Body composition, bone health and vitamin D status of African adults in the North West Province

O.F SOTUNDE
24655449
M.Sc. Nutrition and Dietetics

Thesis submitted for the full degree Doctor Philosophae in Dietetics at the Potchefstroom Campus of the North-West University

Promoter: Prof HS Kruger
Co-promoter: Dr. HH Wright
Co-promoter: Dr L Havemann-Nel

November 2014
THIS THESIS IS DEDICATED TO MY HUSBAND BABATUNDE TOLUWALOPE SOTUNDE FOR ALL YOUR UNQUANTIFIABLE SACRIFICES, UNDERSTANDING, SUPPORT AND LOVE.
ACKNOWLEDGEMENTS

- Unto the King eternal, immortal, invincible be all the glory and honour and power for ever. Thank you Lord for everything. Indeed you are my anchor and all I have for you is my praise. Another dream realised because of your grace.

- Professor H. Salome Kruger, for all your guidance and hard work to ensure the success of my thesis, I am deeply grateful. I have learnt a great deal from you and it is a privilege to have been mentored by you, thank you.

- Dr Hattie Wright and Dr Lize Havemann-Nel for your immense support to ensure the successful completion of this work, I say a big thank you. To all my co-authors, thank you for all your relentless efforts.

- My dad and mom, Pa Olusola & Ma Olanike Akinwande for your love, support and prayers, for igniting the passion for higher learning in me and for uncountable things you taught me, thank you. My siblings Olubusola Otekunrin, Opeyemi Akinwande, Oladele Akinwande and Atinuke Asabo, for providing the shoulders for me to stand upon in order to see far, thank you.

- My dad and mom, Elder Olutunmbi & Pastor Adedoyin Sotunde and the entire Sotunde family, for your love, prayers and support all the way, thank you.

- Prof Johann Jerling and the entire staff and post graduate students of the Centre of Excellence for Nutrition, for creating a warm, conducive and highly stimulating environment of academic excellence, thank you.

- To all my friends and cousins for their support and timely words of encouragement, thank you. To my spiritual family, I say thank you for all your prayers and support.

- My children, Oreoluwaadunmomi and Ibukunoluwaposimi Sotunde, thank you for displaying such wonderful support and understanding through the course of the program. I love you and am so proud of you, thank you.

- My husband, Babatundemi, this space is not enough for me to declare my profound respect and appreciation for you. Indeed I am blessed to be your wife, thank you.

For the Lord God helped me therefore was I not confounded, therefore did I set my face like a flint and I was not put to shame-Isaiah 50 vs 7 {Olusola’s version}
ABSTRACT

Body composition, bone health and vitamin D status of African adults in the North West Province

Background

In South Africa, as in many other developing countries, obesity has become a major health problem causing an increase in the incidence and prevalence of various non-communicable diseases. Research has shown that excess adiposity is associated with low vitamin D status and detrimental to bone health. Low vitamin D status has been linked to various non-communicable diseases which includes osteoporosis, and also the metabolic syndrome. Information is scarce on the role of lean mass and fat mass on bone health in the black South African population. There is also a shortage of data on the association between vitamin D status and the metabolic syndrome in the South African population.

Aim

The main aim of this study was to examine factors (vitamin D status, socio-economic status [SES] and lifestyle risk factors) associated with body composition, including bone health, as well as predictors of change in body composition in African adults in the North West Province of South Africa.

Methods

The first study that forms part of this thesis was a longitudinal study aimed at examining the effects of urbanization, socio-economic status and lifestyle factors on changes in body composition over 5 years in rural and urban black South African adults. A total of 1058 men and women above age 30 years from the Prospective Urban Rural Epidemiology study were included in this study. The second study to form part of this thesis aimed to examine the association between body composition and bone health in urban black South African women. Structured questionnaires were used to collect socio-demographic and lifestyle information including medication and tobacco use. This second study is cross-sectional in design and it included 189 postmenopausal women aged > 43 years old. Dual X-ray absorptiometry was used to assess bone mineral density, lean mass and fat mass, while structured and specific questionnaires were used to assess the habitual physical activity, food frequency and fracture risk. Habitual activity energy expenditure was also measured using an accelerometer with a combined heart rate monitor. The third study aimed to examine the association of serum 25 hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) concentration, respectively, with
the metabolic syndrome while controlling for adiposity in black women in the North West Province, South Africa. This third study is also cross-sectional in design and it included 209 HIV-negative urban women. Dual X-ray absorptiometry was used to assess adiposity, while habitual physical activity was accessed with questionnaire and habitual activity energy expenditure was also measured using an accelerometer with a combined heart rate monitor.

Results

Study 1: Over a 5-year period, body mass index (BMI) and waist circumference increased in both genders, but the change was significant for BMI ($P<0.01$) and waist circumference ($P<0.001$) in women only, indicating an increase in adiposity over time. Urban residency positively predicted changes in waist circumference in men ($p < 0.05$) and women ($p < 0.001$) as well as change in triceps skinfold thickness of men ($p < 0.05$). Being married positively predicted changes in BMI ($p < 0.001$) and waist circumference ($p < 0.001$) in men, while age negatively predicted changes in triceps skinfold thickness in women ($p < 0.001$).

Study 2: Fat mass and lean mass were significantly positively associated with bone mineral density (BMD) and fracture risk when adjusted for potential confounders. However, lean mass and not fat mass remained significantly associated with femoral neck BMD ($\beta = 0.49$, $p < 0.001$), spine BMD ($\beta = 0.48$, $p< 0.0001$) and hip BMD ($\beta = 0.59$, $p< 0.0001$). Lean mass was also negatively associated with fracture risk ($\beta = -0.19$ $p =0.04$) when both lean and fat mass were in the same model.

Study 3: After adjusting for age, body fat, habitual physical activity, tobacco use and season, neither 25(OH)D nor PTH concentrations showed significant associations with having the metabolic syndrome. However, when body fat was replaced with waist circumference there was a weak positive association between 25(OH)D concentration and the metabolic syndrome. No significant association was found between PTH:25(OH)D ratio and the metabolic syndrome.

Conclusion

This thesis has highlighted that the prevalence of obesity among black South Africans is high particularly among women and urbanization played a significant role in the increasing adiposity of black South Africans in the North West province. Lean mass had a stronger association with bone health in comparison to fat mass in urban black South African women. Low 25(OH)D concentration was not associated with the metabolic syndrome while there was no significant association between PTH and the metabolic syndrome in our black South African women.

Keywords: Body composition, bone health, lean mass, metabolic syndrome, 25(OH)D, PTH
OPSOMMING

Liggaamsamestelling, beengesondheid en vitamien D status van swart volwassenes in die Noord-Wes provinsie

Agtergrond

In Suid-Afrika, soos in baie ander ontwikkelende lande, het obesiteit 'n merkwaardige gesondheidsprobleem geword wat 'n verhoogde voorkoms van verskeie nie-oordraagbare siektes tot gevolg het. Navorsettings toon dat oortollige adipose weefsel geassosieer word met lae vitamien D status asook 'n nadelige effek het op beengesondheid. Lae vitamien D status word ook verbind met verskeie nie-oordraagbare siektes soos osteoporose en die metaboliese sindroom. Inligting rakende die rol van maer liggaamsmassa en vet liggaamsmassa op beengesondheid in die swart Suid-Afrikaanse populasie is skaars. Daar is ook 'n tekort aan data rakende die assosiasies tussen vitamien D status en die metaboliese sindroom in Suid-Afrikaners.

Doelwit

Die primêre doel van hierdie studie was om te bepaal of daar 'n assosiasie bestaan tussen sekere faktore (vitamien D status, lewensstyl risiko faktore en sosio-ekonomiese status) en liggaamsamestelling, insluitende beengesondheid, sowel as indikators wat verandering in liggaamsamestelling voorspel in volwasse swart Suid-Afrikaners van die Noord-Wes provinsie in Suid-Afrika is.

Metodes

Die eerste studie wat deel uitmaak van hierdie tesis, was 'n longitudinale studie wat gekyk het na die effekte van verstedeliking, sosio-ekonomiese status en lewensstyl faktore op die verandering van liggaamsamestelling oor 'n vyf jaar tydperk in landelike en stedelike swart individue wat in Suid-Afrika woon. 'n Totaal van 1058 swart mans en vroue bo die ouderdom van 30 jaar is ingesluit binne die Prospektiewe Stedelike en Landelike Epidemiologiese (PURE) studie. Die tweede studie wat deel vorm van die tesis het beoog om die assosiasie tussen liggaamsamestelling en beengesondheid te bepaal in swart Suid-Afrikaanse vroue wat in 'n landelike gebied woon. Hierdie studie is 'n dwarsdeursnitstudie wat 189 postmenopousale swart vrouens ingesluit het met ouderdomme bo 43 jaar. Gestrukturerde vraelyste was gebruik om sosio-demografiese- en lewensstyl inligting asook medikasie- en tabakgebruik in te samel. Dubbel X-straal absorptiometrie (DXA) was gebruik om beenmineraal densiteit (BMD), maer liggaamsmassa en vet liggaamsmassa te bepaal. Gestrukturerde en spesifieke vraelyste is
gebruik om hul gewoontelike fisieke aktiwiteit te bepaal, asook hul voedsel inname en fraktuur risiko. Gewoontelike energie verbruik is ook gemeet met behulp van 'n versnellingssmeter wat gekombineer is met 'n hartmonitor. Die derde studie wat deel vorm van die tesis, het die assosiasie tussen serum 25-hidroksi-vitamien D [25(OH)D] asook die paratiroïed hormoon (PTH), met die metaboliese sindroom ondersoek terwyl daar gekorrigeer is vir adipose weefsel. Die studie is ook 'n dwarsdeursnit ontwerp en het 209 MIV-negatiewe swart vroue ingesluit wat in 'n stedelike gebied woon in die Noord-Wes provinsie. DXA was gebruik om adipositeit te bepaal, terwyl gewoontelike fisieke aktiwiteit met behulp van vraelys bepaal is. Gewoontelike energieverbruik is deur 'n versnellingssmeter wat gekombineer is met 'n hartmonitor, bepaal.

Resultate

Studie 1: Oor 'n vyf-jaar tydperk, het die liggaamsmassa indeks (LMI) asook die middel-omtrek in albei geslagte toegeneem, maar die verandering was slegs betekenisvol vir LMI (p<0.01) en middel-omtrek (p<0.001) in vroue, wat 'n indikasie is van adipose weefsel toename oor tyd. Area van woning (stedelike area) het veranderinge in die middel-omtrek in mans (p<0.05) en vroue (p<0.001) positief voorspel, asook veranderinge in die dikte van die trisepsvelvou in mans (p<0.05). Om getroud te wees het 'n positiewe voorspelling gehad op LMI (p<0.001) en middel-omtrek (p>0.001) in mans, terwyl ouderdom 'n negatiewe voorspelling gehad het op die verandering in die dikte van die trisepsvelvou in vroue (p<0.001).

Studie 2: Vet massa en maer massa het 'n betekenisvolle positiewe assosiasie gehad met BMD en fraktuur risiko, terwyl daar gekorrigeer was vir potensiële beperkende faktore. Maer massa en nie vet massa, het betekenisvol geassocieer met die femorale nek BMD (β = 0.49, p<0.001), spinale BMD (β = 0.59, p<0.0001) en heup BMD (β = -0.19, p = 0.04) wanneer maer-massa en vet massa in dieselfde model geplaas was.

Studie 3: Nadat daar gekorrigeer is vir ouderdom, liggaamsmassa, gewoontelike fisieke aktiwiteit, tabakgebruik en seisoen, was daar geen assosiasie gevind tussen 25(OH)D of PTH-konsentrasies en die metaboliese sindroom nie. Nietemin, wanneer liggaamsmassa verplaas word met middel-omtrek was daar 'n swak positiewe assosiasie gevind tussen 25(OH)D-konsentrasies en die metaboliese sindroom. Geen betekenisvolle assosiasie was gevind tussen PTH:25(OH)D ratio en die metaboliese sindroom nie.

Gevolgtrekking

Hierdie tesis het die hoë voorkoms van obesiteit onder swart Suid-Afrikaners uitlig, met spesifieke fokus op vroue en ook die rol wat verstedeliking speel in die toename van adipose weefsel in swart Suid-Afrikaners in die Noord-Wes provinsie. Maer massa het 'n sterker
assosiasie met beengesondheid gewys as vet massa in verstedelikte swart Suid-Afrikaanse vrouens. Lae 25(OH)D-konsentrasies asook PTH-konsentrasies was nie geassosieer met die metaboliese sindroom in swart Suid-Afrikaanse vroue nie.

Sleutelwoorde: Liggaamsamestelling; beengesondheid; maer massa; metaboliese sindroom; 25(OH)D; PTH
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... II

ABSTRACT .. III

OPSOMMING ... V

LIST OF TABLES ... XII

LIST OF FIGURES .. XIII

LIST OF ADDENDA ... XIV

LIST OF ABBREVIATIONS .. XV

CHAPTER 1: INTRODUCTION ... 1

1.1 BACKGROUND AND MOTIVATION .. 1

1.1.1 Factors affecting body composition .. 1

1.1.2 Body composition and health .. 1

1.1.3 Strategies to improve body composition and bone health 3

1.2 AIMS AND OBJECTIVES .. 4

1.3 STRUCTURE OF THIS THESIS ... 4

1.4 ETHICAL CONSIDERATIONS .. 5

1.5 AUTHOR’S CONTRIBUTIONS TO THE SEPARATE PAPERS IN THIS THESIS 5

1.6 REFERENCES ... 9

CHAPTER 2: LITERATURE REVIEW .. 16

2.1 INTRODUCTION ... 16

2.2 BODY COMPOSITION ... 16

2.2.1 Composition and physiology of soft body tissue .. 17
2.2.2 Factors affecting/influencing changes in fat-mass, lean mass and body weight

2.2.3 BODY COMPOSITION ASSESSMENT TECHNIQUES

2.2.4 Effect of aging on body composition and bone health

2.3 BONE HEALTH

2.3.1 Bone structure and physiology

2.3.2 Bone metabolism

2.3.3 Osteopenia and osteoporosis

2.3.4 Factors affecting/influencing bone health

2.3.5 Parathyroid hormone

2.4 Metabolic syndrome

2.4.1 Relationship between vitamin D status, PTH and the metabolic syndrome

2.4.2 Relationship between vitamin D status, PTH and components of metabolic syndrome

2.5 THE LINK BETWEEN BODY COMPOSITION, BONE HEALTH AND VITAMIN D STATUS

2.6 REFERENCES

CHAPTER 3

INSTRUCTIONS FOR AUTHORS FOR BMC PUBLIC HEALTH

ABSTRACT

BACKGROUND

SUBJECTS AND METHODS

RESULTS

DISCUSSION
6.1 INTRODUCTION ... 206

6.2 The influence of SES and lifestyle risk factors on changes in the body composition of black South Africans ... 207

6.3 The association between body composition and bone health in urban postmenopausal black South African women ... 207

6.4 The association of serum 25(OH) D and PTH concentration with metabolic syndrome in urban black South African women ... 208

6.5 CONCLUSION .. 209

6.6 RECOMMENDATIONS .. 210

6.7 REFERENCES .. 212

ADDENDA .. 215
LIST OF TABLES

CHAPTER 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>List of members within the research team and their contributions to this study</td>
<td>6</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descriptive data for the total sample at baseline stratified according to gender</td>
<td>121</td>
</tr>
<tr>
<td>2</td>
<td>Pearson correlation between SES variable, lifestyle risk factors at baseline and changes in body composition variables</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>Multiple regression analysis for the association between dependent variables and predictor variables</td>
<td>124</td>
</tr>
</tbody>
</table>

CHAPTER 4

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demographic, body composition, health and lifestyle measures of the total group as well as between women with BMI < 25 kg/m² and BMI ≥ 25 kg/m² (n=189)*</td>
<td>146</td>
</tr>
<tr>
<td>2</td>
<td>Pearson correlation coefficients between dietary intake, physical activity, body composition, bone markers and fracture risk for the whole group</td>
<td>147</td>
</tr>
<tr>
<td>3</td>
<td>Association between BMD as dependent variable and body composition parameters as independent variables</td>
<td>148</td>
</tr>
<tr>
<td>4</td>
<td>Association between fracture risk as dependent variable and body composition parameters as independent variables</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>Multiple regression analysis for the association between BMD measurements and fracture risk as dependent variables and body composition parameters as independent variables</td>
<td>150</td>
</tr>
</tbody>
</table>

CHAPTER 5

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demographic, body composition, health and lifestyle measures of the total group as well as between women with and without metabolic syndrome (n=209)*</td>
<td>189</td>
</tr>
<tr>
<td>2</td>
<td>Multiple regression analysis for 25(OH)D, PTH or PTH:25(OH)D ratio on body composition variables</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>Multiple logistic regression analysis for the association between 25(OH)D or PTH and other covariates and the metabolic syndrome</td>
<td>193</td>
</tr>
<tr>
<td>4</td>
<td>Multiple logistic regression analysis for the association between PTH:25(OH)D the metabolic syndrome</td>
<td>194</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER 2

Figure 1. Anatomy of the bone (Shutterstock.com/images/185803484 Copyright: Deignua) .. 31
Figure 2. Vitamin D metabolism reprinted from Nature Review Cancer Vol 7 no 9, Deeb et al., 2007, 684-700., Copyright (2007), with permission from Nature Publishing Groups ... 38

CHAPTER 3

Figure 1: Anthropometric nutritional status based on BMI of men (A) and women (B) stratified by residence in 2005 and 2010. Prevalence estimates based on WHO categories of BMI >18.5 as underweight, 18.5-24.99 as normal weight, 25-29.99 as overweight and ≥30 as obese 122
LIST OF ADDENDA

ADDENDUM A ETHICAL APPROVAL 2005 216
ADDENDUM B ETHICAL APPROVAL 2010 217
ADDENDUM C ETHICAL APPROVAL FOR PHD STUDY 218
ADDENDUM D INFORMED CONSENT FORM 2010 219
ADDENDUM E ADULT QUESTIONNAIRE 221
ADDENDUM F PHYSICAL ACTIVITY QUESTIONNAIRE 241
ADDENDUM G BONE HEALTH QUESTIONNAIRE 242
ADDENDUM H BLACK FRACTURE INDEX 244
ADDENDUM I COPYRIGHT LICENCE AND LANGUAGE EDITING CERTIFICATE 245
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(OH)D</td>
<td>25-hydroxyvitamin D</td>
</tr>
<tr>
<td>AEE</td>
<td>Activity Energy Expenditure</td>
</tr>
<tr>
<td>ASM</td>
<td>Appendicular Skeletal Muscle Mass</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelectrical Impedance Analysis</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone Mineral Density</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CT</td>
<td>Computer Tomography</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DALYs</td>
<td>Disability-Adjusted Life Years</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual Energy X-ray Absorptiometry</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High-Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostasis Model of Assessment of Insulin Resistance</td>
</tr>
<tr>
<td>ISAK</td>
<td>International Society for the Advancement of Kinanthropometry</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health Nutrition Examination Survey</td>
</tr>
<tr>
<td>NWP</td>
<td>North West Province</td>
</tr>
<tr>
<td>NWU</td>
<td>North–West University</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid Hormone</td>
</tr>
<tr>
<td>PURE</td>
<td>Prospective Urban Rural Epidemiology</td>
</tr>
<tr>
<td>QFFQ</td>
<td>Quantitative Food Frequency Questionnaires</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RSMI</td>
<td>Relative Skeletal Muscle Index</td>
</tr>
<tr>
<td>SANHANES</td>
<td>South African National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>SAT</td>
<td>Subcutaneous Adipose Tissue</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SES</td>
<td>Socio-economic Status</td>
</tr>
<tr>
<td>SSPS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>UBV</td>
<td>Ultra violet-B</td>
</tr>
<tr>
<td>VAT</td>
<td>Visceral Adipose Tissue</td>
</tr>
<tr>
<td>WC</td>
<td>Waist Circumference</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>µ</td>
<td>Micro</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>r</td>
<td>Correlaton Coefficient</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>±</td>
<td>Plus or Minus</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

1.1.1 Factors affecting body composition

Human body composition studies have a long history of more than 150 years and it focuses on the masses of various body components and their distribution, the measurable relations among body components, the in vivo quantification of body components, and the quantitative changes in these components related to various intrinsic and extrinsic factors (Zhu & Wang, 2011).

Socio-economic status (SES) which can be defined as an individual’s position on a socio-economic scale is often measured by factors like education, income, occupation and place of residence. SES is identified to be associated with a variety of diseases (Adler et al., 1999). For many decades, a powerful association between SES and physical health has been recognized. Whether defined according to level of education, income, or occupational status, lower SES is associated with diverse disease endpoints and with premature mortality (Gallo et al., 2009) and it is a significant predictor of body mass index (BMI) (Jeffery et al., 1991). Socio-demographic characteristics are associated with long term weight gain (Lahmann et al., 2000). Smoking is a lifestyle risk factor which increases insulin resistance and is associated with central fat accumulation (Chiolero et al., 2008). Dietary intake and physical activity are major determinants of body composition (Nilas et al., 1987; Hui et al., 1988; Slemenda et al., 1990; Popkin et al., 1993; Hill et al., 2000; Vorster et al., 2011).

1.1.2 Body composition and health

In 1997, the World Health Organisation (WHO) emphasised that obesity is becoming a major health problem in many developing countries, particularly in adult women (WHO, 2000). A high prevalence of obesity was found in black South African women, with an increase in BMI, skinfold thicknesses, waist circumference and waist to hip ratio (WHR) with increasing age (Kruger et al., 2001). The recent South African National Health and Nutrition Examination Survey (SANHANES) reported a national obesity prevalence of 10.6% and 39.2% for South African adult men and women respectively (Shisana et al., 2013). Malnutrition manifests predominantly as overweight and high rates of abdominal obesity in adult South Africans, particularly in African women (Puoane et al., 2002). Obesity (defined
as a body mass index (BMI) ≥30 kg/m²) and “normal weight adiposity” (i.e. having a BMI in the normal range of 18.5 to 24.9 kg/m² but having excessive body fat) are associated with a multitude of health problems (Gropper et al., 2012). Obesity has been linked to an increased risk of hyperlipidaemia, heart disease, hypertension, and stroke, among others, while normal weight adiposity has been linked to dyslipidaemia, hypertension, and hyperglycaemia (Daniels et al., 1999; Vizcaino et al., 2007; Dervaux et al., 2008; Romero-Corr al et al., 2010; Gómez-Ambrosi et al., 2011), as well as with elevated plasma C-reactive protein concentrations, an indicator of inflammation (Ridker et al., 2003; Musso et al., 2011).

Waist circumference represents a useful marker of abdominal or central obesity (Huang et al., 2001), and like body adiposity, larger waist circumference measurements have been associated with multiple health conditions (Evans et al., 2011; Gropper et al., 2012) and has also been shown to be predictive of insulin resistance (Raman et al., 2008; Goedecke et al., 2009). Waist circumference and skinfold measurements were found to be reliable substitutes for body fat mass in a cohort of Caucasian adults (Ketel, 2007). The relationship between waist circumference and body fat mass may be different for different ethnic groups (Rush et al., 2007). Studies have shown that for the same BMI, black South African women have lower central adiposity than white South African women (Rush et al., 2007; Goedecke et al., 2013).

Bone mineral density (BMD) is another component of body composition that also decreases with age. Under-nutrition is common among the elderly, with the potential to aggravate the physiological age-related muscle and bone mass decline (Ilich et al., 2003). The effects of under-nutrition and sarcopenia, independently and in combination overlap in their contribution to loss of bone mass in the elderly (Coin et al., 2008). Characteristics of osteoporosis include low BMD and higher than normal incidences of fractures (ZhiMin et al., 2012). Fractures related to osteoporosis are associated with significantly increased risk of death and disability-adjusted life years (DALYs) lost (Melton, 2003). Since several prospective studies have clearly shown that low BMD is predictive of future fractures (Ross et al., 1987, Hui et al., 1988), it will be of substantial benefit for both individuals and society if those with a high fracture risk are detected and managed early (ZhiMin et al., 2012). According to Slemenda and colleagues (1990), it is important to identify low BMD in order to determine who is most likely to benefit from therapy to preserve existing bone mass. Among other factors, under-nutrition and rapid bone loss during menopause have been acknowledged as increasing the risk of osteoporosis (Prynne et al., 2006).
1.1.3 Strategies to improve body composition and bone health

Diet, physical activity, race and heredity are major determinants of optimal bone mass and modification of diet and physical activity may help in maintaining optimum skeletal status (Nilas et al., 1987; Hui et al., 1988; Slemenda et al., 1990). Studies of progressive degeneration of normal physiological functioning of bone due to aging have mostly been limited to white women as they have the highest incidence of osteoporotic fractures (Kruger et al. 2004; Gnudi et al., 2007; Navarro et al., 2013). Also in South Africa, osteoporosis and fractures occur more frequently in white than in black women (Kruger et al., 2004). It was emphasised in the past that black women are relatively protected from osteoporosis; however older black women may increasingly become more prone to the risk of osteoporosis and fractures due to changes in physical activity and the nutrition transition (Aloia, 1996; Vorster et al., 2002; Kruger et al., 2011; Vorster et al., 2011).

Awareness that vitamin D sufficiency is required for optimal health is on the increase (Grant & Holick, 2005). Low vitamin D status has been reported as a risk factor for increased cardiovascular events, cancer, autoimmune diseases, type 1 and type 2 diabetes mellitus, infections, cognitive decline, (Pittas et al., 2006; Pittas et al., 2007; Cheng et al., 2010; Pearce, 2010; Hammed et al., 2011) and has been associated with the metabolic syndrome (Hypponen et al., 2008). The relationship between low vitamin D and metabolic traits, appear to differ among different ethnicities. In America, the National Health Nutrition Examination Survey (NHANES) III data showed an inverse association between vitamin D status and insulin resistance in non-Hispanic whites and Mexican Americans, but the inverse relationship was not observed in African-Americans (Scragg et al., 2004). Low serum vitamin D is also associated with elevated parathyroid hormone (PTH) secretion (Lips, 2001) and elevated PTH levels have been linked to an increased risk for the metabolic syndrome (Reis et al., 2007; Ahlström et al., 2009). Some studies also showed that PTH is associated with a higher risk of incident hypertension (Oshima & Young 1995; Taylor et al., 2008).

This study will provide significant and new information on the relationship between socio-economic status and lifestyle risk factors respectively, on changes in body composition; the role of body composition, particularly lean mass, fat mass and BMI on bone health; and the relationship between vitamin D status, PTH and the metabolic syndrome in black South African adults. These results could help to facilitate the development of effective public health policies in South Africa, and also enable the re-evaluation of current strategies aimed at the rising scourge of obesity and its attendant health problems in the nation.
1.2 AIMS AND OBJECTIVES

The main aim of this study is to examine factors (vitamin D status, SES and lifestyle risk factors) associated with body composition, including bone health, as well as predictors of change in body composition in African adults in the North West Province of South Africa.

Specific Objectives:

1. To examine the influence of urbanization, SES and lifestyle risk factors on changes in the body composition of black South African men and women from the North West Province between 2005 and 2010.

2. To examine the association between body composition (BMI, fat mass and lean mass) and bone health (BMD and fracture risk) in urban postmenopausal black South African women.

3. To examine the association of serum 25 hydroxyvitamin D [25(OH)D] and PTH concentration with the metabolic syndrome in urban black South African women from the North West Province.

1.3 STRUCTURE OF THIS THESIS

This thesis is presented in article format and consists of six chapters, including this introductory chapter.

Chapter 2 gives an overview of the relevant literature on body composition, bone health and vitamin D. This chapter provides a comprehensive overview of the relevant literature needed for the interpretation of the data from the articles in this thesis.

Chapter 3 is an article entitled: “Influence of urbanization, socio-economic status and lifestyle risk factors on changes in body composition among South African adults”. This article has been submitted for publication to the BMC Public Health. It addresses the influence of urbanization, SES, physical activity, tobacco use, dietary intake and marital status on changes in BMI, waist circumference and triceps skinfold over 5 years in rural and urban black South African adults.

Chapter 4 is an article entitled: “Lean mass appears to be more strongly associated with bone health than fat mass in urban black South African women”. This article has been accepted for publication in the Journal of Nutrition Health and Aging. It addresses the effect
of fat mass, lean mass and body mass index as body composition variables on bone health in post-menopausal urban black South African women.

Chapter 5 is an article entitled: “Association of serum 25(OH)D and PTH with the metabolic syndrome in women in the North-West, South Africa.” This article will be submitted for publication to the BMC Women’s Health. It examines the influence of 25(OH)D and PTH respectively on the metabolic syndrome in urban black South African women.

Chapter 6 is the final chapter which comprises of a general discussion, recommendations and conclusion.

The relevant references used in Chapters 1, 2 and 6 are provided at the end of each chapter according to the required style of the North-West University. The references of Chapters 3, 4 and 5 are provided at the end of each chapter according to the required style of the respective journals.

1.4 ETHICAL CONSIDERATIONS

The study is part of the broader PURE-SA and the PURE-Bone study with ethical approval obtained from the Ethics Committee of the North-West University, Potchefstroom, South Africa - Ethics number: NWU-00016-10-A1 (Addenda A, B and C). Signed informed consent was obtained from the participants after the purpose of the study and all study procedures have been explained to them in their home language (Addendum D). Permission to conduct the study was obtained from the North West Department of Health, tribal chiefs, community leaders and employers of the participants. Participants had the choice to withdraw from the study at any time.

1.5 AUTHOR’S CONTRIBUTIONS TO THE SEPARATE PAPERS IN THIS THESIS

The contributions of the researchers involved in the studies presented in this thesis are given in Table 1
Table 1: List of members within the research team and their contributions to this study

<table>
<thead>
<tr>
<th>Name and signature*</th>
<th>Affiliation</th>
<th>Role in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. F Sotunde (PhD candidate)</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Assisted in the data collection of the PURE study, responsible for the literature review, statistical analysis, interpretation of results and writing up of publications and thesis.</td>
</tr>
<tr>
<td>Prof HS Kruger (Promoter)</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Supervised this thesis, formulated research questions, supervised the data collection of the PURE study, quality control of data, statistical analyses, interpretation of results and co-authored the 3 articles (Chapters 3, 4 & 5) in this thesis.</td>
</tr>
<tr>
<td>Dr HH Wright (Co-promoter)</td>
<td>School of Health and Sports Sciences, University of the Sunshine Coast, Queensland, Australia; Centre of Excellence for Nutrition, North-West University;</td>
<td>Co-supervised this thesis, assisted in the data collection of the PURE study, co-authored the 3 articles (Chapters 3, 4 & 5).</td>
</tr>
<tr>
<td>Dr L. Havemann-Nel (Co-promoter)</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Co-supervised this thesis, assisted in the data collection of the PURE study, co-authored the 3 articles (Chapters 3, 4 & 5).</td>
</tr>
<tr>
<td>Prof A Kruger</td>
<td>AUTHeR, Faculty of Health Sciences, North-West University</td>
<td>Planning and coordinating the PURE study SA, co-authored 1 article (Chapter 4)</td>
</tr>
<tr>
<td>Name and signature*</td>
<td>Affiliation</td>
<td>Role in the study</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Dr L Kruger</td>
<td>AUTHeR, Faculty of Health Sciences, North-West University</td>
<td>Co-authored 1 article (chapter 4), assisted in the data collection of the PURE study.</td>
</tr>
<tr>
<td>Prof E Wentzel-Viljoen</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Responsible for the collection, coding, analysis and quality control of dietary intake data for the PURE study. Co-authored 1 article (Chapter 4)</td>
</tr>
<tr>
<td>Dr C. Nienaber-Rousseau</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Co-authored 1 article (Chapter 3), assisted in the data collection of the PURE study.</td>
</tr>
<tr>
<td>Prof. M. Pieters</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Co-authored 1 article (Chapter 5), assisted in the quality control of data collected in the PURE study.</td>
</tr>
<tr>
<td>Prof. S.J. Moss</td>
<td>Physical Activity, Sport and Recreation Research Focus Area, North-West University</td>
<td>Co-authored 1 article (Chapter 3), assisted in the data collection of the PURE study.</td>
</tr>
<tr>
<td>Dr M. Tieland</td>
<td>Division of Human Nutrition; Wageningen University; Wageningen; The Netherlands</td>
<td>Co-authored 1 article, (Chapter 4), expertise in sarcopenia and bone health.</td>
</tr>
<tr>
<td>Name and signature*</td>
<td>Affiliation</td>
<td>Role in the study</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Dr C. Botha-Ravyse</td>
<td>Centre of Excellence for Nutrition, North-West University</td>
<td>Co-authored 1 article (Chapter 5), assisted in the data collection of the PURE study.</td>
</tr>
<tr>
<td>Dr C.M.C. Mels</td>
<td>Hypertension in Africa Research Team; North-West University</td>
<td>Laboratory analysis and quality control of biochemical data, co-authored 1 article (Chapter 5)</td>
</tr>
<tr>
<td>Prof. E. Feskens</td>
<td>Division of Human Nutrition; Wageningen University; Wageningen; The Netherlands</td>
<td>Co-authored 1 article (Chapter 5), expertise in body composition and the metabolic syndrome.</td>
</tr>
</tbody>
</table>

I declare with my signature that as a co-author I have approved the above-mentioned articles, that my role in the study as indicated above is representative of my actual contribution and that I hereby give consent that it may be published as part of the PhD thesis of Mrs O.F. Sotunde
1.6 REFERENCES

Navarro, M.d.C., Saavedra, P., Jódar, E., Gómez de Tejada, M., Mirallave, A. & Sosa, M. 2013. Osteoporosis and metabolic syndrome according to socio-economic status,

CHAPTER 2: LITERATURE REVIEW

2

2.1 INTRODUCTION

Many African countries including South Africa are in the nutrition-related non-communicable disease phase of the nutrition transition (Vorster et al., 2011) with resultant unfavourable changes in body composition. The national obesity prevalence as recently reported by SANHANES was 10.6% and 39.2% for South African adult men and women respectively (Shisana et al., 2013).

Black South Africans have traditionally been known to have a better bone health in comparison to their white and Indian counterparts (Micklesfield et al., 2011). This could be explained in part by genetic and ethnic differences in lifestyle (Pollitzer & Anderson, 1989; Lei et al., 2006; Goedcke et al., 2010; Chantler et al., 2011; Shisana et al., 2013). For instance a large number of black South Africans accumulate incidental moderate –intense physical activity due to walking as a mean of transportation (Goedcke et al., 2009). However, due to urbanization and its attendant negative effects; there is an increasing concern about the bone health of black South Africans (Kruger et al., 2011).

The high prevalence of obesity among South Africans is a cause of concern as excess body weight has also been associated with vitamin D deficiency (Bischof et al., 2006; Reinehr et al., 2007; Shisana et al., 2013). In a recent study black South Africans had a higher prevalence of vitamin D deficiency and inadequacy in comparison to blacks from Ghana, Jamaica and Seychelles (Durazo-Arvizu et al., 2014).

This chapter of the thesis will focus on the review of literature related to composition of the human body and factors that contribute to its changes, as well as bone health and factors that affect bone health. The effect of vitamin D status and parathyroid hormone on components of metabolic syndrome will also be highlighted.

2.2 BODY COMPOSITION

Studies on human body composition span over 150 years and focus on the different body components, their distribution, and measurable changes in relation to various intrinsic and extrinsic factors (Zhu & Wang, 2011). A two compartment model of human body composition
divides the body into fat mass and fat free mass (Ackland et al., 2012). Body composition can be assessed at five levels namely; atomic level, molecular level, cellular level and tissue levels and whole body (Wang et al., 1992; Ackland et al., 2012). The sum of all components at each of the five levels is equivalent to body mass (Heymsfield, 2005). At the atomic level body mass includes 11 major elements: calcium, potassium, phosphorous, sulphur, sodium, chlorine, magnesium, oxygen, carbon, hydrogen and nitrogen, while the last four elements account for more than 96% of body mass (Heymsfield, 2005). Most of these elements can be measured in vivo by neutron activation analysis (Cohn & Dombrowski, 1971) and whole body counting (Cohn et al., 1969). The molecular level consists of six major components: water, lipid, protein, carbohydrates, bone minerals and soft tissue minerals. The cellular level includes three components: extracellular solids, extracellular fluid and cells, whereas the tissue-organ level consists of the adipose tissue, skeletal muscle, visceral organs, and bone (Heymsfield, 2005; Ackland et al., 2012). Adipose tissue components are present throughout the body and the metabolic properties of these properties differ based on their location in the anatomy (Bjorntorp, 2000; Enevoldsen et al., 2001; Cinti, 2012). The whole body level is divided into appendages, trunk and head regions where by trunk and appendages are usually described by anthropometric measures like skinfolds, lengths and circumferences (Heymsfield, 2005). The three specific tissues that are particularly important in body composition research are bone, adipose and muscular tissue (Ilich et al., 2014). They make up approximately 75% of body weight in the reference man (Snyder et al., 1974). Body composition has been indicated to be a primary determinant of health, and a better predictor of mortality risk than body mass index (Segal et al., 1987; VanItallie et al., 1990; Ackland et al., 2012). Body composition measurements like waist circumference and waist to height ratio have been shown to be significantly associated with the risk of cardiovascular events (de Koning et al., 2007; Evans et al., 2011; Goedecke & Micksfield, 2014). A case controlled study with 27,000 participants from 52 countries found waist to hip ratio to be highly significantly associated with myocardial infaction risk world wide (Yusuf et al., 2005).

2.2.1 Composition and physiology of soft body tissue

2.2.1.1 Fat mass

The fat mass component of the human body is fat from all body sources and it is categorized as essential fat or storage fat (Cinti, 2012). Total body fat is usually expressed as a percentage of total body weight. According to Gallagher et al. (2000), 8% to 24% of total body fat in males and 21% to 35% in females are associated with optimum health. Essential
fat is stored in small amounts in the bone marrow, kidney, heart, lung, liver, spleen, muscles and lipid rich tissues in the nervous system, and it is necessary for normal physiological function (Gallagher et al., 2000; Cinti, 2012). Storage fat accumulates under the skin and around internal organs and acts as protection for the organs against trauma (Ackland et al., 2012). In the human body, adipose tissue increases either in the size (hyperthrophy) of adipose cells already present, or by the number (hyperplasia) of adipose cells (Knittle et al., 1979). Adipose tissue is the major site for fuel storage in form of triglycerides in the body (Schuster, 2009), and it has an important effect on whole body homoeostasis (Cinti, 2012). It is also critical for thyroid function, bone health maintenance, immune response, reproduction and blood clotting (Schuster, 2009). The adipose tissue is a complex and a very active metabolic and endocrine organ (Ahima & Flier, 2000; Frühbeck et al., 2001; Cinti, 2012). However, important factors in determining individual risk to develop metabolic and cardiovascular co-morbidities of obesity include ectopic fat accumulation and adipose tissue dysfunction (Blüher, 2009).

2.2.1.2 Lean mass

Lean body mass is basically the part of the body that is free of adipose tissue and it is also referred to as fat-free mass. It includes muscles, bones, ligaments, tendons and internal organs. Lean body mass increases with exercise (Fielding, 1995; Morris et al., 1997; Ackland et al., 2012), it is higher in men than women (Ley et al., 1992), and it is lower in older adults (Kyle et al., 2001a; Di Iorio et al., 2006). According to Forbes (2003), it is predictable that older persons with weight loss will lose both lean mass and fat mass. However, if body weight remains constant, lean body mass will fall by about 1.5kg per decade (Forbes, 1999). Lean body mass is the major determinant of resting metabolic rate (Gallagher et al., 1998; Kim et al., 2014), while it also accounts for 29% of excess weight in the obese (Pierson et al., 1997). In the elderly, lean body mass has been linked to protection against frailty and physical dysfunction (Delmonico et al., 2007), and also to a favourable cardiometabolic profile mainly as a result of increased insulin sensitivity (Nam et al., 2001). Recently, high lean mass has been shown to have a protective effect on bone health in Korean adult men (Shin et al., 2014). Chantler and colleagues (2011) found lean mass to be the strongest correlate of whole body, femoral neck and total hip BMD for white South African women and whole body BMD for black South African women. A recent study among black South African and Asian Indian South Africans concluded that lean mass was the major contributor to BMD at all skeletal sites measured for both ethnic groups (George et al., 2014). Lipotoxicity is the lipid induced dysfunction of lean tissue whereby fat is deposited in
non-adipose tissue and it has been linked in theory to produce obesity comorbidities such as insulin resistance, type 2 diabetes mellitus and cardiovascular diseases (Zhou et al., 2000; Shimabukuro et al., 2013).

2.2.1.3 Fat distribution

A number of studies have shown that the regional distribution of fat is an important factor in the relationship between obesity, metabolism and health (Lapidus et al., 1984; Vague, 1985; Donahue et al., 1987; Goodpaster et al., 2005; Britton et al., 2013). Vague (1956) was the first to recommend that a distinction between adiposity should be made based on the type of excess fat. He also noted that despite that body fat distribution is a sexual characteristic, men and women can differ remarkably in android or gynoid pattern (Vague, 1956). A significant association has been demonstrated between regional fat distribution and cardiovascular disease and related mortality (Lapidus et al., 1984; Vague, 1985; Donahue et al., 1987; Goodpaster et al., 2005; Britton et al., 2013). According to Britton et al. (2013), visceral adiposity is associated with incident cardiovascular disease and cancer. Regional patterns of fat deposit are controlled genetically and are different between and among men and women (Rush et al., 2007; Nazare et al., 2012; Karastergiou et al., 2012). South African studies have also reported differences in body fat distribution across its ethnic groups (Rush et al., 2007; Goedecke et al., 2013; George et al., 2014). Goedecke and colleague (2009) showed that body fat distribution is differentially associated with insulin sensitivity in black and white South African women. The study showed that for the same BMI, black women were less insulin sensitive despite having less visceral adipose tissue (VAT) compared to white women (Goedecke et al., 2009).

In the extensive study of obese persons by Krotkiewski et al. (1983), it was reported that persons whose abdominal adipocytes were larger than their gluteal adipocytes had higher insulin and glucose concentrations than persons with smaller abdominal than gluteal adipocytes even at the same level of adiposity. Some other studies also confirmed that subcutaneous abdominal adipocyte size is positively associated with adverse metabolic indexes in both sexes, while femoral adipocyte size had weak or no association (Kissebah et al., 1982; Pouliot et al., 1990; Imbeault et al., 1999; Harwood, 2012; Rydén et al., 2014).

In a recent study on Ghanaian migrants, lower rates of elevated fasting glucose were observed among Ghanaian women compared to men and it may be partly due to a more favourable body fat distribution, characterized by both greater hip and smaller waist.
measurements amongst the women (Nicolaou et al., 2013). Socio-economic status (SES) also seems to contribute to body fat distribution (Lahmann et al., 2000). Abdominal visceral and subcutaneous fat thickness was higher in urban residents in a Kenyan study compared to their rural counterparts (Christensen et al., 2008). The study implies that the rural inhabitants are engaged in more physically demanding jobs in comparison to their urban counterparts, especially the females (Christensen et al., 2008). In a Dutch study, migrant men had a more favourable fat distribution with less abdominal fat than Dutch men (Ujicic-Voortman et al., 2011). There is growing evidence that smoking affects body fat distribution and that it is associated with central obesity and insulin resistance (Eliasson, 2003; Houston et al., 2006; Willi et al., 2007; Chiolero et al., 2008; Clair et al., 2011). Visceral adipose tissue is influenced by cortisol concentrations and smokers have been shown to have higher fasting plasma cortisol concentrations compared to non smokers (Cryer et al., 1976; Friedman et al., 1987; Pasquali et al., 2000). Smoking induced stimulation of sympathetic nervous system activity could be the cause of higher cortisol concentrations (Williamson et al., 1991; Yoshida et al., 1999).

2.2.2 Factors affecting/influencing changes in fat-mass, lean mass and body weight

2.2.2.1 Gender

Body composition differs based on gender. For a given BMI women have been reported to have higher adiposity while men have higher lean mass (Garaulet et al., 2000; Geer & Shen, 2009). Men have been reported to have the tendency of storing fat centrally, while women tend to store fat peripherally (Garaulet et al., 2000; Machann et al., 2005). Also men generally have more VAT and less subcutaneous adipose tissue (SAT) when compared to women (Machann et al., 2005; Bray et al., 2008; Geer & Shen 2009). Also, changes in body composition over time have also been demonstrated to be different for males and females (Tsunenari et al., 1993; Sartorio et al., 2005; Strugnell et al., 2014). Gender difference in body fat distribution is largely due to differences in sex hormones between men and women (Nedungadi & Clegg, 2009; Tchernof & Depres, 2013). However, as women age and reach menopause, women accumulate more visceral fat which has been attributed to the hormonal changes experienced in women after menopause (Kotani et al., 1994; Tchernof & Depres, 2013).
2.2.2.2 Socio-economic status

SES which can be defined as an individual's position on a socio-economic scale is often measured with indicators like education, income, occupation, place of residence etc. For many decades, powerful association between SES and physical health has been recognized. Whether defined according to educational attainment, income, or occupational status, lower SES is associated with diverse disease endpoints and with premature mortality (Adler et al., 1999; Gallo et al., 2009). Low SES is associated with long term weight gain and it is a significant predictor of BMI (Jeffery et al., 1991; Lahmann et al., 2000; O'Dea et al., 2012). This is largely explained by overconsumption of energy dense foods which are cheaper and more easily accessible (Popkin et al., 1993; Hill et al., 2000; Abrahams et al., 2011; Aounallah-Skhiri et al., 2011; Vorster et al., 2011).

2.2.2.3 Diet

Diet is a major determinant of body composition changes (Mozafarian et al., 2011). Dietary modification is widely used to effect changes in body composition particularly body weight (Howard et al., 2006; Carty et al., 2011; Di Daniele et al., 2013). High intakes of energy and fat are positively associated with increased measures of obesity (Popkin et al., 1993; Hill et al., 2000; Abrahams et al., 2011). Carty and colleagues (2011) reported modest long term body composition changes of decreased percentage body fat and fat mass by a group of women on a low fat dietary pattern over a period of six years.

2.2.2.4 Physical activity

Physical activity or inactivity is a determinant of changes in body composition over time. Increase in level of physical activity is associated with higher muscle mass and lesser total body fat in adults (Raguso et al., 2006). Increase in physical activity over time has been demonstrated to reduce measures of obesity (Toth et al., 1999; Irwin et al., 2003). Physical activity is one of the major determinants of energy expenditure as it accounts for 15% to 30% of total energy expenditure under normal circumstances (Ravussin et al., 1982; Jequier & Schutz, 1983). Decrease in physical activity could lead to weight gain as lower energy expenditure predicts increase in weight and fat mass (Mozafarian et al., 2011; Reddy et al., 2012; Piaggi et al., 2013). In a longitudinal study on older men and women, baseline physical activity was inversely associated with changes in fat mass in women (Hughes et al., 2002).
2.2.2.5 Age

Age is an established determinant of changes in body composition as changes in body composition occur with increasing age (Tsunenari et al., 1993; Baumgartner et al., 1995; Hughes et al., 2002; Zamboni et al., 2003). There is usually an increase in fat mass and a decrease in muscle mass due to aging (Evans & Campbell, 1993; Hughes et al., 2002; Genton et al., 2011). This could be as a result of decreased physical activity, hormonal changes and dietary changes (Mozafarian et al., 2011; Tchernof & Depres, 2013). A decrease in height also occurs as humans grow older (Chumlea et al., 1998). Decrease in height of an adult is shrinkage which could be due to poor posture, joint deterioration and osteoporosis (Cline et al., 1989; Bagga, 2013).

Other lifestyle factors that contribute to changes in body composition include smoking, alcohol use, use of specific medication, specific contraceptive usage by women and marriage for men. Smoking increases insulin resistance and is associated with central fat accumulation (Chiolero et al., 2008). Studies have shown that marriage for men is more associated with increased risk of obesity (Sobal et al., 1992; Hajian-Tilaki et al., 2007).

2.2.3 BODY COMPOSITION ASSESSMENT TECHNIQUES

2.2.3.1 Surface anthropometry

Anthropometry can be defined as the science of measuring the size, weight and proportion of the human body and it is one of the basic tools to assess nutritional status (Heymsfield & Casper, 1987; Wang et al., 2002). Anthropometric instruments are portable and relatively inexpensive and are non-invasive procedures which make them applicable for large sample studies and can be used in rural and urban field situations (Heymsfield, 2005). Anthropometric measures can be sensitive indicators of health, development and growth in infants and children (Moore & Roche, 1983). Anthropometric measurements also predict performance and survival (De Onis & Habicht, 1996). Anthropometric variables have been recently suggested to predict regional fat tissue masses accurately (Holmes et al., 2005; Arthurs & Andrews, 2009; Yavari et al., 2011). According to Scafglieri et al. (2013), the anthropometrically derived indices of fat mass distribution demonstrate sufficient accuracy for clinical use.
2.2.3.1.1 Height, weight and body mass index

Height (or stature) and weight are useful in determining nutritional status in adults. Height is usually measured directly with a measuring rod or a stadiometer for individuals who are cooperative and able to stand without assistance, while indirect methods can be used to estimate the height of individuals who cannot stand using their knee height (Chumlea et al., 1985; Gordon et al., 1988). Body weight is one of the most important measurements in nutritional assessment. Weight is an important variable in equations predicting caloric expenditure and in indices of body composition (Mei et al., 2002; Lee & Nieman, 2013). Body weight is interpreted in different ways including actual weight, usual weight and ideal weight (WHO, 1986). Studies of predominantly sedentary populations show that men and women gain weight as they age (Williams & Wood, 2006). BMI, also known as the Quetelet’s index ($\frac{W}{H^2}$) is the most widely used height–weight index (Lee & Nieman, 2003). BMI accounts for differences in body composition by defining the level of adiposity and relating it to height and it is often used to evaluate obesity (Stensland & Margolis, 1990; WHO, 2000). BMI however, does not differentiate between fat free mass and fat mass (Müller et al., 2012).

2.2.3.1.2 Skin-fold measurements

Skinfold measurement is the thickness of a double fold of skin and compressed subcutaneous adipose tissue (Muller et al., 2013). This is the most widely used method of indirectly estimating percentage body fat in clinical settings (Pollock & Jackson, 1984; Martin et al., 1985). The skinfold thickness is measured with the use of a calliper. Subcutaneous adipose tissue thickness varies largely among different skinfold sites within individuals and the same skinfold sites between individuals (Siervogel et al., 1982; Martin et al., 1985; Clarys et al., 1987). According to research, certain skinfold sites are highly correlated to total subcutaneous adipose tissue (Martin et al., 1985). There are eight most commonly used skinfold sites: chest, triceps, subscapular, midaxillary, suprailliac, abdomen, thigh and medial calf (Lee & Nieman, 2013). The most commonly used single site for assessing body composition is the triceps, while using the sum of skinfold measurements taken at various sites (multiple site skinfold measurements) has proved to be a reasonably valid and reliable indicator of body composition (Lee & Nieman, 2013). Triceps and subscapular skinfold thicknesses are positively associated with the homeostasis model of assessment of insulin resistance (HOMA-IR) and identify those at higher risk for insulin resistance (Addo et al., 2012).
2.2.3.1.3 Circumference measurements

Circumferential or girth measurements are used more frequently in recent times because of the growing body of evidence that body fat distribution is an indicator of risk for some non-communicable diseases (Rush et al., 2007; Despres, 2012; Patel & Abate, 2013). These include measures of waist circumference, mid-arm circumference, head circumference and calf circumference, using a non-stretchable tape measure (Lee & Nieman, 2013). Waist circumference is measured midway between the iliac crest and the lower margin of the last palpable rib in the mid-axillary line. Waist circumference is a sensitive measure of central fat distribution and a good predictor of abdominal obesity (Conway et al., 1995; Tchernof & Depres, 2013). De Koning et al. (2007) found a two percent increased cardiovascular disease risk for every centimetre increase in waist circumference. Mid-arm circumference is measured halfway between the acromion process of the scapula and the olecranon process at the tip of the elbow (Lee & Nieman, 2013). Mid-arm circumference is a measure of nutritional status particularly in children and the elderly (WHO, 2009). Head circumference is measured at its greater circumference which is usually above the eyebrows and pinna of the ears and around the occipital prominence at the back of the skull (Lee & Nieman, 2013). Calf measurement is used in combination with other anthropometric measures to estimate body weight gain in older adults (Lohman et al., 1988).

2.2.3.2 Dual energy x-ray absorptiometry

Dual energy X-ray absorptiometry (DXA) is the most widely used bone density measurement technology. It is primarily used to measure bone mineral density but has become widely used to measure fat mass and fat-free mass with a high degree of accuracy (St-Onge et al., 2004). The DXA energy source is an X-ray tube that contains photon energies (Lee & Nieman, 2003). The DXA machine is easy to use and emits a low level of radiation (UNSCEAR, 2004). Micklesfield et al. (2010), demonstrated that DXA performs as well as computer tomography for the measurement of visceral fat.

2.2.3.3 Bioelectrical impedance analysis

Bioelectrical impedance analysis (BIA) is a body composition analysis technique based on the principle that compared to water; lean mass has a higher electrical conductivity and lower impedance than fatty tissue (Segal et al., 1991; Foster & Lusaki, 1996). It is a reliable measurement of fat mass and fat free mass in comparison to anthropometric, BMI or skinfold measurements (Kyle et al., 2001b). BIA involves passing a small electrical current through
the body by the attachment of electrodes to the right hand, wrist, ankle and foot of an individual (Segal et al., 1991). It is a popular means of assessment because it is non-invasive, quick, portable and safe (Segal et al., 1991; Foster & Lusaki, 1996). BIA may not be appropriate choice of body composition measurement in epidemiological studies with diverse ethnic population except specific calibration equations are developed for different groups participating in the study (Dehghan & Merchant, 2008). This is because BIA results are influenced by ethnicity, environment, phase of menstrual cycle and underlying medical conditions (Dehghan & Merchant, 2008).

2.2.3.4 Ultrasound

The ultrasound has been indicated as a preferable tool to skinfold callipers in measuring very obese individuals due to difficulty of accurately measuring skinfolds on them (Booth et al., 1966; Brodie, 1988). However, the ultrasound is more expensive and requires more training for its operation and interpretation compared to the callipers (Lukaski, 1987; Brodie, 1988).

2.2.3.5 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a technology that shows both imaging of the body and *in vivo* chemical analysis without hazard to the subject (Ellis, 2000; Ross et al., 2000). MRI can be used to measure the distribution and amount of intra-abdominal fat, size of visceral organs and the size of the skeleton. MRI is non-invasive and does not use ionizing radiation but it is expensive and its availability is limited (Lee & Nieman, 2003).

2.2.3.6 Underwater weighing

Underwater weighing was considered as the gold standard for measuring body composition (Ackland et al., 2012), but it is not always practical (Lee & Nieman, 2003). It is a direct measure of determining whole-body density based on the principle that the volume of water displaced by an object submerged in water is equal to the volume of the object (Lukaski, 1987).

2.2.3.7 Other methods

Computer tomography involves the use of ionizing radiation and is used to assess the deposition of subcutaneous and intra-abdominal fat (Lukaski, 1987; Shuster et al., 2012). Air displacement plethysmography relies on measurement of body density to estimate body fat...
and fat free mass (Lukaski, 1987). The BODPOD® is an example of an air displacement plethysmogram and is also an accurate method to measure body composition (Aleman-Mateo et al., 2004). Neutron activation analysis measures body calcium, iodine, hydrogen, sodium, chloride, phosphorus, carbon and nitrogen content (Lee & Nieman, 2003). Total body potassium is also used to study body composition, because more than 90% of the body’s potassium is found in fat-free tissues (Lukaski, 1987).

2.2.4 Effect of aging on body composition and bone health

Body composition changes profoundly as an adult advances in age (Evans & Campbell, 1993; Liu et al., 2011). Aging is a normal biologic process which involves some decline in physiologic function (López-Otin et al., 2013) and a decrease in functional capacity which impacts on quality of life (Goodpaster, 2008). The changes in body composition due to aging are towards a decrease in skeletal muscle mass and an increase in fat mass (Evans & Campbell, 1993). Sarcopenia is also mostly a result of body composition changes with aging.

2.2.4.1 Sarcopenia and sarcopenic obesity

2.2.4.1.1 Definition and diagnosis

Sarcopenia is defined as the loss of muscle mass and strength that occurs with advancing age (Rosenberg, 1997; Cruz-Jentoff et al., 2010). It has also been defined as age-associated loss of skeletal muscle mass and function, a complex syndrome associated with muscle mass loss alone or in conjunction with increased fat mass (Fielding et al., 2011). There are possible contributory causes for sarcopenia which include age related changes in tissue secretion or responsiveness to trophic hormonal factors, changes in dietary intake and protein metabolism, and "disuse atrophy" (Bortz, 1982; Evans & Campbell, 1993; Dutta & Hardley, 1995). According to Bales and Ritchie (2002), sedentary lifestyle, nutrition and chronic diseases are factors that aggravate sarcopenia. Expected components of ageing are diminishing strength and muscle mass (Robinson et al., 2012). However, the rate of decline differs across the population (Syddall et al., 2009; Cruz-Jentoft et al., 2010), which suggest that modifiable behavioural factors such as diet and lifestyle may be important influences on muscle function in older age (Robinson et al., 2012). The total appendicular skeletal muscle mass (ASM) index assessed by DXA is one of the most commonly used indices for the definition of sarcopenia (Waters & Baumgartner, 2011). Individuals with an ASM index < 7.26 kg/m² (men) or < 5.45 kg/m² (women) are classified as sarcopenic (Baumgartner et al.,
1998). Janssen and colleagues (2002) further classified sarcopenia using bioelectric impedance into class I and II, where skeletal muscle mass (SMM) index of 5.76 to 6.75 kg/m² was categorized as class I sarcopenia for women and 8.51 to 10.75 kg/m² for men. An SMM index of 5.75 kg/m² or less for women and 8.50 kg/m² or less for men is defined as class II sarcopenia. Sarcopenic obesity can be defined as a state whereby lean muscle mass is lost while fat mass is preserved or increased (Baumgartner 2000; Cruz-Jentoft et al., 2010). According to the reports of some studies, sarcopenic-obese persons are at particularly high risk of functional impairment and physical disability (Baumgartner 2000; Morley et al., 2001; Baumgartner et al., 2004; Rolland et al., 2009). Sarcopenic obesity links adiposity and sarcopenia through inflammation derived from the adiposity particularly when the obesity is of the abdominal type (Cesari et al., 2005; Schrager et al., 2007).

2.2.4.1.2 Prevalence of sarcopenia and sarcopenic obesity

Globally, some studies have been carried out on prevalence of sarcopenia using different methods which includes the ASM index, the SMM index and the relative skeletal muscle index (RSMI) approach. A study in the older adults from California, United States reported a sarcopenia prevalence of 6.2% for men and 5.9% for women which increased with age to 16% for men and 13% for women by age 85 (Castillo et al., 2003). The large United States Health, Aging and Body Composition (Health ABC) study reported different prevalence for sarcopenia based on different cut scores used (Newman et al., 2003). A large cohort study on more than 7000 French community dwelling women reported an increase with age in prevalence of sarcopenia from 8.9% at 76 to 80 years to 10.9% at 86 to 95 years (Gillette-Guyonnet et al., 2003). A cohort study on more than 1000 community dwelling older Italians reported that 20% of men were sarcopenic at 65 years and up to 70% at 85 years, and 5% of women were sarcopenic at 65 years of age and 15% at 85 years (Lauretani et al., 2003).

Asia and the Pacific region also have prevalence rates of sarcopenia. A Hong Kong study reported sarcopenic prevalence of 7.6% for women and 12.3% for men (Lau et al., 2005). A Korean study reported sarcopenia prevalence of 6.3% men and 4.1% women among a sample of 526 adults (Kim et al., 2009). A Taiwanese study reported a sarcopenia prevalence of 18.6% for women and 23.6% for men among their older adults (Chien et al., 2008). A recent Thai study reported a sarcopenia prevalence of 35.3% and 34.74% in men and women respectively (Pongchaiyakul et al., 2013). A small study on older European New Zealanders reported 4% of men and 12% of women as sarcopenic (Waters et al., 2010).
There is a scarcity of data on prevalence of sarcopenic obesity globally and the reported prevalence of sarcopenic obesity varies significantly across study populations even when similar methods are applied. An older New Mexican cohort used the Baumgartner’s cut scores to assess sarcopenic obesity and the prevalence was approximately 2% in those 60 to 69 years old increasing to approximately 10% in those above 80 (Baumgartner, 2000). Some studies reported the prevalence of sarcopenic obesity as approximately 10% in men and approximately 7% to 12% in women using a definition of the upper 2 quintiles of body fat with the lower 3 quintiles of muscle mass (Davison et al., 2002; Zoico et al., 2004; Zamboni et al., 2005). The United States Health ABC study reported a sarcopenic obesity prevalence rate of 8.9% in men and 7.1% in women using the RSMI method, but 15.4% men and 21.7% of women using the residual method (Newman et al., 2003). The Korean study by Kim et al. (2009), reported a prevalence rate of 1.3% and 0.8% sarcopenic obesity in men and women respectively using the RSMI and 5.1% men and 12.5% women using their own index. The lack of internationally accepted definition of sarcopenic obesity may be a reason for the wide range of prevalence reported. Presently, there is no published literature available for prevalence of sarcopenia in Africa.

2.2.4.1.3 Factors influencing sarcopenia and sarcopenic obesity

Inflammation has been linked to obesity, body composition and physical disability (Cohen et al., 1997; Ferrucci et al., 1999; Kuller, 1999; Yudkin et al., 2000; Roubenoff, 2003; Ryan & Nicklas, 2004). According to Cesari et al. (2005), obesity-associated inflammation may play an important role in the age-related process that leads to sarcopenia. Quite a large number of elderly people suffer from chronic low-grade systemic inflammation that may add to the age-related muscle weakness and wasting (Degens, 2010). According to Malafarina et al. (2012), loss of muscle mass and strength observed in the elderly is directly associated with inflammatory cytokines and inflammation may be a fundamental factor in the genesis of sarcopenia. Also, older people living with Human Immunodeficiency Virus [HIV] in the United States have been shown to have greater limitations in performing their physical tasks (Crystal et al., 2000).

There is a progressive reduction in physical activity as a result of aging (Ingram, 2000). Physical activity has been considered the major factor in slowing the age related decline in many physiological functions as physical inactivity contributes significantly to secondary aging of these functions (Booth et al., 2011). Physical inactivity leads to faster and greater muscle loss and from existing studies, it is clear that sarcopenia is worsened with disuse
Nutrition has an important controlling influence on health and well-being in the elderly as inadequate nutrition contributes to the progression of many chronic diseases (Volkert, 2011). One of contributing factors to the development of sarcopenia is inadequate nutrition which may also worsen the age-related loss of muscle mass and function (Rolland et al., 2008; Boirie, 2009). According to Booth et al. (2011), adequate dietary intake and regular physical activity, significantly lowers the rate of muscle ageing. In an Italian study among more than 800 healthy elderly, low intakes of energy, protein, vitamins D, E, C and folate were independently associated with frailty (Bartali et al., 2006). Some studies have shown the relationship between sarcopenia and amount of protein intake (Castaneda et al., 1995; Houston et al., 2008), kind of protein intake (Pannemans et al., 1998; Lord et al., 2007; Paddon-Jones et al., 2008) and distribution of protein intake (Arnal et al., 1999). Recently, vitamin D has turned out to have significant importance on muscle function and physical performance (Volkert, 2011). Scott et al. (2010), suggest that 25 hydroxy vitamin D [25(OH)D] plays a role in the maintenance of muscle function, and higher skeletal muscle mass in older adults. In a longitudinal study on the aging in Amsterdam, lower 25(OH)D and higher PTH levels increased the risk of sarcopenia in older men and women (Visser et al., 2003). While another study on older Koreans, reported a strong inverse association between 25(OH)D level and sarcopenia (Kim et al., 2009).

2.3 BONE HEALTH

2.3.1 Bone structure and physiology

2.3.1.1 Bone structure and function

Bones give form to the body; they support tissues, permit movement by providing points of attachments for muscles and also protect many of the body’s vital organs (Huether & McCance, 2004). Bones also serve critical metabolic roles which include being an internal reservoir for calcium to ensure proper functioning of nerves and muscles (Civitelli & Ziambaras, 2011). It has been suggested recently that the skeleton also contributes to glucose homeostasis (DiGirolamo et al., 2012). Lee et al. (2007), demonstrated that the skeleton exerts an endocrine regulation of sugar homeostasis through osteocalcin, which is
a bone-derived hormone. Studies have suggested that osteocalcin target β cells and insulin targeting tissues such as adipocytes, liver and muscles in order to regulate insulin secretion and insulin sensitivity (Ferron et al., 2008; Kanazawa & Sugimoto, 2013).

Bones are made up of an organic matrix or osteoid, primarily collagen fibres, in addition to osteocalcin, osteopontin and several other matrix proteins (Sommerfeldt & Rubin 2001). Bone cells consist of three types namely osteoblasts, osteocytes and osteoclasts (Sommerfeldt & Rubin 2001). Osteoblasts are bone forming cells with the primary function of laying down new bones; osteocytes are osteoblasts that have become imprisoned within the mineralised bone matrix with the role of maintaining the inorganic and organic elements of bone matrix, and the osteoclasts functions primarily to remove bone during the process of growth and repair (Huether & McCance, 2004). Approximately 80% of the skeleton consists of compact or cortical bone tissue while the remaining 20% of the skeleton is trabecular or cancellous bone tissue. The loss of trabecular bone tissue late in life is mostly responsible for the occurrence of fractures, particularly those of the spine (Parfitt et al., 1983; Parfitt, 1987; Wang et al., 2013). Figure 1 shows the anatomy of the bone.
2.3.2 Bone metabolism

2.3.2.1 Bone modeling, remodeling and turnover

The skeleton is a metabolically active organ going through a constant process of remodelling throughout life (Sommerfeldt & Rubin 2001; Lee et al., 2007; Ferron et al., 2008; Kanazawa & Sugimoto, 2013). Bone modelling and remodeling are processes where bone adapts its internal structure and shape to external influences (Gerhard et al., 2009). Bone remodelling is essential to maintain the structural integrity of the skeleton and for the metabolic function of calcium and phosphorus storage (Feng & MacDonald, 2011). It is a physiological process in which old or damaged bone is removed by osteoclasts and replaced by new bone formed by osteoblasts (Feng & MacDonald, 2011). The process is considered to occur in three overlapping phases viz i) activation/initiation phase which occurs at a specific site leading to the formation of osteoclasts when a stimulus activates bone cell precursors; ii) the resorption phase when osteoclasts absorbs bone; iii) the formation/rebuilding phase where
the osteoblasts secretes collagen and other matrix proteins for the deposition of new bone (Anderson, 2008; Feng & MacDonald, 2011). At the completion of the formation phase and at the beginning of the resorption phase, the same amount of bone tissue exists when the resorption and formation phases are in balance (Anderson, 2008). Autocrine, paracrine and endocrine factors regulate the rate and degree of coupling of bone formation to removal (resorption) during remodelling (Kular et al., 2012). Bone turnover is simply the total volume of bone that is both resorbed and formed over a period of time (Parfitt, 2002), and increased bone turnover persists in the elderly (Garnero et al., 1996a; Kruger et al., 2011; Hinton et al., 2012). Also, increased levels of biochemical markers of bone turnover, more specifically of bone resorption, have been shown to be associated with an increased risk of hip fracture independently of bone mineral density (BMD) in elderly women (Garnero et al., 1996b; Van Daele et al., 1996; Rousseau et al., 2014).

2.3.3 Osteopenia and osteoporosis

Osteoporosis is a multifactorial skeletal disease which is characterised by low bone mass and microarchitectural deterioration of bone tissue, with a resulting increase in bone fragility and susceptibility to fracture (CDC, 1993). Osteopenia can be defined as a condition of decreased bone mass (Sambrook & Cooper, 2006). The WHO operational definition of osteopenia is a hip or lumbar spine BMD greater than 1 standard deviation (SD) below the young adult female mean, but less than 2.5 SD below this value (T score ≤ -1 and > -2.5) and osteoporosis as hip or lumbar spine BMD 2.5 SD or more below the young adult female mean (T score ≤ -2.5). (WHO 1994; WHO 2003). The latest International Society for Clinical Densitometry official position maintains the WHO classification for osteopenia and osteoporosis for postmenopausal women and men above the age of 50 years (Schousboe et al., 2013). The society also states that osteoporosis cannot be diagnosed for men under the age of 50 years on the basis of BMD alone while maintaining that the WHO diagnostic criterion may be applied for women in the menopausal transition (Schousboe et al., 2013). Worldwide osteoporosis is estimated to affect 200 million women (IOF, 2013). Characteristics of osteoporosis include low BMD and higher than normal incidences of fractures (ZhiMin et al., 2012). There are three main types of osteoporosis namely postmenopausal osteoporosis, age-related osteoporosis and secondary osteoporosis which includes glucocorticoid induced osteoporosis and immobilization induced osteoporosis (Feng & Macdonald, 2011). Postmenopausal osteoporosis is primarily caused by the decline in estrogen levels associated with menopause (Albright et al., 1941; Feng & Macdonald et al., 2011). Age related osteoporosis affects both women and men and it is centered on
osteoblasts engaging a number of distinct factors associated with the aging process (Raisz, 2005; Feng & Macdonald 2011). Therapeutic use of glucocorticoids can lead to bone loss and increased fracture risk as it exerts damaging effects on the differentiation, function and survival of multiple cell types involved in the bone remodeling process (Compston, 2003; Silverman & Lane, 2009; Feng & Macdonald, 2011). Immobilization induced osteoporosis is as a result of physiological response of bone remodeling to decreased mechanical demands from paralysis or casting of a limb (Takata & Yasui, 2001; Feng & Macdonald, 2011). Locations of osteoporotic fracture occurrences include the hips, the vertebral and wrists (Cummings & Melton, 2002). Fractures related to osteoporosis are associated with significantly increased risk of death and disability-adjusted life years (DALYs) lost (Melton, 2003). In 2000, fifty-six million people were estimated to have suffered a prior osteoporotic fracture worldwide and about 9 million new osteoporotic fractures each year (Johnell & Kanis, 2006). Race, heredity, physical activity and diet are major determinants of optimum bone mass and modification of physical activity and diet may help in maintaining optimal skeletal status (Nilas & Christiansen, 1987; Hui et al., 1988; Siemenda et al., 1990). Osteoporosis and fractures occur more frequently in white than in black South Africans (Kruger et al., 2004). According to a review by Micklesfield et al. (2011), black SA children and adults have greater proximal femur and femoral neck BMD, greater bone strength and a decreased hip fracture incidence compared to SA whites irrespective of adverse environmental conditions of poor nutrition low physical activity levels, as well as an unfavourable body composition. However, due to nutrition transition and changes in physical activity, older black women may increasingly represent a population at risk for osteoporosis and fractures (Aloia, 1996; Kruger et al., 2011).

2.3.4 Factors affecting/influencing bone health

2.3.4.1 Metabolic and hormonal control

The balance between bone resorption by osteoclasts and bone formation by osteoblasts is what regulates bone metabolism (Chen et al., 2009). A number of hormonal regulators of metabolism are known to influence the skeleton (Khor et al., 2013). Estrogen is a major determinant of bone mass, affecting the attainment of peak bone mass during adolescence and young adult age, modulating BMD and the risk of osteoporosis later in life (Davies et al., 1990; Drinkwater et al., 1990; Fabbri et al., 1991). Estrogen prevents bone loss through multiple effects on bone cells and their precursors, resulting in decreased osteoclast formation and a reduced capacity of mature osteoclasts to resorb bone (Chen et al., 2009).
Elevated concentration of circulating cortisol retards osteoblast function and accelerates osteoclast activity (Bressot et al., 1979). A reduced level of circulating insulin like growth factor 1 (IGF-1) has been demonstrated to inhibit the activity of the osteoblasts and the synthesis of bone collagen (Chevalley et al., 1998). IGF-1 is a polypeptide synthesised primarily in the liver through the action of growth hormone and circulates to target organs like bone and cartilage (Thissen et al., 1994; Tahimic et al., 2013). IGF-1 plays a role in mediating the skeletal response after mechanical loading as IGF-1 production and responsiveness are increased in osteocytes and osteoblasts after mechanical loading (Lean et al., 1995; Reijnders et al., 2007; Klein-Nulend et al., 2012). Sclerostin is an osteocyte-derived inhibitor of bone formation and its absence causes scleroteosis which is a skeletal disorder characterised by high bone mass due to increased osteoblast activity (Van Bezooijen et al., 2004; Poole et al., 2005; Gaudio et al., 2012). A recent review reported the strong effects of gastrointestinal hormones on bone metabolism often through direct signalling pathways (Khor et al., 2013). For instance the growth hormone releasing peptide, ghrelin is an appetite stimulating hormone which seems to exert positive effects on the skeleton (Khor et al., 2013). The gastrointestinal hormone Peptide YY (PYY) suppresses the appetite and has been shown to have inverse correlations with BMD (Wong et al., 2010; Wong et al., 2012). Some studies have shown a negative relationship between serum adiponectin levels and BMD (Richards et al., 2007; Peng et al., 2008; Kanazawa et al., 2009) while there have been mixed results in the association between leptin concentration and BMD showing either a positive or no association (Thomas et al., 2001; Lee et al., 2008; Ahmadi et al., 2013).

2.3.4.2 Dietary intake

Nutrition is one of the important modifiable factors in the development and maintenance of bone mass; and the prevention and treatment of osteoporosis (Ilich & Kerstetter, 2000). Most studies conducted so far have confirmed the positive role of a healthy diet to maintain bone health (Ilich & Kerstetter, 2000; Levis & Lagari, 2012)

2.3.4.2.1 Protein

Dietary protein is essential for bone health and osteoporosis prevention (Bonjour, 2005). In the Framingham longitudinal study, men and women with a relatively lower intake of protein had increased bone loss (Hannan et al., 2000). High protein intake particularly of animal source has often been alluded to as a risk factor for osteoporosis or bone fractures
(Feskanich et al., 1996; Barzel & Massey, 1988; Sellmeyer et al., 2001). However, with adequate calcium intake, higher protein diets are associated with fewer fractures and greater bone mass (Heaney & Layman, 2008). Studies point out that different source of protein might display different effects on bone metabolism (Frassetto et al., 2000; Heaney & Layman, 2008). A review study on the effect of dietary protein on bone health proposes that animal protein might have a greater negative effect on skeletal health than plant protein (Frassetto et al., 2000). However this was refuted in other studies where higher intake of animal protein was not associated with a decrease in BMD (Hannan et al., 2000; Dawson-Hughes & Harris, 2002). A 3 year clinical study on older adults aged 65 years and above reported greatest improvement in BMD amongst subjects that were supplemented with calcium and consumed the most protein whereby most of the protein consumed was from animal source (Dawson-Hughes & Harris, 2002). A detailed review on protein and bone balance by Kerstetter and colleagues (2007), showed that high protein consumption was associated with increased excretion of urinary calcium. This study also demonstrated that the increased urinary calcium excretion is indicative of increased intestinal absorption of calcium from the high protein consumed (Kerstetter et al., 2007). Kerstetter and colleagues (2007), finally concluded that a high-normal protein diet of 2.1g protein/kg body weight is not detrimental to bone health but is needed for optimal skeletal health.

2.3.4.2.2 Energy

A low energy intake usually results in low intakes of other essential nutrients (Ramakrishnan, 2002; Labadarious, 2005). Increased energy intake causes weight gain and a higher BMD (Ilich & Kerstetter, 2000). Ilich et al., (2003) also reported a significant relationship between BMD and energy intake. Bone loss and increased risk of developing osteoporosis has been reported for people with eating disorders particularly anorexia nervosa (Powers, 1999; Andersen et al., 2000). A review by Zanker and Cooke (2004) confirmed previous hypotheses that energy deficit is linked to disturbed bone turn over. Diet regulates the metabolism of bone through the provision of substrate for the synthesis of bone tissue and through an influence on the circulating levels of key hormones that regulates bone metabolism (Zanker & Cooke 2004). Prolonged energy deficit state results in reduction of body mass and change in body composition, which is accompanied by a significant reduction of bone mass largely due to multiple hormonal adaptations to undernutrition (Soyka et al., 1999; Hotta et al., 2000; Fazeli & Klibanski, 2014).
2.3.4.2.3 Minerals

An adequate supply of calcium to bone is essential at all stages of life as it is one of the main bone-forming minerals (Prentice, 2004). Earlier studies on populations with a lower average intake revealed an increasing risk of hip fracture with declining calcium intake (Lau et al., 1988; Holbrook et al., 1988; Johnell et al., 1995; Kanis et al., 1999). Studies on the relationship between calcium intake and bone mass seem to be controversial; however, a number of large studies concluded that calcium intake is a significant determinant of BMD (Cumming, 1990; Welten et al., 1995; Looker et al., 2012; Joo et al., 2013). High calcium intake has been shown to augment bone gain during growth, reduce osteoporotic fracture risk and retard age-related bone loss (Heaney, 2000). When calcium intake is inadequate, calcium homeostasis is almost totally dependent on the bone tissue as a source of calcium to maintain the serum calcium ion concentration (Koo & Tsang, 1994; Heaney, 2006a).

In a study conducted on the Framingham Heart Study participants, Tucker et al. (1999) concluded that potassium and magnesium also contribute to the maintenance of BMD. There is a concern that excessive consumption of phosphorus may be detrimental to bone (Ilich & Kerstetter, 2000). Studies have demonstrated that a high phosphorus diet leads to hyperthyroidism and reduced 25(OH)D concentrations and thus disrupts calcium homeostasis (Calvo, 1993; Calvo & Park, 1996). Zinc deficiency results in impaired DNA synthesis and protein metabolism, which leads to negative effects in bone formation (Beattie & Avenell, 1992).

2.3.4.2.4 Vitamins

Vitamin D is mainly obtained from sunlight exposure and some from dietary sources and supplements (DeLuca, 2004; Holick, 2006). Vitamin D is normally produced in the skin on exposure to ultra violet-B (UVB) sunlight through a photolytic process (DeLuca, 2004). Vitamin D obtained from sunlight, dietary sources and supplements undergoes hydroxylation in the liver to become 25(OH)D which also undergoes hydroxylation in the kidneys to become 1, 25-dihydroxyvitamin D$_3$ [1,25(OH)D] (DeLuca, 2004). 1, 25 (OH)D is the biological active form of vitamin D which maintains calcium and phosphorus homeostasis in the body (Chritakos et al., 2003). Studies are elucidating other health effects of vitamin D which includes its role in reducing risk of multiple sclerosis (Duan et al., 2014), hypertension (Vimaleswaran et al., 2014; Canale et al., 2014), diabetes mellitus (Nwosu & Maranda, 2014) and the metabolic syndrome (Hyppönen et al., 2008; Yin et al., 2012). It has also been
indicated to reduce cancer risk (Garland & Garland 2006; Ishihara et al., 2008). The exact mechanisms of the protective effect of vitamin D on all these diseases are not yet clear, however, it is known that there are vitamin D receptors for 1,25 (OH)₂D₃ (the active form of vitamin D) in most cells and tissues in the body, including the heart, skin, stomach, pancreas, brain, gonads, and activated T and B lymphocytes (Stumpf et al., 1979; Manolagas et al., 1985; Mathieu & Adorini 2002). Thus it is not surprising that 1,25 (OH)₂D₃ has other noncalcemic biologic effects (Deluca & Cantorna, 2001; Holick, 2002). Also, one of the important biological function of 1,25 (OH)₂D₃ is its ability to control cell proliferation and differentiation (Feldman et al., 2000; Deluca & Cantorna, 2001; Holick, 2002; Mathieu & Adorini 2002). Figure 2 shows the metabolism of vitamin D.

Serum 25(OH)D is used to assess the vitamin D status as it reflects the combination of exposure to sunlight and diet and it is currently regarded as the best measure of vitamin D status in humans (Seamans & Cashman, 2009). There is an on-going debate in the literature about the optimum vitamin D level. However vitamin D deficiency is commonly defined as 25(OH)D less than or equal to 20 nanogram per millilitre (ng/mL), insufficiency is commonly defined as 25(OH)D of 20-29 ng/mL and a level above 30 ng/mL is considered to be sufficient (Dawson-Hughes et al., 2005; Holick & Chen, 2008). According to Bischoff-Ferrari et al. (2006), the most advantageous serum concentrations of 25(OH)D begin at 30 ng/mL, 25(OH)D levels of 30-50 ng/mL is necessary for optimal health.

Vitamin D deficiency occurs globally and it is also present among people living in countries with ample sunshine (Mithal et al., 2009; Lips, 2010). Countries in Africa that lie at latitude >30°N and > 30°S e.g. Tunisia, Morocco, South Africa, Libya, Algeria and Egypt would be expected to have seasonal effects on cutaneous synthesis of vitamin D (Jablonski, 2004). Seasonal variation in vitamin D status of South Africans has been documented in literature (Pettifor et al., 1978; Martineau et al., 2011). A study recently showed that black South Africans had a higher prevalence of vitamin D deficiency and inadequacy when compared to blacks from Ghana, Jamaica and Seychelles (Durazo-Arvizu et al., 2014). This further confirms the seasonal effects of a country’s position on the latitude on cutaneous synthesis of vitamin D (Pettifor et al., 1978; Jablonski, 2004; Martineau et al., 2011; Durazo-Arvizu et al., 2014). Vitamin D deficiency in the elderly leads to secondary hyperparathyroidism, high bone turn over, bone loss, mineralization defects, hip and other fractures (Lips, 2001). Prolonged deficiency of vitamin D manifests as osteomalacia in adults and rickets in children (Prentice, 2008; Pearce & Cheetham, 2010). A study conducted on 10 years old urban South African children living in Johannesburg found vitamin D insufficiency and deficiency to
be uncommon among the children despite seasonal variations in 25(OH)D levels (Poopedi et al., 2010).

Figure 3-2. Vitamin D metabolism reprinted from Nature Review Cancer Vol 7 no 9, Deeb et al., 2007, 684-700., Copyright (2007), with permission from Nature Publishing Groups

Vitamin K is an important micronutrient for bone health (Weber, 2001; Nieves, 2005) and it is associated with post-menopausal bone mineral loss (Kanai et al., 1997). Low vitamin K intakes were associated with increased incidence of hip fractures (Booth et al., 2000). Osteocalcin is a bone specific protein that is dependent on vitamin K for its maturation (Weber, 2001; Neve et al., 2014). The exact mechanism of how osteocalcin affects bone metabolism is not well understood but it appears to be involved in prevention of over-
mineralisation (Yao et al., 2008; Woeckel et al., 2013). A randomised controlled trial demonstrated a synergetic effects between vitamin K1, vitamin D3 and calcium supplements in increasing the bone mineral content of the trabecular bone (Bolton-Smith et al., 2007).

2.3.4.2.5 Diet quality

The effect of individual nutrients on bone health can be impaired or enhanced by the overall composition of the diet (Zagarins et al., 2012). Complex interactions between nutrients may not be seen when looking at the effects of individual nutrients on bone health. For instance, foods containing high fibre content are likely to be poorer sources of calcium than foods that contain the same amount of calcium but less or no fibre (Bronner & Pansu, 1999). In a study by Tucker et al. (2002), high candy consumption was associated with low BMD in men and women and high fruit and vegetable intake appears to protect BMD in men. Studies have also reported a positive link between bone health and consumption of fruits and vegetables (New et al. 2000; Chen et al., 2006; Hamidi et al., 2011). A long term intake of nutrients found in large quantity in fruits and vegetables may be important for bone health (New et al., 1997; Hamidi et al., 2011). Massey and Whiting (1993), demonstrated that compared to older women, younger women seem to be able to compensate for the stresses caused by moderate caffeine consumption on calcium metabolism and thus less likely to have deleterious consequences to bone. Likewise when dietary calcium is inadequate caffeine has a harmful effect of bone health (Massey & Whiting, 1993; Barrett-Connour et al., 1999; Silva et al., 2013). According to Levis and Lagari (2012), heavy alcohol intake and a high energy diet is associated with lower bone mass, while a good general nutritional status with adequate protein, vitamin D, dairy, fruits and vegetables have positive influence on bone health. Increased dietary intake of sodium was considered as a risk factor for osteoporosis as it is associated with an alteration in calcium metabolism through increased urinary calcium excretion (Teucher et al., 2008). However results on effects of dietary sodium on osteoporosis are inconsistent (Greendale et al., 1994; Heaney, 2006b; Teucher et al., 2008).

2.3.4.2.6 Alcohol

Moderate alcohol consumption seems to be beneficial for bone as studies reported a positive association between moderate alcohol consumption and bone mass of different sites on the skeleton (Holbrook & Barrett-Connor, 1993; Felson et al., 1995; Høidrup et al., 1999; New et al., 2000; Marrone et al., 2012; Eleftheriou et al., 2013). A study from the Framingham offspring cohort examined the effect of alcohol intake on BMD at three hip sites.
and the lumbar spine (Tucker et al., 2009). The study found that compared to non-drinkers, hip BMD was greater in men who drink 1-2 drinks/day of total alcohol, while both hip and spine BMD was greater in women who drink 1-2 drinks/day of total alcohol compared to women who do not drink (Tucker et al., 2009). The mechanism of action of moderate alcohol consumption on BMD remains poorly established but it has been hypothesised that its protective effect is due to the effects of alcohol on androgens or estrogen concentrations (Turner & Sibonga, 2001). Also a review study suggested that the primary effect of moderate alcohol ingestion is its acute suppression of bone resorption rather than an alcohol-hormone pathway (Jugdaohsingh et al., 2006). Heavy consumption of alcohol (liquor intakes > 2 drinks/day) leads to increased risks of bone loss while chronic alcoholism leads to lower BMD and higher fracture risks (Ilich & Kerstetter, 2000; Tucker et al., 2009). Different mechanisms for the deleterious effects of heavy consumption of alcohol on bone have been proposed (Maurel et al., 2012). These includes direct effects whereby ethanol has been shown to decrease indices of osteoblast activity and differentiation in human osteoblast cells (Chavassieux et al., 1993) and increase bone resorption by osteoclasts (Cheung et al., 1995). An indirect effect of alcohol consumption on bone includes a possible decrease in calorie intake with a resultant change in body composition (Maddalozzo et al., 2009; Maurel et al., 2012).

2.3.4.3 Physical activity

Physical activity is one of the major key modifiable factors in the prevention and treatment of osteoporosis (Liu-Ambrose et al., 2001). Physical exercise exerts a positive effect on BMD and lowers fracture risks (Bergström et al., 2008). Regular high-impact and/or weight bearing activity appears to offer an osteogenic stimulus through the direct application of force to bone and a resultant development of mechanical strain (Zanker & Cooke, 2004). The relationship between lifetime physical activity and BMD was investigated in South African women of various age groups by Micklesfield et al. (2003). They found that physical activity between the ages of 14 and 21 years positively correlated with lumbar spine BMD. The study also found positive association between walking, impact loading exercise at a young age and increased BMD later in life (Micklesfield et al., 2003). Another study also found a positive association between physical activity and BMD at the lumbar spine, total hip and whole body of white South African women (Chantler et al., 2011). In contrast, the same study found physical activity to be negatively associated with lumbar spine BMD of black South African women and no relationship with their hip BMD (Chantler et al., 2011). A possible explanation for this disparity may be explained by the low intensity of the physical
activity reported by the black women (Chantler et al., 2011). Also, it might be because physical activity was measured subjectively which may lead to underreporting of incidental physical activity which has been shown to be high among black South African women (Cook et al., 2010). A randomised controlled trial in Turkey showed that supervised high-impact exercise training can be effective in prevention of lumbar spine and femoral neck bone loss in postmenopausal women (Basat et al., 2013). In a recent study, it was reported that stepwise increase in the amount of daily activity, using simple, daily performed tasks, can help prevent decreases in post-menopausal BMD (Muir et al., 2013). Apart from the direct effects of physical activity on BMD, physical activity is very effective in reducing sclerostin which inhibits bone formation and increases the levels of IGF-1, which has a very positive effect on bone formation (Boskovic et al., 2013). On the other hand, it is also important to note that excessive levels of physical activity has been linked to decreased BMD levels and premature bone loss particularly in active underweight women with amenorrhea (Warren et al., 2002; Zanker et al., 2004). This is probably due to negative balance of energy as a result of increased physical activity without corresponding sufficient dietary intake.

2.3.4.4 Smoking

The negative impact of smoking on overall bone health has been previously established as it is associated with an increase in bone resorption and a decrease in BMD (Krall & Dawson-Hughes, 1999; Rapuri et al., 2000). The effect of smoking on bone health has been demonstrated in a number of studies and meta-analysis (Law & Hackshaw, 1997; Ward & Klesges, 2001; Yoon et al., 2012). Law and Hackshaw (1997) concluded that hip fracture in old age is a major adverse effect of smoking after the menopause. Ward and Klesges (2001) also showed that smoking increases the lifetime risk of developing a vertebral fracture by 13% in women and 32% in men. Also it is estimated to increase lifetime fracture risk by 31% in women and 40% in men at the hip (Ward & Klesges, 2001). The exact mechanism of the effects of smoking on bone health are not well understood but some proposed explanations include the reduction effect of smoking on calcium absorption and changes in the metabolism of adrenal cortical hormones which are precursors of estrogen (Krall & Dawson-Hughes, 1999; Rapuri et al., 2000; Yoon et al., 2012). Nicotine in tobacco products also has a toxic effect on bone collagen synthesis (Ramp et al., 1991; Shen et al., 2013; Kallala et al., 2013; Bender et al., 2014).
2.3.4.5 Body composition

Various studies have been conducted on the effect of body composition on BMD in several study populations (Felson et al., 1993; Ravn et al., 1999; Hsu et al., 2006; Chantler et al., 2011; Park et al., 2012; Namwongprom et al., 2013; Nur et al., 2013; Tanaka et al., 2013; George et al., 2014; Ong et al., 2014). One of the established risk factors for osteoporosis fracture is low BMI (Ravn et al., 1999). Traditionally, obesity was believed to prevent bone loss and osteoporosis due to the mechanical loading effect of body weight on bone (Felson et al., 1993; Ravn et al., 1999). Conversely, osteoporosis was recently shown to be a risk factor for fractures of some specific bone sites (Tanaka et al., 2013). There are differences observed in the individual effect of fat mass and lean mass respectively on bone (Felson et al., 1993; Ravn et al., 1999; Hsu et al., 2006; Park et al., 2012; Namwongprom et al., 2013; Nur et al., 2013; Ong et al., 2014). However, recent studies are showing a greater protective effect of lean mass on BMD in comparison to fat mass (Park et al., 2012; Namwongprom et al., 2013). A study among the Chinese showed that increased fat mass was associated with low BMD and did not protect against osteoporosis (Hsu et al., 2006). There are few studies carried out on the association between body composition and BMD in South Africa (Chantler et al., 2011; George et al., 2014). The two studies found lean mass to be significantly positively associated to BMD at most skeletal sites measured (Chantler et al., 2011; George et al., 2014).

2.3.4.6 Other factors

Genetics, ethnicity, hormonal influences, medication, and disease are other risk factors for osteoporosis (Daniels et al., 1995; Gourlay & Brown, 2004; Chantler et al., 2011). A study by Pocock et al. (1987) demonstrated the genetic contribution to bone mass at specific sites in adults. The study examined the genetic contributions to bone mass in monozygotic and dizygotic adult twins. Their results demonstrated a significant contribution to bone mass in the spine and proximal femur in adults. Compared to the lumbar spine, they found a smaller genetic determinant of bone density in the hip and forearm (Pocock et al., 1987). Low peak bone mass has been associated with increased risk of osteoporosis and fracture (Bachrach, 2001; Mora & Gilsanz, 2003), while the attainment of optimal peak bone mass is an important factor for the prevention of osteoporosis later in life (Zagaris et al., 2012). Black women have been shown to attain higher peak bone mass, have a slower subsequent rate of bone loss and a lower incidence of hip fracture than whites (Harris et al., 1995; Daniels et al., 1997). This could partly be explained by ethnic differences in lifestyle (Goedcke et al., 2014).
2010; Chantler et al., 2011; Shisana et al., 2013) and genetic make up (Pollitzer & Anderson, 1989; Lei et al., 2006). According to Micklefield et al. (2011), black South African children and adults have greater proximal femur and femoral neck BMD, greater bone strength and a decreased hip fracture incidence compared to South African whites irrespective of adverse environmental conditions. Prolonged amenorrhea and estrogen deficiency can also cause bone loss while the use of oral contraceptives could have different effects on bone mass in women with low compared to women with normal bone mass (Gourlay & Brown, 2004; Cheng & Gupta 2013). The use of injectable progestin contraceptives has been associated with bone loss (Rosenberg et al., 2007; Walsh et al., 2008; Lloyd et al., 2010). However the result of the study on over 3,000 South African black women and women of mixed race suggests that the detrimental effect of injectable progestin contraceptive on bone is completely reversible several years after cessation of use (Rosenberg et al., 2007). Primary hyperparathyroidism, diabetes mellitus type I, anorexia nervosa, gastrectomy and pernicious anemia have been classified as diseases of high risk for fracture related to bone mass loss, while hyperthyroidism, diabetes mellitus type 2 and rheumatoid arthritis are moderate risk diseases (Espallargues et al., 2001; Palacios et al., 2013). The prolonged use of corticosteroids leads to a reduction in BMD and an increase in the risk of fractures (Van Staa et al., 2002; Weinstein, 2012). Higher SES has also been reported to be positively associated with BMD (Wang & Dixon, 2006). A systematic review on the role of SES on BMD reported that greater educational attainment was protective against lower BMD (Brennan et al., 2011).

2.3.5 Parathyroid hormone

PTH plays a major role in maintaining serum calcium by stimulating the transfer of exchangeable calcium from bone into the blood when blood calcium concentration falls below normal levels (Talmage et al., 2000). The metabolism of PTH and 25(OH)D is related in such a way that a decrease in 25(OH)D results in an increase in PTH (Pepe et al., 2005). There is a lack of consensus in the literature about if elevated PTH is a consequence of obesity or if obesity is an outcome of elevated PTH (Taniguchi et al., 1987; Wortsman et al., 2000; McCarty & Thomas 2003; Bischof et al., 2006; Reinehr et al., 2007; Valiña-Tóth et al., 2010). It was previously hypothesized that low 25(OH)D and reactive increases in PTH were both consequences of obesity (Wortsman et al., 2000; Bischof et al., 2006; Reinehr et al., 2007). Some studies on the other hand suggested that elevated PTH promote the accumulation of adipose tissue thereby postulating the possibility that elevated PTH may play a role in the development of obesity (Taniguchi et al., 1987; McCarty & Thomas 2003;
Valiña-Tóth et al., 2010). A large cohort study reported that PTH is an independent predictor of obesity (Kamycheva et al., 2004). The mechanisms by which overweight may be a consequence of elevated serum PTH includes how PTH stimulates the renal hydroxylation of 25(OH)D to its active form (Portale & Miller, 2000) which in turn elevates calcium influx into adipocytes (Zemel et al., 2000). This increased intracellular calcium enhances lipid storage in fat tissue (Shi et al., 2001). The cohort study, however, emphasised that serum PTH may simply be a pathophysiologically unrelated marker of obesity as they were only able to demonstrate a statistical association between serum PTH and BMI (Kamycheva et al., 2004).

2.4 Metabolic syndrome

The metabolic syndrome is a collection of metabolic disorders that includes at least three out of the following: hypertension, abdominal obesity, elevated fasting blood glucose, elevated serum triglycerides and low serum high density lipoprotein cholesterol (HDL-C) (Alberti et al., 2009). It is a complex of interrelated risk factor for type 2 diabetes mellitus, cardiovascular morbidity and mortality that has become a global epidemic (Lakka et al., 2002; Wang et al., 2007). The escalating prevalence of obesity due to nutrition and epidemiological transition in Africa has greatly contributed to the increased prevalence of non-communicable diseases including the metabolic syndrome (Kruger et al., 2001; Abrahams et al., 2011; Vorster et al., 2011). A number of studies have been carried out in South Africa on the prevalence of the metabolic syndrome (Motala et al., 2011; Crowther & Norris, 2012; George et al., 2013). A cohort study of 1,251 black South African females reported a 42.1% prevalence of the metabolic syndrome (Crowther & Norris, 2012).

2.4.1 Relationship between vitamin D status, PTH and the metabolic syndrome

Various studies have shown associations between 25(OH)D, PTH and the metabolic syndrome (Martins et al., 2007; Reis et al., 2007; Ahlström et al., 2009; Hjelmesæth et al., 2009; Chan et al., 2012; George et al., 2013). Some studies found an inverse relationship between 25(OH)D and the metabolic syndrome independent of PTH (Lee et al., 2009; Brenner et al., 2011). Other studies found elevated PTH to be associated with an increased risk of the metabolic syndrome, but no association between 25(OH)D and the metabolic syndrome (Reis et al., 2007; Hjelmesæth et al., 2009; George et al., 2013). On the contrary, some studies found no association between PTH, 25(OH)D and the metabolic syndrome (Rueda et al., 2008; Navarro et al., 2013). The study that investigated the association of
25(OH)D, PTH and the metabolic syndrome in black and Asian-Indian South Africans found a significant positive association between PTH and the metabolic syndrome but no association with 25(OH)D for both ethnic groups (George et al., 2013). The study proposed that the impact of PTH on the metabolic syndrome was largely via its positive association with waist circumference and blood pressure (George et al., 2013).

2.4.2 Relationship between vitamin D status, PTH and components of metabolic syndrome

2.4.2.1 Hypertension.

25(OH)D and PTH were shown to be independently associated with blood pressure among American adults (Zhao et al., 2010) and elderly Germans (Jungert et al., 2012). Low 25(OH)D levels were inversely and independently associated with blood pressure among young female nurses in the United States of America (Forman et al., 2008). Kruger et al. (2013), demonstrated that black South African women with insufficient or deficient 25(OH)D had significantly higher systolic blood pressure compared to women with sufficient 25(OH)D status. Chan et al. (2012), conducted a study on older Chinese men and found a positive association between increasing PTH level and blood pressure, but no association between 25(OH)D and blood pressure. Elevated PTH was also positively associated with both systolic and diastolic blood pressure among elderly Swedish men and women (Ahlström et al., 2009). One of the mechanisms that may explain the relationship of 25(OH)D, PTH and hypertension is through the direct effects of vitamin D deficiency on vascular cells or through modulating calcium metabolism and secondary hyperparathyroidism, which predisposes to hypertrophy of the left ventricle and vessel wall causing arterial hypertension (Simpson et al., 2007; Pilz et al., 2009).

2.4.2.2 Elevated fasting blood glucose/insulin resistance

Vitamin D deficiency/insufficiency was indicated to play a possible role in development or worsening of insulin resistance among individuals with pre-diabetes in India (Dutta et al., 2013) and significantly associated with insulin resistance in elderly Chinese population (Lu et al., 2009). Scragg et al. (2004) showed an inverse association between vitamin D status and diabetes which possibly included insulin resistance among non-Hispanic whites and Mexican Americans. According to Chiu et al. (2004), people with low vitamin D levels are at higher risk of insulin resistance. PTH correlated positively with insulin resistance among the elderly in a Swedish study (Ahlström et al., 2009). The mechanism of action of vitamin D on
diabetes may be direct or interlinked with the actions of PTH and calcium through their actions on systemic inflammation, insulin secretion and insulin resistance (Danescu et al., 2009).

2.4.2.3 HDL-C

A number of studies carried out on various population groups demonstrated positive associations between 25(OH)D and HDL-C (Lu et al., 2009; Karhapää et al., 2010; Jorde et al., 2010). PTH correlated negatively with HDL-C among elderly Swedish men and women (Ahlström et al., 2009). A South African study found no significant association between 25(OH)D, PTH and HDL-C respectively (George et al., 2013). The mechanism of action of 25(OH)D, PTH and HDL-C metabolism is not yet clear.

2.4.2.4 Triglycerides

A number of studies carried out on various population groups showed that serum concentrations of 25(OH)D were negatively associated triglyceride levels (Lu et al., 2009; Karhapää et al., 2010; Jorde et al., 2010). PTH was demonstrated to be positively correlated with triglycerides among elderly Swedish men and women (Ahlström et al., 2009). A possible way by which vitamin D and PTH influences triglycerides is through their independent effects on lipoprotein metabolism by a direct regulation of adipocyte lipoprotein lipase production (Querfeld et al., 1999)

2.4.2.5 Waist circumference/abdominal obesity

Some studies have associated excess body weight with low vitamin D status (Bischof et al., 2006; Reinehr et al., 2007; Vimaleswaran et al., 2013). Among the Chinese elderly population vitamin D status was inversely associated with waist circumference (Lu et al., 2009), while PTH correlated positively with waist circumference among people of European descents (Ahlström et al., 2009; Kayaniyil et al., 2011). The mechanisms for the relationship between 25(OH)D, PTH and elevated waist circumference includes how PTH stimulates the renal hydroxylation of 25(OH)D to its active form (Portale & Miller, 2000) which in turn elevates calcium influx into adipocytes (Zemel et al., 2000). This increased intracellular calcium enhances lipid storage in fat tissue (Shi et al., 2001).
2.5 THE LINK BETWEEN BODY COMPOSITION, BONE HEALTH AND VITAMIN D STATUS

Body composition simply divided into fat mass and fat free mass is a primary determinant of health (Segal et al., 1987; VanItallie et al., 1990). The bone is part of what makes up the fat-free mass, while fat mass is critical for bone health maintenance (Schuster, 2009). Obesity and osteoporosis are complex diseases with similarities indicating some type of pathophysiological link identified between them (Rosen & Bouxsein, 2006). The global epidemic proportion of obese and osteoporotic individuals deserves detailed attention (WHO, 2000; Kanis, 2008). Traditional belief was that higher BMI is protective of bone health, however, BMI represents both lean and fat mass. Also, overweight/obesity has been recently shown to be a risk factor for osteoporotic fracture (Tanaka et al., 2013).

Vitamin D and PTH are important in the regulation of calcium and bone metabolism (Hunter et al., 2001; Joo et al., 2013). Associations between serum levels of vitamin D and bone mass have been shown with an inverse relation between vitamin D and risk of osteoporotic fractures (Lips, 2001; Välimäki et al., 2004). Excessive fat mass has been indicated to act as a sink for vitamin D, thereby reducing its bioavailability for optimal use in the body (Wortsman et al., 2000). It is still unclear whether low vitamin D status is a causative factor of excess adiposity in the overweight and obese individuals (Foss, 2009). However, a recent meta-analysis by Vimaleswaran et al. (2013), concluded that a higher BMI leads to lower 25(OH)D, while any effect of lower 25(OH)D leading to higher BMD are likely to be small.

In summary, unfavourable body composition has a negative effect on bone health and vitamin D status. Also low vitamin D status has a negative effect on bone health and might likely contribute to excessive adiposity. It is pertinent to examine the effect of body composition on bone health; the effect of vitamin D status on body composition and their effects on the metabolic syndrome which is a metabolic disorder that is fast becoming another global epidemic.
2.6 REFERENCES

prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the study of Obesity. *Circulation*, 120(16):1640-1645.

Holick, M.F. 2002. Vitamin D: The underappreciated D-lightful hormone that is important for skeletal and cellular health. Current opinion in endocrinology, diabetes and obesity, 9(1):87-98.

Kanis, J.A. 2008. Assessment of osteoporosis at the primary health care level. WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School.

Moore WM, Roche AF. 1983 Paediatric anthropometry, 2nd ed. Columbus, OH: Ross laboratories.

CHAPTER 3

Influence of urbanization, socio-economic status and lifestyle risk factors on changes in body composition among South African adults

Olusola F. Sotunde¹, Hattie H Wright¹ ², Lize Havemann-Nel¹ Cornelia Nienaber-Rousseau¹, Sarah J Moss³, Herculina S Kruger¹

¹Centre of Excellence for Nutrition, North-West University, Potchefstroom, 2520 South Africa
²School of Health and Sports Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia
³Physical Activity, Sport and Recreation Research Focus Area, North-West University, Potchefstroom, 2520 South Africa

Submitted for publication in BMC Public Health
Acknowledgement of submission BMC Public Health

Subject: 5654840071446585 Influence of urbanization, socioeconomic status and lifestyle risk factors on changes in body composition among South African adults
From: BioMed Central Editorial (editorial@biomedcentral.com)
To: solaakinwande@yahoo.com;
Cc: solaakinwande@yahoo.com; hwright@usc.edu.au;
Lize.Havemann-Nel@nwu.ac.za; Cornelie.Nienaber@nwu.ac.za; Hanlie.Moss@nwu.ac.za;
Salome.Kruger@nwu.ac.za;
Date: Thursday, October 2, 2014 3:27 PM

Article title: Influence of urbanization, socioeconomic status and lifestyle risk factors on changes in body composition among South African adults
MS ID : 5654840071446585
Authors : Olusola F Sotunde, Hattie H Wright, Lize Havemann-Nel, Cornelie Nienaber-Rousseau, Hanlie Moss and Herculina S Kruger
Journal : BMC Public Health

Dear Mrs Sotunde

Thank you for submitting your article. This acknowledgement and any queries below are for the contact author. This e-mail has also been copied to each author on the paper, as well as the person submitting. Please bear in mind that all queries regarding the paper should be made through the contact author.

A pdf file has been generated from your submitted manuscript and figures. We would be most grateful if you could check this file and let us know if any aspect is missing or incorrect. Any additional files you uploaded will also be sent in their original format for review.

http://www.biomedcentral.com/imedia/5654840071446585_article.pdf (351K)

For your records, please find below link(s) to the correspondence you uploaded with this submission. Please note there may be a short delay in creating this file.

http://www.biomedcentral.com/imedia/5141844241446609_comment.pdf

If the PDF does not contain the comments which you uploaded, please upload the cover letter again, click "Continue" at the bottom of the page, and then proceed with the manuscript submission again. If the letter will not upload, please send a copy to editorial@biomedcentral.com.

The submitting author can check on the status of the manuscript at any time by logging into 'My BioMed Central' (http://www.biomedcentral.com/my).

In the meantime, if you have any queries about the manuscript you may contact us on editorial@biomedcentral.com. We would also welcome feedback about the online submission process.

Best wishes,

The BMC Public Health Editorial Team

Tel: +44 (0) 20 3192 2013 Fax: +44 (0) 20 3192 2013
e-mail: editorial@biomedcentral.com
Web: http://www.biomedcentral.com/
INSTRUCTIONS FOR AUTHORS FOR BMC PUBLIC HEALTH

Research articles

Criteria | Submission process | Preparing main manuscript text | Preparing illustrations and figures | Preparing tables | Preparing additional files | Style and language

Assistance with the process of manuscript preparation and submission is available from BioMed Central customer support team. See 'About this journal' for information about policies and the refereeing process. We also provide a collection of links to useful tools and resources for scientific authors on our page.

Criteria

Research articles should report on original primary research, but may report on systematic reviews of published research provided they adhere to the appropriate reporting guidelines which are detailed in our Editorial Policies. Please note that non-commissioned pooled analyses of selected published research will not be considered.

Submission process

Manuscripts must be submitted by one of the authors of the manuscript, and should not be submitted by anyone on their behalf. The submitting author takes responsibility for the article during submission and peer review.

Please note that BMC Public Health levies an article-processing charge on all accepted Research articles; if the submitting author’s institution is a BioMed Central member the cost of the article-processing charge may be covered by the membership (see About page for detail). Please note that the membership is only automatically recognised on submission if the submitting author is based at the member institution.

To facilitate rapid publication and to minimize administrative costs, BMC Public Health prefers online submission.

Files can be submitted as a batch, or one by one. The submission process can be interrupted at any time; when users return to the site, they can carry on where they left off.

See below for examples of word processor and graphics file formats that can be accepted for the main manuscript document by the online submission system. Additional files of any type, such as movies, animations, or original data files, can also be submitted as part of the manuscript.

During submission you will be asked to provide a cover letter. Use this to explain why your manuscript should be published in the journal, to elaborate on any issues relating to our editorial policies in the 'About BMC Public Health' page, and to declare any potential competing interests. You will be also asked to provide the contact details (including email addresses) of potential peer reviewers for your manuscript. These should be experts in their field, who will be able to provide an objective assessment of the manuscript. Any suggested
peer reviewers should not have published with any of the authors of the manuscript within the past five years, should not be current collaborators, and should not be members of the same research institution. Suggested reviewers will be considered alongside potential reviewers recommended by the Editorial team, Editorial Advisors, Section Editors and Associate Editors.

Assistance with the process of manuscript preparation and submission is available from BioMed Central customer support team.

We also provide a collection of links to useful tools and resources for scientific authors on our Useful Tools page.

File formats

The following word processor file formats are acceptable for the main manuscript document:

- Microsoft word (DOC, DOCX)
- Rich text format (RTF)
- Portable document format (PDF)
- TeX/LaTeX (use BioMed Central's TeX template)
- DeVice Independent format (DVI)

TeX/LaTeX users: Please use BioMed Central's TeX template and BibTeX stylefile if you use TeX format. During the TeX submission process, please submit your TeX file as the main manuscript file and your bib/bbl file as a dependent file. Please also convert your TeX file into a PDF and submit this PDF as an additional file with the name 'Reference PDF'. This PDF will be used by internal staff as a reference point to check the layout of the article as the author intended. Please also note that all figures must be coded at the end of the TeX file and not inline.

If you have used another template for your manuscript, or if you do not wish to use BibTeX, then please submit your manuscript as a DVI file. We do not recommend converting to RTF.

For all TeX submissions, all relevant editable source must be submitted during the submission process. Failing to submit these source files will cause unnecessary delays in the publication procedures.

Publishing Datasets

Through a special arrangement with LabArchives, LLC, authors submitting manuscripts to BMC Public Health can obtain a complimentary subscription to LabArchives with an allotment of 100MB of storage. LabArchives is an Electronic Laboratory Notebook which will enable scientists to share and publish data files in situ; you can then link your paper to these data. Data files linked to published articles are assigned digital object identifiers (DOIs) and will remain available in perpetuity. Use of LabArchives or similar data publishing services
does not replace preexisting data deposition requirements, such as for nucleic acid sequences, protein sequences and atomic coordinates.

Instructions on assigning DOIs to datasets, so they can be permanently linked to publications, can be found on the LabArchives website. Use of LabArchives’ software has no influence on the editorial decision to accept or reject a manuscript.

Authors linking datasets to their publications should include an Availability of supporting data section in their manuscript and cite the dataset in their reference list.

Preparing main manuscript text

General guidelines of the journal’s style and language are given below.

Overview of manuscript sections for Research articles

Manuscripts for Research articles submitted to BMC Public Health should be divided into the following sections (in this order):

- Title page
- Abstract
- Keywords
- Background
- Methods
- Results and discussion
- Conclusions
- List of abbreviations used (if any)
- Competing interests
- Authors' contributions
- Authors' information
- Acknowledgements
- Endnotes
- References
- Illustrations and figures (if any)
- Tables and captions
- Preparing additional files
The **Accession Numbers** of any nucleic acid sequences, protein sequences or atomic coordinates cited in the manuscript should be provided, in square brackets and include the corresponding database name; for example, [EMBL:AB026295, EMBL:AC137000, DDBJ:AE000812, GenBank:U49845, PDB:1BFM, Swiss-Prot:Q96KQ7, PIR:S66116].

The databases for which we can provide direct links are: EMBL Nucleotide Sequence Database ([EMBL](https://www.ebi.ac.uk/EMBL-EBI/)), DNA Data Bank of Japan ([DDBJ](https://www.ddbj.nig.ac.jp/)), GenBank at the NCBI ([GenBank](https://www.ncbi.nlm.nih.gov/)), Protein Data Bank ([PDB](https://www.rcsb.org/)), Protein Information Resource ([PIR](https://pir.georgetown.edu/)) and the Swiss-Prot Protein Database ([Swiss-Prot](https://www.uniprot.org/)).

You can [download a template](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2031426/tables/template.zip) (Mac and Windows compatible; Microsoft Word 98/2000) for your article.

For reporting standards please see the information in the About section.

Title page

The title page should:

- provide the title of the article
- list the full names, institutional addresses and email addresses for all authors
- indicate the corresponding author

Please note:

- the title should include the study design, for example "A versus B in the treatment of C: a randomized controlled trial X is a risk factor for Y: a case control study"
- abbreviations within the title should be avoided

Abstract

The Abstract of the manuscript should not exceed 350 words and must be structured into separate sections: **Background**, the context and purpose of the study; **Methods**, how the study was performed and statistical tests used; **Results**, the main findings; **Conclusions**, brief summary and potential implications. Please minimize the use of abbreviations and do not cite references in the abstract. **Trial registration**, if your research article reports the results of a controlled health care intervention, please list your trial registry, along with the unique identifying number (e.g. **Trial registration**: Current Controlled Trials ISRCTN73824458). Please note that there should be no space between the letters and numbers of your trial registration number. We recommend manuscripts that report randomized controlled trials follow the [CONSORT extension for abstracts](https://www.consort-statement.org/abstracts/).

Keywords

Three to ten keywords representing the main content of the article.

Background
The Background section should be written in a way that is accessible to researchers without specialist knowledge in that area and must clearly state - and, if helpful, illustrate - the background to the research and its aims. Reports of clinical research should, where appropriate, include a summary of a search of the literature to indicate why this study was necessary and what it aimed to contribute to the field. The section should end with a brief statement of what is being reported in the article.

Methods

The methods section should include the design of the study, the setting, the type of participants or materials involved, a clear description of all interventions and comparisons, and the type of analysis used, including a power calculation if appropriate. Generic drug names should generally be used. When proprietary brands are used in research, include the brand names in parentheses in the Methods section.

For studies involving human participants a statement detailing ethical approval and consent should be included in the methods section. For further details of the journal's editorial policies and ethical guidelines see 'About this journal'.

For further details of the journal's data-release policy, see the policy section in 'About this journal'.

Results and discussion

The Results and discussion may be combined into a single section or presented separately. Results of statistical analysis should include, where appropriate, relative and absolute risks or risk reductions, and confidence intervals. The Results and discussion sections may also be broken into subsections with short, informative headings.

Conclusions

This should state clearly the main conclusions of the research and give a clear explanation of their importance and relevance. Summary illustrations may be included.

List of abbreviations

If abbreviations are used in the text they should be defined in the text at first use, and a list of abbreviations can be provided, which should precede the competing interests and authors' contributions.

Competing interests

A competing interest exists when your interpretation of data or presentation of information may be influenced by your personal or financial relationship with other people or organizations. Authors must disclose any financial competing interests; they should also reveal any non-financial competing interests that may cause them embarrassment were they to become public after the publication of the manuscript.
Authors are required to complete a declaration of competing interests. All competing interests that are declared will be listed at the end of published articles. Where an author gives no competing interests, the listing will read 'The author(s) declare that they have no competing interests'.

When completing your declaration, please consider the following questions:

Financial competing interests

- In the past five years have you received reimbursements, fees, funding, or salary from an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? Is such an organization financing this manuscript (including the article-processing charge)? If so, please specify.

- Do you hold any stocks or shares in an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? If so, please specify.

- Do you hold or are you currently applying for any patents relating to the content of the manuscript? Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript? If so, please specify.

- Do you have any other financial competing interests? If so, please specify.

Non-financial competing interests

Are there any non-financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial or any other) to declare in relation to this manuscript? If so, please specify.

If you are unsure as to whether you, or one your co-authors, has a competing interest please discuss it with the editorial office.

Authors’ contributions

In order to give appropriate credit to each author of a paper, the individual contributions of authors to the manuscript should be specified in this section.

According to ICMJE guidelines, an 'author' is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of
funding, collection of data, or general supervision of the research group, alone, does not justify authorship.

We suggest the following kind of format (please use initials to refer to each author's contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

All contributors who do not meet the criteria for authorship should be listed in an acknowledgements section. Examples of those who might be acknowledged include a person who provided purely technical help, writing assistance, or a department chair who provided only general support.

Authors' information

You may choose to use this section to include any relevant information about the author(s) that may aid the reader's interpretation of the article, and understand the standpoint of the author(s). This may include details about the authors' qualifications, current positions they hold at institutions or societies, or any other relevant background information. Please refer to authors using their initials. Note this section should not be used to describe any competing interests.

Acknowledgements

Please acknowledge anyone who contributed towards the article by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include the source(s) of funding for each author, and for the manuscript preparation. Authors must describe the role of the funding body, if any, in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication. Please also acknowledge anyone who contributed materials essential for the study. If a language editor has made significant revision of the manuscript, we recommend that you acknowledge the editor by name, where possible.

The role of a scientific (medical) writer must be included in the acknowledgements section, including their source(s) of funding. We suggest wording such as 'We thank Jane Doe who provided medical writing services on behalf of XYZ Pharmaceuticals Ltd.'

Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements section.

Endnotes
Endnotes should be designated within the text using a superscript lowercase letter and all notes (along with their corresponding letter) should be included in the Endnotes section. Please format this section in a paragraph rather than a list.

References

All references, including URLs, must be numbered consecutively, in square brackets, in the order in which they are cited in the text, followed by any in tables or legends. Each reference must have an individual reference number. Please avoid excessive referencing. If automatic numbering systems are used, the reference numbers must be finalized and the bibliography must be fully formatted before submission.

Only articles, datasets, clinical trial registration records and abstracts that have been published or are in press, or are available through public e-print/preprint servers, may be cited; unpublished abstracts, unpublished data and personal communications should not be included in the reference list, but may be included in the text and referred to as "unpublished observations" or "personal communications" giving the names of the involved researchers. Obtaining permission to quote personal communications and unpublished data from the cited colleagues is the responsibility of the author. Footnotes are not allowed, but endnotes are permitted. Journal abbreviations follow Index Medicus/MEDLINE. Citations in the reference list should include all named authors, up to the first 30 before adding 'et al.'

Any *in press* articles cited within the references and necessary for the reviewers' assessment of the manuscript should be made available if requested by the editorial office.

Style files are available for use with popular bibliographic management software:

- BibTeX
- EndNote style file
- Reference Manager
- Zotero

Examples of the *BMC Public Health* reference style are shown below. Please ensure that the reference style is followed precisely; if the references are not in the correct style they may have to be retyped and carefully proofread.

All web links and URLs, including links to the authors' own websites, should be given a reference number and included in the reference list rather than within the text of the manuscript. They should be provided in full, including both the title of the site and the URL, in the following format: The *Mouse Tumor Biology Database* [http://tumor.informatics.jax.org/mtbwi/index.do]. If an author or group of authors can clearly be associated with a web link, such as for weblogs, then they should be included in the reference.

Examples of the BMC Public Health reference style
Article within a journal

Article within a journal supplement

In press article

Published abstract

Article within conference proceedings

Book chapter, or article within a book

Whole issue of journal

Whole conference proceedings

Complete book

Monograph or book in a series

Book with institutional author
PhD thesis

Link / URL
The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do]

Link / URL with author(s)

Dataset with persistent identifier
Zheng, L-Y; Guo, X-S; He, B; Sun, L-J; Peng, Y; Dong, S-S; Liu, T-F; Jiang, S; Ramachandran, S; Liu, C-M; Jing, H-C (2011): *Genome data from sweet and grain sorghum (Sorghum bicolor).* GigaScience Database. http://dx.doi.org/10.5524/100012.

Clinical trial registration record with persistent identifier

Preparing illustrations and figures
Illustrations should be provided as separate files, not embedded in the text file. Each figure should include a single illustration and should fit on a single page in portrait format. If a figure consists of separate parts, it is important that a single composite illustration file be submitted which contains all parts of the figure. There is no charge for the use of color figures.

Please read our *figure preparation guidelines* for detailed instructions on maximising the quality of your figures.

Formats
The following file formats can be accepted:

- PDF (preferred format for diagrams)
- DOCX/DOC (single page only)
- PPTX/PPT (single slide only)
- EPS
- PNG (preferred format for photos or images)
- TIFF
- JPEG
- BMP
Figure legends

The legends should be included in the main manuscript text file at the end of the document, rather than being a part of the figure file. For each figure, the following information should be provided: Figure number (in sequence, using Arabic numerals - i.e. Figure 1, 2, 3 etc); short title of figure (maximum 15 words); detailed legend, up to 300 words.

Please note that it is the responsibility of the author(s) to obtain permission from the copyright holder to reproduce figures or tables that have previously been published elsewhere.

Preparing tables

Each table should be numbered and cited in sequence using Arabic numerals (i.e. Table 1, 2, 3 etc.). Tables should also have a title (above the table) that summarizes the whole table; it should be no longer than 15 words. Detailed legends may then follow, but they should be concise. Tables should always be cited in text in consecutive numerical order.

Smaller tables considered to be integral to the manuscript can be pasted into the end of the document text file, in A4 portrait or landscape format. These will be typeset and displayed in the final published form of the article. Such tables should be formatted using the 'Table object' in a word processing program to ensure that columns of data are kept aligned when the file is sent electronically for review; this will not always be the case if columns are generated by simply using tabs to separate text. Columns and rows of data should be made visibly distinct by ensuring that the borders of each cell display as black lines. Commas should not be used to indicate numerical values. Color and shading may not be used; parts of the table can be highlighted using symbols or bold text, the meaning of which should be explained in a table legend. Tables should not be embedded as figures or spreadsheet files.

Larger datasets or tables too wide for a portrait page can be uploaded separately as additional files. Additional files will not be displayed in the final, laid-out PDF of the article, but a link will be provided to the files as supplied by the author.

Tabular data provided as additional files can be uploaded as an Excel spreadsheet (.xls) or comma separated values (.csv). As with all files, please use the standard file extensions.

Preparing additional files

Although BMC Public Health does not restrict the length and quantity of data included in an article, we encourage authors to provide datasets, tables, movies, or other information as additional files.

Please note: All Additional files will be published along with the article. Do not include files such as patient consent forms, certificates of language editing, or revised versions of the main manuscript document with tracked changes. Such files should be sent by email to editorial@biomedcentral.com, quoting the Manuscript ID number.

Results that would otherwise be indicated as "data not shown" can and should be included as additional files. Since many weblinks and URLs rapidly become broken, BMC Public
Health requires that supporting data are included as additional files, or deposited in a recognized repository. Please do not link to data on a personal/departmental website. The maximum file size for additional files is 20 MB each, and files will be virus-scanned on submission.

Additional files can be in any format, and will be downloadable from the final published article as supplied by the author. We recommend CSV rather than PDF for tabular data.

Certain supported files formats are recognized and can be displayed to the user in the browser. These include most movie formats (for users with the Quicktime plugin), mini-websites prepared according to our guidelines, chemical structure files (MOL, PDB), geographic data files (KML).

If additional material is provided, please list the following information in a separate section of the manuscript text:

- File name (e.g. Additional file 1)
- File format including the correct file extension for example .pdf, .xls, .txt, .pptx (including name and a URL of an appropriate viewer if format is unusual)
- Title of data
- Description of data

Additional files should be named "Additional file 1" and so on and should be referenced explicitly by file name within the body of the article, e.g. 'An additional movie file shows this in more detail [see Additional file 1].'

Additional file formats

Ideally, file formats for additional files should not be platform-specific, and should be viewable using free or widely available tools. The following are examples of suitable formats.

- Additional documentation
 - PDF (Adobe Acrobat)
- Animations
 - SWF (Shockwave Flash)
- Movies
 - MP4 (MPEG 4)
 - MOV (Quicktime)
- Tabular data
 - XLS, XLSX (Excel Spreadsheet)
As with figure files, files should be given the standard file extensions.

Mini-websites

Small self-contained websites can be submitted as additional files, in such a way that they will be browsable from within the full text HTML version of the article. In order to do this, please follow these instructions:

1. Create a folder containing a starting file called index.html (or index.htm) in the root.
2. Put all files necessary for viewing the mini-website within the folder, or sub-folders.
3. Ensure that all links are relative (ie "images/picture.jpg" rather than "/images/picture.jpg" or "http://yourdomain.net/images/picture.jpg" or "C:\Documents and Settings\username\My Documents\mini-website\images\picture.jpg") and no link is longer than 255 characters.
4. Access the index.html file and browse around the mini-website, to ensure that the most commonly used browsers (Internet Explorer and Firefox) are able to view all parts of the mini-website without problems, it is ideal to check this on a different machine.
5. Compress the folder into a ZIP, check the file size is under 20 MB, ensure that index.html is in the root of the ZIP, and that the file has .zip extension, then submit as an additional file with your article.

Style and language

General

Currently, *BMC Public Health* can only accept manuscripts written in English. Spelling should be US English or British English, but not a mixture.

There is no explicit limit on the length of articles submitted, but authors are encouraged to be concise.

BMC Public Health will not edit submitted manuscripts for style or language; reviewers may advise rejection of a manuscript if it is compromised by grammatical errors. Authors are advised to write clearly and simply, and to have their article checked by colleagues before submission. In-house copyediting will be minimal. Non-native speakers of English may choose to make use of a copyediting service.

Language editing

For authors who wish to have the language in their manuscript edited by a native-English speaker with scientific expertise, BioMed Central recommends [Edanz](#). BioMed Central has arranged a 10% discount to the fee charged to BioMed Central authors by Edanz. Use of an editing service is neither a requirement nor a guarantee of acceptance for publication.
Please contact Edanz directly to make arrangements for editing, and for pricing and payment details.

Help and advice on scientific writing

The abstract is one of the most important parts of a manuscript. For guidance, please visit our page on [Writing titles and abstracts for scientific articles](#).

Tim Albert has produced for BioMed Central a [list of tips](#) for writing a scientific manuscript. [American Scientist](#) also provides a list of resources for science writing. For more detailed guidance on preparing a manuscript and writing in English, please visit the [BioMed Central author academy](#).

Abbreviations

Abbreviations should be used as sparingly as possible. They should be defined when first used and a list of abbreviations can be provided following the main manuscript text.

Typography

- Please use double line spacing.
- Type the text unjustified, without hyphenating words at line breaks.
- Use hard returns only to end headings and paragraphs, not to rearrange lines.
- Capitalize only the first word, and proper nouns, in the title.
- All lines and pages should be numbered. Authors are asked to ensure that line numbering is included in the main text file of their manuscript at the time of submission to facilitate peer-review. Once a manuscript has been accepted, line numbering should be removed from the manuscript before publication. For authors submitting their manuscript in Microsoft Word please do not insert page breaks in your manuscript to ensure page numbering is consistent between your text file and the PDF generated from your submission and used in the review process.
- Use the [BMC Public Health reference format](#).
- Footnotes are not allowed, but endnotes are permitted.
- Please do not format the text in multiple columns.
- Greek and other special characters may be included. If you are unable to reproduce a particular special character, please type out the name of the symbol in full. **Please ensure that all special characters used are embedded in the text, otherwise they will be lost during conversion to PDF.**

Units

SI units should be used throughout (liter and molar are permitted, however).
ABSTRACT

Background: Body composition is regarded as a primary determinant of health. South Africa is in the nutrition-related non-communicable disease phase of the nutrition transition with resultant changes in body composition. The aim of this study is to investigate the effects of urbanization, socio-economic status (SES) and lifestyle factors on changes in body composition (body mass index, BMI, waist circumference and triceps skinfold) over 5 years in rural and urban black South African adults.

Methods: A total of 1058 men and women aged >30 years from the South African arm of the Prospective Urban Rural Epidemiology (PURE) study were included in this 5-year longitudinal study. Relationships were assessed using Pearson partial correlations and multiple linear regressions.

Results: The majority (80.8%) of the subjects had only primary school level education or no formal education and 88.4% were domestic or informal workers. Baseline dietary intake of energy and fat differed significantly between urban and rural residents for both genders (P < 0.001). Over a 5-year period, BMI and waist circumference increased in both genders, but the change was significant for BMI (P<0.01) and waist circumference (P<0.001) in women only, indicating an increase in adiposity over time. Urban residency positively predicted changes in waist circumference in men (p < 0.05) and women (p < 0.001) as well as change in triceps skinfold thickness of men (p < 0.05). Being married positively predicted changes in BMI (p < 0.001) and waist circumference (p < 0.001) in men, while age negatively predicted changes in triceps skinfold thickness in women (p < 0.001).

Conclusions: Black African adults in the North-West Province (NWP), particularly the women gained body fat over the 5-year period of this study. Urbanization played a significant role in the increasing adiposity of subjects in the present study. It is recommended that both urban and rural residents should be targeted for public health intervention programs centered on healthier lifestyle choices.

Keywords: Body composition, Urbanization, Socio-economic status, Obesity, Adiposity
BACKGROUND

Studies on human body composition span over 150 years with focus on the several body components, their distribution, and measurable changes in relation to various intrinsic and extrinsic factors [1]. Body composition which has been indicated as a primary determinant of health can be assessed in several ways, including anthropometry e.g. height, weight, body mass index (BMI), circumference measurements and skinfold thicknesses [2]. BMI as a measure of the level of adiposity in relation to height is often used to evaluate obesity [3]. Waist circumference is a simple yet sensitive measure of central fat distribution and a good predictor of abdominal obesity [4]. Skinfold measurement is an inexpensive and easily accessible method of body fat assessment which has been used to identify people at a higher risk of insulin resistance [5]. De Koning and colleagues [6] demonstrated that for every centimeter increase in waist circumference, there is a two per cent increased cardiovascular disease risk, while Nordestgaard and colleagues showed a 26-56% increased risk of heart disease for every 4 kg/m² increase in BMI [7].

Socio-economic status (SES) can be defined as an individual’s position on a socio-economic scale and is often measured through indicators such as education, income, occupation, and place of residence. A low SES is associated with long term weight gain [8], positively predicts BMI [9-10], and may contribute to an unfavorable body fat distribution [11]. Lower educational attainment and income could lead to unhealthier lifestyle choices in comparison with higher SES [8-13]. Lifestyle risk factors also play a role in changes in body composition. For instance, physical activity is beneficial in reducing body fat [14-15] while modern inactive lifestyles play a very important role in the etiology of obesity [16]. Smoking has also been associated with markers of non-communicable diseases including central fat accumulation [17]. Previous studies had conflicting results about the effect of urban versus rural residency on body composition. In the developed countries, rural residents have higher adiposity while the opposite is reported in the developing countries [18-19].

South Africa is a country in economic and health transition and an example of a typical country in the nutrition-related non-communicable disease phase of the nutrition transition [18-19]. The South African National Health and Nutrition Examination Survey (SANHANES) recently reported a national obesity prevalence of 10.6% and 39.2% for South African adult men and women respectively with the highest prevalence of obesity in the urban areas [20]. Obesity, especially abdominal obesity was associated with an increased risk for non-communicable diseases among black South African women [21]. A number of studies have
been conducted on the effects of socio-economic status on body composition in Sub-Saharan Africa [11, 22]. However, to the best of our knowledge, none has focused on the effect of urban versus rural residency, socio-economic status and lifestyle risk factors on changes in body composition over time among black South African adults. This study is part of the Prospective Urban and Rural Epidemiology (PURE) study which is aimed at tracking the effects of lifestyle and changing environment exposures on the development of non-communicable diseases in populations at different stages of epidemiologic transition [23]. Thus, the aim of the present study is to investigate the effects of urbanization, SES and lifestyle factors on changes in body composition (BMI, waist circumference and triceps skinfold thickness) over 5 years in rural and urban black South African adults.

SUBJECTS AND METHODS

Study design

The South African North-West Province (NWP) arm of the PURE (PURE-SA-NWP) study commenced with baseline data collection in 2005. Recruitment procedures, study design and methodology for PURE South Africa have been previously described in detail [24-25]. In summary, 2010 subjects, age > 30 years with no previous HIV diagnosis were recruited from 6000 randomly selected households in two urban and two rural areas of the NWP in the year 2005. Seven hundred and twenty two participants were lost to follow up of which 216 are deceased, 188 have relocated, 224 refused further contact and 94 were unable to be contacted [25]. This sub-study is a longitudinal design including men and women measured at baseline in 2005 and at 5 years follow up in 2010. We excluded 221 HIV positive participants and nine participants with missing anthropometric data. Hence a total of 1058 participants (365 men and 693 women) with complete data at baseline and at follow up were eligible for inclusion in this study. The study was approved by the Ethics committee of the North-West University (NWU), Potchefstroom Campus (NWU-00016-10-A1). All participants provided written informed consent. Additional written informed consent for HIV testing was obtained from each participant after a pre-counseling session.

Body composition measurements

All anthropometric measurements were performed according to standard methods of the International Society for the Advancement of Kinanthropometry (ISAK) [26]. Height was measured to the nearest 0.1 cm with a stadiometer (Leicester height measure, Seca, Birmingham, UK) and weight was recorded on a portable electronic scale to the nearest 0.01
kg (Precision Health Scale, A & D Company, Japan). Waist circumference was measured at the narrowest point between the lower rib border and the iliac crest and recorded to the nearest 0.1 cm with a steel tape (Lufkin, Cooper Tools, Apex NC, USA). Abdominal obesity was defined by waist circumference > 94 cm for men and > 80cm for women [27]. Triceps skinfolds measurements were performed with a Harpenden skinfold caliper (Baty International West Sussex, UK) and the average of two measurements was used for data analysis. BMI was calculated by dividing weight in kilograms by height in meter squared. Anthropometric nutritional status was determined using the WHO categories of BMI of > 18.5 as underweight, 18.5-24.99 as normal weight, 25-29.99 as overweight and ≥30 as obese [28]. Change (Δ) in body composition variables was determined by subtracting body composition values of 2005 from 2010 values for each individual.

Questionnaires

Structured questionnaires were adapted and used by all countries participating in the PURE study to collect socio-demographic and lifestyle information including medication and tobacco use [23]. Questionnaires were administered by trained field workers during home visits and visits to the Metabolic Unit of the NWU in their language of choice. Validated culturally sensitive quantitative food frequency questionnaires (QFFQ) [29, 30] and modified Baecke physical activity questionnaires for this population [31] were used as previously described by Kruger and colleagues [32]. The food intake was coded and analyzed by using the South African Medical Research Council food composition database [33].

Blood collection and analysis

Registered nurses collected a fasting blood sample from the antecubital vein using a sterile winged infusion set and syringes. Participants’ HIV statuses were determined using the First Response ® (PMC Medical, India) rapid HIV card test using whole blood. These tests’ results were treated according to the protocol of the Department of Health of South Africa. If these tests were positive, results were confirmed with the Pareeshak card test (BHAT Biotech India). Participants who tested positive received counseling from registered counselors and were referred for a confirmation CD4 count and treatment at their nearest clinics.
SES index

A SES index was calculated as the sum of the graded categories for the educational level attained by the participants, type of occupation, source of household water, access to electricity and type of roofing material at baseline. The highest possible score was 14 and scores between 0-4, 5-9 and 9-14 indicate a low, moderate and high SES respectively.

Statistical analysis

Data were analyzed with IBM SPSS version 22 (IBM Company, Armonk, NY, USA). Normally distributed data are presented as means with standard deviation, non-normally distributed data as medians and interquartile range. Categorical data were analyzed using frequency tables and prevalence of specific conditions was expressed as percentages. Pearson partial correlations were used to explore the relationship between socioeconomic variables, dietary intakes, physical activity score, and changes in body composition while adjusting for age at baseline as a possible confounder. Stepwise multiple linear regressions were used to assess the association between SES index, dietary intake, tobacco use and physical activity as predictors, and changes in BMI, waist circumference, triceps over five years as the dependent variables. Potential confounders like age, marital status, rural or urban residence, and menopausal status (for women only) were included in the models. Statistical significance was set at p < 0.05.
RESULTS

The majority (80.8%) of all adults had only primary school level education or no formal education and 88.4% were domestic or informal workers. Women had a higher BMI, weight, waist circumference, and triceps skinfold than men (p < 0.001). Men had a higher energy intake and more men than women used tobacco (p < 0.001). Baseline characteristics (i.e. 2005 data) of the participants (365 men and 693 women) are shown in Table 1. Subsequent analyses were carried out separately for men and women due to gender differences observed. Figure 1A and 1B show nutritional status based on BMI stratified by urban versus rural residency at baseline and at follow up. A higher prevalence of obese urban women compared to rural women for baseline (p = 0.005) and follow up (p = 0.01) was observed (Figure 1B). Also, at baseline, 63.6% of urban women had abdominal obesity compared to 50.5% of rural women (p = 0.001), which similarly increased to 69.7% in urban women and 55.1% in rural women (p < 0.001) at follow up. As shown in Figure 1A, there was no significant difference between the percentages of obese men in urban versus rural areas at baseline and at follow up nor in abdominally obese men at baseline and at follow up. Over 5 years, changes were positive and significant for the women’s BMI (p = 0.007) and waist circumference (p < 0.001) while the changes for the men were also positive, but not significant.

Dietary intake differed significantly between urban and rural residents for both genders at baseline. Mean energy intake for rural men was 7315.8 ± 3733.3 kJ and for urban men was 9796.2 ± 3733.3 (p < 0.001). Fat intake in grams was 33.9 ± 16.7 for rural men and 66.0 ± 30.8 for urban men (p < 0.001). Mean energy intake for rural women was 6117.0 ± 2480.2 kJ and for urban women was 9099.7 ± 3922.0 (p < 0.001). Fat intake in grams was 32.3 ± 16.9 for rural women and 68.6 ± 35.9 for urban women (p < 0.001).

Significant differences were observed for the prevalence of obesity and abdominal obesity based on marital status of men. At baseline, 6.3% of married men were obese compared to 1.3% obese single men (p = 0.02) and 7.7% married men and 2% single men were obese at follow up (p = 0.02). The same trend was observed for abdominal obesity, at baseline, 10.1% married men and 3.9% single men (p = 0.03) also at follow up, 13.5% married men and 4.6% single men (p = 0.005) were abdominally obese.
Table 1. Descriptive data for the total sample at baseline stratified according to gender

<table>
<thead>
<tr>
<th></th>
<th>Men (n=365*)</th>
<th>Women (n=693*)</th>
<th>p^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline (years), mean ±SD</td>
<td>51.9 ± 10.1</td>
<td>51.8 ± 10.2</td>
<td>0.95</td>
</tr>
<tr>
<td>Socio-economic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum of urbanization % (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>49.6 (181)</td>
<td>42.9 (297)</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>50.4 (184)</td>
<td>57.1 (396)</td>
<td>0.04</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None % (n)</td>
<td>41.5 (149)</td>
<td>38.4 (257)</td>
<td></td>
</tr>
<tr>
<td>Low (1 to 7 years) % (n)</td>
<td>42.1 (151)</td>
<td>44.5 (298)</td>
<td></td>
</tr>
<tr>
<td>Intermediate (8 to 12 years) % (n)</td>
<td>15.3 (55)</td>
<td>16.6 (111)</td>
<td></td>
</tr>
<tr>
<td>High (more than 12 years) % (n)</td>
<td>1.1 (4)</td>
<td>0.6 (4)</td>
<td>0.59</td>
</tr>
<tr>
<td>Employed full-time % (n)</td>
<td>59.7 (218)</td>
<td>57.4 (398)</td>
<td>0.77</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic/informal workers % (n)</td>
<td>89.0 (325)</td>
<td>88.0 (610)</td>
<td></td>
</tr>
<tr>
<td>Formally trained/skilled % (n)</td>
<td>4.1 (15)</td>
<td>2.6 (18)</td>
<td></td>
</tr>
<tr>
<td>Professionals % (n)</td>
<td>0.8 (3)</td>
<td>0.6 (4)</td>
<td></td>
</tr>
<tr>
<td>No answer % (n)</td>
<td>6.0 (22)</td>
<td>8.8 (61)</td>
<td>0.23</td>
</tr>
<tr>
<td>Type of roofing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiles, slates & reinforced concrete % (n)</td>
<td>3.6 (13)</td>
<td>3.2 (22)</td>
<td></td>
</tr>
<tr>
<td>Galvanized iron % (n)</td>
<td>79.7 (291)</td>
<td>82.0 (568)</td>
<td></td>
</tr>
<tr>
<td>Asbestos % (n)</td>
<td>14.2 (52)</td>
<td>12.4 (86)</td>
<td></td>
</tr>
<tr>
<td>Scrap material % (n)</td>
<td>2.5 (9)</td>
<td>2.5 (17)</td>
<td>0.82</td>
</tr>
<tr>
<td>Electricity % (n)</td>
<td>88.5 (323)</td>
<td>91.3 (633)</td>
<td>0.23</td>
</tr>
<tr>
<td>Piped water in house % (n)</td>
<td>45.5 (166)</td>
<td>36.4 (252)</td>
<td>0.004</td>
</tr>
<tr>
<td>Life style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of tobacco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco use % (n)</td>
<td>63.2 (230)</td>
<td>47.2 (325)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Marital Status % (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living single % (n)</td>
<td>42.2 (152)</td>
<td>47.5 (317)</td>
<td></td>
</tr>
<tr>
<td>Married/cohabiting % (n)</td>
<td>57.8 (208)</td>
<td>52.5 (351)</td>
<td>0.11</td>
</tr>
<tr>
<td>Habitual physical activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activity score at baseline, median (interquartile range)</td>
<td>2.83</td>
<td>2.90</td>
<td>0.40</td>
</tr>
<tr>
<td>Dietary intake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy intake (Kcal) mean ±SD</td>
<td>8563.0 ±3625.4</td>
<td>7412.87 ± 3511.98</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fat intake (g) mean ± SD</td>
<td>50.1 ±29.5</td>
<td>48.0 ± 32.3</td>
<td>0.33</td>
</tr>
<tr>
<td>Body composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>21.0 ± 4.32</td>
<td>27.6 ± 7.41</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>58.7 ± 12.7</td>
<td>67.9 ± 18.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>77.1 ± 10.6</td>
<td>82.9 ± 13.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Triceps skinfold (mm)</td>
<td>9.32 ± 6.09</td>
<td>22.3 ± 9.30</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Obese: BMI > 30 kg/m^2, % (n)</td>
<td>4.1 (15)</td>
<td>34.9 (242)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Abdominal obesity: waist circumference > 80cm (women); > 94cm (men), % (n)</td>
<td>7.4 (27)</td>
<td>56.1 (389)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Abbreviation: BMI body mass index. *Sample size varies due to missing values. **a differences between variables. Parametric data are reported as mean ± SD, non-parametric data as median and interquartile range or as percentage of the group.
Figure 1: Anthropometric nutritional status based on BMI of men (A) and women (B) stratified by residence in 2005 and 2010. Prevalence estimates based on WHO categories of BMI >18.5 as underweight, 18.5-24.99 as normal weight, 25-29.99 as overweight and ≥30 as obese [27].
There was a positive correlation between SES index and change in waist circumference of men (r = 0.12, p < 0.001) and women (r = 0.11, p < 0.001) (Table 2). Level of education had positive correlations with change in waist circumference and triceps of women, while physical activity score had a positive correlation with Δ change in BMI of men. Fat intake had positive correlations with changes in waist circumference and triceps of both men and women, while energy intake only had a positive correlation with waist circumference change of women.

Table 2: Pearson correlation between SES variable, lifestyle risk factors at baseline and changes in body composition variables

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMI change (kg/m²)</td>
<td>WC change (cm)</td>
</tr>
<tr>
<td></td>
<td>(n=364)</td>
<td>(n=363)</td>
</tr>
<tr>
<td>Socio-economic variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Occupation (graded)</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>SES index</td>
<td>0.01</td>
<td>0.12**</td>
</tr>
<tr>
<td>Life style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activity score</td>
<td>0.14*</td>
<td>0.07</td>
</tr>
<tr>
<td>Dietary intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy intake (kJ)</td>
<td>-0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Fat intake (g)</td>
<td>0.08</td>
<td>0.12*</td>
</tr>
</tbody>
</table>

Abbreviations: BMI body mass index; WC waist circumference; SES socio-economic status. Partial correlations with adjustment for age at baseline measurements. *p < 0.05; **p < 0.001
<table>
<thead>
<tr>
<th></th>
<th>∆BMI (Men)</th>
<th>∆BMI (Women)</th>
<th>∆WC (Men)</th>
<th>∆WC (Women)</th>
<th>∆Triceps skinfold (Men)</th>
<th>∆Triceps skinfold (Women)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at baseline</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.01</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.13*</td>
</tr>
<tr>
<td>SES index</td>
<td>-0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>-0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>0.11*</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Fat intake 2005 (kJ)</td>
<td>0.12</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.00</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>-0.05</td>
<td>-0.00</td>
<td>-0.01</td>
<td>0.05</td>
<td>0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>0=Never used/1=Ever used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td>0.21**</td>
<td>0.03</td>
<td>0.23**</td>
<td>-0.01</td>
<td>0.11</td>
<td>-0.06</td>
</tr>
<tr>
<td>1=single/2= married/cohabiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum of urbanization</td>
<td>-0.06</td>
<td>-0.02</td>
<td>0.17*</td>
<td>0.20**</td>
<td>0.17*</td>
<td>0.06</td>
</tr>
<tr>
<td>1=Rural/2=Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menopausal status</td>
<td>N/A</td>
<td>-0.11*</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.03</td>
</tr>
<tr>
<td>1=premenopausal/2=postmenopausal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.060</td>
<td>0.022</td>
<td>0.062</td>
<td>0.037</td>
<td>0.030</td>
<td>0.016</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.07</td>
<td>-0.09</td>
<td>--</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.15**</td>
</tr>
<tr>
<td>Marital status</td>
<td>0.21**</td>
<td>--</td>
<td>0.23**</td>
<td>--</td>
<td>0.11</td>
<td>-0.06</td>
</tr>
<tr>
<td>1=single/2= married/cohabiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum of urbanization</td>
<td>-0.07</td>
<td>--</td>
<td>0.17*</td>
<td>0.19**</td>
<td>0.17*</td>
<td>0.05</td>
</tr>
<tr>
<td>1=Rural/2=Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activity score</td>
<td>0.12*</td>
<td>0.06</td>
<td>0.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fat intake</td>
<td>0.12</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* p < 0.05
** p < 0.01
Table 3 shows the multiple regression analysis for the association between body composition variables as dependent variables and socio-economic variables and lifestyle risk factors as predictors. In the final model of Table 3 (model 2), only marital status and physical activity score positively predicted change in BMI for men. In women, only menopausal status negatively predicted change in BMI (p < 0.05).

In the final model of Table 3 (model 2), urban versus rural residency positively predicted changes in the waist circumference of both men (p < 0.05) and women (p < 0.001). Marriage/cohabitation also positively predicted change in waist circumference for men. SES index, marital status, urban versus rural and physical activity score explained 7.7% variation in waist change for men. A lesser percentage (4.3%) variations in waist change of women were explained by age, SES index, urban versus rural residence and tobacco use.

Table 3 (model 2) urban versus rural residency was the only positive predictor of change in triceps measurements of men while marital status trended. For the women, age was the only negative predictor of change in triceps, while 3.8% of variation in triceps change for men was explained by age, marital status and urban versus rural residence. A smaller percentage of variation (2.2%) in triceps change for women was explained by these same variables and SES index.
DISCUSSION

Our study clearly shows an increase in anthropometric measures of body fat in black South African women from the North-West Province over 5 years. Urbanization was a major predictor of changes in body composition of adult African men and women in our study.

Urban versus rural residence significantly predicted positive changes in waist circumference of men and women as well as triceps skinfold thickness of the men in the present study. According to Cohen (2008), food abundance, novelty and variety are some of the factors that contribute to the urban and rural environments [34]. Various studies in Sub-Saharan Africa have demonstrated higher BMI in urban compared to rural residents [19, 20, 35-38]. Christensen and colleagues found abdominal fat thickness and overall obesity to be higher amongst the urban residents of Kenya in comparison to their rural counterparts [11]. The picture is different in western countries as residents of rural areas have been reported to have higher measures of obesity compared to their urban counterparts [18, 39]. The significantly higher intake of energy and fat by urban residents compared to rural residents observed in our study could also be associated with the significantly higher measures of obesity that we observed particularly among urban women. High dietary intakes of energy and fat have been positively associated with measures of obesity [13, 40,41]. In our study fat intake (Table 2) correlated positively with changes in waist circumference and triceps measurement for both genders. There was no significant difference between the fat intake of men and women. Dietary fat was not a significant predictor in our regression models which could be an indication that our dietary assessment method was not sensitive enough to detect individual differences in fat intake. However, our results support the literature that higher intake of energy and fat were positively associated with measures of obesity. Even though measures of obesity are significantly higher in our urban women compared to their rural counterparts, we observed a similar trend of increased obesity in both urban and rural areas over the 5 years period (Figure 1B). This could be an indication of nutrition transition even in the rural areas and its resultant effects as previously observed [13].

The significantly higher prevalence of overweight, obese and abdominally obese women compared to the men of our study further corroborate results of other studies in Sub-Saharan Africa [19, 20; 35-38, 42]. The 2003 South African health survey reported a prevalence of 31% obesity among urban women compared to 21% among rural women and also 10.6% obesity among urban men and 5.1% obesity among rural men [38]. A cultural perception among black Africans where overweight or obese women are regarded to be
more beautiful, symbols of happiness and higher socio-economic class among the general populace could be a reason for this continent-wide phenomenon [38, 43-46].

Marital status was a significant predictor of gains in waist circumference and BMI of African adult men, but not in the women. A study on an Iranian population showed that marriage was associated with increased risk of obesity [47]. In a cross sectional study of American men and women, married men were significantly more likely to be obese than single men, while marital status was not associated with obesity among women [48]. The significantly higher percentage of obese and abdominally obese married men compared to single obese men in our study further corroborates the observations of the aforementioned studies. The reason for this phenomenon is not very clear but a possible reason could be marriage associated lifestyle changes like reduced physical activity and increased food consumption [47-48].

SES status was not significantly associated with changes in body composition when other factors were adjusted for in our regression models. Earlier studies reported that SES was a significant predictor of BMI and that SES was inversely associated with BMI [9-10]. This is contrary to our study result where higher SES index indicated higher BMI, waist circumference and triceps skinfold thickness for both sexes (p<0.001 for both). This could be because only a few (6.2%) of our study participants were in the high SES range of 10-14 on the index scale. A similar trend was also demonstrated for educational status. Low educational levels were associated with higher BMI of women in various studies [10, 49, 50]. The association with educational level in our study was contradictory. However, our result is similar to what was observed by Amoah among Ghanaians [37]. The higher the educational level of the women in our study, the greater the gain in waist circumference and triceps skinfold. Only 17% of the women had a formal education above primary school level, whereas the majority of the women (83%) were educated only up to primary school level. The trend was similar for the men as only 16% of the men had been educated beyond primary school. Differences in study design, population and statistical analysis, may have contributed to the varying results observed in comparison to similar studies. We propose that the association between educational level, SES and changes in body composition variables might have been different if the majority of our participants were in the high SES index category and were educated up to at least completion of secondary school. Moreover, the relationship between measures of obesity and SES is complex with heredity factors possibly playing a role [51].
Age has been established to be a predictor of changes in body composition [52,53]. In our study, age predicted change in triceps and tended to predict change in BMI and waist circumference for women. The BMI of premenopausal women increased more over time compared to postmenopausal women (Table 3). The effect of age on changes in body composition was not apparent in the men. Gender related differences in the effect of age on body composition variables were also suggested by other studies [52-54].

Increasing physical activity has been demonstrated to reduce measures of obesity [14,15]. Earlier studies had established that habitual physical activity was low in black South African women of the NWP [32, 55]. Although physical activity at baseline positively predicted BMI change in men, change in BMI represents both lean and fat mass changes. This could mean that a higher physical activity score among males predicted a positive increase in both lean and fat mass. A reason for the relationship observed between physical activity and changes in body composition in our study could be because the majority (78.7%) of our participants were in the low physical activity index bracket (physical activity score < 3.3) [32].

Another lifestyle risk factor associated with changes in body composition is smoking which has been linked to central fat accumulation [17] and has been shown to have strong associations with BMI of women [10]. The lack of association between tobacco use and body composition in our study could be as a result of differences in age distribution, sample size and study population.

In our study, age, marital status, urban versus rural residence, habitual physical activity and fat intake only explained 6.3% of the change in BMI variation for men. A smaller percentage of 2.8% of the change in BMI variation for women was explained by age, habitual physical activity, SES and menopausal status. Also small percentages of variations were explained for changes in waist circumference and triceps in all models. A higher variation of body composition change was explained in the WHO MONICA study [56] while a study on Polish men explained only 8% of variation in waist circumference [57]. However, when anthropometric parameters were excluded from the WHO MONICA study only 4% of variation in waist circumference were explained for men and 5% for women. The reasons for smaller variation explained in our study could be because we investigated changes in body composition variables and body composition variables at baseline were not included in our models [56]. Despite the small percentage of variation explained in our study, the study still highlights that SES, lifestyle factors and the urbanization related factors are modifiable risk
factors that could be targeted to combat the increasing scourge of obesity among adults in these communities.

Our study is comparable to the general black South African population. For instance, the National Nutrition and Health Examination Survey reported an equally high national prevalence of 39.9% obesity (BMI>30 kg/m²) among black South African women [20]. The overall prevalence of obesity in this study particularly among women further confirms the rising concern that South Africa is in the nutrition-related non-communicable disease phase of the nutrition transition [12, 13, 20, 58].

Our study has a number of potential limitations which include the wide range in age with relatively small numbers in the youngest and oldest age range. This study was performed in black men and women in one province and the results may not be generalizable to the greater black South African population. Also, we did not have information on the ownership of household assets such as cars, televisions, microwave etc. to create an asset index which could have increased the sensitivity of the SES index.

In conclusion, our 5-year longitudinal study showed that black African adults in the NWP, particularly the women are gaining body fat. Residing in an urban environment plays a significant role in the increasing adiposity of our subjects. We recommend that both urban and rural residents should be targeted for public health intervention programs centered on healthier lifestyle choices. This is important to reduce prevalence of overweight and obesity which should remain a public health priority.

AUTHORS’ CONTRIBUTIONS

OFS and HSK conceptualised the study, OFS drafted the manuscript and conducted all statistical analysis. HHW, HL and HSK made substantial contributions to the drafts and were involved in critically reviewing the manuscript as well interpretation of all results. CN and HM were involved in critically reviewing the draft of the manuscript and contributed to data collection. All authors contributed to and approved the final manuscript.
ACKNOWLEDGEMENTS

The authors would like to thank all supporting staff and the participants of the PURE study and in particular:

1. **PURE-South Africa:** The PURE-NWP-SA research team, field workers and office staff in the Africa Unit for Transdisciplinary Health Research (AUTHeR), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.

2. **PURE International:** Dr S Yusuf and the PURE project office staff at the Population Health Research Institute (PHRI), Hamilton Health Sciences and McMaster University, ON, Canada.

3. **Funders:** South African Medical Research Council, SANPAD (South Africa - Netherlands Research Programme on Alternatives in Development), South African National Research Foundation (NRF GUN numbers 2069139 and FA2006040700010), North-West University and PHRI. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and, therefore, the National Research Foundation does not accept any liability in regard thereto.

4. **Statistical support:** Ms Marike Cockeran and Mr Shawn Liebenberg.

5. Sincere appreciation to Prof Pieter Jooste for reviewing an earlier draft of this manuscript.

Conflicts of interest: Authors have no conflict of interest regarding this study.
REFERENCES

National Health and Nutrition Examination Survey (SANHANES-1). HSRC Press Cape Town 2013, 136–140

Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circ 2009, 120(16):1640-1645.

39. Pérez-Cueto FJA, Verbeke W, de Barcellos MD, Scholderer J, Grunert KG, Kehagia O, Chryssochoidis G. **Food-related lifestyles and their association to obesity in five European countries.** *Appetite* 2010, **54**(1):156-162.

41. Hill JO, Melanson EL, Wyatt HT. **Dietary Fat Intake and Regulation of Energy Balance: Implications for Obesity.** *J Nutr* 2000, **120**(2):284S.

42. Ejike CE, Ijeh I. **Obesity in young-adult Nigerians: Variations in prevalence determined by anthropometry and bioelectrical impedance analysis, and the development of % body fat prediction equations.** *Inter Arch Med* 2012, **5**(1).

47. Hajian-Tilaki K, Heidari B. **Prevalence of obesity, central obesity and the associated factors in urban population aged 20-70 years, in the north of Iran: A population-based study and regression approach.** *Obes Rev* 2007, **8**(1):3-10.

CHAPTER 4

Lean mass appears to be more strongly associated with bone health than fat mass in urban black South African women

OF Sotunde1, HS Kruger1, HH Wright1,2, L Havemann-Nel1, IM Kruger3, E Wentzel-Viljoen1, A Kruger3, M Tieland4

1Centre of Excellence for Nutrition, North-West University, Potchefstroom, 2520 South Africa

2School of Health and Sports Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia

3Africa Unit for Transdisciplinary Health Research, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.

4Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
INSTRUCTIONS FOR AUTHORS FOR JOURNAL OF NUTRITION
HEALTH AND AGING

The Journal of Nutrition, Health & Aging

Instructions for authors:
The JNHA is indexed in MEDLINE/Index Medicus, in Current Contents/Clinical Medicine, in Journal Citation Reports/Science Edition, in Science Citation Index Expanded (Sci Search), in EXCEPTRA MEDICA (EMBASE and BIOBASE), in Mental Health Abstracts, Chemical Abstracts (CA), Abstracts in Social Gerontology: Current Literature on Aging, Sociological Abstracts and Social.

Authors are invited to submit their manuscripts on the new submission and review tracking site: https://www.editorialmanager.com/jnha/.

Reviews by the editors and referees will also be performed online, which will greatly facilitate, hasten, and simplify reviews of all manuscripts and potentially reduce publication costs. Authors are encouraged to indicate the names of potential referees as well as those whom they wish not to review the paper, but the editors will make the final choice. The average time interval for the initial review process, if it involves both editorial and peer reviews, is approximately 1 month; occasionally, there are unavoidable delays, usually because of multiple reviews or several revisions on a manuscript. Decisions conveyed may be acceptance with or without revision, non-acceptance with encouragement to make revisions and resubmit; non-acceptance with encouragement to resubmit in another format (e.g., letter to the editor), or rejection. Manuscripts held for revision will be retained for a maximum of 90 days. Authors who plan to resubmit but cannot meet this deadline should contact the editorial office.

To maximize the number of pages that can be published and yet maintain high quality, there are strict limits on the total number of a) text words, b) graphics (tables, figures and appendices combined), and c) references.

Authors retain the right to use the article for personal professional purposes (teaching, lecturing). The publication of all articles published in the JNHA is compliant with the NIH open access policy (http://www.springer.com/cda/content/document/cda_downloads/documentN9591R_NIH_OpenAccess_Flyer.pdf).

ABSTRACT

JNHA requires that abstracts of manuscripts submitted for the Clinical Investigations, Brief Reports, and Brief Methodological Reports sections be in a structured form conforming to guidelines published in the Journal of the American Medical Association (1998;280:23–24). See also Annals of Internal Medicine (1990;113:69–76). Abstracts should include the following headings: Objectives, Design, Setting, Participants, Intervention (if any), Measurements, Results, and Conclusion. Specify the sample size. Emphasize clinical relevance in the abstract’s conclusion. Failure to adhere to this format will delay or unduly prolong the review process. Following the abstract conclusion, list 3 to 5 key words to be used for indexing. Editorials, Letters to the Editor and Geriatric Literature do not require an abstract.

KEY WORDS

Authors should include 3 to 5 key words at the end of the abstract for all papers except Editorials, Geriatric Literature, and Letters to the Editor.

ETHICAL STANDARDS

Manuscripts submitted for publication must contain a declaration that the experiments comply with the current laws of the country in which they were performed. Please include this note in a separate section before the reference list.

EXPERIMENTAL SUBJECTS/ANIMALS

The journal of nutrition, health & aging only publishes articles that are ethically approved. All authors are expected to abide by accepted ethical standards. In investigations that involve human subjects or laboratory animals, authors should provide an explicit statement in Materials and Methods that the experimental protocols were approved by the appropriate institutional review committee and meet the guidelines of their responsible governmental agency. In the case of human subjects, informed consent is essential.

CONFLICT OF INTEREST DISCLOSURE FORM

All potential benefits in any form from a commercial party related directly or indirectly to the subject of this manuscript or any of the authors must be acknowledged. For each source of funds, both the research funder and the grant number should be given. All authors must complete the Conflict of Interest Form individually even if an author has no conflict of interest to disclose. If all participating authors declare no conflict of interest, it is still required for each author to include a disclosure statement in the manuscript text.

IMPORTANT: All forms must be completed as instructed from each author and there must be a disclosure statement included in the manuscript text for each author before the manuscript can be sent out for peer review. Furthermore, the completed forms must be uploaded with the manuscript during the initial submission via the Editorial Manager website.

PERMISSIONS

Use or reproduction of materials from other sources (e.g., journal, book) must be accompanied by a statement or document from both author and publisher giving permission to JNHA for reproduction.
PEER REVIEWING
At submission of your paper please add complete references: email, postal address and phone number for 4 potential reviewers. The Peer Reviewing Process will only start at reception of this list.

ACCEPTED MANUSCRIPTS
Manuscripts accepted for publication should be mailed (preferably by express mail) to the INHA Editorial office. Please submit one original hard copy with one copy of illustrations (if needed) and an IBM-compatible diskette of the paper. Failure to adhere to these recommendations may delay publication of your manuscript.

PAPER LENGTH
Limit the paper to a maximum of 5 000 text words, 7 graphics (tables, figures, appendices), and 100 references. A structured abstract is required (see under Abstract). However if the article exceeds 2 printed pages of the journal, it will be charged 25 Euros per extra page.

SHORT PAPERS ARE WELCOME
These are clinical-investigation or clinical-experience reports whose findings are somewhat preliminary or a clinical study reporting on narrowly focused or limited findings. Brief Reports are limited to 1 100 text words, 3 graphics (tables, figures, appendices), and 30 references, plus a brief structured abstract limited to one double-spaced manuscript page (see under Abstract).

PERMISSION TO REPRINT
Requests for permission to republish material previously printed in the INHA in another journal should be directed to Carine Giry: carine.giry@serdi-fr.com

REFERENCES
Citation
Reference citations in the text should be identified by numbers in brackets.

Reference list
The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list. The entries in the list should be numbered consecutively.

Journal article

Article by DOI

Book

Book chapter

Online document

Dissertation

Always use the standard abbreviation of a journal’s name according to the ISSN List of Title Word Abbreviations, see www.isss.org/2-32661-1-TWA-online.php
The journal of nutrition, health & aging
Editor-in-Chief: Vellas, B.
ISSN: 1279-7707 (print version)
ISSN: 1750-4788 (electronic version)
Journal no. 12603
ABSTRACT

Objective: To examine the association between body composition (fat mass, lean mass and body mass index, BMI) and bone health (bone mineral density, BMD and fracture risk) in urban black South African women.

Design: A cross sectional study examining associations between body composition, dietary intake (food frequency questionnaire), habitual physical activity (Activity energy expenditure (AEE) measured using an accelerometer with combined heart rate monitor and physical activity questionnaire) and bone health (BMD using dual-energy X ray absorptiometry, DXA and fracture risk).

Setting: Urban community dwellers from Ikageng in the North-West Province of South Africa

Participants: One hundred and eighty nine (189) healthy postmenopausal women aged ≥43 years.

Results: Fat mass and lean mass were significantly associated with BMD and fracture risk when adjusted for potential confounders. However, lean mass and not fat mass remained significantly associated with femoral neck BMD ($\beta = 0.49$, $p <0.001$), spine BMD ($\beta = 0.48$, $p< 0.0001$) and hip BMD ($\beta = 0.59$, $p< 0.0001$). Lean mass was also negatively associated with fracture risk ($\beta = -0.19$ $p =0.04$) when both lean and fat mass were in the same model.

Conclusion: Lean mass and fat mass were positively associated with femoral neck, spine and hip BMDs and negatively associated with fracture risk in urban black South African women. Our finding suggests that increasing lean mass rather than fat mass is beneficial to bone health. Our study emphasises the importance of positive lifestyle changes, intake of calcium from dairy and adequate weight to maintain and improve bone health of postmenopausal women.

Keywords Lean mass, fat mass, bone mineral density, fracture risk, African women
INTRODUCTION

Osteoporosis and obesity are two complex diseases of increasing prevalence and with great impact on mortality and morbidity. Similarities identified between these diseases indicate some type of pathophysiological link (1). Worldwide, obesity affects over 300 million women while osteoporosis affects over 200 million women (2, 3). The South African National Health and Nutrition Examination Survey (SANHANES) recently reported a national obesity prevalence of 39.2% for South African adult women (4).

Body mass index (BMI) which is an indicator of adiposity is a height-standardised measure of body weight mainly comprised of lean and fat mass. Low BMI has been established to be a risk factor for osteoporotic fracture (5–7). However, obesity was recently shown to be a risk factor for osteoporotic fracture (8). The mechanical loading of body weight on bone led to the belief that obesity may prevent bone loss and osteoporosis (5, 6). Previous studies had conflicting results about the individual effect of lean mass and fat mass on bone mineral density (BMD) (5, 6, 9–14). Recent studies are showing that lean mass has a greater protective effect on BMD in comparison to fat mass (10, 11). Indeed increased fat mass has been associated with low BMD and reported not to protect against osteoporosis in Chinese men and women (13). A number of studies have been conducted on bone health outcomes among South Africans (15–20), but to the best of our knowledge none has focused on the relationship between body composition and bone health, particularly BMD and fracture risk, among postmenopausal black South African women. Moreover, there is an increasing concern about the loss of African women’s inherent advantage of higher BMD which needs further investigation (17). Consequently, this study aims to examine the association between body composition (BMI, fat mass and lean mass) and bone health (BMD and fracture risk) in urban postmenopausal black South African women.

SUBJECTS AND METHODS

Study design

The Prospective Urban and Rural Epidemiology (PURE) study is a 10 year longitudinal study aimed at tracking the effects of lifestyle and changing environment exposures on the development of non-communicable diseases in populations at different stages of epidemiologic transition (21). The South African North-West Province (NWP) arm of the PURE (PURE-SA-NWP) study commenced with baseline data collection in 2005 (17). In this
sub-study we included postmenopausal women who were measured at 5 and 7 years follow up in 2010 and 2012, respectively using a cross-sectional study design. Urban black women aged ≥ 43 years from the PURE-SA-NWP study were included. Only participants who completed the quantitative food frequency questionnaires (QFFQ) and had undergone dual energy X-ray absorptiometry (DXA) measurements at follow up were eligible for inclusion in this study (n=189). We excluded women who are HIV positive in the current analysis. Blood samples and DXA measurements for each participant were done on the same day and the seasons were defined as October to December for spring (season 1) and April to June for autumn (season 2). The study was approved by the Ethics committee of the North-West University (NWU), Potchefstroom campus (NWU-00016-10-A1). All participants provided written informed consent. Another written informed consent for HIV testing was obtained from each participant after a pre-counseling session.

Body composition measurements

Height was measured to the nearest 0.1 cm with a stadiometer (Leicester height measure, Seca, Birmingham,UK) and weight was determined on a portable electronic scale to the nearest 0.01 kg (Precision Health Scale, A & D Company, Japan) by anthropometrists according to standard methods of the International Society for the Advancement of Kinanthropometry (ISAK) (22). BMI was calculated (weight in kilograms divided by height in meter squared). Women were grouped according to their BMI of either < 25 kg/m2 or ≥ 25 kg/m2 (overweight and obese).

Body composition (lean and fat mass) and BMD were measured by a registered radiographer with DXA (Hologic Discovery W, APEX system software version 12.7.3.1). Whole body, femoral neck (CV = 1.2%), hip (CV = 0.8%) and anterior posterior spine BMD (L1–L4, Spine, CV = 0.7%) were measured. Measurements for the non-dominant side of each participant were used for data analysis. Low bone mass (osteopenia) was defined by a femoral neck T-score between -1.0 and -2.5 standard deviations and osteoporosis was defined as a T-score ≤ -2.5 standard deviations (23, 24).

Questionnaires

Structured questionnaires were adapted and used by all countries participating in the PURE study to collect socio-demographic and lifestyle information including medication and tobacco use (21). Questionnaires were administered by trained field workers during home visits and visits to the Metabolic Unit of the NWU in their language of choice. Validated culturally sensitive QFFQ (25, 26) and modified Baecke physical activity questionnaires for
this population (27) were used as previously described by Kruger and colleagues (17). The food intake were coded and analyzed by using the South African Medical Research Council database (28). Fracture risk was measured and assessed using the Black fracture risk score (29). Fracture risk questionnaires have been previously used in the black South African population (30). An index with a score from 0 to 3 was regarded as low risk; 4 to 6 as medium risk and 7 to 11 was high risk (29).

Blood collection and analysis

Registered nurses collected a fasting blood sample from the antecubital vein using a sterile winged infusion set and syringes. Serum samples were prepared and stored in aliquots in cryotubes at -80°C. Serum 25-hydroxy vitamin D (25(OH)D) concentrations were measured using the Roche Elecsys 2010 COBAS system (Roche Diagnostics, Indianapolis, IN, USA).

Physical activity

Habitual physical activity was measured with a modified Baecke questionnaire (27) and activity energy expenditure (AEE) was measured using an accelerometer with combined heart rate monitor (ActiHeart®, Camtech, UK) for 7 days. Participants were visited by field workers on a daily basis to ensure that the ActiHeart® monitor was secure and to record possible problems with wearing the device. AEE was determined by means of 60 second epochs and data generated by the ActiHeart® were downloaded using a computer interface. Total energy expenditure and AEE were calculated (in kJ) with the ActiHeart® software. Reliability and validity of using the ActiHeart® to evaluate physical activity in sub-Saharan Africans has been previously assessed (31).

Statistical analysis

Data were analysed with IBM SPSS version 22 (IBM Company, Armonk, NY, USA). Normally distributed data are presented as means with standard deviation, non-normally distributed data as medians and interquartile range. Categorical data were analysed using frequency tables and prevalence of specific conditions was expressed as percentages. Independent t-tests were used to compare parametric variables and Mann-Whitney U-tests to compare non-parametric variables between groups. Pearson correlations were used to explore the relationship between dietary intake, physical activity, BMD, body composition and fracture risk while adjusting for possible confounders (i.e. age, height, tobacco use, contraceptive use and thiazide use). Prevalence odds ratio (OR) and 95% confidence intervals (CI) were evaluated for BMI vs. bone density categories. Separate stepwise
multiple linear regressions were used to assess the association between BMI, lean mass, fat mass respectively as independent variables, and femoral neck BMD, spine BMD, hip BMD and fracture risk, respectively, as the dependent variables. Potential confounders like age, 25(OH)D, season of data collection, AEE, tobacco use, alcohol consumption, dairy food intake, contraceptive use and use of thiazide were included in the models. Another multiple regression model was used with both lean mass and fat mass as independent variables of BMD measured at the three sites and fracture risk in the same model. We based our power calculation for the appropriate sample size for multiple regression analysis based on an expected R^2 of 0.2, a maximum of 15 independent variables and a confidence level of 0.95 indicated a sample size of 150 participants (32). Statistical significance was set at $p < 0.05$. Diagnostic tests for multicollinearity were performed.

RESULTS

Demographic, body composition, health and lifestyle characteristics of the women are presented in Table 1. Using the WHO BMI classification, 7.4% of the women were underweight, 22.2% had normal weight, and 23.3% were overweight while 47.1% were obese. Women with BMI < 25 kg/m2 had significantly lower body fat percentage, lean mass, spine BMD, femoral neck BMD, hip BMD, and whole body BMD, but had higher serum 25(OH)D, higher fracture risk, as well as a higher proportion of osteoporosis in comparison to those with a BMI \geq 25 kg/m2 (Table 1).

The odds of having osteopenia was not significantly different between women with BMI < 25 kg/m2 compared to overweight and obese women (OR 1.34, 95%CI: 0.72, 2.52, $p=0.37$). However, the odds of having osteoporosis was seven fold higher in women with BMI < 25 kg/m2 compared to women with BMI \geq 25 kg/m2 (OR 7.08, 95%CI: 2.95,16.96, $p<0.001$). Out of the women aged 70 years and above, 42.9% had osteoporosis while the highest percentage of osteopenia was recorded for women between the ages of 60-69 years (52.4%). Among the women aged < 60 years, 34% had osteopenia while 8.7% were already osteoporotic.
Table 1: Demographic, body composition, health and lifestyle measures of the total group as well as between women with BMI < 25 kg/m² and BMI ≥ 25 kg/m² (n=189)*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total group</th>
<th>BMI <25 kg/m²</th>
<th>BMI ≥25 kg/m²</th>
<th>p#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=189) *</td>
<td>(n=56)</td>
<td>(n=133)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.1 (10.2)</td>
<td>61.0 (11.2)</td>
<td>61.1 (9.79)</td>
<td>0.951</td>
</tr>
<tr>
<td>Body fat %</td>
<td>40.2 (7.43)</td>
<td>31.7 (5.61)</td>
<td>43.8 (4.71)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>29.2 (11.9)</td>
<td>15.9 (4.50)</td>
<td>34.9 (9.21)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lean mass (kg)</td>
<td>39.0 (7.29)</td>
<td>31.9 (4.61)</td>
<td>41.9 (6.09)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.4 (7.57)</td>
<td>20.7 (2.91)</td>
<td>33.0 (5.68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Spine BMD (g/cm²)</td>
<td>0.854 (0.144)</td>
<td>0.777 (0.123)</td>
<td>0.886 (0.140)</td>
<td><0.001</td>
</tr>
<tr>
<td>Femoral neck BMD (g/cm²)</td>
<td>0.840 (0.133)</td>
<td>0.649 (0.111)</td>
<td>0.773 (0.125)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hip BMD (g/cm²)</td>
<td>0.840 (0.152)</td>
<td>0.734 (0.112)</td>
<td>0.882 (0.147)</td>
<td><0.001</td>
</tr>
<tr>
<td>Whole body BMD (g/cm²)</td>
<td>0.987 (0.124)</td>
<td>0.914 (0.095)</td>
<td>1.018 (0.122)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fracture risk score</td>
<td>1.73 (1.65)</td>
<td>2.31 (1.70)</td>
<td>1.48 (1.57)</td>
<td>0.002</td>
</tr>
<tr>
<td>AEE (kJ)</td>
<td>1160 (909)</td>
<td>860 (703)</td>
<td>1287 (957)</td>
<td>0.005</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>2.93 (0.49)</td>
<td>2.92 (0.38)</td>
<td>2.93 (0.53)</td>
<td>0.97</td>
</tr>
<tr>
<td>25(OH)D (ng/ml)</td>
<td>30.2 (9.61)</td>
<td>32.9 (9.37)</td>
<td>28.9 (9.49)</td>
<td>0.01</td>
</tr>
<tr>
<td>Tobacco users n (%)</td>
<td>97 (51.3)</td>
<td>35 (62.5)</td>
<td>62 (47.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Contraceptive users n (%)</td>
<td>100 (53.8)</td>
<td>33 (58.9)</td>
<td>67 (51.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>Thiazide users n (%)</td>
<td>84 (44.4%)</td>
<td>22 (39.3)</td>
<td>62 (46.6)</td>
<td>0.36</td>
</tr>
<tr>
<td>Osteopenic n (%)</td>
<td>75 (39.7)</td>
<td>25 (44.6)</td>
<td>50 (37.6)</td>
<td>0.37</td>
</tr>
<tr>
<td>Osteoporotic n (%)</td>
<td>28 (14.8)</td>
<td>19 (33.9)</td>
<td>9 (6.8)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Sample size varies due to missing values. BMI = body mass index. BMD = Bone mineral density. AEE = activity energy expenditure. 25(OH)D = serum 25 hydroxy vitamin D. #Difference between groups with BMI < ≤ 25 kg/m². Data are means (SD) or frequency (%)

There was a positive correlation between body composition variables and all BMD measurements at different sites, and a negative correlation with fracture risk (Table 2). Dairy foods and dietary calcium intakes had significant positive correlations with one or more BMD measurements (Table 2).
Table 2: Pearson correlation coefficients between dietary intake, physical activity, body composition, bone markers and fracture risk for the whole group

<table>
<thead>
<tr>
<th>Body composition</th>
<th>Spine BMD</th>
<th>Femoral neck BMD</th>
<th>Hip BMD</th>
<th>Whole body BMD</th>
<th>Fracture risk</th>
<th>Fat mass body mass</th>
<th>Body mass index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (kg/m^2)</td>
<td>0.40**</td>
<td>0.46**</td>
<td>0.55**</td>
<td>0.51**</td>
<td>-0.24**</td>
<td>0.94**</td>
<td>0.80**</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>0.40**</td>
<td>0.43**</td>
<td>0.52**</td>
<td>0.50**</td>
<td>-0.25**</td>
<td>-</td>
<td>0.79**</td>
</tr>
<tr>
<td>Lean mass (kg)</td>
<td>0.48**</td>
<td>0.48**</td>
<td>0.55**</td>
<td>0.54**</td>
<td>-0.25**</td>
<td>0.79**</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietary intakes</th>
<th>Energy intake (kJ)</th>
<th>Calcium (mg)</th>
<th>Vitamin D (µg)</th>
<th>Alcohol (g)</th>
<th>Dairy food (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine BMD</td>
<td>0.06</td>
<td>0.14</td>
<td>-0.08</td>
<td>0.12</td>
<td>-0.07</td>
</tr>
<tr>
<td>Femoral neck BMD</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.08</td>
<td>0.12</td>
<td>-0.08</td>
</tr>
<tr>
<td>Hip BMD</td>
<td>0.07</td>
<td>0.09</td>
<td>-0.06</td>
<td>0.12</td>
<td>-0.06</td>
</tr>
<tr>
<td>Whole body BMD</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.06</td>
<td>0.12</td>
<td>-0.06</td>
</tr>
<tr>
<td>Fracture risk</td>
<td>0.16*</td>
<td>0.16*</td>
<td>0.16*</td>
<td>0.16*</td>
<td>0.16*</td>
</tr>
<tr>
<td>Fat mass</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Lean mass</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Body mass index</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Vitamin D status	25(OH)D (ng/ml)	-0.07	-0.08	-0.06	-0.15*	0.03	-0.18*	-0.22**	-0.22**
AEE (Kcal)	0.05	0.13	0.15	0.07	-0.14	0.28**	0.23**	0.28**	
Physical activity score	0.03	-0.03	0.05	0.04	-0.01	0.10	0.08	0.08	

BMD = bone mineral density, AEE = activity energy expenditure, 25(OH)D = serum 25 hydroxyl vitamin D. Partial correlation with adjustment for age, tobacco use, history of contraceptive use and thiazide use. * p<0.05, ** p<0.001

Table 3 shows the multivariate regression results of the associations of body composition variables with BMD measurements. In model 2, BMI and other covariates explained 38% variation in femoral neck BMD, but when BMI was replaced with fat mass a lower percentage (35%) was explained. When fat mass was replaced by lean mass, an even greater percentage of variation (40%) in femoral neck BMD was explained. Unadjusted beta-values showed that for each increase in one unit (1 kg) of fat mass there was an increase of 0.005 g/cm² in femoral neck BMD (p<0.001) while for an increase in each unit (1 kg) of lean mass there was an increase of 0.010 g/cm² in femoral neck BMD (p<0.001).

For spine BMD, BMI and other covariates explained 23% of the variation, changing to 25% when BMI was replaced by fat mass, while the model with lean mass also explained the highest variation of 30% (Table 3). An increase in each unit of fat mass and lean mass was associated with similar increases in spine BMD and femoral neck BMD (0.005 g/cm² (p<0.001) and 0.010 g/cm² (p<0.001), respectively).
The variation in hip BMD explained by BMI, fat mass and lean mass, respectively, and other covariates was also 38%, 36% and 40%. Unadjusted beta-values showed that the increases in each unit of fat mass and lean mass, respectively, was associated with increases in hip BMD of 0.007 g/cm² (p<0.001) and 0.012 g/cm² (p<0.001).

Table 3: Association between BMD as dependent variable and body composition parameters as independent variables

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>Fat mass</th>
<th>Lean mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>p</td>
<td>Adjusted R²</td>
</tr>
<tr>
<td>Femoral neck BMD model 1</td>
<td>0.48</td>
<td><0.001</td>
<td>0.23</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.42</td>
<td><0.001</td>
<td>0.38</td>
</tr>
<tr>
<td>Spine BMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>0.43</td>
<td><0.001</td>
<td>0.18</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.41</td>
<td><0.001</td>
<td>0.23</td>
</tr>
<tr>
<td>Hip BMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>0.57</td>
<td><0.001</td>
<td>0.32</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.53</td>
<td><0.001</td>
<td>0.38</td>
</tr>
</tbody>
</table>

BMI = body mass index
Model 1: unadjusted model. Model 2: adjusted for age, height (except for BMI model), serum 25 hydroxy vitamin D, season, activity energy expenditure, dairy food intake, alcohol intake, history of contraceptive use, thiazide use and tobacco use

Table 4 summarizes the association between body composition variables and fracture risk. All body composition variables were negatively associated with fracture risk. Individual associations were β = -0.23 (p<0.001) for BMI, β = -0.24 (p<0.001) for fat mass and β = -0.31 (p<0.001) for lean mass.
Table 4: Association between fracture risk as dependent variable and body composition parameters as independent variables

<table>
<thead>
<tr>
<th>BMI</th>
<th>Fat mass</th>
<th>Lean mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>p</td>
<td>Adjusted R²</td>
</tr>
<tr>
<td>Model 1</td>
<td>-0.23</td>
<td>0.002</td>
</tr>
<tr>
<td>Model 2</td>
<td>-0.18</td>
<td>0.03</td>
</tr>
</tbody>
</table>

BMI = body mass index. Model 1: unadjusted model. Model 2: adjusted for, height (except for BMI), 25(OH)D, season, activity energy expenditure, dairy food intake, alcohol intake, history of contraceptive use and thiazide use.

In Table 5 where lean mass and fat mass were included in the same model, lean mass (β = 0.45, p<0.001) was positively associated with femoral neck BMD, while fat mass (β= 0.05 p = 0.65) was not even though it was retained in the model (Model 1).

In the final model (Model 2 of Table 5), lean mass, age, height, dairy foods, and tobacco use were the only variables associated with femoral neck BMD, while there was no association with fat mass. Lean mass, age, height, dairy foods, tobacco use and season explained 40.1% of the variation in femoral neck BMD of our participants.

Lean mass and tobacco use were the only variables associated with spine BMD (Model 2 of Table 5). Lean mass, age, tobacco use and season explained 29.7% of the variation in spine BMD of our participants. Lean mass, age, height and tobacco were also significantly associated with hip BMD and explained 39.6% of the variation in hip BMD of our participants (Model 2 of Table 5).

Body composition variables and dairy foods were negatively associated with fracture risk (Table 5). In the final model (Model 2 of table 5), lean mass and dairy foods were the only variables significantly associated with fracture risk. Lean mass, dairy foods, height, 25(OH) D, AEE, thiazide use and history of contraceptive use explained 14.8% variation in the fracture risk of our study population.
Table 5: Multiple regression analysis for the association between BMD measurements and fracture risk as dependent variables and body composition parameters as independent variables

<table>
<thead>
<tr>
<th></th>
<th>Femoral neck BMD</th>
<th>Spine BMD</th>
<th>Hip BMD</th>
<th>Fracture risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>Model 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat mass</td>
<td>0.05</td>
<td>0.95</td>
<td>0.06</td>
<td>0.83</td>
</tr>
<tr>
<td>Lean mass</td>
<td>0.45</td>
<td><0.001</td>
<td>0.42</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>-0.32</td>
<td><0.001</td>
<td>-0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>0.02</td>
<td>0.82</td>
<td>-0.03</td>
<td>0.72</td>
</tr>
<tr>
<td>Season</td>
<td>0.08</td>
<td>0.27</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Height</td>
<td>-0.14</td>
<td>0.04</td>
<td>0.01</td>
<td>0.91</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>-0.14</td>
<td>0.03</td>
<td>-0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>Dairy foods</td>
<td>0.14</td>
<td>0.04</td>
<td>0.06</td>
<td>0.39</td>
</tr>
<tr>
<td>Alcohol</td>
<td>0.02</td>
<td>0.82</td>
<td>-0.02</td>
<td>0.75</td>
</tr>
<tr>
<td>Thiazide use</td>
<td>0.03</td>
<td>0.71</td>
<td>0.08</td>
<td>0.26</td>
</tr>
<tr>
<td>Contraceptive use</td>
<td>0.02</td>
<td>0.81</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>AEE</td>
<td>0.02</td>
<td>0.76</td>
<td>-0.03</td>
<td>0.97</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.379</td>
<td>0.271</td>
<td>0.379</td>
<td>0.138</td>
</tr>
<tr>
<td>Model 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean mass</td>
<td>0.49</td>
<td><0.001</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>-0.32</td>
<td><0.001</td>
<td>-0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Height</td>
<td>-0.13</td>
<td>0.04</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dairy foods</td>
<td>0.14</td>
<td>0.03</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Season</td>
<td>0.09</td>
<td>0.18</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>-0.15</td>
<td>0.02</td>
<td>-0.19</td>
<td>0.007</td>
</tr>
<tr>
<td>Alcohol</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Thiazide use</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Contraceptive use</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.401</td>
<td>0.297</td>
<td>0.396</td>
<td>0.148</td>
</tr>
</tbody>
</table>
DISCUSSION

The results from this cross sectional study indicate that lean mass had a stronger association with bone health in comparison to fat mass in urban black South African women.

The influence of individual body composition variables to BMD remains controversial. While some studies demonstrated that lean mass exhibit a positive relationship with BMD (10, 11) another reported that lean mass does not have an impact on BMD (14). Some reported positive, negative and no association between fat mass and BMD (5, 6, 9). These conflicting findings may be due to differences in study design, study population, statistical analysis, tools used to measure body composition and skeletal sites measured.

In our participants, lean mass showed consistent stronger correlations than fat mass at all skeletal sites of BMD measurements with the highest correlation value for lean mass and hip BMD ($r = 0.55$, $p<0.001$) and lowest for fat mass and spine BMD ($r = 0.40$, $p<0.001$). These results are in agreement with the results of the large Hordaland health study who also demonstrated a stronger association between lean mass and femoral neck BMD in middle-aged and elderly men and women in comparison to fat mass (33). In our study 2.2%, 2.6% and 1.6% increase in variation in femoral neck, spine and hip BMDs were explained by lean mass and other covariates when fat mass was no longer in the model respectively. These findings are consistent with the study that demonstrated a significant beneficial effect of lean mass on BMD in both postmenopausal and perimenopausal Thai women (10). It however contradicts the result of a study, where they found lean mass not to have an impact on BMD of postmenopausal Turkish women when fat mass was taken into account (14). Also, in a similar study it was observed that lean mass plus other covariates explained the greatest variance in BMD compared to fat mass and other covariates among black premenopausal South African women (18). Fat mass and lean mass were both negatively associated with fracture risk in separate models in our study, however, only lean mass remained significantly associated with fracture risk when both variables were taken into account in the same model.
The differences in variations explained at different BMD sites in our study is an indication that body composition contributes differently at different BMD sites (19, 34). Another indication of varying contribution of body composition at different sites of our participants is that higher variations were explained by body composition variables (35% to 40%) of femoral neck and hip than of the spine BMD (23% to 30%).

Over half (51.3%) of our participants have either smoked in the past or were current smokers. Studies in the past have showed varying relationship between smoking and bone health (35-38). Moderate smoking in young women was reported not to be associated with low BMD at any site (36). Smoking’s effect on bone loss has been shown to be independent, dose-dependent, cumulative and increases fracture risk significantly (35, 38). Tobacco use in our study had significant negative associations with BMD at all measured sites.

Our results indicate that BMI is associated with bone health in urban postmenopausal black South African women. The Framingham study (6) suggested that the strong effect of weight on BMD is due to load on weight-bearing bones in both men and women. The higher risk for osteopenia and osteoporosis among our women with BMI < 25 kg/m2 is consistent with results from others (5–7, 39). In a study by Assomaning and colleagues (7), each one unit increase in BMI was associated with a significant 12% decrease in risk for osteoporosis, however, the study participants of their study were referred for a BMD examination. Such referred populations may include a large number of patients with previously recognized risk factors for osteoporosis which is a potential selection bias. The lower lean mass and habitual physical activity of our participants with BMI < 25 kg/m2 could further explain the lower BMD and higher fracture risk observed among this group of our participants. Correspondingly, De Laet and colleagues demonstrated that the significance of BMI as a risk factor for low bone mass and osteoporosis varies based on level of BMI (40). They reported that a BMI of 20kg/m2 when compared with BMI of 25 kg/m2 was associated with a nearly twofold increase in risk for hip fracture. While a BMI of 30 kg/m2, when compared with a BMI of 25 kg/m2, was associated with only a 17% reduction in hip fracture risk (40). Furthermore, Ong and co-workers recently showed that higher BMD in obesity is not protective against fractures (9), and adiposity has been shown to be a risk factor for fractures (8).

In our study, there was no significant association between 25(OH)D and femoral neck, hip and spine BMDs similarly to another study in black South Africans (19). There were significant negative correlations between 25(OH)D and measures of adiposity. The majority (70%) of our women were overweight or obese which could explain this negative association.
as adipose tissue may decrease the bioavailability of vitamin D (41). Ethnicity might play a role in this observation as a negative relationship has been reported between adipose tissue and 25(OH)D concentrations in Hispanic American and African American populations (42). The unexpected negative correlation between lean mass and 25(OH)D concentrations is in contrast with what was found by Tieland and colleagues (43). This could also be as a result of the unique genetic makeup of black South Africans as genetics play an important role in determining muscle mass (44). More research is needed to further explore these findings.

Calcium has been established and extensively described in literature to play an important role in bone health (45-47). However, the protective effect of calcium on bone might not be evident in postmenopausal women with calcium intakes less than 800 mg/day (46). Total calcium intake was only related to whole body BMD in our study. Calcium intake of our study participants was low with only 19.6% having intakes higher than 800 mg/day and 9.5% having intakes higher than the estimated average requirement of 1000 mg/day (45). These low intakes of calcium could explain the high proportion of osteopenia and osteoporosis among our participants. Dairy food was associated with bone health among our study participants as previously established (47-49). Increasing dairy consumption to meet the recommended 2 cups per day (500ml) has been recently demonstrated to likely decrease the incidence of osteoporosis, fractures and the associated health care costs (49). Dietary energy, magnesium, phosphorus, zinc and vitamin D intakes were unrelated to bone health in our study, a result which is consistent with that of Coin and colleagues (50).

Varying results in the literature on the association between physical activity and bone health could be due to differences in the method of assessing physical activity and study population (51–53). In our study, reported physical activity measured with a questionnaire had no significant correlations with bone health; while physical activity measured using accelerometers had significant positive correlations with all body composition variables. This could be an indication that combined accelerometry and heart rate monitoring is a more sensitive instrument to measure physical activity than questionnaires in this population group. Habitual physical activity was not associated with bone health in our regression models irrespective of whether it was measured with accelerometer or a questionnaire. A reason could be that the majority (89%) of our participants were in the low physical activity index bracket of physical activity score at the time of the study (17). Physical activity over time may be a mediator of the effect of body composition on bone which may also impact BMD directly (54, 55). A gradual increase in the amount of physical activity can help prevent decreases in BMD even in postmenopausal women (56). Thus, increasing the habitual
physical activity of our participants could still have a beneficial effect on their lean mass which could be associated with better bone health.

Use of thiazide has been demonstrated to have a protective effect on BMD (57,58). Over 44% of our study population used thiazide, however it was not significantly associated with bone health in our regression models. Use of oral contraceptives pills has also been shown to have positive effects on BMD (59) while injectable progestin contraception results in increased bone loss when compared with women using non-hormonal contraceptives (60). Positive history of contraceptives use was not associated with bone health in our regression models although 53.8% of our study participants have used contraceptives. We did not record the type of contraception used by participants. Injectable progestin contraception and oral contraceptive pills are supported by the South African National public health system and given freely at clinics (60,61). This inability to distinguish type of contraception used by our participants may be a possible explanation for the lack in association with bone health in the current study.

Our study indicates that black women seem to be losing their inherent protection against osteopenia and osteoporosis. The proportion of women with osteopenia (39.7%) and osteoporosis (14.8%) in our study was higher than previously reported for African American women (35% and 5% respectively) (62). Osteopenia was previously reported in both premenopausal white (14.4%) and black South African women (9.1%) (18). Osteoporosis was already present in women younger than 60 years in our study which further reinforces the concerns raised about the future bone health of black South Africans (17, 63).

There are similarities between the women in our study and the general population of the black South African women. For instance, a study carried out in a different South African setting reported BMD values for black women comparable to those found in our study (19). Also variances explained at the lumbar spine were lower than those explained at the femoral neck and hip (18,19). The national Nutrition and Health Examination Survey reported an equally high national prevalence of 39.9% obesity (BMI>30 kg/m²) among black South African women (4).

Limitations of this study include its cross-sectional design, thus causal relationships cannot be identified. This study was performed in black urban women in one setting and the results may not be generalizable to the greater black South African population. Also, we did not record the type of contraception used by participants. The wide range in age with relatively small numbers in the youngest and oldest age range also made it difficult to assess the true
impact of age on bone health. However, it allowed us to show that low BMD and osteoporosis were already found in black urban women younger than 60 years. Despite the limitations, our study has produced a better understanding of the relationships between body composition variables and bone health of urban postmenopausal black South African women which could be further investigated.

In conclusion, our data shows that in urban black South African women, lean mass remained a strongly associated with bone health even when adjustment for fat mass was made. Our finding proposes that increasing lean mass rather than fat mass is beneficial to bone health. Thus, meeting the recommended dietary intake for calcium obtained from dairy products and increasing habitual physical activity could have a beneficial effect on bone health. Future studies on other factors affecting lean mass and bone health of Africans are recommended. The importance of positive lifestyle changes, intake of calcium from dairy and adequate weight to maintain and improve bone health of postmenopausal women is highlighted in our study and this should be emphasised in public health intervention programmes.

ACKNOWLEDGEMENTS

The authors would like to thank all supporting staff and the participants of the PURE study and in particular:

1. **PURE-South Africa**: The PURE-NWP-SA research team, field workers and office staff in the Africa Unit for Transdisciplinary Health Research (AUTHeR), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.

2. **PURE International**: Dr S Yusuf and the PURE project office staff at the Population Health Research Institute (PHRI), Hamilton Health Sciences and McMaster University, ON, Canada.

3. **Funders**: South African Medical Research Council, SANPAD (South Africa - Netherlands Research Programme on Alternatives in Development), South African National Research Foundation (NRF GUN numbers 2069139 and FA2006040700010), North-West University and PHRI. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and therefore the National Research Foundation does not accept any liability in regard thereto.

4. **Statistical support**: Mr Shawn Liebenberg and Ms Marike Cockeran

Conflicts of interest: Authors have no conflict of interest regarding this study.
REFERENCES

CHAPTER 5

Association of 25-hydroxyvitamin D and parathyroid hormone concentration with the metabolic syndrome in women of the North-West province, South Africa

OF Sotunde1*, HS Kruger1, HH Wright1, 2, L Havemann-Nel1, C Ravyse1, CMC Mels3, MPieters1, EJM Feskens4

1Centre of Excellence for Nutrition, North-West University, Potchefstroom, 2520 South Africa

2School of Health and Sports Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia

3Hypertension in Africa Research Team, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.

4Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands

*Corresponding author

Email addresses:
OFS: 24655449@nwu.ac.za
SHK: Salome.Kruger@nwu.ac.za
HHW: hwright@usc.edu.au
LH: Lize.HavemannNel@nwu.ac.za
CB: Chrisna.Botha@nwu.ac.za
CMCM: Carina.Mels@nwu.ac.za
MP: Marlien.Pieters@nwu.ac.za
EJMF: edith.feskens@wur.nl
INSTRUCTIONS FOR AUTHORS FOR BMC WOMEN’S HEALTH

Research articles

Criteria | Submission process | Preparing main manuscript text | Preparing illustrations and figures | Preparing tables | Preparing additional files | Style and language

Assistance with the process of manuscript preparation and submission is available from BioMed Central customer support team. See ‘About this journal’ for information about policies and the refereeing process. We also provide a collection of links to useful tools and resources for scientific authors on our page.

Criteria

Research articles should report on original primary research, but may report on systematic reviews of published research provided they adhere to the appropriate reporting guidelines which are detailed in our Editorial Policies. Please note that non-commissioned pooled analyses of selected published research will not be considered.

Submission process

Manuscripts must be submitted by one of the authors of the manuscript, and should not be submitted by anyone on their behalf. The submitting author takes responsibility for the article during submission and peer review.

Please note that BMC Women's Health levies an article-processing charge on all accepted Research articles; if the submitting author’s institution is a BioMed Central member the cost of the article-processing charge may be covered by the membership (see About page for detail). Please note that the membership is only automatically recognised on submission if the submitting author is based at the member institution.

To facilitate rapid publication and to minimize administrative costs, BMC Women's Health prefers online submission.

Files can be submitted as a batch, or one by one. The submission process can be interrupted at any time; when users return to the site, they can carry on where they left off.

See below for examples of word processor and graphics file formats that can be accepted for the main manuscript document by the online submission system. Additional files of any
type, such as movies, animations, or original data files, can also be submitted as part of the manuscript.

During submission you will be asked to provide a cover letter. Use this to explain why your manuscript should be published in the journal, to elaborate on any issues relating to our editorial policies in the 'About BMC Women's Health' page, and to declare any potential competing interests. You will be also asked to provide the contact details (including email addresses) of potential peer reviewers for your manuscript. These should be experts in their field, who will be able to provide an objective assessment of the manuscript. Any suggested peer reviewers should not have published with any of the authors of the manuscript within the past five years, should not be current collaborators, and should not be members of the same research institution. Suggested reviewers will be considered alongside potential reviewers recommended by the Editorial team, Editorial Advisors, Section Editors and Associate Editors.

Assistance with the process of manuscript preparation and submission is available from BioMed Central customer support team.

We also provide a collection of links to useful tools and resources for scientific authors on our Useful Tools page.

File formats

The following word processor file formats are acceptable for the main manuscript document:

- Microsoft word (DOC, DOCX)
- Rich text format (RTF)
- Portable document format (PDF)
- TeX/LaTeX (use BioMed Central's TeX template)
- DeVice Independent format (DVI)

TeX/LaTeX users: Please use BioMed Central's TeX template and BibTeX stylefile if you use TeX format. During the TeX submission process, please submit your TeX file as the main manuscript file and your bib/bbl file as a dependent file. Please also convert your TeX file into a PDF and submit this PDF as an additional file with the name 'Reference PDF'. This PDF will be used by internal staff as a reference point to check the layout of the article as the
author intended. Please also note that all figures must be coded at the end of the TeX file and not inline.

If you have used another template for your manuscript, or if you do not wish to use BibTeX, then please submit your manuscript as a DVI file. We do not recommend converting to RTF.

For all TeX submissions, all relevant editable source must be submitted during the submission process. Failing to submit these source files will cause unnecessary delays in the publication procedures.

Publishing Datasets

Through a special arrangement with [LabArchives](http://labarchives.com), LLC, authors submitting manuscripts to BMC Women's Health can obtain a complimentary subscription to LabArchives with an allotment of 100MB of storage. LabArchives is an Electronic Laboratory Notebook which will enable scientists to share and publish data files in situ; you can then link your paper to these data. Data files linked to published articles are assigned digital object identifiers (DOIs) and will remain available in perpetuity. Use of LabArchives or similar data publishing services does not replace preexisting data deposition requirements, such as for nucleic acid sequences, protein sequences and atomic coordinates.

Instructions on assigning DOIs to datasets, so they can be permanently linked to publications, can be found on the LabArchives website. Use of LabArchives’ software has no influence on the editorial decision to accept or reject a manuscript.

Authors linking datasets to their publications should include an Availability of supporting data section in their manuscript and cite the dataset in their reference list.

Preparing main manuscript text

General guidelines of the journal's style and language are given below.

Overview of manuscript sections for Research articles

Manuscripts for Research articles submitted to *BMC Women's Health* should be divided into the following sections (in this order):

- Title page
- Abstract
The Accession Numbers of any nucleic acid sequences, protein sequences or atomic coordinates cited in the manuscript should be provided, in square brackets and include the corresponding database name; for example, [EMBL:AB026295, EMBL:AC137000, DDBJ:AE000812, GenBank:U49845, PDB:1BFM, Swiss-Prot:Q96KQ7, PIR:S66116].

The databases for which we can provide direct links are: EMBL Nucleotide Sequence Database (EMBL), DNA Data Bank of Japan (DDBJ), GenBank at the NCBI (GenBank), Protein Data Bank (PDB), Protein Information Resource (PIR) and the Swiss-Prot Protein Database (Swiss-Prot).

You can download a template (Mac and Windows compatible; Microsoft Word 98/2000) for your article.
For reporting standards please see the information in the About section.

Title page

The title page should:

- provide the title of the article
- list the full names, institutional addresses and email addresses for all authors
- indicate the corresponding author

Please note:

- the title should include the study design, for example “A versus B in the treatment of C: a randomized controlled trial X is a risk factor for Y: a case control study”
- abbreviations within the title should be avoided

Abstract

The Abstract of the manuscript should not exceed 350 words and must be structured into separate sections: Background, the context and purpose of the study; Methods, how the study was performed and statistical tests used; Results, the main findings; Conclusions, brief summary and potential implications. Please minimize the use of abbreviations and do not cite references in the abstract. Trial registration, if your research article reports the results of a controlled health care intervention, please list your trial registry, along with the unique identifying number (e.g. Trial registration: Current Controlled Trials ISRCTN73824458). Please note that there should be no space between the letters and numbers of your trial registration number. We recommend manuscripts that report randomized controlled trials follow the CONSORT extension for abstracts.

Keywords

Three to ten keywords representing the main content of the article.

Background

The Background section should be written in a way that is accessible to researchers without specialist knowledge in that area and must clearly state - and, if helpful, illustrate - the background to the research and its aims. Reports of clinical research should, where
appropriate, include a summary of a search of the literature to indicate why this study was necessary and what it aimed to contribute to the field. The section should end with a brief statement of what is being reported in the article.

Methods

The methods section should include the design of the study, the setting, the type of participants or materials involved, a clear description of all interventions and comparisons, and the type of analysis used, including a power calculation if appropriate. Generic drug names should generally be used. When proprietary brands are used in research, include the brand names in parentheses in the Methods section.

For studies involving human participants a statement detailing ethical approval and consent should be included in the methods section. For further details of the journal's editorial policies and ethical guidelines see 'About this journal'.

For further details of the journal's data-release policy, see the policy section in 'About this journal'.

Results and discussion

The Results and discussion may be combined into a single section or presented separately. Results of statistical analysis should include, where appropriate, relative and absolute risks or risk reductions, and confidence intervals. The Results and discussion sections may also be broken into subsections with short, informative headings.

Conclusions

This should state clearly the main conclusions of the research and give a clear explanation of their importance and relevance. Summary illustrations may be included.

List of abbreviations

If abbreviations are used in the text they should be defined in the text at first use, and a list of abbreviations can be provided, which should precede the competing interests and authors' contributions.

Competing interests

A competing interest exists when your interpretation of data or presentation of information may be influenced by your personal or financial relationship with other people or
organizations. Authors must disclose any financial competing interests; they should also reveal any non-financial competing interests that may cause them embarrassment were they to become public after the publication of the manuscript.

Authors are required to complete a declaration of competing interests. All competing interests that are declared will be listed at the end of published articles. Where an author gives no competing interests, the listing will read 'The author(s) declare that they have no competing interests'.

When completing your declaration, please consider the following questions:

Financial competing interests

- In the past three years have you received reimbursements, fees, funding, or salary from an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? Is such an organization financing this manuscript (including the article-processing charge)? If so, please specify.

- Do you hold any stocks or shares in an organization that may in any way gain or lose financially from the publication of this manuscript, either now or in the future? If so, please specify.

- Do you hold or are you currently applying for any patents relating to the content of the manuscript? Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript? If so, please specify.

- Do you have any other financial competing interests? If so, please specify.

Non-financial competing interests

Are there any non-financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial or any other) to declare in relation to this manuscript? If so, please specify.

If you are unsure as to whether you, or one your co-authors, has a competing interest please discuss it with the editorial office.

Authors’ contributions
In order to give appropriate credit to each author of a paper, the individual contributions of authors to the manuscript should be specified in this section.

According to ICMJE guidelines, an 'author' is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship.

We suggest the following kind of format (please use initials to refer to each author’s contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

All contributors who do not meet the criteria for authorship should be listed in an acknowledgements section. Examples of those who might be acknowledged include a person who provided purely technical help, writing assistance, or a department chair who provided only general support.

Authors’ information

You may choose to use this section to include any relevant information about the author(s) that may aid the reader's interpretation of the article, and understand the standpoint of the author(s). This may include details about the authors' qualifications, current positions they hold at institutions or societies, or any other relevant background information. Please refer to authors using their initials. Note this section should not be used to describe any competing interests.

Acknowledgements
Please acknowledge anyone who contributed towards the article by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include the source(s) of funding for each author, and for the manuscript preparation. Authors must describe the role of the funding body, if any, in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication. Please also acknowledge anyone who contributed materials essential for the study. If a language editor has made significant revision of the manuscript, we recommend that you acknowledge the editor by name, where possible.

The role of a scientific (medical) writer must be included in the acknowledgements section, including their source(s) of funding. We suggest wording such as 'We thank Jane Doe who provided medical writing services on behalf of XYZ Pharmaceuticals Ltd.'

Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements section.

Endnotes

Endnotes should be designated within the text using a superscript lowercase letter and all notes (along with their corresponding letter) should be included in the Endnotes section. Please format this section in a paragraph rather than a list.

References

All references, including URLs, must be numbered consecutively, in square brackets, in the order in which they are cited in the text, followed by any in tables or legends. Each reference must have an individual reference number. Please avoid excessive referencing. If automatic numbering systems are used, the reference numbers must be finalized and the bibliography must be fully formatted before submission.

Only articles, datasets, clinical trial registration records and abstracts that have been published or are in press, or are available through public e-print/preprint servers, may be cited; unpublished abstracts, unpublished data and personal communications should not be included in the reference list, but may be included in the text and referred to as "unpublished observations" or "personal communications" giving the names of the involved researchers. Obtaining permission to quote personal communications and unpublished data from the
cited colleagues is the responsibility of the author. Footnotes are not allowed, but endnotes are permitted. Journal abbreviations follow Index Medicus/MEDLINE. Citations in the reference list should include all named authors, up to the first 30 before adding 'et al.'.

Any in press articles cited within the references and necessary for the reviewers' assessment of the manuscript should be made available if requested by the editorial office.

Style files are available for use with popular bibliographic management software:

- BibTeX
- EndNote style file
- Reference Manager
- Zotero

Examples of the BMC Women's Health reference style are shown below. Please ensure that the reference style is followed precisely; if the references are not in the correct style they may have to be retyped and carefully proofread.

All web links and URLs, including links to the authors' own websites, should be given a reference number and included in the reference list rather than within the text of the manuscript. They should be provided in full, including both the title of the site and the URL, in the following format: The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do]. If an author or group of authors can clearly be associated with a web link, such as for weblogs, then they should be included in the reference.

Examples of the BMC Women's Health reference style

Article within a journal

Article within a journal supplement
In press article

Published abstract

Article within conference proceedings

Book chapter, or article within a book

Whole issue of journal

Whole conference proceedings

Complete book

Monograph or book in a series

Book with institutional author
PhD thesis
Kohavi R: *Wrappers for performance enhancement and oblivious decision graphs.*
PhD thesis. Stanford University, Computer Science Department; 1995.

Link / URL
The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do]

Link / URL with author(s)

Dataset with persistent identifier
Zheng, L-Y; Guo, X-S; He, B; Sun, L-J; Peng, Y; Dong, S-S; Liu, T-F; Jiang, S; Ramachandran, S; Liu, C-M; Jing, H-C (2011): *Genome data from sweet and grain sorghum (Sorghum bicolor).* GigaScience Database. http://dx.doi.org/10.5524/100012.

Clinical trial registration record with persistent identifier

Preparing illustrations and figures
Illustrations should be provided as separate files, not embedded in the text file. Each figure should include a single illustration and should fit on a single page in portrait format. If a figure consists of separate parts, it is important that a single composite illustration file be submitted which contains all parts of the figure. There is no charge for the use of color figures.

Please read our [figure preparation guidelines](#) for detailed instructions on maximising the quality of your figures.

Formats
The following file formats can be accepted:

- PDF (preferred format for diagrams)
- DOCX/DOC (single page only)
- PPTX/PPT (single slide only)
• EPS
• PNG (preferred format for photos or images)
• TIFF
• JPEG
• BMP

Figure legends

The legends should be included in the main manuscript text file at the end of the document, rather than being a part of the figure file. For each figure, the following information should be provided: Figure number (in sequence, using Arabic numerals - i.e. Figure 1, 2, 3 etc); short title of figure (maximum 15 words); detailed legend, up to 300 words.

Please note that it is the responsibility of the author(s) to obtain permission from the copyright holder to reproduce figures or tables that have previously been published elsewhere.

Preparing tables

Each table should be numbered and cited in sequence using Arabic numerals (i.e. Table 1, 2, 3 etc.). Tables should also have a title (above the table) that summarizes the whole table; it should be no longer than 15 words. Detailed legends may then follow, but they should be concise. Tables should always be cited in text in consecutive numerical order.

Smaller tables considered to be integral to the manuscript can be pasted into the end of the document text file, in A4 portrait or landscape format. These will be typeset and displayed in the final published form of the article. Such tables should be formatted using the 'Table object' in a word processing program to ensure that columns of data are kept aligned when the file is sent electronically for review; this will not always be the case if columns are generated by simply using tabs to separate text. Columns and rows of data should be made visibly distinct by ensuring that the borders of each cell display as black lines. Commas should not be used to indicate numerical values. Color and shading may not be used; parts of the table can be highlighted using symbols or bold text, the meaning of which should be explained in a table legend. Tables should not be embedded as figures or spreadsheet files.
Larger datasets or tables too wide for a portrait page can be uploaded separately as additional files. Additional files will not be displayed in the final, laid-out PDF of the article, but a link will be provided to the files as supplied by the author.

Tabular data provided as additional files can be uploaded as an Excel spreadsheet (.xls) or comma separated values (.csv). As with all files, please use the standard file extensions.

Preparing additional files

Although *BMC Women's Health* does not restrict the length and quantity of data included in an article, we encourage authors to provide datasets, tables, movies, or other information as additional files.

Please note: All Additional files **will be published** along with the article. Do not include files such as patient consent forms, certificates of language editing, or revised versions of the main manuscript document with tracked changes. Such files should be sent by email to editorial@biomedcentral.com, quoting the Manuscript ID number.

Results that would otherwise be indicated as "data not shown" can and should be included as additional files. Since many weblinks and URLs rapidly become broken, *BMC Women's Health* requires that supporting data are included as additional files, or deposited in a recognized repository. Please do not link to data on a personal/departmental website. The maximum file size for additional files is 20 MB each, and files will be virus-scanned on submission.

Additional files can be in any format, and will be downloadable from the final published article as supplied by the author. We recommend CSV rather than PDF for tabular data.

Certain supported files formats are recognized and can be displayed to the user in the browser. These include most movie formats (for users with the Quicktime plugin), mini-websites prepared according to our guidelines, chemical structure files (MOL, PDB), geographic data files (KML).

If additional material is provided, please list the following information in a separate section of the manuscript text:

- File name (e.g. Additional file 1)
- File format including the correct file extension for example .pdf, .xls, .txt, .pptx (including name and a URL of an appropriate viewer if format is unusual)
• Title of data

• Description of data

Additional files should be named "Additional file 1" and so on and should be referenced explicitly by file name within the body of the article, e.g. 'An additional movie file shows this in more detail [see Additional file 1].'

Additional file formats

Ideally, file formats for additional files should not be platform-specific, and should be viewable using free or widely available tools. The following are examples of suitable formats.

• Additional documentation

 o PDF (Adobe Acrobat)

• Animations

 o SWF (Shockwave Flash)

• Movies

 o MP4 (MPEG 4)
 o MOV (Quicktime)

• Tabular data

 o XLS, XLSX (Excel Spreadsheet)
 o CSV (Comma separated values)

As with figure files, files should be given the standard file extensions.

Mini-websites

Small self-contained websites can be submitted as additional files, in such a way that they will be browsable from within the full text HTML version of the article. In order to do this, please follow these instructions:

1. Create a folder containing a starting file called index.html (or index.htm) in the root.

2. Put all files necessary for viewing the mini-website within the folder, or sub-folders.
3. Ensure that all links are relative (ie "images/picture.jpg" rather than "/images/picture.jpg" or "http://yourdomain.net/images/picture.jpg" or "C:\Documents and Settings\username\My Documents\mini-website\images\picture.jpg") and no link is longer than 255 characters.

4. Access the index.html file and browse around the mini-website, to ensure that the most commonly used browsers (Internet Explorer and Firefox) are able to view all parts of the mini-website without problems, it is ideal to check this on a different machine.

5. Compress the folder into a ZIP, check the file size is under 20 MB, ensure that index.html is in the root of the ZIP, and that the file has .zip extension, then submit as an additional file with your article.

Style and language

General

Currently, *BMC Women's Health* can only accept manuscripts written in English. Spelling should be US English or British English, but not a mixture.

There is no explicit limit on the length of articles submitted, but authors are encouraged to be concise.

BMC Women's Health will not edit submitted manuscripts for style or language; reviewers may advise rejection of a manuscript if it is compromised by grammatical errors. Authors are advised to write clearly and simply, and to have their article checked by colleagues before submission. In-house copyediting will be minimal. Non-native speakers of English may choose to make use of a copyediting service.

Language editing

For authors who wish to have the language in their manuscript edited by a native-English speaker with scientific expertise, BioMed Central recommends Edanz. BioMed Central has arranged a 10% discount to the fee charged to BioMed Central authors by Edanz. Use of an editing service is neither a requirement nor a guarantee of acceptance for publication. Please contact Edanz directly to make arrangements for editing, and for pricing and payment details.

Help and advice on scientific writing
The abstract is one of the most important parts of a manuscript. For guidance, please visit our page on Writing titles and abstracts for scientific articles.

Tim Albert has produced for BioMed Central a list of tips for writing a scientific manuscript. American Scientist also provides a list of resources for science writing. For more detailed guidance on preparing a manuscript and writing in English, please visit the BioMed Central author academy.

Abbreviations

Abbreviations should be used as sparingly as possible. They should be defined when first used and a list of abbreviations can be provided following the main manuscript text.

Typography

- Please use double line spacing.
- Type the text unjustified, without hyphenating words at line breaks.
- Use hard returns only to end headings and paragraphs, not to rearrange lines.
- Capitalize only the first word, and proper nouns, in the title.
- All lines and pages should be numbered. Authors are asked to ensure that line numbering is included in the main text file of their manuscript at the time of submission to facilitate peer-review. Once a manuscript has been accepted, line numbering should be removed from the manuscript before publication. For authors submitting their manuscript in Microsoft Word please do not insert page breaks in your manuscript to ensure page numbering is consistent between your text file and the PDF generated from your submission and used in the review process.
- Use the BMC Women's Health reference format.
- Footnotes are not allowed, but endnotes are permitted.
- Please do not format the text in multiple columns.
- Greek and other special characters may be included. If you are unable to reproduce a particular special character, please type out the name of the symbol in full. Please ensure that all special characters used are embedded in the text, otherwise they will be lost during conversion to PDF.
Units

SI units should be used throughout (liter and molar are permitted, however).
ABSTRACT

Background: Studies have indicated metabolic roles for 25 hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH). The relationship between low serum vitamin D, PTH and metabolic traits appear to differ among different ethnicities. The aim of our study is to examine the association of serum 25(OH)D and PTH concentration, respectively, with the metabolic syndrome while controlling for adiposity in black women in the North West Province, South Africa.

Methods: Using a cross sectional study design, urban black women aged ≥ 43 years measured at 7 years follow up from September 2012 to June 2013 of the South African arm of the Prospective Urban Rural Epidemiology study were included in this sub study. Only participants who had undergone dual energy X-ray absorptiometry (DXA) measurements at follow up and were HIV negative were eligible for inclusion in this study (n=209). Multiple regression models were used to explore the relationship between 25(OH)D, PTH and body composition variables. A separate metabolic syndrome variable was created, excluding elevated waist circumference as a diagnostic criterion for logistic regression. Logistic regression was used to examine the relationship between 25(OH)D, PTH, PTH:25(OH)D ratio, respectively and the metabolic syndrome.

Results: The prevalence of vitamin D deficiency was 15.9%, and 43.1% of the women had the metabolic syndrome. Hypertension was the most common (85.6%) while elevated triglyceride was the least common (27.8%) component of the metabolic syndrome. After adjusting for age, %body fat, habitual physical activity, tobacco use and season, neither 25(OH)D nor PTH concentrations showed significant associations with having the metabolic syndrome. However, when %body fat was replaced with waist circumference there was a weak positive association between 25(OH)D concentration and the metabolic syndrome. No significant association was found between PTH:25(OH)D ratio and the metabolic syndrome.

Conclusions: In conclusion, low serum 25(OH)D concentration was not associated with the metabolic syndrome in our black South African women. Although body composition variables were positively associated with PTH and the PTH:25(OH)D ratio, serum PTH was not associated with the metabolic syndrome. The association between 25(OH)D, PTH and the metabolic syndrome was not significantly mediated by adiposity.
Key words 25(OH)D; PTH; PTH:25(OH)D ratio; the metabolic syndrome, black South African women.
INTRODUCTION

The metabolic syndrome has become a global epidemic, which increases the risk of type 2 diabetes mellitus, cardiovascular morbidity and mortality [1,2]. It is a cluster of metabolic disorders that includes at least three out of the following five criteria: elevated fasting blood glucose, hypertension, abdominal obesity, elevated serum triglycerides and low serum high density lipoprotein cholesterol (HDL-C) [3].

A number of studies have indicated metabolic roles for 25 hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) [4,5]. A comparatively consistent relationship between low serum vitamin D and metabolic syndrome has been demonstrated [6-8]. However, the relationship between low serum vitamin D and metabolic traits, appear to differ among different ethnicities. In America, NHANES III data showed an inverse association between vitamin D status and insulin resistance in non-Hispanic whites and Mexican Americans, with no relationship observed in black Americans [9].

Some studies have associated vitamin D deficiency with excess body weight [10,11], which could be as a result of fat-soluble vitamin D getting trapped in excess body fat, thereby reducing its bioavailability [12]. Low serum vitamin D is also associated with elevated PTH secretion [13] and elevated PTH levels have been linked to obesity [14] and an increased risk of the metabolic syndrome [14,15]. The ratio of PTH:25(OH)D has recently been demonstrated to be positively associated with measures of insulin sensitivity [16] and with the metabolic syndrome [17] and showed that expressing the physiologic interaction between PTH and 25(OH)D as a ratio sheds more clarity on their associations with the metabolic syndrome [17].

South Africa is in the nutrition-related non-communicable disease phase of the nutrition transition [18] which has given rise to an epidemic of obesity. Previous studies in South Africa have shown a high prevalence of the metabolic syndrome among blacks and people of Asian-Indian origin [19,20]. To the best of our knowledge, only one study in South Africa has examined the association between 25(OH)D, PTH and the metabolic syndrome, but no adjustment was made for adiposity [20]. The study found an association between PTH and the metabolic syndrome, but no association with 25(OH)D [20]. We postulate that the association between 25(OH)D, PTH and the metabolic syndrome will be mediated by adiposity. Consequently, the aim of our study is to examine the association of serum
25(OH)D and PTH concentration, respectively, with the metabolic syndrome while controlling for adiposity in black women in the North West Province, South Africa.

SUBJECTS AND METHODS

Study design

The Prospective Urban and Rural Epidemiology (PURE) study is a 10 year longitudinal study aimed at tracking the effects of lifestyle and changing environment exposures on the development of non-communicable diseases in populations at different stages of epidemiologic transition [21]. The South African North West Province (NWP) arm of the PURE (PURE-SA-NWP) study commenced with baseline data collection in 2005 [22]. Using a cross sectional study design, urban black women aged ≥ 43 years measured at 7 years follow up from September 2012 to June 2013 from the PURE-SA-NWP study were included in this sub study. Only participants who had undergone dual energy X-ray absorptiometry (DXA) measurements at follow up and were HIV negative were eligible for inclusion in this study (n=209). Blood samples and DXA measurements for each participant were done on the same day and the seasons were defined as September to December 2012 for spring (season 1) and April to June 2013 for autumn (season 2). The study was approved by the Ethics committee of the North-West University (NWU), Potchefstroom campus (NWU-00016-10-A1). All participants provided written informed consent. A separate written informed consent for HIV testing was obtained from each participant after a pre-counselling session.

Body composition measurements

Height was measured to the nearest 0.1 cm with a stadiometer (Leicester height measure, Seca, Birmingham,UK) and weight on a portable electronic scale to the nearest 0.01 kg (Precision Health Scale, A & D Company, Japan) by certified anthropometrists according to standard methods of the International Society for the Advancement of Kinanthropometry (ISAK) [23]. Body fat percentage was measured by a registered radiographer with DXA (Hologic Discovery W, APEX system software version 12.7.3.1). Body mass index (BMI) was calculated (weight in kilograms divided by height in meter squared). Waist circumference was measured midway between the iliac crest and the lower margin of the lowest palpable rib in the mid-axillary line using a steel anthropometric tape measure (Lufkin, Apex USA). Abdominal obesity was defined as waist circumference ≥ 80cm [3]. Age-specific cut-offs for
high body fat percentage were defined as ≥35.8% for women aged 43-49 years and ≥37.7%
for women aged 50 years and above to indicate adiposity [24].

Biochemical analyses and blood pressure measurement

Registered nurses collected blood samples from the ante-brachial vein using a sterile
winged infusion set and syringes following an overnight fast of at least eight hours. Serum
samples were prepared and stored in aliquots in cryotubes at -80ºC. All samples were
analysed at the same time with reagents from the same lot after all the samples were
collected. Serum cholesterol, triglycerides (TG), HDL-C and plasma glucose were analysed
on the Cobas Integra 400 Plus (Roche, Basel, Switzerland). Insulin, 25(OH)D concentrations
and PTH were determined with an electrochemiluminescence immunoassay on the Elecsys
2010 (Roche, Basel, Switzerland). The inter- and intra assay coefficient of variation (CV) for
25(OH)D was 10.7% and 7.8% respectively. The inter- and intra assay CV for PTH was
6.5% and 4.1% respectively. The inter- and intra assay CV of insulin was 2.8% and 2.0%
respectively. We defined vitamin D deficiency as 25(OH)D < 20 ng/mL, and vitamin D
insufficiency as 25(OH)D between 21 and 29 ng/mL [25]. Elevated PTH was defined as PTH
values > 65 pg/mL [26]. We calculated the PTH:25(OH)D ratio by dividing serum PTH in
pg/mL by serum 25(OH)D in ng/mL. The homeostasis model assessment (HOMA) technique
was used to calculate insulin resistance (HOMA-IR) based on fasting insulin and glucose
[fasting insulin (µU/mL)] x [fasting glucose (mmol/L)] / 22.5 [27].

After a ten minutes rest, systolic and diastolic blood pressures were measured with a
validated OMRON HEM-757 instrument (Omron Healthcare, Kyoto, Japan), using
appropriate sized cuffs for participants. The measurements were carried out in duplicate (5
minutes apart) on the right upper arm, while the participants were seated upright with the
right arm supported at heart level.

Questionnaires and physical activity

All countries participating in the PURE study used structured and adapted questionnaires to
collect socio-demographic and lifestyle information including medication and tobacco use
[21]. Trained field workers administered questionnaires in the language of choice of the
participants. Habitual physical activity was measured with a modified Baecke questionnaire
[28] and physical activity scores were obtained as previously described by Kruger and
colleagues [22]. Habitual activity energy expenditure was also measured using an
accelerometer with a combined heart rate monitor (ActiHeart®, Camtech, UK) for 7 days.
The monitor makes use of a statistical branch model to calculate energy expenditure both on activity counts and heart rate [29]. Participants were visited by field workers on a daily basis to ensure that the ActiHeart® monitor was secure and to record possible problems with wearing the device. The time spent in each physical activity intensity category by each individual was also recorded. Activity energy expenditure (AEE) was determined by means of 60 second epochs and data generated by the ActiHeart® were downloaded using a computer interface. Time and intensity of activity were related back to METS and classified as 1.1 – 2.9 METS as light-intensity activity, 3.0 – 5.9 as moderate-intensity activity and vigorous activity as ≥ 6 METS [30]. Total energy expenditure and AEE were also calculated (in Kcal) with the ActiHeart® software. The reliability and validity of using the ActiHeart® to evaluate physical activity in Sub-Saharan Africans has been previously assessed [31].

Diagnosis of metabolic syndrome

Using the harmonized definition, participants with at least three of the following criteria were diagnosed to have the metabolic syndrome [3]: elevated waist circumference (≥ 80cm); hypertension (diagnosed hypertensive subjects on blood pressure medications and subjects with elevated blood pressure of systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure ≥ 85 mmHg); elevated serum triglycerides (≥ 1.7 mmol/L); reduced serum HDL-C (<1.3 mmol/L) and subjects on oral hypoglycemic medications or elevated fasting blood glucose (≥ 5.6 mmol/L). None of the subjects were on hypolipidemic drugs. A separate metabolic syndrome variable was created, excluding elevated waist circumference as a diagnostic criterion, due to the strong collinear relationship between body fat percentage and waist circumference. For this variable, metabolic syndrome was defined as the presence of 3 out of 4 criteria. This modified definition of the metabolic syndrome was used for the logistic regression analysis, with presence of the metabolic syndrome as dependent variable and either body fat percentage or waist circumference as a covariate.

Statistical analyses

IBM SPSS version 22 (IBM Company, Armonk, NY, USA) was used for all analyses. Normally distributed data are presented as means ± standard deviation. Non-normally distributed data was logarithmically transformed and presented as medians and interquartile range. Categorical data were analysed using frequency tables and prevalence of specific conditions was expressed as percentages. Independent t-tests were used to compare
normally distributed variables and Mann-Whitney U-tests to compare non-normally distributed variables between groups with metabolic syndrome and without metabolic syndrome. Analysis of covariance (ANCOVA) was used to adjust for body fat percentage while comparing means of 25(OH)D and PTH between groups with metabolic syndrome and without metabolic syndrome. Multiple regressions were used to explore the relationship between 25(OH)D, PTH and body composition variables while adjusting for age, physical activity score, tobacco use and season as possible confounders based on known relationships observed in the literature [4,32], as well as differences found between participants with and without the metabolic syndrome. Univariate prevalence odds ratio (OR) and 95% confidence intervals (CI) were calculated for 25(OH)D, PTH or PTH:25(OH)D ratio to determine the presence of the metabolic syndrome using the modified variable (excluding the elevated waist circumference component). Multivariate ORs were then calculated for 25(OH)D, PTH or PTH: 25(OH)D ratio, adjusting for age, tobacco use, physical activity, body fat percentage (or waist circumference) and season in logistic regression. Statistical significance was set at p < 0.05.

RESULTS

Demographic, body composition and metabolic characteristics of the participants are presented in Table 1. Using the World Health Organisation (WHO) body mass index (BMI) classification, 69.9% of the women were overweight or obese and 65.5% of the women had excessive adiposity using the age specific cut-off points for body fat percentage [24]. Two recent South African studies proposed using a higher cut-off value of waist circumference (>92cm) to define abdominal obesity for black women [19,33]. A smaller percentage of 49.8% of the women were abdominally obese using this cut-off value compared to 71.8% when the waist circumference cut-off value of ≥80cm was used (Table 1). The prevalence of vitamin D deficiency (25(OH)D < 20 ng/mL) was 15.9%, while the prevalence of vitamin D insufficiency (25(OH)D 21 to 29 ng/mL) was 24.4%. The prevalence of elevated PTH (>65 pg/mL) was 17.7%.
Table 1: Demographic, body composition, health and lifestyle measures of the total group as well as between women with and without metabolic syndrome (n=209)*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total group (n=209)*</th>
<th>Women without Metabolic Syndrome (n=119)*</th>
<th>Women with Metabolic Syndrome (n=90)*</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(years)</td>
<td>59.6 ± 10.6</td>
<td>59.8 ± 10.5</td>
<td>59.4 ± 10.9</td>
<td>0.78</td>
</tr>
<tr>
<td>Body fat %</td>
<td>40.4 ± 7.1</td>
<td>38.5 ± 8.11</td>
<td>42.9 ± 5.51</td>
<td><0.0001</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>29.5 ± 7.58</td>
<td>27.0 ± 7.64</td>
<td>32.8 ± 6.14</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>89.8 ± 14.4</td>
<td>84.0 ± 14.8</td>
<td>97.3 ± 9.64</td>
<td><0.0001</td>
</tr>
<tr>
<td>25(OH)D (ng/mL)</td>
<td>30.6 ± 9.52</td>
<td>31.3 ± 9.44</td>
<td>29.7 ± 9.61</td>
<td>0.24</td>
</tr>
<tr>
<td>PTH (pg/mL)</td>
<td>44.3 (34.2, 58.8)</td>
<td>41.9 (32.7, 54.3)</td>
<td>47.9 (35.1, 63.5)</td>
<td>0.09</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.67 (1.43, 4.99)</td>
<td>2.14 (1.00, 4.29)</td>
<td>3.33 (1.91, 7.53)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>4.74 (4.27, 5.37)</td>
<td>4.48 (4.10, 4.88)</td>
<td>5.35 (4.61, 6.37)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>0.99 (0.74, 1.41)</td>
<td>0.91 (0.70, 1.22)</td>
<td>1.18 (0.81, 1.79)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.19 (0.98, 1.56)</td>
<td>1.46 (1.14, 1.82)</td>
<td>1.05 (0.86, 1.17)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>128.1 ± 22.8</td>
<td>125.0 ± 23.7</td>
<td>132.1 ± 21.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>81.2 ± 12.6</td>
<td>79.0 ± 13.5</td>
<td>84.0 ± 10.8</td>
<td>0.005</td>
</tr>
<tr>
<td>AEE (Kcal/day)</td>
<td>884.0 (521.25, 1622.0)</td>
<td>737.0 (522.0, 1314.0)</td>
<td>1073.0 (494.5, 1912.0)</td>
<td>0.09</td>
</tr>
<tr>
<td>Light-intensity activity/day (1.1-2.9 METs) (min)</td>
<td>192.36 ± 39.1</td>
<td>195.6 ± 38.3</td>
<td>187.84 ± 40.2</td>
<td>0.19</td>
</tr>
<tr>
<td>Moderate-intensity activity/day (3-5.9 METs) (min)</td>
<td>29.14 ± 37.3</td>
<td>26.1 ± 37.9</td>
<td>33.3 ± 36.3</td>
<td>0.20</td>
</tr>
<tr>
<td>Vigorous activity /day (>6 METs) (min)</td>
<td>0.65 ± 1.92</td>
<td>0.65 ± 2.2</td>
<td>0.65 ± 1.39</td>
<td>0.99</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>2.08 (1.43, 2.64)</td>
<td>2.18 (1.61, 2.73)</td>
<td>1.90 (1.29, 2.60)</td>
<td>0.06</td>
</tr>
<tr>
<td>Tobacco users n (%)</td>
<td>100 (47.8)</td>
<td>66 (58.4)</td>
<td>34 (39.5)</td>
<td>0.01</td>
</tr>
<tr>
<td>Elevated fasting glucose n (%)</td>
<td>41 (19.6)</td>
<td>5 (4.7)</td>
<td>36 (44.4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Elevated triglycerides n (%)</td>
<td>34 (16.3)</td>
<td>9 (8.0)</td>
<td>25 (27.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Reduced HDL-C n (%)</td>
<td>118 (56.5)</td>
<td>37 (32.7)</td>
<td>81 (90.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertensive n (%)</td>
<td>151 (72.2)</td>
<td>74 (62.2)</td>
<td>77 (85.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Abdominal obesity: WC ≥ 80cm n (%)</td>
<td>150 (71.8)</td>
<td>62 (53.0)</td>
<td>88 (97.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Abdominal obesity: WC ≥ 92cm n (%)</td>
<td>104 (49.8)</td>
<td>40 (34.2)</td>
<td>64 (71.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Excess adiposity d n (%)</td>
<td>137 (65.6)</td>
<td>66 (55.5)</td>
<td>71 (78.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Overweight/ obese n (%)</td>
<td>146 (69.9)</td>
<td>65 (55.1)</td>
<td>81 (90.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Vitamin D deficiency (<20 ng/mL)</td>
<td>32 (15.9)</td>
<td>16 (13.4)</td>
<td>16 (17.8)</td>
<td>0.44</td>
</tr>
<tr>
<td>Vitamin D insufficiency (21-29 ng/mL)</td>
<td>49 (24.4)</td>
<td>32 (28.3)</td>
<td>17 (19.3)</td>
<td>0.23</td>
</tr>
<tr>
<td>Elevated PTH (>65 pg/mL)</td>
<td>37 (17.7)</td>
<td>17 (15.2)</td>
<td>20 (22.2)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* Sample size varies due to missing values. BMI = body mass index. 25(OH)D = serum 25 hydroxy vitamin D, PTH= parathyroid hormone, HOMA-IR= Homeostasis model assessment Insulin resistance, HDL-C= high density lipoprotein cholesterol, BP= Blood pressure. AEE = activity energy expenditure.

** Difference between groups with and without the metabolic syndrome . t-test/Mann-Whitney test/chi-square test

* Difference between participants with and without the metabolic syndrome, adjusted for body fat percentage (ANCOVA)

Excess adiposity d and over-weight/obese n are age specific cut off values for adiposity based on body fat percentage (≤ 35.8 - > 37.7 %).

Data presented as mean ± SD for normally distributed data and median (IQR) for non-normally distributed data.
Actiheart® data for 184 (88.04%) women were available for analysis. Physical activity measured by Actiheart® indicated that the women spent on average 13.4% of their time (3.21 hours) in light-intensity activity (1.1 - 2.9 METs), 2% in moderate-intensity activity (0.49 hours, 3-5.9 METs) with only 0.005% of total time (0.07 minutes) spent in activities representing ≥ 6 METs. In total 107 women (58.2%) accumulated 10 minutes or more on daily activities with intensity of 3-5.9 METs, while only one woman accumulated more than 10 minutes per day on activities representing ≥ 6 METs. Results of the physical activity questionnaire also showed a low mean physical activity score for the women, within the inactive range from 1 - 3.3 [22].

Using the harmonized definition the metabolic syndrome was diagnosed in 43.1% of the women with hypertension (85.6%) being the most common and elevated triglycerides (27.8%) being the least common component of metabolic syndrome (Table 1). Women with the metabolic syndrome had significantly higher body fat percentage, BMI, waist circumference and HOMA-IR (all p<0.0001). There was no difference between the mean serum 25(OH)D, PTH and age of women with the metabolic syndrome and women without the metabolic syndrome, also after adjusting for body fat. The odds of having the metabolic syndrome were not different in women who had insufficient serum vitamin D levels compared to those with sufficient vitamin D levels (OR 0.86, 95% CI 0.49, 1.52 p=0.61), neither was it significantly higher for women with elevated PTH compared to those in the normal range (OR 1.60, 95% CI 0.78, 3.27 p=0.20)

Vitamin D status of women measured in autumn was significantly higher than those measured in spring (p<0.001), with mean serum 25(OH)D of 36.5 (±7.30) and 27.5 (±9.23) ng/mL, respectively. Similarly more women were vitamin D insufficient in spring compared to autumn (55.4% vs. 16.9% respectively, p<0.001).

Table 2 shows the multiple regression results of the associations between body composition variables and 25(OH)D, PTH and PTH: 25(OH)D ratio. In the unadjusted models (model 1) all body composition variables were inversely associated with 25(OH)D and positively associated with PTH and PTH: 25(OH)D ratio. When age, physical activity score, tobacco use and season were adjusted for, the associations between body composition variables and 25(OH)D became borderline significant. On the other hand, all body composition variables remained positively associated with PTH even after adjustments for possible confounders (model 2). Similar associations were found between PTH: 25(OH)D ratio and
waist circumference, as well as BMI. Body fat % was not significantly associated with 25(OH)D or the PTH: 25(OH)D ratio in the adjusted models.

Table 2: Multiple regression analysis for 25(OH)D, PTH or PTH:25(OH)D ratio on body composition variables

<table>
<thead>
<tr>
<th></th>
<th>25(OH)D</th>
<th>PTH</th>
<th>PTH:25(OH)D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>p</td>
<td>β</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>0.19</td>
<td>0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Model 2-Full model</td>
<td>-0.14</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>Age</td>
<td>-0.13</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>-0.06</td>
<td>0.38</td>
<td>-0.01</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.08</td>
<td>0.24</td>
<td>-0.00</td>
</tr>
<tr>
<td>Season (1=Spring; 2=Autumn)</td>
<td>0.39</td>
<td><0.001</td>
<td>-0.16</td>
</tr>
<tr>
<td>BMI</td>
<td>-0.20</td>
<td>0.004</td>
<td>0.22</td>
</tr>
<tr>
<td>Model 2-Full model</td>
<td>-0.14</td>
<td>0.05</td>
<td>0.23</td>
</tr>
<tr>
<td>Age</td>
<td>-0.14</td>
<td>0.05</td>
<td>0.29</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>-0.06</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.07</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Season (1=Spring; 2=Autumn)</td>
<td>0.40</td>
<td><0.001</td>
<td>-0.17</td>
</tr>
<tr>
<td>Body fat %</td>
<td>0.15</td>
<td>0.04</td>
<td>0.27</td>
</tr>
<tr>
<td>Model 2-Full model</td>
<td>-0.06</td>
<td>0.37</td>
<td>0.26</td>
</tr>
<tr>
<td>Age</td>
<td>-0.11</td>
<td>0.12</td>
<td>0.26</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>-0.05</td>
<td>0.50</td>
<td>0.01</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.09</td>
<td>0.21</td>
<td>0.01</td>
</tr>
<tr>
<td>Season (1=Spring; 2=Autumn)</td>
<td>0.41</td>
<td><0.001</td>
<td>-0.17</td>
</tr>
</tbody>
</table>

Model 1 is unadjusted models 2 is adjusted for age, physical activity, tobacco use and season. WC is waist circumference, BMI is body mass index.
Logistic regression analysis was used to determine the association between 25(OH)D and PTH respectively, with the metabolic syndrome (excluding the elevated waist circumference component). Neither 25(OH)D nor PTH was significantly associated with the metabolic syndrome in unadjusted models (model 1). After adjusting for age, body fat, habitual physical activity, tobacco use and season, PTH concentrations were still not associated with the prevalence of the metabolic syndrome (model 2). However, in similar models, women with higher 25(OH)D concentration had a 6% (1.00, 1.11) higher odds of having the metabolic syndrome (Table 3, model 3). In these adjusted models physical activity and use of tobacco significantly influenced the odds of having the metabolic syndrome (models 2 and 3). Table 3 shows that women with higher habitual physical activity had 52% to 55% lower odds of the metabolic syndrome respectively (models 2 and 3). Tobacco use was inversely associated with the metabolic syndrome in the 25(OH)D models although no significant association was found in the PTH models.

In order to investigate the influence of body fat distribution, body fat % was replaced with waist circumference in these models and 25(OH)D was found to be significantly associated with the metabolic syndrome (Table 3 models 3).

Table 4 shows the logistic regression results of the association between PTH:25(OH)D ratio and the metabolic syndrome (excluding the elevated waist circumference component). No significant association was found between PTH:25(OH)D ratio and the metabolic syndrome.
Table 3: Multiple logistic regression analysis for the association between 25(OH)D or PTH and other covariates and the metabolic syndrome

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Metabolic syndrome</th>
<th>Metabolic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratios</td>
<td>95% CIs</td>
</tr>
<tr>
<td>Model 1: Unadjusted model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25(OH)D</td>
<td>1.03</td>
<td>0.98, 1.07</td>
</tr>
<tr>
<td>Model 2 Full model with 25(OH)D</td>
<td>Model 2 Full model with PTH</td>
<td></td>
</tr>
<tr>
<td>25(OH)D</td>
<td>1.04</td>
<td>0.99, 1.10</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.99</td>
<td>0.95, 1.03</td>
</tr>
<tr>
<td>Body fat %</td>
<td>1.04</td>
<td>0.97, 1.11</td>
</tr>
<tr>
<td>Physical activity</td>
<td>0.42</td>
<td>0.20, 0.90</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.35</td>
<td>0.14, 0.89</td>
</tr>
<tr>
<td>Season</td>
<td>1.54</td>
<td>0.56, 4.21</td>
</tr>
<tr>
<td>Model 3: Full model with25(OH)D or PTH, waist circumference instead of body fat percentage as covariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25(OH)D</td>
<td>1.06</td>
<td>1.00, 1.11</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.00</td>
<td>0.96, 1.05</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>1.07</td>
<td>1.03, 1.11</td>
</tr>
<tr>
<td>Physical activity</td>
<td>0.45</td>
<td>0.20, 0.98</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.39</td>
<td>0.16, 1.00</td>
</tr>
<tr>
<td>Season</td>
<td>1.82</td>
<td>0.63, 5.24</td>
</tr>
<tr>
<td>Model 4: Full model without 25(OH)D</td>
<td>Model 4: Full model without PTH</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.98</td>
<td>0.95, 1.02</td>
</tr>
<tr>
<td>Body fat %</td>
<td>1.03</td>
<td>0.92, 1.11</td>
</tr>
<tr>
<td>Physical activity</td>
<td>0.58</td>
<td>0.31, 1.10</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.48</td>
<td>0.20, 1.12</td>
</tr>
<tr>
<td>Model 5: Full model, waist circumference instead of body fat percentage as covariate without 25(OH)D or PTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.99</td>
<td>0.95, 1.04</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>1.05</td>
<td>1.02, 1.09</td>
</tr>
<tr>
<td>Physical activity</td>
<td>0.63</td>
<td>0.33, 1.19</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.54</td>
<td>0.23, 1.27</td>
</tr>
</tbody>
</table>

Metabolic syndrome excluding the elevated waist circumference component
Table 4 Multiple logistic regression analysis for the association between PTH:25(OH)D and the metabolic syndrome

<table>
<thead>
<tr>
<th>Main independent variable</th>
<th>PTH:25(OH)D</th>
<th>Dependent variable</th>
<th>Metabolic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Unadjusted model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTH:25(OH)D</td>
<td>1.00</td>
<td>0.83, 1.21</td>
<td>0.996</td>
</tr>
<tr>
<td>Model 2: Full model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTH:25(OH)D</td>
<td>0.94</td>
<td>0.74, 1.20</td>
<td>0.62</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.98</td>
<td>0.95, 1.03</td>
<td>0.45</td>
</tr>
<tr>
<td>Body fat %</td>
<td>1.03</td>
<td>0.97, 1.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>0.42</td>
<td>0.20, 0.87</td>
<td>0.02</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.40</td>
<td>0.16, 0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>Season</td>
<td>1.97</td>
<td>0.75, 5.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Model 3: Full model, waist circumference instead of body fat percentage as covariate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTH:25(OH)D</td>
<td>0.88</td>
<td>0.67, 1.17</td>
<td>0.38</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.00</td>
<td>0.96, 1.04</td>
<td>0.98</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>1.06</td>
<td>1.02, 1.10</td>
<td>0.003</td>
</tr>
<tr>
<td>Physical activity score</td>
<td>0.44</td>
<td>0.20, 0.93</td>
<td>0.03</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>0.45</td>
<td>0.18, 1.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Season</td>
<td>2.36</td>
<td>0.86, 6.52</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Model 1 is unadjusted model. All other models adjusted for age, body fat percentage or waist circumference, physical activity, tobacco use and season. *Metabolic syndrome excluding the elevated waist circumference component.
DISCUSSION

In this study we investigated the relationships between 25(OH)D, PTH, PTH:25(OH)D ratio and the metabolic syndrome in black South African women and whether these relationships are influenced by adiposity. Our findings indicate a lack of significant associations between PTH, PTH:25(OH)D ratio and the metabolic syndrome. Positive associations between body composition variables and PTH were, however, found. A low 25(OH)D concentration was also not associated with the metabolic syndrome in our black South African women, although there were borderline inverse associations between 25(OH)D and waist circumference and BMI, respectively.

The relationships of 25(OH)D and PTH, respectively with the metabolic syndrome are controversial. Some studies show inverse associations between 25(OH)D and the metabolic syndrome [6-8, 34-36] and positive associations between PTH and the metabolic syndrome [14,15]. Other studies have reported no associations between 25(OH)D and/or PTH and the metabolic syndrome [14,37]. We found a weak positive association between 25(OH)D and the metabolic syndrome when we adjusted for waist circumference. The association was small and might not be clinically significant based on the confidence interval of 1.00 to 1.11 (Table 3 model 5). The lack of negative relationships between the metabolic syndrome and 25(OH)D, despite the high prevalence (43%) of the metabolic syndrome observed in our study could be explained in part by the low prevalence of vitamin D deficiency (15.9%) among our study participants. In comparison to our study, higher prevalence of vitamin D deficiency was found in studies that showed inverse associations between 25(OH)D and the metabolic syndrome [6-8, 34-36]. Another possible contributing factor for the lack in negative relationship may be an indication that black individuals are not sensitive to the metabolic effects of vitamin D as suggested by Scragg and colleagues [9]. Our results are in accordance with a recent study among black South Africans and South Africans of Asian-Indian origin where 25(OH)D was not associated with the metabolic syndrome [20]. The same study [20], however, found a positive association between PTH and the metabolic syndrome which is in contrast to the lack of association we found.

There was no association between PTH:25(OH)D ratio and the metabolic syndrome in our study. Our result is contrary to that of an European study among Flemish adults where they found the ratio of PTH:25(OH)D was positively associated with having the metabolic syndrome [17]. The relationship between the metabolic syndrome and PTH:25(OH)D ratio in
their study was mainly driven by serum 25(OH)D concentrations [17]. The lack of association between PTH:25(OH)D ratio and the metabolic syndrome in our study could also be explained in part by the low prevalence of vitamin D deficiency and low prevalence of elevated PTH (17.7%) among our study participants. Waist circumference, which is an indicator of abdominal obesity was significantly associated with the PTH:25(OH)D ratio in our study. This is similar to the European study where a strong association between abdominal obesity and the PTH:25(OH)D ratio was found [17]. Adipose tissue acts as a reservoir for vitamin D in the body [12] and in addition to this, abdominal adipose tissue releases inflammatory cytokines which further decrease the amount of circulating 25(OH)D [38]. The PTH:25(OH)D ratio in our study is driven mainly by PTH as the PTH:25(OH)D ratio largely reflects the associations seen between PTH, body composition variables and the metabolic syndrome.

It has been previously postulated that low 25(OH)D and reactive increases in PTH were both consequences of obesity [10-12]. Some studies on the other hand have suggested that elevated PTH promotes the accumulation of adipose tissue, thereby suggesting the possibility that elevated PTH may play a role in the development of obesity [39-41]. Our results are consistent with previous reports on positive associations between PTH and measures of adiposity [39-42]. This might be an indication that black South African women are more sensitive to the metabolic roles of PTH compared to 25(OH)D as suggested by George et al. [20]. Body composition variables (BMI, body fat percentage and waist circumference) lost their significant inverse associations with 25(OH)D after adjusting for potential confounders. Waist circumference however, still tended to be inversely associated with 25(OH)D ($p = 0.07$), which supports the hypothesis that in comparison to subcutaneous fat, abdominal adipose tissue has a stronger inverse association with vitamin D status, as previously suggested [42-45]. Body fat percentage on the other hand, lost its significant relationship with 25(OH)D after adjusting for confounders, which is contrary to the results of a study carried out in white Europeans [32]. This lack of association between total body fat percentage and 25(OH)D in our study could be explained by the phenomenon of most black South African women having a larger percentage of their body fat distributed subcutaneously around their hips [46-47]. This could also be an indication that the effect of visceral fat on serum 25(OH)D is stronger compared to the effect of subcutaneous fat.

While 25(OH)D and PTH were not main contributors to the presence of the metabolic syndrome in African women in our study, other covariates such as smoking and physical activity seemed to make more prominent contributions. The protective effect of higher
physical activity on the odds of having the metabolic syndrome in our study is in agreement with other studies [48-50]. It is not clear why objective measures of physical activity showed no association with the metabolic syndrome in our study. We also found a protective effect of the use of tobacco on the odds of having the metabolic syndrome, which is unexpected and we cannot fully explain the mechanism behind this. However, we propose that the relationship between tobacco use and the metabolic syndrome may, at least in part, be through the effect of smoking on body composition [51,52]. In addition, using the harmonised definition of the metabolic syndrome, we also found a protective effect of the use of tobacco on the odds of having the metabolic syndrome (data not shown). The women with a history of tobacco use in our study had significantly lower adiposity compared to those who never used tobacco (data not shown). The relationship between smoking and the metabolic syndrome has also been shown to be dose responsive with heavy smokers having a higher risk of developing metabolic syndrome in comparison to light or non-smokers [53,54]. Due to the relatively high cost of cigarettes and tobacco products in South Africa, it is likely that the women who used tobacco products among our study participants were light smokers/tobacco chewers. The association observed between use of tobacco and the metabolic syndrome in our study might have been different if we had taken into account the quantity of tobacco used on a daily basis as previously demonstrated in other studies [53-56]. Therefore, the association found between use of tobacco and the metabolic syndrome in our study should be interpreted in the light of the peculiarities discussed above and needs further investigation.

Limitations of this study include its cross-sectional design, thus we cannot draw conclusions about causality. This study was performed in black urban women and the results may not be generalizable to the greater black South African population. Also we could not get accurate records from the self-report of the quantity of tobacco used, in order to separate the light users and the heavy ones. Despite the limitations, our study has further highlighted the differences between what constitutes as risk factors for the metabolic syndrome in black Africans compared to other ethnic groups.

In conclusion, low 25(OH)D concentration was not associated with the metabolic syndrome in our black South African women. Although PTH and PTH:25(OH)D ratio were significantly positively associated with body composition variables they were not associated with the metabolic syndrome. The association between 25(OH)D, PTH and the metabolic syndrome was not significantly mediated by adiposity. The relationship between PTH and measures of adiposity in black South African women needs to be further investigated.
AUTHORS’ CONTRIBUTIONS

OFS and HSK conceptualised the study, OFS drafted the manuscript and conducted all statistical analysis. HHW, HL and HSK made substantial contributions to the drafts and were involved in critically reviewing the manuscript as well interpretation of all results. CB, CMCM, and MP were involved in critically reviewing the draft of the manuscript and contributed to data collection. EMJF was involved in critically reviewing the draft of the manuscript. All authors contributed to and approved the final manuscript.
REFERENCES

CHAPTER 6 GENERAL SUMMARY, DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

This final chapter provides a summary of the main findings of the three articles that form part of this thesis. The results have already been interpreted, discussed and compared with relevant literature in Chapters 3, 4 and 5. The recommendations made in this thesis were based on the main findings. The main aim and objectives are repeated below for ease of reference, followed by the salient observations of the studies and recommendations.

Aims and objectives

The main aim of this study was to examine factors (vitamin D status, urbanization, socio-economic status (SES) and lifestyle risk factors) associated with body composition, including bone health, as well as predictors of change in body composition in African adults in the North West Province of South Africa.

The objectives of this study were to:

- Examine the influence of urbanization, SES and lifestyle risk factors on changes in the body composition of black South African men and women from the North West Province between 2005 and 2010.
- Examine the association between body composition (BMI, fat mass and lean mass) and bone health (BMD and fracture risk) in urban postmenopausal black South African women.
- Examine the association of serum 25(OH)D and PTH concentration with metabolic syndrome, respectively, while controlling for adiposity in urban black South African women from the North West Province.
6.2 The influence of SES and lifestyle risk factors on changes in the body composition of black South Africans

Changes in body composition over time are inevitable and expected. Our study revealed unfavourable changes in body adiposity measurements as indicated by the significant increase in BMI, waist circumference and triceps skinfold thickness in black South African adults over a 5-year period. Lifestyle changes associated with urbanization and their unfavourable associations with measures of obesity have been well documented in developing countries (Popkin et al., 1993; Hill et al., 2000; Vorster et al., 2011). Similarly, the present study demonstrated that urbanization was the major predictor of changes in body composition of adult South African men and women. At both baseline and follow up, women from the urban group had significantly higher measures of obesity compared to their rural counterparts. Urban residents also had a significantly higher mean dietary energy and fat intake compared to rural residents for both genders. It should be noted that even though our urban women gained significantly more in body adiposity measurements compared to their rural counterparts, the trend of changes in adiposity observed in both rural and urban areas over the 5-year period were similar. This could be an indication of unhealthy lifestyle transition also in the rural area.

SES has been reported in the literature to be inversely associated with BMI (Jeffery et al., 1991; Sundquist & Johansson, 1998). Interestingly, in contrast to the literature our study demonstrated that a higher SES was associated with higher measures of adiposity in both genders. This could, however, be due to the fact that only a few of our study participants had a relatively high SES, whereas the majority of our participants were classified with a low SES with no or limited formal education and mainly employed as domestic/informal workers. Compared to our study where over 80% of our participants attained a low educational level, only 25% of the European study participants were in the low educational level group (Sundquist & Johansson, 1998). It was interesting to see that being married was a significant predictor of gain in waist circumference and BMI in men, while it had no effect in women.

6.3 The association between body composition and bone health in urban postmenopausal black South African women.

Black African women were traditionally perceived to be protected from age-related bone loss with fewer incidences of non-traumatic fractures in comparison to white women (Aloia, 1996). Due to lifestyle changes associated with urbanization, however, there is an increasing
concern about the loss of African women’s inherent advantage of a higher BMD (Kruger et al., 2011). It was previously postulated that obesity is protective of bone health via its weight bearing effect (Felson et al., 1993; Ravn et al., 1999; Asomaning et al., 2006). However, more recent studies have shown an inverse relationship between obesity and bone health (De Laet et al., 2005; Tanaka et al., 2013). Obesity prevalence among South African women is high with a national prevalence of 39.9% for black South African women (Shishana et al., 2013). The prevalence of obesity (47.1%), low bone mass (39.7%) and osteoporosis (14.8%) in the present study were also high which adds to the concerns about deteriorating bone health in black South African women. Our study further revealed that even though fat mass and lean mass were both independently associated with bone health, there was a stronger association between lean mass compared to fat mass and bone health in black South African women.

6.4 The association of serum 25(OH) D and PTH concentration with metabolic syndrome in urban black South African women

There is a scarcity of information on the association between serum 25(OH)D, PTH and the metabolic syndrome among black South Africans. A number of studies have linked low serum 25(OH)D and elevated PTH concentrations to an increased risk of the metabolic syndrome among Europeans and people of European descent (Reis et al., 2007; Ahlström et al., 2009; Lee et al., 2009). In our study, low 25(OH)D concentration was not associated with the metabolic syndrome in our black South African women. We found a weak positive association between 25(OH)D and the metabolic syndrome when we adjusted for waist circumference instead of body fat percentage. This could further corroborate the suggestions that abdominal adipose tissue exerts a more important effect on vitamin D status than subcutaneous fat (Snijder et al., 2005; Beydoun et al., 2010; Ding et al., 2010; Chacko et al., 2011). A similar study by George et al. (2013) found no association between 25(OH)D and the metabolic syndrome in black and Asian-Indian South Africans. The prevalence of vitamin D deficiency among our study participants was low compared to what is usually reported for Europeans and blacks living in the western countries. It has been suggested that blacks might not be sensitive to the metabolic effects of serum 25(OH)D (Scragg et al., 2004). There was no significant association between PTH and the metabolic syndrome in this study although body composition variables were positively associated with PTH, contrary to the positive association found between PTH and the metabolic syndrome in black and Asian-Indian South Africans by George and colleagues (2013).
In the present study PTH was positively associated with measures of adiposity. However, serum 25(OH)D only tended to be inversely associated with waist circumference, body fat percentage and BMI after possible confounders were adjusted for. The associations observed between PTH and all the measures of adiposity could be an indication that black South African women are more sensitive to the metabolic roles of PTH compared to that of 25(OH)D.

The ratio of PTH:25(OH)D has recently been demonstrated to be positively associated with measures of insulin sensitivity (Stanley et al., 2013) and with the metabolic syndrome (Richart et al., 2011). Furthermore, we assessed the relationship between PTH:25(OH)D ratio and the metabolic syndrome and did not find an association. This is contrary to the result of an European study among Flemish adults (Richart et al., 2011). PTH:25(OH)D ratio in the Flemish study was mainly driven by serum 25(OH)D concentrations (Richart et al., 2011). The lack of association between PTH:25(OH)D ratio and the metabolic syndrome in our study could also be explained in part by the low prevalence of vitamin D deficiency and low prevalence of elevated PTH (17.7%) among our study participants. Waist circumference, which is an indicator of abdominal obesity was significantly associated with the PTH:25(OH)D ratio in our study. This is similar to the European study where a strong association between abdominal obesity and the PTH:25(OH)D ratio was found (Richart et al., 2011). Adipose tissue acts as a reservoir for vitamin D in the body (Wortsman et al., 2000) in addition to this, abdominal adipose tissue releases inflammatory cytokines which further decrease the amount of circulating 25(OH)D (Blum et al., 2008). The PTH:25(OH)D ratio in our study is driven mainly by PTH as the PTH:25(OH)D ratio reflects the associations seen between PTH, body composition variables and the metabolic syndrome.

6.5 CONCLUSION

This thesis highlights the high prevalence of overweight and obesity among black South Africans in the North West province. Of note is also the higher than expected prevalence of low bone mass among the women from the same population. Urbanization played a significant role in the increasing adiposity of black South Africans in the North West province. Various factors like easier access to food, more food variety and novelty contribute to the urban environment and its effect on body composition. Although this thesis demonstrates that dietary energy and fat intakes were significantly higher in the urban compared to the rural residents, dietary fat intake was positively correlated with changes in waist circumference and triceps measurements in men and women, but regression analysis
demonstrated that dietary fat intake was not a significant predictor of changes in body composition over five years. This thesis further demonstrates that both lean mass and fat mass were independently associated with bone health, but lean mass rather than fat mass had a stronger positive association with bone health. Dietary intake and physical inactivity also contributed to the bone health of the study participants and the high prevalence of overweight and obesity highlighted in this study. Furthermore, smoking and alcohol intake were also associated with the sub-optimal bone health and body composition of black South African adults in this study. Finally in this thesis, and contrary to literature, low 25(OH)D concentration was not associated with the metabolic syndrome, while there was no significant association between PTH and the metabolic syndrome in our black South African women.

6.6 RECOMMENDATIONS

The following conclusions and recommendations for future research were formulated from the papers included in this thesis:

1. Black adults in the North West province are gaining body fat. Scaling up of obesity intervention programmes in both urban and rural areas of the North West Province of South Africa is recommended.

2. Increasing lean mass rather than fat mass is beneficial to bone health. Further studies on other factors affecting lean mass and bone health of Africans are recommended.

3. Although 25(OH)D and PTH were not associated with the metabolic syndrome in this study, measures of adiposity were positively associated with PTH. Further studies on the causal relationship between PTH and measures of adiposity in black South Africans are, therefore, recommended.

4. The importance of positive lifestyle changes which includes increased habitual physical activity and healthy diet for maintenance of a healthy body fat percentage, optimal bone health and reduced odds of developing the metabolic syndrome was highlighted in this study. Public health measures at provincial and national levels should be taken to encourage such positive lifestyle changes.
5. Finally, attention should also be given to other influencing factors like smoking and alcohol intake when developing interventions for obesity, osteoporosis and the metabolic syndrome.
6.7 REFERENCES

ADDENDA
Addendum A: Ethical approval 2005

Dr A Kruger
Bussie 594
Noordwes-Universiteit
(Potchefstroomkampus)

Geagle dr Kruger

GOEDKEURING VIR EKSPERIMENTERING MET MENSE

Hiermee wens ek u in kennis te stel dat u projek getiteld “PURE study (Prospective Urban and Rural Epidemiology study)” deur die Eiekkomitee goedgekeur is met nommer 04M10.

Gebruik asseblief die nommer genoem in paragraaf 1 in alle korrespondensie rakende bogenoemde projek en let daarop dat daar van projekleiers verwag word om jaarliks in Junie aan die Eiekkomitee verslag te doen insake etiese aspekte van hulle projekte ‘swook van publikasies wat daaruit voortgespruit het. U sal in Mei 2005 die dokumentasie hieroor ontvang.

Goedkeuring van die Eiekkomitee is vir ‘n termyn van hoogstens 5 jaar geldig (volgens Senaatsbesluit van 4 November 1992, art 9.13.2). Vir die voortsetting van projekte na verslyping van hierdie tydperk moet opnuut goedkeuring verkry word.

Die Eiekkomitee wens u alle voorspoed met u werk toe.

Vriendelike groete

PROF. NT MALAN
VOORSITTER: EIEKKOMITEE
Addendum B: Ethical approval 2010

This is to certify that the next project was approved by the NWU Ethics Committee:

Project title: PURE study (Prospective Urban and Rural Epidemiology study)

Project leader / Student: Prof Annamarie Kruger

Ethics number: NWU-00016-10-A1

Status: S = Submission; R = Re-Submission; P = Provisional Authorization; A = Authorization

Expiry date: 20/01/2015

The Ethics Committee would like to remain at your service as scientist and researcher, and wishes you well with your project. Please do not hesitate to contact the Ethics Committee for any further enquires or requests for assistance.

The formal Ethics approval certificate will be sent to you as soon as possible.

Yours sincerely

Me Marietjie Halkryn
NWU Ethics Secretariat
Addendum C: Ethical approval for PhD study

To whom it may concern

Faculty of Health Sciences Ethics Sub-committee
Tel: 018 2992092
Fax: 018 2992089
Email: Minnie.Greeff@nwu.ac.za

10 July 2013

Dear Mrs. Sotunde

Additional Request:

Ethics Application: NWU-00016-10-A1 “Prospective Urban and Rural Epidemiology Study (PURE SA Study)”

Your request to include the study, entitled “Body composition, bone health and vitamin D status of African adults in the North West Province” under the above mentioned umbrella project has been approved.

Yours sincerely

[Signature]

Prof. Minnie Greeff
Acting Chairperson

Original date: Prof. Minnie Greeff(10187308)\Documents\ETIEC\2010\ETIEC\NWU-00016-10-A1 Additional Request 3.doc
10 July 2013
Addendum D: Informed consent form 2010

PURE-SA Project (Prospective Urban and Rural Epidemiology)
INFORMED CONSENT FORM (including the PRIMER-study)

I, the undersigned ... (full names and surname) read / listened to the information on the project in PART 1 and PART 2 of this document and I declare that I understand the information. I had the opportunity to discuss aspects of the project with the project leader and I declare that I participate in the project as a volunteer. I hereby give my consent to be a subject in this project. I understand that I have the right to withdraw at any time from the study.

I agree to be tested for HIV .. Yes No
I want to know my HIV-status .. Yes No
I agree to give a blood sample .. Yes No

I hereby also declare that I am aware that:
1. This blood sample will be used for the purpose of
 a. Isolating DNA to look at genetic factors that are currently associated with Type 2 Diabetes (i.e. the Calpain10, Adiponectin, Lapin and Laplin Receptor genes), or genetic factors that may be associated with Non Communicable diseases in the future. We give the assurance that all genetic tests and experiments will only focus on genotypes suspected to contribute to an increased risk of non communicable diseases of lifestyle.
 b. DNA damage due to environmental factors such as cooking methods and smoke will be tested for.
 c. Testing for liver function by determining liver enzymes such as AST, GGT,
 d. Analyses of other than genetic parameters for Diabetes Mellitus such as HbA1C, Blood glucose and Insulin
 e. Analyses of the clotting profile and hypertension markers
 f. Analyses of bone health, iron and nutrition status
And may be stored until such time as the above measurements/analyses will be done.
2. Body measurements such as height, weight, skin fold thicknesses, arm and leg circumferences will be taken
3. Vascular sonar will be done
4. Blood pressure will be taken
5. Pulse wave velocity measurements will be made
6. A Spirometer test to be performed to determine lung function
7. Bone density will be determined with an osteometer to detect possible osteoporosis

...
(Signature of the subject)
Signed at: ... Potchefstroom / Ganyesa ... (delete not applicable option) on/........ / 2010

Witnesses

1. ... 2. ...

Signed at: ... Potchefstroom / Ganyesa ... (delete not applicable option) on/........ / 2010
PART 1

1. Research title and Faculty:
 Assistant Professor of Community Health Research (AllThE), Faculty of Health Sciences, North-West University

2. Title of project/protocol:
 PRECIPITATION: Urban and Rural Epidemiological study

3. Full names, signatures and qualifications of project leader:
 Prof. Antoinette Hooge, MSc, PhD

4. Composition of project team:
 Research officer and project manager

5. Aim of this project:
 PRECIPITATION: urban and rural epidemiological study in non-communicable disease (NCDs) in order to address the health challenges associated with climate change.

6. Explanation of the nature of all procedures, including identification of new procedures:
 Each participant will have a number of observations (blood pressure, physical activity, nutrition, etc.) that will take place at baseline and at follow-ups. Screening tests and health assessments will also take place. Blood samples including haematocrit measurement (such as weight, height, smoking status, blood pressure, key obesity and lung function) will be taken.

7. Description of the process of obtaining informed consent of participants to procedure(s):
 The research team will explain the study aims to each participant. Participants will be informed about the potential risks and benefits of participating in the study. Consent will be obtained verbally and in writing. A copy of the consent form will be given to each participant.

8. Procedures taken to protect the subjects:
 The research team will ensure that all data collected will be kept confidential. This is an anonymous study and no personal information will be collected.

9. Description of the benefits which may be expected from this project:
 Participants will benefit from being part of a collaborative study on NCDs and the impact of climate change. Results of the study will be disseminated to the participants.

10. Procedures to be followed if this study is to be interrupted:
 The research team will ensure that all data is securely stored and that participants are informed of any changes to the study.

PART 2

For the subject signing this consent:
You are invited to participate in a research project. It is important that you understand all the information provided to you and that you make an informed decision about whether to participate.

1. Participation in this project is voluntary.
2. You have the right to withdraw from the study at any time without penalty.
3. The results of the study will be used for research purposes and will not be shared with any third parties.
4. Your data will be kept confidential and will not be used for any other purpose.
5. You will be informed of any changes to the study.
6. You have the right to access your research records.
7. You have the right to appeal any decision made by the research team.

Contact details:
Tel: 021 711 5780; Fax: 021 708 2371

Prof Antoinette Hooge, MSc, PhD
Contact details: 021 711 5780; Fax: 021 708 2371

220 Page
Addendum E: Adult questionnaire

PURE/South Africa

We are very grateful to you for your participation in this study. All information given by you will be held in strict confidence, and will be used for the purpose of this study only after removing any personal identifying information.

Adult Questionnaire

INSTRUCTIONS

Please answer EACH question by marking an X in ONE BOX on each line: (unless otherwise instructed)

X

OR

By writing number(s) in the spaces provided:

1 8

OR

By specifying the answer on the line(s) provided

April 28, 2005

Adult Questionnaire

Subject Initials. F = first letter of first name
M = first letter of middle name
L = first letter of last name

3. National ID
 If not applicable please mark the N/A box

Ethnicity Codes
01 - South Asian (India, Sri Lanka, Pakistan, Bangladesh)
02 - Chinese (China, Hong Kong, Taiwan)
03 - Japanese
04 - Malays
05 - Other Asian (Korea, Malaysia, Papua New Guinea, Thailand, Philippines, Indonesia, Nepal, Vietnam, Cambodia, Laos, Myanmar/Burma, Bhutan, Singapore)
06 - Persians
07 - Arab
08 - Black African
09 - Coloured African (Subsaharan African only)
10 - European
11 - Native North/South American or Australian Aborigine
12 - Latin American (Latino)
13 - Bantu/Semni Bantu
14 - Himbo/Hemtic
15 - Nilotic/Hausa
16 - Pygmie
17 - Swahili
18 - Other (any other ethnosocial group not listed above)
1. Name: ____________________________ ________________

2. Not applicable in South Africa

3. National identity # or equivalent: ____________________________ N/A □

4. DOB: ___________ ___________ ___________ OR Age __________ yrs

5. Sex: □ Female □ Male

6. Marital status: (check one only)

□ Never married □ Currently married □ Common law/Living with partner

□ Widowed □ Separated □ Divorced

7. Ethnicity: __________ (Please refer to facing page for codes)

8. Cast/Tribe: ________________

9. What level of formal education have you completed? (check highest level only):

□ None □ Primary □ Secondary/highschool/higher secondary

□ Trade School □ College/University □ Unknown

11. Occupation

Group 1: Legislators, senior officials and managers
Legislators and senior officials
Corporate managers
General managers
Businessmen

Group 2: Professionals
Physical, mathematical and engineering science professionals
Life science and health professionals
Teaching professionals
Other professionals

Group 3: Technicians and associate professionals
Physical, mathematical and engineering, science associate professionals/technicians
Life science and health associate professionals/technicians
Teaching associate professionals/technicians
Other associate professionals/technicians

Group 4: Clerks
Clerks
Customer service clerks

Group 5: Service workers and shop and market sales workers
Personal and protective service workers
Models, salespersons and demonstrators

Group 6: Skilled agricultural and fishery workers
Market-oriented skilled agricultural and fishery workers
Subsistence agricultural and fishery workers

Group 7: Craft and related trade workers
Extraction and building trade workers
Metal, machinery and related trades workers
Precision, handicraft, printing and related trades workers
Other craft and related trades workers

Group 8: Plant and machine operators and assemblers
Stationary plant and related operators
Machine operators and assemblers
Drivers and mobile plant operators

Group 9: Elementary occupations
Sales and services elementary occupations
Agricultural, fishery and related labourers
Labourers in mining, construction, manufacturing and transport

Group 10: Armed forces
Armed forces

Group 11: Homemaker
Housewife/Husband
10. Not applicable in South Africa

11a) Not applicable in South Africa

b) Please indicate which group best describes your main occupation.
 (Please refer to facing page for definitions of groups and instruction manual for detailed definitions)
 - Group 1
 - Group 2
 - Group 3
 - Group 4
 - Group 5
 - Group 6
 - Group 7
 - Group 8
 - Group 9
 - Group 10
 - Group 11

 c) Not applicable in South Africa

 d) What is your main source of income?

 If occupation is group 11 (homemaker) go to question 13

12. Are you currently employed?
 - No (answer 12a - 12b)
 - Yes (answer 12d)

 a) Are you retired/stopped work from your primary occupation due to old age? No Yes

 b) Have you stopped working due to illness? No Yes

 13. CURRENT DISABILITY:

 a) Do you have any problem using your fingers to grasp or handle? No Yes

 b) Do you have any trouble walking about? No Yes

 c) Do you have any trouble bending down and picking up an object from the floor? No Yes

 d) Do you require a walking stick cane/walker to move about? No Yes

 e) Do you have any trouble reading or seeing the individual numbers of rosicm on your plate? (with glasses worn) No Yes

 f) Do you have trouble seeing a person from across the room? (12 feet/3.5 meters) (with glasses worn) No Yes

 g) Do you have trouble speaking and being understood? No Yes

 h) Do you have any trouble hearing what is said in a normal conversation? No Yes

14. Have you experienced any of the following in the last six months?

 a) Chest pain or tightness with usual activity No Yes

 b) Shortness of breath while lying down or flat No Yes

 c) Cough for at least 2 weeks No Yes

 d) Any symptom while coughing No Yes

 e) Blood in sputum No Yes

 f) Wheezing or whistling in the chest No Yes

 g) Early morning cough with chest tightness No Yes

 h) Loose stool/diarrhoea for at least 3 days No Yes

 i) Inventory weight loss of > 3 kg No Yes

16a) Do you use glasses/spectacles/contact lenses at present? No Yes
Adult Questionnaire

Cancer Sites
1= Mouth
2= Esophagus
3= Stomach
4= Small intestine
5= Large intestine including rectum
6= Pancreas
7= Liver
8= Lung
9= Breast
10= Cervical/uterine/ovarian
11= Prostate
12= Head and neck
13= Other, specify

PURE

Adult Questionnaire

Subject ID
Create # Community Household Subject #

Subject: initials: F M L

17. Have you ever been diagnosed with any of the following? (Check all that apply)

- Diabetes
- Hypertension
- High blood pressure
- Stroke
- Heart attack
- Coronary artery disease
- Heart failure
- Other heart disease
- Kidney disease
- Liver disease
- Other disease

18. Have you been taking any medications regularly (ie. at least once per week) in the last month?

- Blood pressure
- Cholesterol lowering drugs
- Stroke
- Diabetes
- Asthma
- Other

If yes, specify: ___________________________
18b) List all the medications you are currently consuming at least once a week for the last month:

i)

ii)

iii)

iv)

v)

vi)

vii)

Men go to question #23

For Women Only (Questions 19 - 22)

19. Are you currently pregnant? □ No □ Yes → Go to #21

20. Do you still have periods? □ No → (answer 20a) □ Yes → Go to #21

20a) How many years since you stopped menstruating? □ years

21. Have you ever used an oral/injectable contraceptive? □ No □ Yes

22b) How many live children have you given birth to? □ Boys □ Girls

b) Did you breast feed any of your children? □ No □ Yes
Adult Questionnaire

23. Accidents and Injuries

Location of Injury
- 1: Factory/industrial place
- 2: Office
- 3: Agriculture field/farm
- 4: Home
- 5: Road
- 6: Sport/game e.g. track, court, field, etc.
- 7: Public building
- 8: Mine/quarry
- 9: Construction site e.g. building, road-works, etc.
- 10: Other

Type of Injury
- 1: Burns
- 2: Scalds
- 3: Fractures
- 4: Muscle and ligament sprains/tears
- 5: Cuts and lacerations
- 6: Bruises and abrasions
- 7: Suffocation
- 8: Head injury (where person did not lose consciousness)
- 9: Head injury (where person lost consciousness for some time)

PURE Adult Questionnaire

Subject ID

<table>
<thead>
<tr>
<th>Campus</th>
<th>Community</th>
<th>Household</th>
<th>Subject</th>
</tr>
</thead>
</table>

23. During the past 12 months, have you had any injuries that were serious enough to limit your normal activities? (Check all that apply)

- No → Go to #24
- Yes → (answer 23a - 23h)

If yes, please provide details:

Cause of Injury

- a) Motor vehicle accident (as a passenger)
- b) Motor vehicle accident (as a pedestrian)
- c) Struck by an object
- d) Explosion
- e) Natural/environmental factors (e.g. falls/icy/snow/flashlight, etc.)
- f) Suffocation
- g) Poisoning
- h) Snake/sad/sea bite
- i) Fall
- j) Fire/burns, resultant burns
- k) Physical assault (pun, kidnapping, etc.) Violent crime
- l) Domestic violence (beaten by a family member)
- m) Harming/submission
- n) Hot or corrosive liquids/foods/substances
- o) Crush injuries (boulders, building materials, etc.)
- p) Accident caused by machinery
- q) Attempted suicide
- r) Armed conflict
- s) Other (specify) _____________________________

Location

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Adult Questionnaire

Fractures: In situations where subjects are in a cast and cannot differentiate between ligament tear or fracture, include a fracture only if doctor confirmed it as a broken bone.

25c) Tobacco: Regular use is defined as consuming at least one tobacco product per day.

Duration of use:
For those that have consumed tobacco for <1 year, please enter '0'.

PURE Adult Questionnaire

<table>
<thead>
<tr>
<th>Subject ID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre #</td>
<td>Community #</td>
</tr>
</tbody>
</table>

24. Have you ever fractured a bone?
 - No (go to #25)
 - Yes (if yes, answer a), b) and c)
 - Number of fractures
 - Years since last fracture (in years)
 - Reason: (if other, specify)
 - Please refer to fracture page for fracture locations

Tobacco

25. Which best describes your history of tobacco use?
 - Formerly used tobacco products
 - Currently use tobacco products
 - Never used tobacco products
 - Go to #26

 a) At what age did you start?
 - Yes

 b) Have you ever regularly used any of the following tobacco products? (check all that apply)

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Current Use</th>
<th>Duration (years)</th>
<th>When Stopped (years ago)</th>
<th>If less than 1 yr (months ago)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cigarettes (all kinds)</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beedies</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigars</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipes</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheesh/kanwar pipe</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chewing tobacco</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snuff</td>
<td></td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject ID
Centre # Community# Household # Subject # Subject Initials F M L

Question 26 to be answered by non-smokers and former smokers only

26. During the past 12 months, have you been regularly (at least once per week) exposed to other people’s tobacco smoke?
(“Exposed” is defined as a minimum of 5 consecutive minutes, during which you inhale other people’s smoke.)

☐ No ➔ Go to #27 ☐ Yes ➔ Please answer questions 26a

a) Over the past 12 months, what has been your typical exposure to other people’s smoke?
(“Exposed” is defined as a minimum of 5 consecutive minutes, during which you inhale other people’s smoke)
Select ONE only

☐ 1-2 times/week ☐ 3-6 times/week ☐ at least once a day ☐ 2-3 times/day ☐ 4 or more times/day

27. Not applicable in South Africa

28c) Alcoholic Beverage: Regular use is defined as at least once a month.
Adult Questionnaire

Subject ID

- Centre #
- Community #
- Household #
- Subject #
- Subject Initials: F M L

20. Which best describes your history of alcohol use?

- a) Formerly used alcohol products
- b) Currently use alcohol products
- c) Never used alcohol products

b) At what age did you start? [] yes

c) What forms of alcohol have you regularly used? (check all that apply)

<table>
<thead>
<tr>
<th>Form of Alcohol</th>
<th>Approx. size of one drink</th>
<th>Frequency</th>
<th>Monthly</th>
<th>Average # of drinks</th>
<th>Duration (years)</th>
<th>Past users only</th>
<th>When Stopped (years ago)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td></td>
<td>Daily</td>
<td>Weekly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Spirit (rum, whisky, gin, vodka etc.)</td>
<td>30ml</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>b) Wine</td>
<td>125ml</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>c) Beer</td>
<td>375ml</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>d) Country liquor (Whisky, etc.)</td>
<td>30ml</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

d) At least once a month, do you consume >5 alcoholic drinks/day? [] No → Go to #20 [] Yes

i) How many times per month do you consume >5 alcoholic drinks in a day?

ii) What is the average number of drinks that you consume each time?

29 A) During your longest or nocturnal sleep period, what time do you normally go to bed?

B) During your longest or nocturnal sleep period, what time do you normally wake up?

33. Civic organization: are defined as non-profit, voluntary organization societies, self help groups and clubs

Religious organization: are defined as different types of formal and informal groups set up on a religious basis

- [] No
- [] Yes

Total sleep duration: [] mins
30. Are you a member of any of the following:

- Self help group, Co-operative, Social club, Sports club: No □ Yes □
- Religious Group (e.g. church group, etc.): No □ Yes □
- Other: Specify □

31. Please answer the following: (choose only one option for each)

(a) People are generally honest and want to help others: Strongly Disagree □ Somewhat Disagree □ Somewhat Agree □ Strongly Agree □
(b) I do nice things for someone, I can anticipate that they will respect me and treat me just as well as I treat them: Strongly Disagree □ Somewhat Disagree □ Somewhat Agree □ Strongly Agree □

32a. The television, radio, newspaper or magazine advertisements help me decide to buy the type of: (choose only one option for each)

- Coding all: No □ Yes □
- Filter: No □ Yes □
- Rust/Meze meat: No □ Yes □

b) The television, radio, newspaper or magazine advertisements influence whether I buy: (choose only one option for each)

- Soft drinks: No □ Yes □
- Snacks: No □ Yes □
- Cigarettes: No □ Yes □
- Alcohol: No □ Yes □

33. In a difficult situation, whose help can you count on from? (Please see facing page for definitions)

(a) Civic organizations: Specify □
 □ none □ little □ moderate/average □ a great deal
(b) Religious organizations: Specify □
 □ none □ little □ moderate/average □ a great deal

34. Have you experienced any of the following events during the last 12 months?

- (a) Loss of job: No □ Yes □
- (b) Retirement: No □ Yes □
- (c) Loss of job/business failure: No □ Yes □
- (d) Household break in: No □ Yes □
- (e) Marital separation/divorce: No □ Yes □
- (f) Other major into family conflict: No □ Yes □
- (g) Major personal injury or illness: No □ Yes □
- (h) Violence: No □ Yes □
- (i) Armed conflict/disaster: No □ Yes □
- (j) Death of a spouse: No □ Yes □
- (k) Death of a close family member: No □ Yes □
- (l) Other major stress: No □ Yes □
- (m) Wedding of family member: No □ Yes □
- (n) New job: No □ Yes □
- (o) Birth in the family: No □ Yes □
- (p) Separation from family: No □ Yes □
- (q) Unavailability of food/food insecurity: No □ Yes □
35. Please answer the following: (Choose only one option for each)

For the following question, stress is defined as feeling irritable or filled with anxiety, or as having sleeping difficulties as a result of conditions at work or at home.

<table>
<thead>
<tr>
<th>No response</th>
<th>Never Experienced Stress</th>
<th>Some Period of Stress</th>
<th>Several Periods of Stress</th>
<th>Permanent Stress</th>
</tr>
</thead>
</table>

a) How often have you felt stress at work in the last 12 months?
(Mark here if not applicable. i.e. no longer working [])

b) How often have you felt stress at home in the last 12 months?

36. What level of financial stress have you felt in the last 12 months?

- No response
- Little
- None
- Moderate
- High/severe

37. During the past twelve months, was there ever a time when you felt sad, blue, or depressed for two weeks or more in a row?

- No
- Yes

If yes, during those times, did you:

- Lose interest in most things like hobbies, work or activities that usually give you pleasure?
- Feel tired or low on energy?
- Gain or lose weight?
- Have more trouble falling asleep than you usually do?
- Have more trouble concentrating than usual?
- Think a lot about death (either your own, someone else’s, or death in general)?
- Feel down on yourself, no good or worthless?

38. Please answer the following: (Choose only one option for each)

a) I can do most of my regular shopping (food, household necessities, etc.) at stores within easy walking distance (less than 15 minutes) of my home.

b) Walking or bicycling in my neighbourhood is difficult because of the speed and/or amount of traffic.

c) My neighbourhood is generally free from pollution (tint, air pollution and noise pollution).

d) My neighbourhood streets are well lit at night.

e) I can see other people when I am walking in my neighbourhood.

f) I can speak to other people when I am walking in my neighbourhood.

g) There is a high crime rate in my neighbourhood.

h) There is a problem with unattended dogs in my neighbourhood.
38a) Please answer the following: (Please check all that apply)

i) Has your household been a victim of the following crime(s) in the last 12 months?

1. Armed robbery
2. Violent attacks
3. Murder
4. Vehicle hijacking
5. House breaking
6. Theft
7. Rape
8. Women abuse eg (beat, swear words, sexual)
9. Child abuse eg (burn, swear words, rejection)
10. Child sexual abuse
11. Other, please specify

No Yes

ii) Do you think that crime in your area has increased in the past 5 years? No Yes

if yes, which of the following crimes(s)?

- Armed robbery
- Violent attacks
- Murder
- Vehicle hijacking
- House breaking
- Theft
- Rape
- Women abuse
- Child abuse
- Child sexual abuse
- Other, please specify

38b) Questions on HIV:

i) Do you know people who have HIV/AIDS? No Yes

if yes, which of these people (please mark all that apply)

- Your children
- Your grandchildren
- Your spouse
- Your family members
- Your friends
- People in the community

ii) What would you consider the mean age of the people who are all have died of HIV/AIDS?

- Younger than 10 years
- Between 11-20 years
- Between 21-30 years
- Between 31-40 years
- Between 41-50 years
- Over 50 years

iii) If someone in your household is HIV positive, who is the primary caregiver?

- Spouse
- Parents
- Family member
- Child children
- Friends
- Volunteer

38c) Do you care for any orphans in your family? No Yes
Adult Questionnaire

40b) Health History:

Cancer Sites

1. Mouth
2. Esophagus
3. Stomach
4. Small intestine
5. Large intestine including rectum
6. Pancreas
7. Liver
8. Lung
9. Breast
10. Cervical/uterine/ovarian
11. Prostate
12. Head and neck
13. Other, specify

PURE

Adult Questionnaire

Subject ID

<table>
<thead>
<tr>
<th>Centre #</th>
<th>Community #</th>
<th>Household #</th>
<th>Subject #</th>
<th>Subject initials</th>
</tr>
</thead>
</table>

39. **How long would it take you to get from your house to the nearest facility if you walked?**

- i) grocery/convenience store
- ii) bank
- iii) post office
- iv) video store
- v) non-fast food restaurant
- vi) fast food restaurant

- Minutes
- Don’t know

40a) **Total number of siblings**

40b) **Health History:** Complete for all parents and siblings, alive or dead

<table>
<thead>
<tr>
<th>Father</th>
<th>Mother</th>
<th>Siblings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown No Yes</td>
<td>Unknown No Yes</td>
<td>Unknown No Yes</td>
</tr>
</tbody>
</table>

- Diabetes
- Coronary Heart Disease
- High Blood Pressure
- Stroke

Please refer to facing page for cancer sites

- If Yes, indicate site

<table>
<thead>
<tr>
<th>Other, Specify</th>
<th>Other, Specify</th>
<th>Other, Specify</th>
</tr>
</thead>
</table>

Adult Questionnaire

If subject refuses to provide any of the measures, enter a value of “0” into each of the boxes for that question.

For more detailed instructions please refer to the instruction manual.

PURE

Adult Questionnaire

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Subject Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

41. Physical Measurements

- **Sitting**
 - a) Right arm blood pressure
 - #1 Systolic
 - #1 Diastolic
 - #1 mmHg
 - b) Heart Rate
 - #2 beats/min

- c) Waist
 - #1 cm
 - #2 cm
 - Minimal/no clothing
 - Full clothing

- d) Weight
 - kg
 - Minimal/no clothing
 - Full clothing

- e) Hip
 - #1 cm
 - #2 cm
 - Minimal/no clothing
 - Full clothing

- f) Height
 - cm (without shoes)

42a. Circumference of mid upper right arm:
- a) cm
- b) cm

42b. Circumference of right calf:
- a) cm

42c. Head Circumference:
- a) cm

42d. Upper flexed arm circumference:
- a) cm

42e. Right arm triceps skinfold:
- a) #1 mm
 - #2 mm
 - #3 mm

- b) #1 mm
 - #2 mm
 - #3 mm
Adult Questionnaire

If subject refuses to provide any of the measures, enter a value of “0” into each of the boxes for that question.

For more detailed instructions please refer to the instruction manual.

46. Spirometry:
American Thoracic Society criteria for acceptable spiromgrams:
Spiromgrams are acceptable if they are free from:
1. Cough during exhalation
2. Early termination or cut off
3. Variable effort
4. Leaks
5. Obstructed mouth piece
Attitudes on HIV/AIDS

Page 13

39. Mark each answer with a X

<table>
<thead>
<tr>
<th>J1</th>
<th>Imagine that a hospital has only one free bed left, and two people with pneumonia need it. The one person is infected with HIV, the other is not infected with HIV. Who should get the bed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The HIV positive person</td>
</tr>
<tr>
<td>2</td>
<td>The HIV negative person</td>
</tr>
<tr>
<td>3</td>
<td>It depends - other</td>
</tr>
<tr>
<td>4</td>
<td>Don't know</td>
</tr>
</tbody>
</table>

Please respond to the following questions by answering “Yes” or “No”.

If you are not sure, choose the “Probably Yes” or “Probably No” response.

If you are quite sure, choose the “Definitely Yes” or “Definitely No” response.

<table>
<thead>
<tr>
<th>J2</th>
<th>Do you think the government should provide free health care for people with AIDS?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes</td>
</tr>
<tr>
<td>J3</td>
<td>Do you think the government should provide free health care for people with AIDS?</td>
</tr>
<tr>
<td>J4</td>
<td>Would it be a good idea for the government to give job training to unemployed young people?</td>
</tr>
<tr>
<td>J5</td>
<td>Should youth who are infected with HIV get the job training?</td>
</tr>
<tr>
<td>J6</td>
<td>Should all people who are too sick to work get a welfare grant from the government?</td>
</tr>
<tr>
<td>J7</td>
<td>Should someone with AIDS who is too sick to work get a welfare grant from the government?</td>
</tr>
<tr>
<td>J8</td>
<td>Should a woman who gets AIDS from sleeping around with many men get the welfare grant from the government?</td>
</tr>
<tr>
<td>J9</td>
<td>Would you be willing to look after a close family member with AIDS?</td>
</tr>
<tr>
<td>J10</td>
<td>Imagine that you find out that one of your friends is HIV infected. What will you tell them?</td>
</tr>
<tr>
<td>J11</td>
<td>Would you drink from the same bottle of water as an HIV infected friend?</td>
</tr>
<tr>
<td>J12</td>
<td>If you saw that a shopkeeper had HIV/AIDS, would you buy fresh vegetables from him or her?</td>
</tr>
<tr>
<td>J13</td>
<td>Do you think it should be illegal for people with HIV/AIDS to put others at risk of infection through unprotected sex?</td>
</tr>
<tr>
<td>J14</td>
<td>Do you think people with HIV/AIDS should have to declare their HIV status to the person they are going to have sex with even if they use a condom?</td>
</tr>
</tbody>
</table>

Page 14

<table>
<thead>
<tr>
<th>J15</th>
<th>Imagine you meet someone you really like and suddenly tell you that he/she is HIV positive, would you still go out on a “date” with him/her?</th>
</tr>
</thead>
<tbody>
<tr>
<td>J16</td>
<td>If you loved an HIV positive person, would you have sex with them using a condom?</td>
</tr>
<tr>
<td>J17</td>
<td>Would you prefer to know who has HIV/AIDS in your community so that you can be careful not to get infected by them?</td>
</tr>
<tr>
<td>J18</td>
<td>Do you worry that HIV is much easier to catch than we are told?</td>
</tr>
<tr>
<td>J19</td>
<td>Would you rather not touch someone with HIV/AIDS because you are scared of infection?</td>
</tr>
<tr>
<td>J20</td>
<td>Do you think the names of people with HIV/AIDS should be made public?</td>
</tr>
<tr>
<td>J21</td>
<td>Do you think HIV/AIDS is a punishment by a higher power?</td>
</tr>
<tr>
<td>J22</td>
<td>Do you think that a school pupil with HIV pupils other pupils in their class at risk of infection?</td>
</tr>
<tr>
<td>J23</td>
<td>Do you think a school pupil with HIV should be allowed to attend school?</td>
</tr>
<tr>
<td>J24</td>
<td>Do you think that many people who get HIV infected through sex have only themselves to blame?</td>
</tr>
<tr>
<td>J25</td>
<td>Do you think that some people with HIV/AIDS want to infect other people with the virus?</td>
</tr>
<tr>
<td>J26</td>
<td>When you hear the word AIDS what community or group of people first comes to mind?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J27</th>
<th>Between a rich and a poor person. Who is more likely to get HIV/AIDS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>J28</td>
<td>Between a black and a white person. Who is more likely to get HIV/AIDS?</td>
</tr>
<tr>
<td>J29</td>
<td>Between a man and a woman. Who is more likely to get HIV/AIDS?</td>
</tr>
</tbody>
</table>

237 | Page
<table>
<thead>
<tr>
<th>J.30</th>
<th>I am not going to ask you to tell me your result but: Have you ever had an HIV test?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Refuse</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.31</td>
<td>Have you heard of any HIV positive people in this area?</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.32</td>
<td>Do you think people with HIV/AIDS often get treated unfairly or badly by others?</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.33</td>
<td>Have you met any HIV positive people yourself?</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.34</td>
<td>If yes: What is your relationship with this person or people?</td>
</tr>
<tr>
<td></td>
<td>Instructions: do not read list. You can tick more than one</td>
</tr>
<tr>
<td>1</td>
<td>Partner (husband, wife, boyfriend, girlfriend)</td>
</tr>
<tr>
<td>2</td>
<td>Sister/brother</td>
</tr>
<tr>
<td>3</td>
<td>Parent</td>
</tr>
<tr>
<td>4</td>
<td>Other relative</td>
</tr>
<tr>
<td>5</td>
<td>Friend</td>
</tr>
<tr>
<td>6</td>
<td>Neighbour</td>
</tr>
<tr>
<td>7</td>
<td>Colleague at work</td>
</tr>
<tr>
<td>8</td>
<td>Other / none of the above</td>
</tr>
<tr>
<td>10</td>
<td>Refused to answer</td>
</tr>
<tr>
<td>J.35</td>
<td>If you knew you were infected with the HIV virus, would you keep it a secret from most people?</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.36</td>
<td>If you told someone, who would you tell?</td>
</tr>
<tr>
<td></td>
<td>Instructions: do not read list; multi-selection possible; you can tick more than one</td>
</tr>
<tr>
<td>1</td>
<td>Partner, (husband, wife, boyfriend, girlfriend)</td>
</tr>
<tr>
<td>2</td>
<td>Sister/brother</td>
</tr>
<tr>
<td>3</td>
<td>Parent</td>
</tr>
<tr>
<td>4</td>
<td>Other relative</td>
</tr>
<tr>
<td>5</td>
<td>Friend</td>
</tr>
<tr>
<td>6</td>
<td>Neighbour</td>
</tr>
<tr>
<td>7</td>
<td>Colleague in my church</td>
</tr>
<tr>
<td>8</td>
<td>School teacher</td>
</tr>
<tr>
<td>10</td>
<td>Aunt/uncle</td>
</tr>
<tr>
<td>11</td>
<td>Other</td>
</tr>
<tr>
<td>99</td>
<td>Don't know</td>
</tr>
<tr>
<td>J.37</td>
<td>In your opinion, how at risk are you to HIV infection?</td>
</tr>
<tr>
<td></td>
<td>Instructions: read HIV</td>
</tr>
<tr>
<td>1</td>
<td>No risk</td>
</tr>
<tr>
<td>2</td>
<td>Very small risk</td>
</tr>
<tr>
<td>3</td>
<td>Some risk</td>
</tr>
<tr>
<td>4</td>
<td>Great risk</td>
</tr>
<tr>
<td>6</td>
<td>Don't know</td>
</tr>
</tbody>
</table>
40. Cause of death

1. Heart disease
2. Stroke
3. TB
4. Cancer
5. HIV
6. Injury
7. Other
8. Unknown

Cancer Sites

1. Mouth
2. Esophagus
3. Stomach
4. Small intestine
5. Large intestine including rectum
6. Pancreas
7. Liver
8. Lung
9. Breast
10. Cervical/uterine/ovarian
11. Prostate
12. Head and neck
13. Other

Date of death:

When completing the date of death, enter actual year and month of death.

Example: If a respondent indicates that the date of death was March 2004, enter as follows

Is this member alive? Yes No X

Year Month
0 4 0 3

If exact month is not known, please obtain an approximate guess.
Adult Questionnaire

40. Cause of death

- 1 = Heart disease
- 2 = Stroke
- 3 = TB
- 4 = Cancer
- 5 = HIV
- 6 = Injury
- 7 = Other
- 8 = Unknown

Cancer Sites

- 1 = Mouth
- 2 = Esophagus
- 3 = Stomach
- 4 = Small intestine
- 5 = Large intestine including rectum
- 6 = Pancreas
- 7 = Liver
- 8 = Lung
- 9 = Breast
- 10 = Genital/uterine/ovarian
- 11 = Prostate
- 12 = Head and neck
- 13 = Other

Date of death:

When completing the date of death, enter actual year and month of death.

Example: If a respondent indicates that the date of death was March 2004, enter as follows

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>3</td>
</tr>
</tbody>
</table>

Is this member alive?

- X = No
- □ = Yes

If exact month is not known, please obtain an approximate guess

Name of interviewer: (Please print)

Last Name

First Initial

Date

Year

Month

Day
Addendum F: Physical activity questionnaire

<table>
<thead>
<tr>
<th>Date:</th>
<th>Place:</th>
<th>Interviewer:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physical activity questionnaire</th>
</tr>
</thead>
</table>

Subject number:*

Gender:
- Male: 1
- Female: 2

What is your main occupation?*

- Low level: office work, housework, school |
- Middle level: factory work, security, farming, hospital nurse, plumber |
- High level: construction work, digging, manual labour |

At work 1 day:
- 1. never: 2. seldom: 3. sometimes: 4. often: 5. always: |

At work 1 week:
- 1. never: 2. seldom: 3. sometimes: 4. often: 5. always: |

At work 1 hour:
- 1. never: 2. seldom: 3. sometimes: 4. often: 5. always: |

At work 1 minute:
- 1. never: 2. seldom: 3. sometimes: 4. often: 5. always: |

If you work away from home, how do you get to work/school?*
- walk 1
- cycle 2
- others: 3 |

How many times do you walk/bicycle to work/school?*
- 0-5 min: 1
- 15-30 min: 2
- 30-60 min: 3
- >1 hour: 4 |

If you walk or cycle to work/school, what is your usual pace?*
- normal walking 1
- fast walk: 2
- brisk walk: 3 |

If you drive to work/school, what is your usual pace?*
- normal driving 1
- fast drive: 2
- brisk drive: 3 |

Do you climb stairs often?*
- yes: 1
- no: 2 |

If you, how many flights of stairs do you climb each day?*
- 1 flight = 10 steps: 1

How many days per week do you climb stairs?*
- 1: 1
- 2-3: 2
- 4-6: 3
- >7: 4 |

Which sport do you play most frequently?*
- low level: bowling, golf, billiards |
- middle level: tennis, athletics, cricket |
- high level: soccer, rugby, netball, tennis |

How many hours per week do you practice?*
- 0.5-1: 1-2-3-4-5-6-7-8-9 |
- 9-12.5: 10-12 |
- 13-15.5: 13-15 |
- >15.5: 16-18 |

How many months per year?*
- 1-3: 1-2-3 |
- 4-6: 4-5 |
- 7-9: 6-7 |
- >9: 8-9 |

[Key: 1: low level; 2: middle level; 3: high level; 4: very high level]
Addendum G: Bone Health Questionnaire

General Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have you fallen in the past 12 months?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. If yes to above question, how many times have you fallen?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Have you previously reported any falls to a health professional?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. If yes to above question, how many falls have you reported?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Have you broken/fractured any bones after the age of 50 yrs?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. If yes to above question, which location?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip/hipvis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thigh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forearm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand/finger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebrae (back)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Have anyone in your family ever been diagnosed with osteoporosis?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sister</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Have anyone in your family AFTER the age of 50 yrs ever broken/fractured a bone due to a fall?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. If yes to above question, which location?
 - Hip/hipvis
 - Thigh
 - Leg
 - Forearm
 - Wrist
 - Hand/finger
 - Vertebrae (back)
 - Other (specify)

10. Have anyone in your family ever developed a stooped posture (hump of the back) as they got older?
 - Mother
 - Sister
 - Other (specify)

11. When you fall, do you need help to get back up from the ground?

12. Have you experienced a near fall? (e.g., slip, trip, stumble or bumped against a wall)

13. Have you limited any of your activities or decreased how much you leave your home due to a fall, near fall, or fear of falling?

14. Do you have vision problems?

15. Is your vision blurry and not as sharp?

16. Do you have difficulty seeing to the side or different distances?

17. Is your vision sensitive to light or changing light?

18. Do you have decreased feeling, numbness or tingling in your feet?

19. Do you sometimes feel unsteady when you walk?
<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>Do you think your walking method puts you at risk for falling?</td>
</tr>
<tr>
<td>21.</td>
<td>Do you choose not to use a gait aid even though people tell you it is safer?</td>
</tr>
<tr>
<td>22.</td>
<td>Do you have problems or concerns getting in/on or out of a bed, chair, tub or toilet?</td>
</tr>
<tr>
<td>23.</td>
<td>Do you feel you have decreased balance?</td>
</tr>
<tr>
<td>24.</td>
<td>Do you sometimes feel of balance, dizzy or unsteady when you walk?</td>
</tr>
<tr>
<td>25.</td>
<td>Do you feel you have leg weakness or legs that tire easily when you walk?</td>
</tr>
<tr>
<td>26.</td>
<td>Do you have any sore joints or arthritis?</td>
</tr>
<tr>
<td>27.</td>
<td>Is your activity limited by pain?</td>
</tr>
</tbody>
</table>
Addendum H: BLACK FRACTURE INDEX

BLACK FRACTURE INDEX

The assessment tool, called the FRACTURE Index, is comprised of a set of seven variables that include age, BMD T-score, fracture after age 50 years, maternal hip fracture after age 50, weight less than or equal to 125 pounds (56 kg), smoking status, and use of arms to stand up from a chair. The FRACTURE Index was shown to be predictive of hip fracture, as well as vertebral and non-vertebral risk fractures. In addition, this index was validated using the EPIDOS fracture study. The FRACTURE Index can be used either with or without BMD testing by older postmenopausal women or their clinicians to assess the 5-year risk of hip and other osteoporotic fractures, and could be useful in helping to determine the need for further evaluation and treatment of these women.

<table>
<thead>
<tr>
<th>POINT VALUE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is your current age?</td>
</tr>
<tr>
<td>Less than 65 yrs</td>
<td>0</td>
</tr>
<tr>
<td>65-69 yrs</td>
<td>1</td>
</tr>
<tr>
<td>70-74 yrs</td>
<td>2</td>
</tr>
<tr>
<td>75-79 yrs</td>
<td>3</td>
</tr>
<tr>
<td>80-84 yrs</td>
<td>4</td>
</tr>
<tr>
<td>85 yrs or older</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Have you broken any bones after age 50 yrs?</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Has your mother had a hip fracture after age 50 years?</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Do you weigh 58kg or less?</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Are you currently a smoker?</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>

| Score: |
|---|---|
| Low Risk | = 0-3 |
| Medium Risk | = 4-6 |
| High Risk | = 7 and above |

<table>
<thead>
<tr>
<th>Do you usually need to assist yourself in standing up from a chair?</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

244 | Page
Addendum I: Copyright licence and Language editing certificate