.40 31P NMR spectrum of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[1-(2'-pyridyl)cyclohexan-1-olato]ruthenium.
Spectrum C.41 COSY NMR spectrum of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[1-(2'-pyridinyl)cyclohexan-1-olato]ruthenium.
Spectrum C.42 "1H NMR spectrum of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-imidazolylidene)-[1-(2'-pyridinyl)propan-2-olato]ruthenium."
Spectrum C.43 31P NMR spectrum of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)\{1-(2'-pyridinyl)propan-2-olato\}ruthenium.
Spectrum C.44 COSY NMR spectrum of benzylidene-chloro[1,3-bis-(2,4,6-trimethylphenyl)-2- methylimidazolidinylidene]-[1-
(2-pyridinyl)propyl-2-olato]ruthenium.
Spectrum C.46 1H NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato]ruthenium.
Spectrum C.46 31P NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylimidene)-[1-(2'-pyridinyl)-2,4-dimethylpentan-3-olato]ruthenium.
Spectrum C.47 COSY NMR of benzylidene-chloro(1,3-bis-(2,6-dimethylphenyl)-2-imidazolidinylidene)-1-(2-pyridinyl)-2,4-dimethylpentan-3-ol(1) ruthenium.
Spectrum C.45 1H NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[1-(2'-pyridyl)-1,1-diphenyl-methanolate]ruthenium.
Spectrum C.49 31P NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[1-(2'-pyridinyl)-1,1-diphenyl-methanolato]ruthenium.
Spectrum C.50 COSY NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-1-(2'-pyridinyl)-1,1-diphenyl-methanolato]ruthenium.
Spectrum C.61 1H NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[8-quinolinolate]ruthenium.
Spectrum C.52 31P NMR of benzyldene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[8-quinolinolate]ruthenium.
Spectrum C.63 COSY NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-[8-quinolinolate]ruthenium.
Spectrum C.54 1H NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pyridine-2-carboxylato]ruthenium after reaction of Gr1 with the Ti-salt of pyca.
Spectrum C.56 ^{31}P NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1 with the Ti-salt of pyca.
Spectrum C.56 1H NMR of benzylidene-chloro[tricyclohexylphosphine]pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1 with the Li-salt of pyca.
Spectrum C.47 31P NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1 with the Li-salt of pyca.
Spectrum C.58 1H NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1 with the Na-salt of pyca.
Spectrum C.59 31P NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1 with the Na-salt of pyca.
Spectrum C.60 1H NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(2-pyridinecarboxy-lato)-ruthenium after reaction of Gr2 with the Ti-salt of pyca.
Spectrum C.6f 31P NMR of benzylidene-chloro(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-(2-pyridinecarboxy-lato)- ruthenium after reaction of Gr2 with the Tl-salt of pyca.
Spectrum C.62 1H NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pridine-2-carboxylato]ruthenium after reaction of Gr1-Py with the Li-salt of pyca.
Spectrum C.63 31P NMR of benzylidene-chloro(tricyclohexylphosphine)pyridine-(pyridine-2-carboxylato)ruthenium after reaction of Gr1-Py with the Li-salt of pyca.
Spectrum C.64 P-H NMR correlation spectrum of benzylidene-chloro(tricyclohexylphosphine)pyridine-[pyridine-2-carboxylato]ruthenium after reaction of Gr1-Py with the Li-salt of pyca.
Appendix C2

1H and 31P NMR spectra of the unsuccessfully synthesised complexes are displayed below to illustrate that the reaction mixtures either contained unreacted starting materials or decomposition products. Only the known decomposition products of Gr1 and Gr2 (Table C.1) could be identified with any certainty.

Table C.1 Assignment of 31P NMR signals of known decomposition products of Gr1 and Gr2.22,23

<table>
<thead>
<tr>
<th>31P-signal/ppm</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.457</td>
<td>O=PCy$_2$</td>
</tr>
<tr>
<td>11.260</td>
<td>Free PCy$_3$</td>
</tr>
<tr>
<td>24 – 26</td>
<td>[Ru(PCy$_3$)$_2$ClPhCO]</td>
</tr>
<tr>
<td>47 – 48</td>
<td>[Ru(PCy$_3$)$_2$ClHCO]</td>
</tr>
<tr>
<td>22 – 23</td>
<td>[Ru(PCy$_3$)(H$_2$Mes)ClPhCO]</td>
</tr>
<tr>
<td>46 – 47</td>
<td>[Ru(PCy$_3$)(H$_2$Mes)ClHCO]</td>
</tr>
</tbody>
</table>
Spectrum C.65 1H NMR spectrum obtained after reacting Gr1 with the Li-salt of turolic acid (L12) to synthesise C3.
Spectrum C.66 31P NMR spectrum obtained after reacting Gr1 with the Li-salt of furoic acid (L12) to synthesise C3.
Spectrum C.67 1H NMR spectrum obtained after reacting Gr1 with the Li-salt of L10 to synthesize C4.
Spectrum C.68 31P NMR spectrum obtained after reacting Gr1 with the Li-salt of L10 to synthesise C4.
Spectrum C.69 1H NMR spectrum obtained after reacting Gr1 with the Li-salt of L9 to synthesise C6.
Spectrum C.70 31P NMR spectrum obtained after reacting G1 with the Li-salt of L9 to synthesise C5.
Spectrum C.71 1H NMR spectrum obtained after reacting Gr2 with the Li-salt of L10 to synthesise C26.
Spectrum C.72 31P NMR spectrum obtained after reacting Gr2 with the Li-salt of L10 to synthesise C26.
Spectrum C.73 1H NMR spectrum obtained after reacting Gr2 with the Li-salt of L9 to synthesise C25.
Spectrum C.74 31P NMR spectrum obtained after reacting Gr2 with the Li-salt of L9 to synthesise C25.
Spectrum C.75 1H NMR spectrum obtained after reacting Gr1 with the Ti-salt of L5 to synthesize C14.
Spectrum C.76 31P NMR spectrum obtained after reacting Gr1 with the Tl-salt of L5 to synthesise C14.
Spectrum C.77 1H NMR spectrum obtained after reacting Gr1 with the Li-salt of L6 to synthesise C6.
Spectrum C.78 31P NMR spectrum obtained after reacting Gr1 with the Ti-salt of L6 to synthesise Cs.
Spectrum C.79. 1H NMR spectrum obtained after reacting G1 with the Ti-salt of L7 to synthesize C13.
Spectrum C.80 31P NMR spectrum obtained after reacting Gr1 with the Ti-salt of L7 to synthesise C13.
Spectrum C.81 1H NMR spectrum obtained after reacting Gr1 with the Ti-salt of L14 to synthesise C2.
Spectrum C.82 31P NMR spectrum obtained after reacting Gr1 with the Ti-salt of L14 to synthesise C2.
Spectrum C.83 1H NMR spectrum obtained after reacting Gr1 with the Ti-salt of L15 to synthesise C12.
Spectrum C.84 31P NMR spectrum obtained after reacting Gr1 with the TI-salt of L16 to synthesise C12.
Appendix C3

Appendix C3 (p. 421 – 442) is available on the enclosed CD
Appendix D

Spectrum D.1 IR-spectrum of Gr1Cy compared to L1 and Gr1.
Spectrum D.2 IR-spectrum of Gr1Ph compared to L2 and Gr1.
Spectrum D.3 IR-spectrum of Gr1Me compared to L3 and Gr1 (spectrum of L3 from literature).
Spectrum D.4 IR-spectrum of Gr2Cy compared to L1 and Gr2.
Spectrum D.5 IR-spectrum of Gr2Ph compared to L2 and Gr2.
Spectrum D.6 IR-spectrum of Gr2Me compared to L3 and Gr2 (spectrum of L3 from literature).
Spectrum D.7 IR-spectrum of Gr2/Pr compared to L4 and Gr2.
Appendix E

The different reactions that can occur during the metathesis of 1-octene are illustrated in the following reaction schemes.† It consists of a number of self-metathesis reactions of the formed 1-alkenes as a result of the isomerisation and cross-metathesis reactions. For example, 1-octene can be isomerised to 2-, 3- and 4-octene, whereby cross-metathesis of 1-octene with 2-octene will lead to a range of internal and terminal alkenes. The terminal alkenes can again undergo isomerisation as well as cross-metathesis with other alkenes etc. Therefore, the process can repeat itself to produce a range of C₂ to C₁₄ alkenes. Oligomerisation reactions, i.e. di-, tri and tetramerisation reactions can also occur to produce higher alkenes, i.e. C₁₅ and longer.‡

Primary self-metathesis 1
: \[2 \text{C}_7 \not\rightarrow \text{C}_7 \not\rightarrow \text{C}_7 \]

Isomisation 1
: \[\text{C}_7 \not\rightarrow \text{C}_8 \not\rightarrow \text{C}_8 \not\rightarrow \text{C}_8 \]

Secondary self-metathesis 1
: \[2 \text{C}_4 \not\rightarrow \text{C}_6 \not\rightarrow \text{C}_6 \not\rightarrow \text{C}_6 \]

Secondary cross-metathesis 1
: \[\text{C}_7 + \text{C}_6 \not\rightarrow \text{C}_2 + \text{C}_6 \not\rightarrow \text{C}_2 + \text{C}_6 \]

Dimerisation 1
: \[2 \text{C}_7 \not\rightarrow \text{C}_{16} \]
<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Reactions</th>
</tr>
</thead>
</table>
| **Primary self-metathesis 2** | \[
\begin{align*}
2 \text{C}_4 & \leftrightarrow \text{C}_2 \text{C}_4 \\
2 \text{C}_6 & \leftrightarrow \text{C}_2 \text{C}_6 \\
2 \text{C}_6 & \leftrightarrow \text{C}_2 \text{C}_6
\end{align*}
\] |
| **Isomerisation 2** | \[
\begin{align*}
\text{C}_6 & \rightarrow \text{C}_5 & \rightarrow \text{C}_3 & \rightarrow \text{C}_4
\end{align*}
\] |
| **Secondary cross-metathesis 2** | \[
\begin{align*}
\text{C}_6 & + \text{C}_2 \rightarrow \text{C}_3 & + \text{C}_4 & + \text{C}_5 & + \text{C}_6 & + \text{C}_2 \rightarrow \text{C}_4
\end{align*}
\] |
| **Secondary self-metathesis 2** | \[
\begin{align*}
2 \text{C}_2 & \rightarrow \text{C}_2 & \rightarrow \text{C}_2 & \rightarrow \text{C}_5
\end{align*}
\] |
| **Dimerisation 2** | \[
\begin{align*}
2 \text{C}_6 & \rightarrow \text{C}_{14}
\end{align*}
\] |
| **Primary self-metathesis 3** | \[
\begin{align*}
2 \text{C}_4 & \leftrightarrow \text{C}_4 & \rightarrow \text{C}_4
\end{align*}
\] |
| **Isomerisation 3** | \[
\begin{align*}
\text{C}_6 & \rightarrow \text{C}_6 & \rightarrow \text{C}_3
\end{align*}
\] |
| **Secondary self-metathesis 3** | \[
\begin{align*}
2 \text{C}_3 & \rightarrow \text{C}_3 & \rightarrow \text{C}_3 & \rightarrow \text{C}_3
\end{align*}
\] |
| **Secondary cross-metathesis 3** | \[
\begin{align*}
\text{C}_6 & + \text{C}_2 & \rightarrow \text{C}_2 & + \text{C}_4 & + \text{C}_2 & \rightarrow \text{C}_5 & + \text{C}_4 & \rightarrow \text{C}_5
\end{align*}
\] |
| **Dimerisation 3** | \[
\begin{align*}
2 \text{C}_5 & \rightarrow \text{C}_{12}
\end{align*}
\] |
| **Trimerisation 3** | \[
\begin{align*}
3 \text{C}_5 & \rightarrow \text{C}_{18}
\end{align*}
\] |
| **Primary self-metathesis 4** | \[
\begin{align*}
2 \text{C}_6 & \leftrightarrow \text{C}_2 & \rightarrow \text{C}_4
\end{align*}
\] |
| **Isomerisation 4** | \[
\begin{align*}
\text{C}_4 & \rightarrow \text{C}_3 & \rightarrow \text{C}_3
\end{align*}
\] |
| **Secondary self-metathesis 4** | \[
\begin{align*}
2 \text{C}_3 & \rightarrow \text{C}_2 & \rightarrow \text{C}_3 & \rightarrow \text{C}_3
\end{align*}
\] |
| **Secondary cross-metathesis 4** | \[
\begin{align*}
\text{C}_6 & + \text{C}_2 & \rightarrow \text{C}_2 & + \text{C}_3 & \rightarrow \text{C}_3 & + \text{C}_4 & \rightarrow \text{C}_4
\end{align*}
\] |
| **Dimerisation 4** | \[
\begin{align*}
2 \text{C}_4 & \rightarrow \text{C}_{10}
\end{align*}
\] |
| **Trimerisation 4** | \[
\begin{align*}
3 \text{C}_4 & \rightarrow \text{C}_{15}
\end{align*}
\] |
| **Primary self-metathesis 5** | \[
\begin{align*}
2 \text{C}_3 & \leftrightarrow \text{C}_3 & \rightarrow \text{C}_3 & \rightarrow \text{C}_3
\end{align*}
\] |
Isomerisation 5 : $\text{C} = \text{C}_3 \rightarrow \text{C}_2 = \text{C}_2$

Secondary self-metathesis 5 :

Secondary cross-metathesis 5 :

Dimerisation 5 : $2 \text{C}_3 \rightarrow \text{C}_6$

Trimerisation 5 : $3 \text{C}_3 \rightarrow \text{C}_{12}$

Tetramerisation 5 :

Primary self-metathesis 6 :

Isomerisation 6 :

Secondary self-metathesis 6 :

Secondary cross-metathesis 6 :

Dimerisation 6 : $2 \text{C}_3 \rightarrow \text{C}_6$

Oligomerisation 6 :

$3 \text{C}_3 \rightarrow \text{C}_9$

$4 \text{C}_3 \rightarrow \text{C}_{12}$

$5 \text{C}_3 \rightarrow \text{C}_{15}$

$6 \text{C}_3 \rightarrow \text{C}_{18}$

References

Appendix F (p. 455 – 472) is available on the enclosed CD
Appendix G

Figure G.1 HOMO orbitals of Gr1, Gr1-B and a representative of the first and second generation hemilabile Ru=C complexes.
Figure G.2 Optimised geometry of the precatalysts of the first and second generation hemilabile complexes together with maps of the nucleophilic (f^+) Fukui functions on the electron isodensity surface.
Figure G.3 Optimised geometry of Gr1 Me, together with maps of the nucleophilic (f^+) Fukui functions on the electron isodensity surface.
Figure G.4 Optimised geometry of Grt1′Pr, together with maps of the nucleophilic (f^+) Fukui functions on the electron isodensity surface.
Figure G.5 Optimised geometry of Gr2Me, together with maps of the nucleophilic (f+) Fukui functions on the electron isodensity surface.
Figure G.6 Optimised geometry of Gr2Pr, together with maps of the nucleophilic (f+) Fukui functions on the electron isodensity surface.