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Abstract—Various factors influence the accuracy with which
the language of individual words can be classified using n-grams.
We consider a South African text-based language identification
(LID) task and experiment with two different types of n-
gram classifiers: a Naı̈ve Bayes classifier and a Support Vector
Machine. Specifically, we investigate various factors that influence
LID accuracy when identifying generic words (as opposed to
running text) in four languages. These include: the importance
of n-gram smoothing (Katz smoothing, absolute discounting and
Witten-Bell smoothing) when training Naı̈ve Bayes classifiers;
the effect of training corpus size on classification accuracy;
and the relationship between word length, n-gram length and
classification accuracy. For the best variant of each of the two sets
of algorithms, we achieve relatively comparable classification ac-
curacies. The accuracy of the Support Vector Machine (88.16%,
obtained with a Radial Basis function) is higher than that of
the Naı̈ve Bayes classifier (87.62%, obtained using Witten-Bell
smoothing), but the latter result is associated with a significantly
lower computational cost.
Index Terms: text-based language identification, smoothing,
character n-grams, Naı̈ve Bayes classifier, support vector ma-
chine.

I. INTRODUCTION

Code switching is the act of mixing words from different
languages within a single sentence. In running text, words
occurring side-by-side originally may have come from differ-
ent languages; that is, in a code-switched sentence or phrase,
it is typical to find individual words from one language
(referred to as the embedded language) embedded within a
larger sentence of a different language (referred to as the
matrix language) [1]. In regions with multiple languages, it
is a common act amongst younger generations to use mixed
language within text conversations [2]. A specific scenario is
the use of numerical digits, where people often prefer using
numbers from a different language to the matrix language.

In speech and text processing systems, identifying code-
switched words is important for applications such as machine
translation, speech synthesis, information extraction and pro-
nunciation prediction. For example, Bhargava and Kondrak [3]
showed that text-based language identification (LID) can be
used to improve the accuracy of grapheme-to-phoneme con-
version, and both Font Llitjos and Black [4] and Church [5]
demonstrated that being able to identify the language of origin
of a name (from its orthography) is important in being able
to predict the possible pronunciations of that name. In related
work, Basson and Davel [6] showed that the ability to identify

code-switched words from orthography alone can be a useful
step in building optimised grapheme-based automatic speech
recognition (ASR) systems.

We approach the LID task using n-grams. N-gram based
methods are widely used ( [7], [8], [9]), and highly suitable for
LID with small training sets and short test samples [9]. Botha
and Barnard [10] applied Naı̈ve Bayes (NB) classification and
Support Vector Machines (SVMs) using n-grams to 11 South
African languages, using segments of 15 to 300 characters
each. While smoothing was not investigated in [10], Vatanen
et al. [9] demonstrated the importance of smoothing when
using n-gram models to classify short text segments. The
current study extends previous contributions by comparing the
two classification techniques mentioned above (SVMs and NB
classifiers) for the classification of individual words rather
than general text segments; and by analysing the effect of
smoothing, specifically. In this context, the relationship be-
tween word length, n-gram length and classification accuracy
is also investigated.

The paper is structured as follows: Section II provides an
overview of different LID techniques. Section III describes
the methods used during experimentation in more detail.
Section IV provides an overview of the experimental approach
followed and describes the data set used. Section V presents
the various experiments and results. A summary of main
findings concludes the paper in Section VI.

II. BACKGROUND

In principle, the language origin of an input text string
can be estimated by creating a model per language (from
training data) and selecting the best-fitting model to predict
the language source of the input string. Statistical text-based
LID techniques include: Naı̈ve Bayes classification [10], rank-
ing methods [7], Markov models [8], [11], support vector
machines [12], decision trees [13] and k-nearest neighbour
classification [14]. Many LID experiments have adopted char-
acter n-gram models; such techniques have demonstrated good
performances over a variety of applications.

To the best of our knowledge, limited previous work has
focused on identifying the language of generic words in
isolation, with more results available with regard to LID
of running text. (Exceptions being [15], [13], [3], discussed
below.).



When classifying longer text segments, accuracy quickly
approaches 100% given enough text; for example, Cavnar
etal. [7] used rank difference to predict the distance between
the most frequent n-gram in the language model and the test
document. They extracted their evaluation set from Usenet
newsgroup articles written in 14 different languages. They
achieved an accuracy of 99.8% on text of 300 characters or
more, while retaining the first 400 most common n-grams up
to length 5. In related work, Kruengkrai etal. [12] showed
a similar result when classifying 17 languages with average
length of 50 bytes, while ignoring character-encoding system
during processing (that is, irrespective of the number of
characters, 50 bytes of data were used). They achieved an
accuracy of 99.7% with an SVM classifier.

Classification of a short textual fragment is more complex
due to the lack of contextual information. Short text seg-
ments include proper names, generic words in isolation and
very short sentences (less than approximately 15 characters).
Vatanen etal. [9] used the Cavnar ranking method and SVMs
to identify short text segments. They experimented with 281
languages using a fairly small training set, and for test samples
within the range of 5-21 characters, they obtained an accuracy
of less than 90%. Similarly, Bhargava and Kondrak [3] used
SVMs to classify proper names while training on a small data
set of 900 names and testing on 100 names. They obtained
their best identification rate of 84% using a support vector
machine with a radial basis function (RBF).

Not all methods can be applied to words in isolation,
with linguistic models (such as the stop words used by
Johnson [16] or the closed grammatical classes used by Lins
and Gonçalves [17]) not applicable to this task. One technique
that is not n-gram based that is worth mentioning, is the use of
a data compression model for LID, as introduced by Hategan
etal. [15]. They evaluated the performance of the algorithm
on individual names and isolated words from 6 European
languages, and reported an accuracy of above 80% on two-
best results.

N-gram based method has been compared directly to other
LID approaches in a number of studies. Hakkinen and Tien
[13] compared a decision tree and n-gram methods. They
concluded that the n-gram based method perform better on
longer text samples while decision trees do better on short
words like proper names. They also emphasised that the
decision tree method does well with learning lexical structure
information. In recent work, Baldwin and Lui [18] used SVMs
and the Naı̈ve Bayes algorithm for LID. Their experiment was
carried out on 17 European languages from Wikipedia. They
observed that SVMs performed better on short text segment
and concluded that the shorter the text the more difficult it is
to classify. Similarly, Vatanen et al. [9] experimented with two
classifiers and smoothing techniques in identifying short text
segments. Their reports show that Naı̈ve Bayes classification
outperformed a ranking method on sample text length in
the range of 5 to 21 characters. To increase identification
accuracy they test different smoothing techniques such as

Katz smoothing, absolute discounting, and modified Kneser-
Ney discounting. They observed the best result with absolute
discounting.

Apart from the sample text length, the accuracies of
these approaches depend on various other factors. Botha and
Barnard [10] discussed different factors that could influence
text-based LID accuracy. These factors included: size of the
training data, input text size, n-gram size, LID techniques
employed and language similarities.

III. METHODS

In this section, we describe the n-gram based classifiers and
smoothing techniques employed in further experiments.

A. LID using a Naı̈ve Bayes classifier

A Naı̈ve Bayes classifier uses the concept of Bayes’ the-
orem [19]. This classifier assigns the most likely class to
an input string, based on the highest a posteriori probability,
given the input string. For T-LID, a Naı̈ve Bayes classifier
can be constructed using n-grams as features. Let T be a set
of training samples and let each sample be represented by n
feature vectors, X = x1, x2, ..., xn, with their class labels. Let
there be m classes: K1,K2, .....,Km. To predict, a sample X
is selected to belong to class Ki, if and only if:

P (Ki | X) > P (Kj | X); for 1 ≤ j ≤ m; j 6= i (1)

where P (Ki | X) is the probability of a class Ki given a
sample. Bayes’ theorem states that:

P (Ki | X) =
P (X | Ki)P (Ki)

P (X)
(2)

where P (X | Ki) represents the likelihood of a sample X
belonging to class Ki, and P (X) does not influence model
comparison. The class a priori probability, P (Ki), represents
the count relative frequency in the sample set. According
to the Naı̈ve Bayes assumption, statistical independence of
features is assumed, and the class Ki is selected such that∏

j P (xj | Ki)P (Ki) is optimised, where P (xj |Ki) is then
the likelihood of a specific n-gram being observed in a given
language, and the word being classified consists of j n-grams.

B. Support Vector Machines

Support vector machines estimate a linear hyper-plane,
which separates two binary classifiers while maximising the
distance from the hyper-plane to the class samples. It was first
introduced by Vapnik [20].

Data normalisation or scaling is a sensitive part of SVM
training and testing. Normalisation is a way of reducing the
weight of frequent n-gram counts by preventing larger n-
gram counts from dominating smaller n-gram counts. Various
benefits are associated to normalising data, which include
speeding up training and avoiding computational complexity
with numerical values. For further details on which SVM
libraries were used, the size of n-gram models and how we
normalised our data, see Section V-D.



C. Smoothing in the context of LID

Rare or unseen n-grams can result in poor probability
estimates. ‘Smoothing’ refers to a range of techniques that
re-distribute probability density among rare or unseen to-
kens [21]. As maximum likelihood estimates (MLE) are
used by Naı̈ve Bayes classifiers to estimate class probability,
smoothing can help to address poor probability estimates,
which result in zero probability of missing n-gram sequence
models.

Different smoothing techniques have been proposed and
applied to the T-LID task [21], such as: Laplace smoothing
(simply adding one count across a data set), Katz smooth-
ing [22], Witten-Bell smoothing [23], absolute discount-
ing [24], Kneser-Ney discounting [24] and Jelinek-Mercer [25]
methods. We exclude Modified Kneser-Ney (regarded as a
state-of-the-art smoothing technique) from further experiments
due to the small vocabulary size of this task, since Modified
Kneser-Ney assumes a larger vocabulary size [21]. Rather,
this work focuses on three of the above-mentioned smoothing
techniques, as discussed below:

1) Katz backoff with Good-Turing discounting: In the
speech recognition domain, Katz smoothing is a widely used
smoothing technique [21]. It uses Good-Turing discounting
to calculate adjusted counts, C∗, which determine how much
probability density goes to unseen n-grams. Katz smoothing
can be represented as:

P ∗(xi | xi−1
i−N+1) =

C∗(xii−N+1)∑
xi
C∗(xii−N+1)

(3)

where C(x) counts how many times x appears in the training
set, xi represents the position of the ith character in the given
context, N is the n-gram parameter, and C∗ is an adjusted
count, with:

C∗(xii−N+1) = diC(x
i
i−N+1) if C(xii−N+1) > 0

= α(xi−N+1)P (xi) otherwise
(4)

where α represents a back-off weight and di a discount
ratio according to the Good Turing estimate. This distributes
leftover probability density to lower-order n-grams.

2) Witten-Bell discounting + interpolation : Witten-Bell
discounting defines models recursively in terms of linear
interpolation between the nth and (n − 1)th order maxi-
mum likelihood models. The discounted probability density is
evenly distributed in the training set among previously unseen
words with the same history. This can be represented as:

PWB(xi|xi−1
i−N+1) =

λxi−1
i−N+1

PMLE(xi | xi−1
i−N+1)

+ 1− λxi−1
i−N+1

PWB(xi | xi−1
i−N+2)

(5)

where xi represents position of the ith character in the
given context, λxi−1

i−N+1
is the discounted probability density,

and 1− λxi−1
i−N+1

is the probability mass that needs to be
distributed evenly to previously unseen types.

3) Absolute discounting + interpolation: Absolute dis-
counting uses a fixed discounting parameter, D, to reduce
probability mass of seen types by subtracting a fixed value.
Absolute discounting interpolates higher and lower-order n-
grams by using information from lower-order n-gram models.
For each seen type we subtract any fixed value between 0
and 1 from the higher-order n-gram. The estimated leftover
probability mass is assigned to lower-order n-grams.

Pabs(xi | xi−1
i−N+1) =

max(C(xii−N+1) − D, 0)∑
xi
C(xii−N+1)

+(1− λxi−1
i−N+1

)Pabs(xi | xi−1
i−N+2)

(6)

where xi represents position of the ith character in the given
context, D is the discount weight, and λ is a normalising
constant (that is, probability mass we have discounted).

IV. APPROACH

In our experiments, we aim to identify the language origin of
a single word at a time. Experiments are carried out on generic
text corpora from four South African languages, and results are
presented in terms of LID accuracy across all languages. Using
empirical measurements, we analyse the following aspects:

• For NB classifiers: the difference in classification ac-
curacy when using word types or tokens at different
training corpus sizes; and the implications of different
smoothing techniques for different n-grams at different
training corpus sizes.

• For SVMs: the effect of kernel choice.
• For both classifiers: the interplay between n-gram length,

word length and classification accuracy.

A. Experimental Data

Generic text in three South African languages (Afrikaans,
Sesotho, and isiZulu) were obtained from a pre-release of the
NCHLT text corpora [26]. These corpora were collected from
“gov.za” which is a South African government domain. This
domain is devoted to topics relevant to South Africa, which
include: news events across South Africa or beyond, speeches,
and statements from various cabinet meetings in the Republic
of South Africa. All text are encoded in UTF-8 format
to accommodate special characters found in Afrikaans and
Sesotho. Our South African English data was obtained from a
broadcast news corpus [27]. We performed text normalisation
to remove punctuation marks, numbers, formulae, dashes and
brackets.

The data is randomly partitioned into a training set (80%),
development set (10%) and test set (10%) based on the number
of characters in running text. Table I contains the original data
set, while Table II contains the newly partitioned set after
removing overlapping words from the test and development
set: that is, only unique words are retained. For the purpose
of this experiment, we will refer to Tables I and II as the
“all” and “unique” data sets, respectively. In Tables I and
II, “A” represents Afrikaans, “E” English, “S” Sesotho, and
“Z” isiZulu. The rationale behind the experiment is that the
text-based LID (on running text) results are typically obtained
by retaining multiple copies of the same token; word-based



TABLE I
Original data that contain all words. The number of unique words, total
number of characters and average word length per language are shown.

Total characters Unique Average word
words length

Training Set A - 1 840 494 A - 15 727 A - 13.64
E - 1 840 547 E - 15 765 E - 13.21
S - 1 840 697 S - 15 680 S - 13.80
Z - 1 840 570 Z - 15 799 Z - 13.38

Total 7 362 308 62 971
Development A - 221 040 A - 2 101 A - 13.28
Set E - 221 023 E - 2 060 E - 13.86

S - 221 087 S - 2 073 S - 12.78
Z - 220 933 Z - 2 114 Z - 12.87

Total 884 083 8 348
Test Set A - 221 140 A - 2 110 A - 13.28

E - 221 125 E - 2 080 E - 13.86
S - 221 007 S - 2 120 S - 13.18
Z - 221 041 Z - 2 111 Z - 13.80

Total 884 313 8 421

TABLE II
Repartitioned data set after removing repeated words. The number of unique

words, total number of characters and average word length per language
are shown.

Total characters Unique Average word
words length

Training Set A - 204 456 A - 15 727 A - 13.00
E - 204 751 E - 15 765 E - 12.99
S - 204 764 S - 15 680 S - 13.06
Z - 204 925 Z - 15 799 Z - 12.97

Total 818 896 62 971
Development A - 9 911 A - 740 A - 13.39

E - 9 931 E - 717 E - 13.85
S - 9 940 S - 738 S - 13.49
Z - 9 933 Z - 710 Z - 13.99

Total 39 715 2 905
Test Set A - 9 901 A - 744 A - 13.30

E - 9 961 E - 723 E - 13.78
S - 9 910 S - 745 S - 13.30
Z - 9 935 Z - 707 Z - 14.05

Total 39 707 2 919

LID results are typically obtained on dictionaries, where only
unique tokens are retained automatically.

In order to investigate the relationship between identification
accuracy and training-set sizes; we conduct a series of exper-
iments, which involves creating different training subsets of
different sizes from the “all” data set, namely: 250KB, 500KB,
1M, and 1.8M. To avoid bias of having the same words
that run across both the test set and train set; we construct
different data subsets by removing the identical words from
our data sets. Finally, our respective unique words extracted
for training are 75KB, 113KB, 162KB, and 204KB in size,
which are equivalent to our respective subset sizes; that is,
250KB, 500KB, 1M, and 1.8M. Table II shows our largest
unique data set (240KB) together with development and test
data set. We use the test and development set from Table II
across all experiments.

B. General discussion of our setup

In order to identify the language origin of individual words,
we generate text of different n-gram character lengths from

our corpus. All generic words include word boundary markers
(indicated by #); while we do not show the results here,
we observed that using word boundary markers improve
classification accuracy in all experiments. For each word all n-
grams are extracted, for example, the word #BREAD# would
be represented by the tri-grams #BR, BRE, REA, EAD, AD#.

During NB training, an n-gram model is trained, estimating
the probabilities of the individual n-grams based on their
counts in the training corpus. For example, when training
a tri-gram model, a vector of tri-gram values is created in
a T-dimensional space, where T is the number of possible
tri-grams, and each tri-gram in the vector is associated with
a specific likelihood estimate. For SVM training, a similar
T-dimensional vector is constructed, but now each training
sample is represented by the number of times a specific n-gram
occurs in that training sample. These T-dimensional training
samples are then used to train an SVM.

C. Evaluation

To evaluate the performance of the models, we evaluate their
accuracies based on certain criteria. We measure LID accuracy
as the proportion of correctly identified tokens in the test set,
compared to the total number of tokens in the test set. Each
test is characterised by the following parameters: language,
training data used (size, unique/all), adopted n-gram model
and technique employed.

V. EXPERIMENTS

This section focuses on evaluating the accuracy achieved by
the different n-gram models on the test set. We examine how
each n-gram model performs with different word lengths and
LID classifiers. We also investigate the influence of different
training data set sizes on accuracy. Our n-gram models range
from 1 to 7.

A. Naı̈ve Bayes Baseline Back-off

Our baseline model is based on a back-off technique that
estimates word probability for tokens with n-gram length
greater than or equal to the word length. Using standard Naı̈ve
Bayes, the probability of an n-gram with length greater than
or equal to the word length becomes zero. We need some
form of back-off to be able to produce results over all test
types regardless of word length or n-gram parameter (prior to
investigating more sophisticated smoothing techniques).

Our baseline strategy adopts a technique that backs off to
an n-gram size of the word length (W ), minus a fixed value
(x), where x is a small value. To obtain a suitable estimate
for our fixed value, x, we performed 5-fold cross validation
on our training data. We evaluate the effect of subtracting a
fixed value, x, by setting x in the range of W/2 to W , where
W represents total character counts per word without word
boundaries.

For our baseline model, we find W/2 as the most suitable
parameter for x . This back-off technique is used in our
baseline model in order for us to be able to compare with
more advanced techniques in later experiments.



TABLE III
Classification accuracy of baseline Naı̈ve Bayes systems trained on unique

types at different training sizes and evaluated on test set

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
250K 58.715 75.176 78.488 78.488 77.384 76.614 75.878
500K 58.884 73.771 78.555 78.554 77.852 77.016 76.447
1M 58.983 75.845 79.793 80.462 79.893 79.258 79.090
1.8M 58.983 76.179 80.261 80.763 80.027 79.425 79.190

B. Unique words vs. All words

In our first experiment, we examine the influence of using
unique words (types) against all words (tokens). A reduction
in computational complexity and training time are some of
the benefits of using types over tokens. We therefore examine
the influence of using only types against tokens in training,
using the data set from Table I, partitioned into different sized
subsets. For proper comparison, we use only one test data set
across all different subsets.

Figure 1 shows the classification accuracies obtained be-
tween “unique” and “all”, as defined above. It also shows the
relative difference in identification accuracy using different n-
gram models across various training data sizes. This baseline
result is based on the Naı̈ve Bayes baseline back-off described
in Section V-A. Most notable, smaller n-gram models benefit
most from the use of types while higher-order models perform
better under all tokens, with less than 1% percentage gain over
its lower-order models. These accuracies can be considered to
be corpus-dependent. For further experiments, we use types
over tokens (Table II), as this results in reduced training time
and computational complexity.

Fig. 1. Difference in LID accuracy when comparing the baseline n-gram
models trained using only unique tokens with one trained on all tokens. Results
are provided at different training set sizes.

Table III shows the overall identification accuracy of the
Naı̈ve Bayes Baseline back-off method across various data
sizes. With smaller data sets, higher-order n-gram models
show poor performance, with 7-gram model producing the

worst performance. With more training data we observe an
improvement in accuracy across all models; however, we
notice larger improvement on lower-order n-gram models with
4-gram model benefiting most.

Note that classification accuracy increased for all models
with more training data. This means that we were unable
to achieve asymptotic performance with the data sets avail-
able, which implies that higher accuracies are possible with
increased training data.

C. Smoothing Analysis

Tables IV, V, and VI show classification accuracies of
three smoothing techniques using different n-gram models and
training data sets. The question is how we handle unseen
features in our test data. Smoothing methods help to better
deal with data sparseness by borrowing probability mass from
higher-order n-grams and redistributing it among lower-order
n-grams.

We estimate the discount parameter value (D) for absolute
discounting by applying 5-fold cross-validation on the training
set. To avoid overfitting and reduction in likelihood of the held-
out data, we opt for a discount value that keeps the likelihood
of the held-out data stable across the validation set.

As expected, with more training data, performance increases
with n-gram length. Also, we observe a reduction in clas-
sification accuracy from the 6-gram model upwards. This is
probably due to both the average word length of our data set,
and increased data sparsity of higher order models.

In conclusion, for the current data set, the 4-gram model
seems to be the preferred model across all three modelling
techniques employed. The best accuracy (of 87.72%) was
obtained using Witten-Bell discounting. This outperformed
both absolute discounting and Katz smoothing, even though
the difference in accuracies are relatively small. In general
(for higher-order models) we see an 8% accuracy increase,
when comparing Witten-Bell discounting to the same n-gram
model without smoothing.

TABLE IV
Classification accuracy using Witten-Bell smoothing at different n-gram

lengths, evaluated on test set.

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
250K 72.767 83.239 85.212 85.781 85.279 84.811 84.778
500K 72.968 82.971 84.978 85.781 85.480 84.978 84.711
1M 72.700 83.673 86.417 86.250 86.785 86.283 86.183
1.8M 73.202 84.008 86.584 87.722 87.387 87.554 87.287

TABLE V
Classification accuracy using Katz smoothing at different n-gram lengths,

evaluated on test set.

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
250K 72.533 82.937 84.343 85.212 84.778 84.744 84.744
500K 72.968 83.272 85.012 85.614 85.882 85.547 85.547
1M 64.604 82.168 85.079 84.778 84.911 85.212 85.212
1.8M 73.202 84.108 86.751 87.487 86.986 86.818 86.818



TABLE VII
LID accuracy using a Linear Kernel at different n-gram lengths, evaluated

on the test set.

2-gram 3-gram 4-gram 5-gram
250K 83.506 85.012 84.744 77.651
500K 83.473 85.547 84.778 83.473
1M 84.610 86.718 86.317 84.778
1.8M 84.744 87.454 86.986 83.674

TABLE VIII
LID accuracy using an RBF kernel at different n-gram lengths, evaluated on

the test set.

2-gram 3-gram 4-gram 5-gram
250K 85.012 86.685 85.012 81.632
500K 85.982 86.283 85.881 82.335
1M 86.952 87.086 87.621 84.744
1.8M 87.789 88.123 88.157 84.376

Fig. 2. LID accuracy of words of different lengths, when training with 1.8M
data set, evaluated on test set.

Fig. 3. LID accuracy of words of different lengths, when training with
250KB dat set, evaluated on test set.

TABLE VI
Classification accuracy using Absolute Discounting (d = 0.24) at different

n-gram lengths. Accuracy evaluated on test set while d calculated by
applying 5-fold cross-validation on training set.

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
250K 72.800 83.406 85.112 85.815 84.844 84.410 84.041
500K 72.633 83.205 84.978 85.313 85.346 84.543 84.343
1M 72.432 83.607 86.517 86.183 86.417 85.982 85.647
1.8M 72.968 84.008 86.484 87.354 86.685 86.618 85.714

D. Support Vector Machines

Using SVMs for classification involves four decisions vital
to proper classification: (1) data preparation, which concerns
selection of the training data and deciding how many classes
should be included; (2) converting samples to feature vectors,
where each sample in a training set should contain a class
label, feature index and feature value; (3) data normalisation
or scaling, in order to prevent over-fitting (which results in
a zero mean and unit variance); and (4) proper choice of
SVM kernels for good classification accuracy. Determining
the kernel of choice also involves setting various hyper-
parameters associated with a specific kernel. Predicting ideal
hyper-parameter values can be achieved using a grid search
on the development set.

This experiment employed two SVM libraries namely:
LibSVM [28] and LIBLINEAR [29] for classification. These
two libraries use different methods for multi-class classifica-
tion. LIBSVM uses one-against-one method for classification,
where one SVM is constructed for each pair of classes, clas-
sification is performed using a voting strategy. LIBLINEAR
uses one-against-rest, where a classifier is trained for each
class, prior to voting.

We carried out our experiment with two widely used kernels
namely: a Radial Basis Function (RBF) and a linear kernel.
The SVM training set was generated by combining n-grams
across languages to create the SVM training set. Each selected
model has a feature dimension equal to the number of n-
gram combinations. After creating our feature vectors, we
scaled each attribute in the range of [0, 1] in our training
set. The same scaled value used in building our model was
used to scale the test and development set. We performed
5-fold cross validation on our training set to obtain optimal
kernel parameters. We limit our n-gram model length to 5-
gram due to the longer training time and extensive resource
usage associated with higher-order n-gram models.

Tables VII and VIII show classification accuracies obtained
using the RBF kernel and linear kernel (respectively) and
different n-gram models across various training data sets. All
models improved with more training data, and the RBF kernel
produced higher accuracies than the linear kernel.

E. Effect of various corpus sizes on LID accuracies

The size of the training data set is one of the factors that
influences LID accuracy of running text. For the task at hand,
what effect does different training data sizes have on accuracy,



TABLE IX
A comparison of LID accuracy for different classifiers investigated.

NB (n=4) WB (n=4) Katz (n=4) ABS (n=4) Linear (n=3) RBF (n=3)
250K 78.488 85.781 85.212 85.815 85.012 86.685
500K 78.555 85.781 85.614 85.313 85.547 86.283
1M 80.462 86.250 84.778 86.183 86.718 87.086
1.8M 80.763 87.722 87.488 87.354 87.454 88.123

and how do different classifiers and smoothing techniques
perform as training data sizes increase?

In Table IX, results are shown for different LID techniques
and training set sizes. On the smallest data set, NB with
smoothing techniques outperformed the SVM with a linear
kernel. For all training set sizes investigated, an SVM with an
RBF kernal performed best. NB classification with absolute
discounting and Witten-Bell smoothing, as well as SVM
classification with a linear kernel, shared similar performance
across a range of training data sizes.

F. Effect of word length on classification accuracy
In this section, we want to analyse another factor that

influences classification accuracy. We are interested to see
how classifiers and smoothing techniques perform at different
word lengths. Using our largest and smallest training data sets,
figures 2 and 3 show the classification accuracy achieved when
evaluating words with different character lengths.

The fluctuation in classification accuracy for words shorter
than 5 characters could be due to the fact that these words
occur fairly infrequently in the test data set. The SVM RBF
classifier obtained the highest performance for short character
lengths (5 characters or less), while Naı̈ve Bayes classifica-
tion achieved the worst performance for the same scenario.
With longer words (20 characters or more), the Naı̈ve Bayes
classifier achieves a classification accuracy of 100%. This
result confirms previous results on using Naı̈ve Bayes for long
sentences. Also, with 12 or more characters, the difference in
classification using Naı̈ve Bayes with and without smoothing
becomes insignificant.

VI. CONCLUSION

This paper examined two different classification methods
which can be applied to LID of generic words in isolation.
The analysis showed that high LID accuracy can be achieved
on words in isolation using both methods.

We investigated the difference between using unique types
and all tokens when training a Naı̈ve Bayes classifier, and
found a computational win when using unique types (that
was not offset by any loss in LID accuracy). As our baseline
classifier, we used a Naı̈ve Bayes back-off method for words
with character length greater than or equal to the n-gram model
parameter. This method produced good results across all n-
gram lengths.

The Naı̈ve Bayes classifier achieved an identification ac-
curacy of 80.76% using a 4-gram model when tested on
unique types. To reduce the total number of unseen tokens
as the n-gram model increases, we experimented with Katz
smoothing, Absolute Discounting and Witten-Bell smoothing.
Amongst the three smoothing techniques, Witten-Bell smooth-
ing achieved the best performance, but only with a small
margin (less than 1%). Smoothing improved average classi-
fication accuracy for higher order n-grams by a percentage of
approximately 8% (from 79.89% to 87.55%).

The highest classification accuracy of 88.12% was obtained
using an SVM with an RBF kernel and an n-gram length of
n = 3. This classifier clearly outperformed the Naı̈ve Bayes
classifier without smoothing, with NB classification accuracy
improving considerably when smoothing is used.

To conclude, our experiments show that better identification
can still be achieved with more training data. Achieving an
asymptotic performance depends not only on the available data
set; it also depends on the word length, with longer words
achieving very high accuracies on the 1.8M data set. For the
four language task studied, the accuracy of the Support Vector
Machine (88.16%, obtained with a Radial Basis function)
was higher than that of the Naı̈ve Bayes classifier (87.62%,
obtained using Witten-Bell smoothing), but the latter result
was associated with a significantly lower computational cost.
As the computational cost increases as the training set size
increases, both techniques will be usable in future work, based
on the trade-off between accuracy and computational cost
required for a specific application.
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[9] T. Vatanen, J. J. Väyrynen, and S. Virpioja, “Language identification
of short text segments with N-gram models.” in Proc. LREC, 2010, pp.
3423–3430.

[10] G. R. Botha and E. Barnard, “Factors that affect the accuracy of text-
based language identification,” Computer Speech & Language, vol. 26,
no. 5, pp. 307–320, 2012.

[11] A. Xafopoulos, C. Kotropoulos, G. Almpanidis, and I. Pitas, “Language
identification in web documents using discrete HMMs,” Pattern recog-
nition, vol. 37, no. 3, pp. 583–594, 2004.

[12] C. Kruengkrai, P. Srichaivattana, V. Sornlertlamvanich, and H. Isahara,
“Language identification based on string kernels,” in Proc. ISCIT, 2005,
pp. 926–929.

[13] J. Hakkinen and J. Tian, “N-gram and decision tree based language
identification for written words,” in Proc. ASRU, 2001, pp. 335–338.

[14] P. Sibun and J. C. Reynar, “Language identification: Examining the
issues,” in Proc. SDAIR, 1996, pp. 125–135.

[15] A. Hategan, B. Barliga, and I. Tabus, “Language identification of
individual words in a multilingual automatic speech recognition system,”
in Proc. ICASSP, 2009, pp. 4357–4360.

[16] S. Johnson, “Solving the problem of language recognition,” Technical
report, School of Computer Studies, University of Leeds, Tech. Rep.,
1993.
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