Identification of monoamine oxidase inhibitors using a molecular modelling approach

Anke Pienaar
B.Pharm

Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientiae in Pharmaceutical Chemistry at the North-West University, Potchefstroom Campus

Supervisor: Prof J.P. Petzer
Co-supervisor: Prof J.J. Bergh

2014 North-West University
This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference numbers (UID) 85642 and 80647). The Grantholders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are that of the authors and that the NRF accepts no liability whatsoever in this regard.
Preface

This dissertation is submitted in article format and consists of two original research articles. Those results not included in the articles are presented in Chapters 4 and 5 of the dissertation. The articles were submitted for publication to the academic journals, *Arzneimittelforschung/Drug Research* and *Life Sciences*, respectively. The author guidelines for each journal are also included in the annexure. The research described in this dissertation was conducted by Ms. A Pienaar at the North-West University, Potchefstroom campus.

Letters of agreement from the co-authors of the research articles and the journal instructions of the stated journals are included in the annexure.
Abstract

Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane and is considered to be a target for the treatment of diseases such as Parkinson’s disease and depression. MAO may be classified into two isoforms, MAO-A and MAO-B. Since MAO-A and MAO-B catalyzes the metabolism of serotonin and dopamine, respectively, MAO-A inhibitors are used in the therapy of depression while MAO-B inhibitors are useful in the treatment of Parkinson’s disease.

The older nonselective and irreversible MAO inhibitors, however, are not frequently used because they may elicit potentially dangerous side effects such as the “cheese reaction”. The cheese reaction occurs when irreversible MAO-A inhibitors block the metabolism of tyramine in the gastrointestinal tract. Excessive amounts of tyramine subsequently enter the systemic circulation and cause a hypertensive reaction.

This problem may be overcome by the development of selective MAO-B inhibitors and reversible MAO-A inhibitors. Selective MAO-B inhibitors do not cause the cheese reaction, because tyramine is metabolized, in the intestines, by MAO-A. Tyramine also has the ability to displace reversible MAO-A inhibitors and can subsequently be normally metabolized, thus not causing the cheese reaction. Several research groups are therefore involved in the discovery of reversible MAO-A and MAO-B inhibitors. As mentioned above, such drugs may be used in the treatment of depression and Parkinson’s disease. One approach is the de novo design of novel molecules with affinities for MAO-A and MAO-B active sites. In a second approach, existing drugs may be reappropriated as MAO inhibitors. With this approach, approved drugs are screened for the possibility that they, in addition to their action at the indicated target, also act as inhibitors of MAO-A and/or MAO-B. Such drugs may then be applied as MAO inhibitors in the treatment of depression and Parkinson’s disease. From a toxicological point of view, it is also of importance to identify MAO-A inhibitory activities among existing drugs as this will alert to the occurrence of potential side effects such as the cheese reaction. In this study the second approach will be followed. This study will screen a virtual library of approved drugs for inhibitory activity towards MAO-A and MAO-B.
Molecular modeling may be used to screen virtual libraries of drugs as potential inhibitors of the MAO enzymes. This may conveniently be achieved by employing structure-based or ligand-based pharmacophore models.

In this study a virtual library of approved drugs was screened for secondary inhibitory activities towards the MAO isoforms with the use of structure-based pharmacophore models. There are several advantages to this approach. Molecular modeling aims at reducing the overall cost associated with the discovery and development of a new drug by identifying the most promising candidates to focus the experimental efforts on. It aids in understanding how a ligand binds to the active site of an enzyme. It is relatively easier to re-register a drug for a second pharmacological activity. This approach may also lead to drugs with a multi-target mode of action.

The structure-based pharmacophores were constructed using the known crystallographic structures of MAO-A and MAO-B with the inhibitors, harmine and safinamide, complexed in the active sites, respectively. Employing the MAO-A and MAO-B structure-based pharmacophore model in the virtual screening of a library of approved drugs, 45 compounds were found to map to the MAO-A and MAO-B pharmacophore models.

Among the hits, 29 compounds were selected for *in vitro* evaluation as MAO-A and MAO-B inhibitors. The IC$_{50}$ values for these compounds were determined. After *in vitro* evaluation, 13 compounds showed inhibitory activity towards MAO. Of the 13 compounds 3 showed interesting inhibitory activities. These compounds included caffeine (IC$_{50}$ = 0.761 µM for MAO-A and 5.08 µM for MAO-B), esomeprazole (IC$_{50}$ = 23.2 µM for MAO-A and 48.3 µM for MAO-B) and leflunomide (IC$_{50}$ = 19.1µM for MAO-A and 13.7 µM for MAO-B). The MAO inhibitory properties of caffeine and esomeprazole were further investigated.

The reversibility of MAO inhibition by caffeine and esomeprazole were determined by dialysis and dilution studies. Sets of Lineweaver-Burk plots were constructed to determine the modes of binding of these inhibitors to the MAO enzymes. Both caffeine and esomeprazole were found to be reversible and competitive inhibitors of MAO.
Dialysis of mixtures of caffeine with MAO-A and MAO-B resulted in the recovery of enzyme activity to levels of 97% and 96%, respectively. Dialysis of mixtures of esomeprazole with MAO-A and MAO-B resulted in the recovery of enzyme activity to levels of 93% and 88%, respectively. Similarly, dilution of mixtures containing esomeprazole and MAO-A/MAO-B resulted in the recovery of enzyme activity to levels of 94% and 87%, respectively. For the inhibition of MAO-A and MAO-B by caffeine and esomeprazole, the Lineweaver-Burk plots were indicative of a competitive mode of inhibition.

In an attempt to gain further insight, caffeine, esomeprazole and leflunomide were docked into models of the active sites of MAO-A and MAO-B. An analysis of the interactions between the enzyme models and the ligands were carried out and the results are discussed in the dissertation.

The results of the present study show that screening of a virtual database of molecules with a pharmacophore model may be useful in identifying existing drugs with potential MAO inhibitory activities. The search for new reversible MAO inhibitors for the treatment of diseases, including Parkinson’s disease and depression, may be facilitated by employing a virtual screening approach. Such an approach also may be more cost-effective than de novo inhibitor design. In addition, the virtual screening approach may alert to potential side effects of existing drugs that may arise as a consequence of a secondary inhibition of MAO.

Keywords: Monoamine oxidase, Esomeprazole, Inhibition, Competitive, Reversible, Caffeine
Uittreksel

Monoamienoksidase (MAO) is een enzym wat op die buitenste mitochondriale membraan voorkom en word as teken vir die behandeling van Parkinson se siekte en depressie beskou. MAO word as twee isovorme, MAO-A en MAO-B, geklassifiseer. Aangesien MAO-A en MAO-B onderskeidelik verantwoordelik is vir die metabolisme van serotonien en dopamien, word MAO-A-remmers vir die terapie vir depressie gebruik, terwyl MAO-B-remmers vir die behandeling van Parkinson se siekte gebruik word.

Die ouer, nie-selektiewe en onomkeerbare MAO-remmers word egter nie dikwels gebruik nie omdat hulle potensieel gevaarlike newe-effekte soos die kaasreaksie mag ontlok. Die kaasreaksie kom voor wanneer onomkeerbare MAO-A-remmers die metabolisme van tiramien in die spysverteringskanaal blokkeer. Tiramien kry gevolglik toegang tot die sistemiese sirkulasie en veroorsaak ’n hipertensiewe reaksie.

biblioteek van bestaande geneesmiddels ondersoek vir verbinding wat MAO-A en MAO-B rem.

Molekulêre modellering kan gebruik word om 'n virtuele biblioteek van geneesmiddels te ondersoek vir verbinding wat MAO-A en MAO-B rem. Vir hierdie doel kan struktuur-gebaseerde of ligand-gebaseerde farmakofoormodelle aangewend word.

In hierdie studie is 'n virtuele biblioteek van bestaande geneesmiddels ondersoek vir verbinding wat die MAO-isovorme rem, deur gebruik te maak van struktuur-gebaseerde farmakofoormodelle. Hierdie benadering het verskeie voordele. Molekulêre modellering kan die koste van die ontdekking en ontwikkeling van 'n nuwe geneesmiddel verlaag deur identifisering van die mees belowe middels waarop die eksperimentele pogings gefokus word. Dit is ook meer koste-effektief om 'n geneesmiddel te herregistreer vir 'n sekondêre farmakologiese aktiwiteit as om 'n nuwe geneesmiddel te registreer. Hierdie benadering mag ook lei tot identifisering van geneesmiddels met meervoudige werkingsmeganismes.

Die struktuur-gebaseerde farmakofoormodelle is ontwerp deur gebruik te maak van die kristallografiese strukture van MAO-A en MAO-B met die remmers, harmien en safienamied, gekomplekseer in die aktiewe setels van die onderskeie ensieme. Deur die MAO-A en MAO-B struktuur-gebaseerde farmakofoormodelle te gebruik, is 'n virtuele biblioteek van goedgekeurde geneesmiddels ondersoek vir verbinding wat as remmers kan optree. Daar is gevind dat 45 verbinding aan die MAO-A en MAO-B farmakofoormodelle pas.

Van hierdie 45 verbinding is 29 geneesmiddels vir \textit{in vitro} evaluasie, as MAO-A- en MAO-B–remmers geselekteer. Vir hierdie doel is die IC\textsubscript{50}-waardes van hierdie verbinding bepaal. Die resultate het aangedui dat 13 verbinding MAO remming teweegbring. Van hierdie 13 verbinding het 3 geneesmiddels noemenswaardige resultate getoon, naamlik, kafeïen, (IC\textsubscript{50} = 0.761 µM vir MAO-A en 5.08 µM vir MAO-B), esomeprasool, (IC\textsubscript{50} = 23.2 µM vir MAO-A en 48.3 µM vir MAO-B) en leflunomied, (IC\textsubscript{50} = 19.1 µM vir MAO-A en 13.7 µM vir MAO-B). Die MAO-remmende vermoë van kafeïen en esomeprasool is verder ondersoek.
Die omkeerbaarheid van MAO-remming deur kafeïen en esomeprasoool is met verdunningstudies bepaal. Lineweaver-Burk-grafieke is opgestel om die meganisme van MAO-remming te ondersoek. Daar is gevind dat beide kafeïen en esomeprasoool omkeerbare en kompeterende remmers van MAO-A en MAO-B is.

Na dialise van reaksies wat kafeïen en die MAO-ensieme bevat, is ensiemaktiwiteit tot vlakke van 97% en 96% vir MAO-A en MAO-B, onderskeidelik, herwin. Na dialise van reaksies wat esomeprasoool en die MAO-ensieme bevat, is ensiemaktiwiteit tot vlakke van 93% en 88% vir MAO-A en MAO-B, onderskeidelik, herwin. Verdunning van reaksies wat esomeprasoool en die MAO-ensieme bevat, het ook geleit tot die herwinning van ensiemaktiwiteit tot vlakke van 94% en 87% vir MAO-A en MAO-B, onderskeidelik. Vir die inhibisie van MAO-A en MAO-B deur kafeïen en esomeprasoool, was die Lineweaver-Burk grafieke aanduidend van 'n kompeterende remmingsmeganisme.

In 'n poging om verdere insig te kry, is die strukture van kafeïen, esomeprasoool en leflunomied in aktiewe setel-modelle van MAO-A en MAO-B gepas. 'n Analise van die interaksies tussen die ensiemmodelle en die ligande is uitgevoer en die resultate word in die verhandeling bespreek.

Die resultate van die huidige studie wys dat farmakofoormodelle gebruik kan word om 'n virtuele databasis te ondersoek vir bestaande geneesmiddels wat MAO-A en MAO-B kan rem. Hierdie benadering kan dus aangewend word vir die identifisering van nuwe omkeerbare MAO-remmers vir die behandeling van siektes soos Parkinson se siekte en depressie. Hierdie benadering is ook meer koste-effektief as die de novo ontwerp van nuwe geneesmiddels en kan ook 'n waarskuwing rig dat bestaande geneesmiddels newe-effekte kan hê as gevolg van hul sekondêre werking, naamlik remming van MAO.

Sleutelwoorde: Monoamienoksenidase, Esomeprasoool, Inhibisie, Kompeterend, Omkeerbaar, Kafeïen
Table of contents

LIST OF ABBREVIATIONS ..I-III

LIST OF FIGURES AND TABLES ..IV-XXI

Chapter 1: Introduction and rationale

1.1. Monoamine oxidase - general background ..1

1.2. Inhibitors of MAO ...4

1.3. Rationale of the study ..8

1.4. Hypothesis of the study ..10

1.5. Aim and objectives ..10

Chapter 2: Literature overview

2.1. Monoamine oxidase

2.1.1. General background ..12

2.1.2. Monoamine oxidase B ...13

2.1.2.1. Role of MAO-B in Parkinson’s disease ...13

2.1.2.2. Inhibitors of MAO-B ...17

2.1.3. Monoamine oxidase A ...22

2.1.3.1. Cheese reaction ...22

2.1.3.2. The role of MAO-A in Parkinson’s disease and depression24

2.1.3.3. Inhibitors of MAO-A ...27

2.1.4. Substrate specificities and localization of MAO ..29

2.1.5. Three dimensional structure of MAO ...30
2.1.6. *In vitro* measurement of MAO activity..37
2.1.7. Mechanism of MAO catalysis..40
2.1.8. Pharmacophores and modeling studies...45
2.1.9. Conclusion...50

Chapter 3: Molecular modeling

3.1. Introduction..51
3.2. Experimental methods
 3.2.1. Construction and screening of the pharmacophore models........52
 3.2.2. Molecular docking..55
3.3. Results
 3.3.1. Structure-based pharmacophore of MAO-A...............................58
 3.3.2. Structure-based pharmacophore of MAO-B...............................77
3.4. Summary..101

Chapter 4: Enzymology

4.1. Introduction..103
4.2. Enzymology...105
4.3. Materials and methods...105
 4.3.1. Determination of IC\textsubscript{50} values......................................106
 4.3.2. Recovery of enzyme activity after dilution..................................109
 4.3.3. Dialysis study..111
 4.3.4. Construction of Lineweaver-Burk plots......................................114
3.5. An example of a linear calibration curve.................................116

4.4. Results of the MAO inhibition studies with drugs that mapped
to the structure-based pharmacophore model of MAO-A
and MAO-B, but proved not to be inhibitors *in vitro*........................117

4.5. Results of the MAO inhibition studies with those drugs
which proved to be MAO inhibitors *in vitro*..................................142

4.6. Results of the MAO inhibition studies with
known MAO inhibitors..186

4.7. Summary..188

Chapter 5

Article 1: The inhibition of monoamine oxidase by esomeprazole........190

Chapter 6

Article 2: The interactions of caffeine with monoamine oxidase............207

Chapter 7: Conclusion ...222

Bibliography..230

Acknowledgements...240
List of abbreviations

<table>
<thead>
<tr>
<th>A</th>
<th>aspartagine</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cysteine</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>E</td>
<td>Esomeprazole</td>
</tr>
<tr>
<td>F</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>G</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamate</td>
</tr>
<tr>
<td>H</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>I</td>
<td>Inhibitor concentration at 50% inhibition</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>K</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>L</td>
<td>Lysine</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>Laz</td>
<td>Lazabemide</td>
</tr>
<tr>
<td>M</td>
<td>MAO</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenyl</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>Peroxisome proliferator-activated receptor gamma</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RIMA’s</td>
<td>Reversible inhibitors of MAO-A</td>
</tr>
<tr>
<td>SSRIs</td>
<td>Selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td>SET</td>
<td>Single electron transfer</td>
</tr>
</tbody>
</table>
T

Tyr Tyrosine
Tol toloxatone

V

V_{max} Maximum velocity
List of figures and tables

Figures

Figure 1.1 The oxidative metabolism of a primary amine by MAO
Figure 1.2 The structures of selected MAO substrates
Figure 1.3 Structures of iproniazid, (R)-deprenyl, rasagiline and moclobemide
Figure 1.4 The metabolic activation of MPTP by MAO-B
Figure 1.5 The structure of phenelzine
Figure 1.6 The structures of harmine and lazabemide
Figure 1.7 The structures of pioglitazone, phentermine and methylene blue
Figure 2.1 Neuropathology of Parkinson's disease
Figure 2.2 The oxidation of dopamine by MAO-A and MAO-B
Figure 2.3 The decarboxylation of L-dopa to yield dopamine
Figure 2.4 The structures of tranylcyromine and isoniazide
Figure 2.5 The structure of ladostigil
Figure 2.6 The structure of isatin
Figure 2.7 The structure of trans-trans-farnesol
Figure 2.8 The structure of safinamide
Figure 2.9 The cheese reaction. Tyramine can enter the circulation if not adequately metabolized by MAO. The presence of tyramine in the systemic circulation causes the release of noradrenaline. Noradrenaline release into the synaptic cleft is initiated by tyramine uptake into the adrenergic neurons. Noradrenaline can be
degraded, in the absence of MAO-A, by catechol-O-methyltransferase (COMT) (Youdim et al., 2006)

Figure 2.10 The structure of clorgyline

Figure 2.11 Localization of the substrate binding domain, the membrane binding domain and the FAD binding domain. FAD is coloured yellow. The substrate binding domain is coloured red, the FAD binding domain is coloured blue and the membrane binding domain is coloured green. The substrate and entrance cavities are coloured in cyan (Edmondson et al., 2009)

Figure 2.12 Structure of MAO-B bound to 1,4-diphenyl-2-butene (Edmondson et al., 2004)

Figure 2.13 Structure of MAO-A (Son et al., 2008)

Figure 2.14 Comparison of the active sites of MAO-A and MAO-B. Residue names and numbers are labeled according to MAO-A; the residues differing in MAO-B are labeled in parentheses. (Ma et al., 2004)

Figure 2.15 The oxidation of luminal in the presence of H₂O₂ and HRP produces light

Figure 2.16 The oxidative deamination of kynuramine to yield 4-hydroxyquinoline by MAO-A or MAO-B

Figure 2.17 The oxidation of Amplex Red to resorufin in the presence of horse radish peroxidase (HRP)

Figure 2.18 Peroxidase-linked continuous assays for MAO

Figure 2.19 The SET mechanism for MAO catalysis

Figure 2.20 Polar nucleophilic mechanism of MAO catalysis
Figure 2.21 The first step of the hydrogen atom transfer mechanism of MAO catalysis

Figure 2.22 Hydride transfer mechanism of MAO catalysis

Figure 2.23 An example of a pharmacophore model. The green spheres represent the H-bond acceptor feature, the purple spheres represent the H-bond donor feature and the cyan spheres are hydrophobic features

Figure 2.24 An illustration of shape constraints in a mixed query (left) and shape-only query (right)

Figure 2.25 Pharmacophore-based virtual screening workflow (Langer & Wolber, 2004)

Figure 3.1. Workflow for the construction of a structure-based pharmacophore model and screening of a virtual library

Figure 3.2. Workflow for docking ligands into the active sites of the MAOs

Figure 3.3. Graphical representation of the pharmacophore model derived from the structure of harmine using the *structure-based* approach. This model may be used to screen a virtual library for structures that bind to MAO-A. The green arrows represent hydrogen bond acceptor features, the purple arrows represent hydrogen bond donor features and the cyan spheres represent hydrophobic features

Figure 3.4. Graphical representation of the pharmacophore model derived from the structure of harmine using the *structure-based* approach. In this representation, only the shape feature is illustrated

Figure 3.5. A two-dimensional representation of the binding of harmine in the MAO-A active site
Figure 3.6. A three-dimensional representation of the binding of harmine in the MAO-A active site

Figure 3.7. A three-dimensional representation of acceptor features and their interacting residues and waters

Figure 3.8. A three-dimensional representation of donor features and their interacting residues and water molecule

Figure 3.9. Graphical representation of the pharmacophore model derived from the structure of safinamide using the *structure-based* approach. This model may be used to screen a virtual library for structures that bind to MAO-B. The green arrows represent hydrogen bond acceptor features, the purple arrows represent hydrogen bond donor features and the cyan spheres represent hydrophobic features

Figure 3.10. Graphical representation of the pharmacophore model derived from the structure of safinamide using the *structure-based* approach. In this representation, only the shape feature is illustrated

Figure 3.11. A two-dimensional representation of the binding of safinamide in the MAO-B active site

Figure 3.12. A three-dimensional representation of the binding of safinamide in the MAO-B active site. The most important interacting residues are also given. The hydrogen bonding is shown as a green dashed line

Figure 3.13. A three-dimensional representation of acceptor features and their interacting residues and waters.

Figure 3.14. A three-dimensional representation of donor features and their interacting residues and water molecule

Figure 4.1. Diagrammatic presentation of the protocol followed for the determination of IC$_{50}$ values
Figure 4.2. Diagrammatic presentation of the protocol followed for the determination of the recovery of enzyme activity after dilution of the enzyme-inhibitor complex

Figure 4.3. Diagrammatic presentation of the protocol followed for the determination of the reversibility of enzyme inhibition by dialysis

Figure 4.4. Diagrammatic presentation of the protocol followed to construct Lineweaver-Burk plots

Figure 4.5. Linear calibration curve constructed with 4-hydroxyquinoline (0.047–1.50 µM)

Figure 4.6. The structure of acyclovir

Figure 4.7. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of acyclovir (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of acyclovir. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor

Figure 4.8. The structure of atenolol

Figure 4.9. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of atenolol (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of atenolol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor

Figure 4.10. The structure of acetaminophen
Figure 4.11. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of acetaminophen (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of acetaminophen. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.12. The structure of betoxalol.

Figure 4.13. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of betoxalol (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of betoxalol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.14. The structure of esmolol.

Figure 4.15. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of esmolol (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of esmolol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.16. The structure of etambutol.

Figure 4.17. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of etambutol (expressed in µM). The concentration-response curves were constructed in triplicate (for MAO-A) and duplicate (for...
MAO-B) from the initial rates of kynuramine oxidation versus the logarithm of the concentration of etambutol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.18. The structure of flurbiprofen

Figure 4.19. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of flurbiprofen (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of flurbiprofen. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.20. The structure of midodrine

Figure 4.21. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of midodrine (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of midodrine. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.22. The structure of milrinone

Figure 4.23. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of milrinone (expressed in µM). The concentration-response curves were constructed in triplicate (for MAO-A) and duplicate (for MAO-B) from the initial rates of kynuramine oxidation versus the logarithm of the concentration of milrinone. The rates are expressed as the percentage of the catalytic rate recorded in the...
absence of inhibitor. This compound was evaluated to a maximal concentration of only 1 µM since it fluoresced at higher concentrations, and thus affected the measurement of the fluorescence of 4-hydroxyquinoline.

Figure 4.24. The structure of minaprine

Figure 4.25. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of minaprine (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of minaprine. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.26. The structure of naproxen

Figure 4.27. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of naproxen (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of naproxen. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor. This compound was evaluated to a maximal concentration of only 10 µM since it fluoresced at higher concentrations, and thus affected the measurement of the fluorescence of 4-hydroxyquinoline.

Figure 4.28. The structure of propranolol

Figure 4.29. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of propranolol (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of...
kynuramine oxidation versus the logarithm of the concentration of propranolol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor. For the measurement with MAO-B, this compound was evaluated to a maximal concentration of only 10 µM since it fluoresced at higher concentrations, and thus affected the measurement of the fluorescence of 4-hydroxyquinoline.

Figure 4.30. The structure of ritodrine

Figure 4.31. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of ritodrine (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of ritodrine. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.32. The structure of sulfanilamide

Figure 4.33. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of sulfanilamide (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of kynuramine oxidation versus the logarithm of the concentration of sulfanilamide. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.34. The structure of sulfisoxazole

Figure 4.35. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of sulfisoxazole (expressed in µM). The concentration-response curves were constructed in triplicate from the initial rates of
kynuramine oxidation versus the logarithm of the concentration of sulfisoxazole. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.36. The structure of tramadol

Figure 4.37. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of tramadol (expressed in µM). The concentration-response curves were constructed in triplicate (for MAO-A) and duplicate (for MAO-B) from the initial rates of kynuramine oxidation versus the logarithm of the concentration of tramadol. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.38. The structure of anagrelide

Figure 4.39. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of anagrelide (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of anagrelide. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.40. The structure of apomorphine

Figure 4.41. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of apomorphine (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of apomorphine. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.
Figure 4.42. The structure of caffeine

Figure 4.43. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of caffeine (expressed in mM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of caffeine. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.44. Reversibility of inhibition of human MAO-A (left) and MAO-B (right) by caffeine. MAO-A and MAO-B were preincubated for a period of 15 min with caffeine, at a concentration of $4 \times IC_50$. The mixtures were dialyzed for 24 h and the residual MAO activities were measured (Caff–dialyzed). For comparison, the MAOs were similarly preincubated in the absence (No inhibitor–dialyzed) and presence of the irreversible inhibitors, pargyline (Parg–dialyzed) and (R)-deprenyl (Depr–dialyzed), respectively, and dialyzed. The residual MAO activities of undialyzed mixtures of MAO-A and MAO-B with caffeine (Caff–undialyzed) are also shown.

Figure 4.45. Lineweaver-Burk plots of the oxidation of kynuramine by recombinant human MAO-A (top) and MAO-B (bottom). The plots were constructed in the absence (filled squares) and presence of various concentrations of caffeine. The concentrations of caffeine employed were $\frac{1}{4} \times IC_50$ (open squares), $\frac{1}{2} \times IC_50$ (filled circles), $\frac{3}{4} \times IC_50$ (open circles), $1 \times IC_50$ (triangles) and $1 \frac{1}{4} \times IC_50$ (diamonds), respectively.

Figure 4.46. The docked orientations of caffeine within the MAO-A and MAO-B active sites.

Figure 4.47. The orientation of caffeine in the MAO-A structure-based pharmacophore model.
Figure 4.48. The structure of dantroline

Figure 4.49. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of dantroline (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of dantroline. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.50. The structure of esomeprazole

Figure 4.51. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of esomeprazole (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of esomeprazole. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.52. Reversibility of inhibition of MAO-A (left) and MAO-B (right) by esomeprazole. The enzyme was preincubated with the test inhibitor at $10 \times IC_{50}$ and $100 \times IC_{50}$ for 30 min and then diluted to $0.1 \times IC_{50}$ and $1 \times IC_{50}$, respectively. As controls, MAO-A and MAO-B were also preincubated with pargyline and (R)-deprenyl, respectively, at $10 \times IC_{50}$ and subsequently diluted to $0.1 \times IC_{50}$. The residual enzyme activities were subsequently measured.

Figure 4.53. Reversibility of inhibition of MAO-A (left) and MAO-B (right) by esomeprazole. The MAO enzymes and esomeprazole, at a concentration of $4 \times IC_{50}$, were preincubated for a period of 15 min, dialyzed for 24 h and the residual enzyme activities were subsequently measured (Eso–dialyzed). For comparison, the MAOs were similarly preincubated in the absence (No inhibitor–
dialyzed) and presence of the irreversible inhibitors, pargyline (Parg–dialyzed) and (R)-deprenyl (Depr–dialyzed), respectively, and dialyzed. The residual MAO activities of undialyzed mixtures (Eso–undialyzed) of the MAOs with esomeprazole are also shown.

Figure 4.54. Lineweaver-Burk plots of the oxidation of kynuramine by recombinant human MAO-A (top) and MAO-B (bottom). The plots were constructed in the absence (filled squares) and presence of various concentrations of esomeprazole. The concentrations of esomeprazole employed were \(\frac{1}{4} \times IC_{50} \) (open squares), \(\frac{1}{2} \times IC_{50} \) (filled circles) and \(1 \times IC_{50} \) (open circles), respectively.

Figure 4.55. The docked orientations of esomeprazole within the MAO-A (top) and MAO-B (bottom) active sites.

Figure 4.56. The orientation of esomeprazole in the MAO-B structure-based pharmacophore model.

Figure 4.57. The structure of ethoxzolamide.

Figure 4.58. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of ethoxzolamide (expressed in \(\mu M \)). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of ethoxzolamide. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.59. The structure of hesperetin.

Figure 4.60. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of hesperetin (expressed in \(\mu M \)). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of hesperetin.
The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.61. The structure of leflunomide

Figure 4.62. Biotransformation of leflunomide to A77-1726

Figure 4.63. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of leflunomide (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of leflunomide. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.64. The docked orientations of leflunomide within the MAO-A (top) and MAO-B (bottom) active sites.

Figure 4.65. The orientation of leflunomide in the MAO-B structure-based pharmacophore model

Figure 4.66. The structure of ondansetron

Figure 4.67. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of ondansetron (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of ondansetron. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor.

Figure 4.68. The structure of pantoprazole

Figure 4.69. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of pantoprazole (expressed in µM). The concentration-response
curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of pantoprazole. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor

Figure 4.70. The structure of tolcapone

Figure 4.71. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of tolcapone (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of tolcapone. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor

Figure 4.72. The structure of tolmetin

Figure 4.73. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of tolmetin (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of tolmetin. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor

Figure 4.74. The structure of tolnaftate

Figure 4.75. The recombinant human MAO-A (left) and MAO-B (right) catalyzed oxidation of kynuramine in the presence of various concentrations of tolnaftate (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of tolnaftate. The rates are expressed as the percentage of the catalytic rate recorded in the absence of inhibitor
Figure 4.76. The recombinant human MAO-A catalyzed oxidation of kynuramine in the presence of various concentrations of toloxatone (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of toloxatone.

Figure 4.77. The recombinant human MAO-B catalyzed oxidation of kynuramine in the presence of various concentrations of lazabemide (expressed in µM). The concentration-response curves were constructed from the initial rates of kynuramine oxidation versus the logarithm of the concentration of lazabemide.

Tables

Table 2.1. The \(K_m \) and \(V_{max} \) values for well known substrates of MAO-A and MAO-B.

Table 3.1. The interaction energies of harmine with the active site residues and waters of MAO-A. Selected interactions among those that are most productive are shaded.

Table 3.2. A list of the compounds in the DrugBank which mapped to the pharmacophore model derived from the structure of harmine using the structure-based approach. These compounds represent drugs which are used systemically by humans. The shaded entries were found to be four feature hits.

Table 3.3. A virtual library of 20 test compounds (11 MAO-A inhibitors and 9 non-inhibitors) was screened with the pharmacophore model. Below is given a list of compounds that were found to be four feature hits. The shaded entries are known MAO-A inhibitors (\(IC_{50} < 5 \) µM). The structures, not shaded, are known to not bind to MAO-A. The pharmacophore model...
used, was derived from the structure of harmine using the *structure-based* approach.

Table 3.4. A virtual library of 20 test compounds (11 MAO-A inhibitors and 9 non-inhibitors) was screened with the pharmacophore model. Below is given a list of compounds that were not four feature hits. The shaded entries are known MAO-A inhibitors (IC$_{50}$ < 5 µM). The structures, not shaded, are known to not bind to MAO-A. The pharmacophore model used, was derived from the structure of harmine using the *structure-based* approach.

Table 3.5. The interaction energies of safinamide with the active site residues and waters of MAO-B. Selected interactions among those that are most productive are shaded.

Table 3.6. A list of the compounds in the DrugBank which mapped to the pharmacophore model derived from the structure of safinamide using the *structure-based* approach. These compounds represent drugs which are used systemically by humans. The shaded entries were found to be four feature hits.

Table 3.7. A virtual library of 30 test compounds (20 MAO-B inhibitors and 10 non-inhibitors) was screened with the pharmacophore model. Below is given a list of compounds that were found to be four feature hits. The shaded entries are known MAO-B inhibitors (IC$_{50}$ < 5 µM). The structures, not shaded, are known to not bind to MAO-B. The pharmacophore model used, was derived from the structure of safinamide using the *structure-based* approach.

Table 3.8. A virtual library of 30 test compounds (20 MAO-B inhibitors and 10 non-inhibitors) was screened with the pharmacophore model. Below is given a list of compounds that were not four feature hits. The shaded entries are known MAO-B inhibitors (IC$_{50}$ < 5 µM). The structures, not shaded, are known to not bind to MAO-B. The pharmacophore model used, was
derived from the structure of safinamide using the *structure-based* approach

Table 3.9. The drugs that were selected for *in vitro* evaluation as MAO-A and MAO-B inhibitors

Table 4.1. The principal interaction energies of caffeine with the active site residues of MAO-A

Table 4.2. The principal interaction energies of caffeine with the active site residues and waters of MAO-B

Table 4.3. The principal interaction energies of esomeprazole with the active site residues and waters of MAO-A

Table 4.4. The principal interaction energies of esomeprazole with the active site residues and waters of MAO-B

Table 4.5. The principal interaction energies of leflunomide with the active site residues of MAO-A

Table 4.6. The principal interaction energies of leflunomide with the active site residues and waters of MAO-B

Table 7.1. The structures of the compounds which possessed inhibitory activity towards MAO-A and/or MAO-B