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Abstract and key terms

The Black-Scholes model and its assumptions has enduréairitshare of criticism.
One problematic issue is the model’s assumption that masidetility is constant.
The past decade has seen numerous publications addrdssimgstie by adapting the
Black-Scholes model to incorporate stochastic volatilitythis dissertation, American
put options are priced under the Heston stochastic vajatiiodel using the Crank-
Nicolson finite difference method in combination with thejected Over-Relaxation
method (PSOR). Due to the early exercise facility, the pgaf American put options
is a challenging task, even under constant volatility. €e the pricing problem un-
der constant volatility is also included in this dissedati It involves transforming the
Black-Scholes partial differential equation into the heiation and re-writing the pric-
ing problem as a linear complementary problem. This lineangimentary problem is
solved using the Crank-Nicolson finite difference methodambination with the Pro-
jected Over-Relaxation method (PSOR). The basic prinsifdedevelop the methods
necessary to price American put options are covered ancetteseary numerical meth-
ods are derived. Detailed algorithms for both the constadtthe stochastic volatility
models, of which no real evidence could be found in litematare also included in this
dissertation.

Key terms: Early exercise boundary, free boundary value problem alir@mpli-

mentary problem, Crank-Nicolson finite difference methehjected Over-Relaxation
method (PSOR), stochastic volatility, Heston stochasilatility model.



Opsomming en sleutelterme

Die Black-Scholes model en sy aannames word al vir 'n geraydeyekritiseer. Een
van die hoof probleemareas is die model se aanname van 'takaewolatiliteit. Oor
die afgelope dekade is heelwat navorsing gedoen om hierdldgem aan te spreek
deur die Black-Scholes model te inkorporeer binne 'n stiigss model. In hierdie
dissertasie word die Amerikaanse verkoopsopsie onder dgtoA stogastiese model
geprys deur gebruik te maak van die Crank-Nicolson eindifjerdnsiemetode tesame
met die geprojekteerde oorverslappingsmetode (PSOR)piDiges van prysbepaling
van Amerikaanse verkoopsopsies, selfs onder konstan#ditedl is gekompliseerd
omdat die Amerikaanse opsie voor die vervaldatum uitgeokén word. Die kon-
stante volaliteitprobleem word ook in hierdie dissertasigedig beskryf. Die konstante
volaliteitprobleem behels die transformasie van die Bl&ckoles parsié differensi-
aalvergelyking na die hittevergelyking. Die probleem wdah herskryf as 'n ligére
komplimengfe probleem wat opgelos word met behulp van die Crank-Nicoésndige
differensiemetode tesame met die geprojekteerde ooapgrisigsmetode (PSOR). Die
basiese beginsels wat benodig word om 'n metode te ontwikikiegebruik kan word
om die waarde van 'n Amerikaanse verkoopsopsie te bepaal Wwespreek en die
nodige numeriese metodes word afgelei. Gedetaileerdeitalgs vir beide die kon-
stante en die stogastiese volatiliteitsmodelle, word oakié dissertasie ingesluit.

Sleutelterme: Vroe€ uitoefengrens, vrye grenswaardeprobleengdie komplimerdg'e
probleem, Crank-Nicolson eindige differensiemetodergjelteerde oorverslappingsme-
tode (PSOR), stogastiese volatiliteit, Heston stogastietatiliteitsmodel.



Nomenclature

» General
t: Time.
T: Exercise date, date of maturity.
S Underlying stock price.
S: Underlying stock price at time
S: Underlying stock price at the beginning of the option caaotr
Sr: Underlying stock price at the end of the option contract.
K: Strike price.
r: Current interest rate.
C: American call option price.
PAM American put option price.
c: European call option price.
p: European put option price.

» Chapter Two
u: Constant drift of the underlying asset.
o: Constant volatility of the underlying asset.
W: Wiener process.
V: Option price.
dS Change in underlying asset price.
dt: Change in time.

» Chapter Three
I: Value of a portfolio.
St (t): Critical asset price.
A(S(t)): Option payoff function.
u(x, 7): Function of two variables used to solve option pricing peal under
constant volatility.
x: Transforming variable relatin§andK.
T: Transforming variable relatingandT .




f(x,7): Function of two variables related B\™.
k: Transforming variable relating andr.

a: Constant relating functions andu.

B: Constant relating functions andu.

g(x, 7): Transformed payoff function.

Chapter Four

M: Number of intervals on the-axis.

m: Indexing on ther-axis, wheran=0,..., M.

oTt: Interval length on the-axis.

Xmax. Maximum value on the&-axis.

Xmin: Minimum value on thex-axis.

N: Number of intervals on the-axis.

n: Indexing on thex-axis, wheren=20,...,N.

ox: Interval length on the-axis.

V(x, T): Approximation of the true solutioa(x, 7).

a: Relationship between die interval lengtds, and dx.

6: Variable that can be manipulated to select either the Exgl = 0), Implicit
(6 =1) or Crank-Nicolsonf = %) finite difference methods.

w: Relaxation parameter of the SOR and the PSOR iterativeadsth

Chapter Five

W;: Wiener process related to the stock in the asset price model
Ws: Wiener process related to the variance in the asset prickeino
p: Correlation coefficient betweaf; andWs.

y: Volatility of volatility.

B: Long term variance.

a: Rate of mean reversion.

9. Market price of risk.

Lu: Heston operator.

u(x,y, T): Function of three variables used to solve option pricingpbfgm under
stochastic volatility.

x: Underlying stock price.

Xmax Maximum stock price.

Xmin: Minimum stock price.

y: Variance.

Ymax Maximum variance.

m: Number of internal nodes on thxeaxis.

Ax: Interval length on the-axis.

i: Indexing on thex-axis, where =0,...,m+ 1.

n: Number of internal nodes on tlyeaxis.

Vi



Ax: Interval length on thg-axis.

j: Indexing on the/-axis, wherej =0,...,n+ 1.

I: Number of internal nodes on threaxis.

AT: Interval length on the-axis.

k: Indexing on ther-axis, wher&k =0,...,1 +1.

aaqdq: Additional constant introduced to ensure coefficient matr diagonally
dominant.

Cadg: Additional constant introduced to ensure coefficient matr diagonally
dominant.

vii
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Chapter 1

Introduction

Examining the global options and futures industry, one fids this industry grew by
11,4% in 2011 to an amount of 287 billion contracts traded per year. This is slightly
down on past years’ numbers. Looking at the broader pictihesandustry has grown by
60,9% in the past 5 years. Emerging markets such as China, Bliadid and Russia,
who seem to have been only slightly affected by the downtof2908 and 2009, were
the main contributors to this growth number (Acworth 20148), 2

In a study conducted by the Futures Industry Associatioangpse from 81 world wide
exchanges revealed that the Asia-Pacific region boastegréla¢éest growth number in
2011, impressing with 39%. This region was followed by Ndktherica with a rise of
33% and Europe with 20% growth for 2011 (Acworth 2012, 24).

Of the total 114%, the options market grew by /1% in 2011 compared to futures,

which only grew by 74% (Acworth 2012, 24). It is also well-known that most op-
tions traded on international exchanges and over the coareeAmerican style. These

include options on stocks, stock indexes, interest ratesjgn currencies, energy and
commodities (Feng, Linesky, Morales & Nocedal 2011, 814).

Traditionally, option prices are computed using the Bl&dkoles model. This model
makes various assumptions about financial markets and qudasity it has shortcom-
ings. One such an assumption is that the volatility of theatlythg asset is a constant
value. Since volatility is not an observable parametes thékes the use of this model
even more obsolete (Kau 2009, ii). Therefore, option pgeimodels that take stochastic
volatility into account produce more realistic solutiohattireflect current market data.
This dissertation aims to address the issue of accurately pwaying market indi-
cators by pricing American style put options using the Hesta stochastic volatility
model.



However, the process of pricing an American put option usiiegBlack-Scholes model
in itself is a challenging task. This can be attributed toghdy exercise facility offered
by the American put as it raises the question: “Well, when eptimal to exercise this
option?” Due to this problem’s complexity, no generic clb$erm solution exists and
therefore various numerical methods are used to obtaingtiercs price. So, before
one can even wish to solve the pricing problem under stoichastility, it is vital to
first understand the process of pricing an option using ataahsolatility model.

This dissertation is divided into two sections: the firsttmecis devoted to solving
the American put problem using the traditional Black-Selsahodel. The second sec-
tion covers the Heston stochastic volatility model and egspi to the pricing of these
options. There are numerous methods that can be used totkely®icing problem.
However, this study focusses on the Crank-Nicolson imipficite difference method
which is used in conjunction with the Projected Successiver®elaxation iterative
method (PSOR). The aim is to develop a comprehensive dhgotihat prices Ameri-
can put options under both constant and stochastic voyatyi incorporating both the
Crank-Nicolson implicit finite difference method and the@¥S method. One moti-
vation for this aim is that algorithms are very compact fonstant volatility models
(Seydel 2009, 175) and no such algorithms seem to be awaflab$tochastic volatility
models.

SECTION I: CONSTANT VOLATILITY MODEL: BLACK-SCHOLES MODEL

This section comprises three chapters. Chapter two intexiboth the world of op-
tions and matrix algebra. In addition, it offers a brief brgtof options. This chapter
aims to introduce the mathematician to the financial sphedelze reader with a back-
ground in finance to matrix algebra, which is vitally impottavhen solving the pricing
problem using the finite difference method.

As previously mentioned, American put options offer theimounique computational
challenges. This is due to tlearly exercise featuref these options that requires the
adaptation of the Black-Scholes partial differential égurainto theBlack-Scholes par-

tial differential inequality This adaptation of the Black-Scholes model enables one to
define the option pricing problem agrae boundary value problemi\fter a formal dis-
cussion of the free boundary value problem, the pricing lerolis finally presented as
alinear complimentary problem (LCP$ince no analytical method is available to price
American put options, a numerical method is required toestive linear complimen-
tary problem. The different forms of the problem’s formidatcan be found in chapter
three.



Chapter four introduces the reader to fhrete difference numerical methpahich is
used to solve the linear complimentary option pricing peotl The chapter employs
the iterativeprojected successive over relaxation method (PIOR)lve the tridiagonal
system, subsequently obtained from applying the finiteetgiice method. In addition,
the chapter provides an algorithm of the whole numericat@dare, and the interested
reader can find the MATLAB code in the appendix.

Additional topics that can be found in chapter four include:

» Adiscussion of the explicit, implicit and Crank-Nicolsonplicit finite difference
methods.

» The various methods, both direct and iterative, that canseel to solve tridiago-
nal systems of equations.

* The convergence of the iterative methods: Jacobi, Gaeg®elSand Successive
Over Relaxation (SOR).

SECTION II: STOCHASTIC VOLATILITY MODEL: HESTON MODEL

The variables of the Heston stochastic differential equistiare timet), underlying
asset value§) and variancey(). Due to the additional variable, the Heston model has
an additional spacial dimension. This complicates therdiszation and solution pro-
cedures and makes the numerical method computationallg enqrensive.

Chapter five starts with a formal definition of tieston operatar It states this par-
tial differential equation’s initial and boundary conditis and this enables researchers
to formulate the pricing problem under stochastic voligtih its linear complimentary
problem (LCP)form. The remainder of chapter five is devoted to the discagbn of
the Heston operator with an in-depth discussion of the cedrihat result from apply-
ing the finite difference method. The MATLAB code for this #ipation can also be
found in the appendix.

The goal of the dissertation is to offer a clear understapdinthe American put op-
tion pricing problem solved with the use of the Heston stetihavolatility model. This
will enable readers to approach more complicated pricingetsowith bold confidence
in the future.



Chapter 2

Background Theory

This chapter addresses some of the background theory thdtewnised in the remain-
der of the dissertation. It aims to help two types of read#érgse from the field of

mathematics, unfamiliar to the world of finance, and thosenfthe financial indus-

try, unfamiliar with the intimidating topic of matrix alged, by introducing some basic
topics from both fields.

2.1 The history of options

A study of the history of options reveals that these finanostruments are not modern
inventions, as is generally assumed. Their origin can lxetrédack to ancient Greece,
where a fifth century B.C. philosopher, Thales of Miletusyaged in trading to prove
to society that if philosophers wanted to be rich, they cdaddin doing so he aimed to
address the eternal questi6ti,you are so smart, why aren’t you rich?”

Thales noticed that Miletus’ seasonal olive crop yieldeddyoeturns in favourable
weather conditions and therefore he decided to put a deposiil the olive presses
in the region. During the harvest season, the demand foe pligsses grew exponen-
tially due to the exceptional yield of the olive crop and thetfthat olives were not a
storable resource. Thales subsequently sublet the okgsps and by doing so, made a
substantial profit.

Thales created an option on the olive crop. If the crop hdddahe would merely loose
his deposit. However, in the event of a successful crop, hddueap the rewards by
paying the initial premium and then making a seemingly liesis profit (Forsyth 2008,
3)
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Options where, however, officially only traded on an excleang 26th April 1973.
The Chicago Board Options Exchange (CBOE) was the first taterstandardized,
listed options. Back then, there were only calls on 16 stegks puts being introduced
in 1977. Today, options are traded on over 50 exchanges winigd(\Wilmott 2000a,
21). Many banks and other financial institutions trade thesmr ¢he counter (OTC)
(Hull 2000, 5).

It is interesting to note that after the 2008 financial crisisecame clear that the growth
of the over the counter markets and their severe complexifstiopped the financial in-
dustry’s capacity to manage them. The value of assets tiaeeame difficult to assess
and banks lost confidence in each other. The events of 20@&dhé¢d highlight the
advantages of regulated exchanges. The Dodd-Frank hiledigh June 2010, aimed
at putting regulatory measures in place for the Americamfire system- supports the
idea of exchange trading and more standard over the coystiens (DuFour 2011, 11).

2.2 Basic option theory

2.2.1 Whatis an option

Risk is a core component of all financial investments made. mhnagement of risk is

a highly specialized field with analysts constantly idesmitifj, measuring and managing
the risks involved in investment. A sure way to minimize rigkto take out insurance
against it. This is the premise on which derivatives werater@. Derivatives offer a

certain level of insurance against financial loss (Chan€320).

An options is a type of financial derivative that represertgal contract between two
parties. It is sold by one party (the option writer) and paszd by the other (the option
holder). There are two main types of optionsca@ll option offers its holder the right,

but not the obligation, tbuya specific underlying asset for an agreed upon amount at a
specified time in the future. On the other hanghua optionoffers its holder the right,

but not the obligation, teell a specific underlying asset for an agreed upon amount at a
specified time in the future (Wilmott 2000a, 22).

The two types of options encountered in this dissertati@nfanerican options and
European options. The difference between the two is thatrfsare options can be ex-
ercised at any time spanning the commencement date to tbeofiataturity whereas
their European counterparts, can only be exercised at teefimmaturity (Hull 2000, 6).
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Defining an option in more detail (notice the notation used) Hnds:

* Attimet=0
The buyer purchases the option at an option premiXinT his option premium
or price is what is calculated in later chapters The value of the underlying
asset at timeg,= 0, isS. The option contract is only binding for a specific period
of time and spans the interval Ot < T. Where timet =T is known as the
exercise date. The option offers it’s holder the choice ypdnsell the underlying
asset contained within the option contract at a predetexanice, the strike price
K, regardless of the actual price of the underlying as$ghe option holder buys
or sells the underlying asset, he is said to exercise thermpti

e TimeO<t<T
If the holder purchased an American style option, he can shoo exercise this
option at any time on or before the exercise da@teTherefore, American options
can be exercised prematurely (Hull 2000, 6).

o Attimet=T
Both the American and the European option holder can chansedrcise the
option at timeT (Hull 2000, 6). Remember that if the holder wishes to do se, th
underlying asset is either purchased or sold at the predeted price (the strike
price,K), and not at the asset price at matury, Therefore, the option holder
is protected from fluctuations in the asset price. If theapholder does not wish
to exercise his option, he merely looses his initial premiX¥m

2.2.2 Option payoffs

The option payoff depends on the type of option held and trstipa taken on the
option. Each option contract has two potential positions:

1. The long position
This position is taken by a client/investor who choosdaupan option, becoming
anoption holder. He can purchase eithepator acall option, paying the option
price, X (Hull 2000, 8).

2. The short position
This position is taken by a client/investor who choosesetibor write the option,
becoming aroption writer . He too can sell either put or acall option. By now
becoming an option writer, he receives cash upfront (théoongiuyer’s option
premiumX), but faces potential liabilities in the future (Hull 20G),
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One can therefore define four different option positions:

A long position in acall option.

A long position in aput option.

A short position in acall option.

A short position in aput option.

ExaminingEuropean optionsthat can only be exercised at maturity, one finds the
following possible scenarios. Remember tBatis the underlying stock price at matu-
rity T andK is the agreed upon strike price. Also note that the payofttion does not
take the option premium into account, and therefore doesaflett profit.

(&) Along position in acall option.

The payoff is calculated using (Hull 2000, 9):

Payoff= max0, St — K] (2.2.1)
This can be seen in Fig._2.2.1, where the payoff is positi& if- K.

Call Put
Payoff Payoff

K  Stock price K Stock price
Figure 2.2.1: Long position on option

Therefore, at timé = 0 the holder will buy a call option with a strike prick, in
the hope that the unknown future asset p&gewill rise, thereby making a profit.
A further increase in the future asset price will result ini@rease in the option’s
payoff. Atthe exercise date=T, if St > K, the holder can exercise the call option

and buy the underlying asset for a much lower price than dfeal valueSy. One
finds that if:
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(b)

(€)

* Sr > K: Payoff is positive and the option is said toibethe-money.
* St < K: Payoff is zero and the option is said to ¢at-of-the-money;
» St = K: Payoff is zero and the option is said to &ethe-money.

A long position in aput option

The payoff is calculated using (Hull 2000, 9):

Payoff= max0,K — S| (2.2.2)

This can be seen in Fig. 2.2.1, where the payoff is positiyK jf> (Sr).
At time t = 0, the holder will buy a put option with strike pric&, in the hope
that the unknown future underlying asset pri€g, will fall and be less than the
predetermined strike price. At the exercise date,T, if K > Sr, the holder can
sell the underlying asset at the strike priceand make a profit. In the case of a put
option, if:

* K > Sy : Payoff is positive and the option is said toibethe-money.

* K < Sr: Payoff is zero and the option is said to dat-of-the-money;.

» K = Sr: Payoff is zero and the option is said to d&ethe-money.

A short position in acall option

The payoff is calculated using (Hull 2000, 9):

Payoff= min[0,K — Sr] (2.2.3)

At time t = 0, the option writer receives an option premiuxy,and has no say in
whether an option can be exercised or not. The call optiotewhopes that the
unknown future asset pric&r, will drop below the agreed upon strike prid¢e,

At time t =T, the writer of the call option is obligated to sell the ungert) as-

set to the option holder. If thenderlying asset price risegbove the strike price
and the option holder chooses to exercise his option, theroptriter must sell the
underlying asset to the holder at the strike pri€glosingSr — K. The option writer

now only has the option premiurK, left after trading. If thainderlying asset price
dropsbelow the strike price, the option holder will not exerciee pption and the
option writer will have both the underlying asset and theappremium left after
trading.
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Payoff Call Payoff Put

K\Stock price /K Stock price

Figure 2.2.2: Short position on option

(d) A short position in aput option

The payoff is calculated using:

Payoff= min[0, St — K] (2.2.4)

The option writer hopes that the uncertain future asseep8e, will rise above
the strike priceK. Attimet =T, if the underlying asset price goes dovamd
Sr < K, the option holder will choose to exercise the option andithieer would be
obliged to supply the underlying asset. Therefore, theooptiriter will only have
the premium left after trading. If thenderlying asset price goes @md Sy > K,
the option holder will not exercise the option and the writdt be left with both
the option premium and the underlying asset after trading.

2.2.3 It6's Lemma

Before one can introduce the reader to the model that forentindation of all modern
finance, the Black-Scholes model, one first has to cover s@tigbound theory in the
form of It6’'s Lemma. Although a detailed analysis of the complex topistochastic
calculus falls beyond the scope of this dissertation, thetnmoportant rule of stochas-
tic calculus deserves some attention (Wilmott 2000b, 7hE fbllowing is therefore a
broad discussion that aims to introduce some of the tootsitidater be used to derive
the Black-Scholes partial differential equation.

An option pricing model needs a basis model that descriteemtbvement of the under-
lying asset’s price. Since predicting the future price obaset is impossible, one can
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use either past or current market data to calculate varioysepties, such as the mean
and the variance of the underlying asset (Wilmott, Dewynngdvison 1996, 18).

A simple asset price model assumes two properties:

1. An asset’s past history is completely reflected in itsenirprice and the current
price does not hold any further information.

2. Markets immediately respond to new data.

These properties allows one to define a specific type of ssbicharocess, the Markov
process. A Markov process only considers the current vallaa @sset and therefore
disregards the asset’s past values and the means by whichrient value was ob-
tained. Thus, the only information relevant in predictingasset’s future value is its
current value (Hull 2012, 280).

Therefore, the changes in an asset price is a Markov proceksshase changes are
measured as returns.

Let the price of an underlying asset at timebe S. One now wants to investigate
the change in the asset price after a small time intedtalwhere the price is defined
asS+dS A return is defined as the change in asset price divided bgrigeal asset
price (Wilmott et al. 1996, 19-20):

ds

S (2.2.5)

To model the return on this asset, one can divide the rettiortiwo sections:

1. A predictable deterministic part

This will be equivalent to the return received from invegtimoney in a bank
at a risk-free interest rate. Mathematically, it is writes

pdt, (2.2.6)

where u is the average rate of growth of the underlying asset and esvkras
the drift. The Black-Scholes model assumes this value todbstant (Wilmott
et al. 1996, 20).

10
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2. An unpredictable random change to the asset price

This is due to external factors and is represented by a raisdample that is drawn
from a normal distribution. Mathematically, it is writtes:a

adW, (2.2.7)

where o is the standard deviation of the underlying asset and is knasvthe
volatility. The Black-Scholes model assumes this valuega@tnstant (Wilmott
et al. 1996, 20) and it is this assumption that is addresstusmissertation.

Adding these two contributions to obtain the return of areadl=ads to the following
stochastic differential equation:

d—SS: pdt+ odw. (2.2.8)
This equation is used to generate different asset pricds@ifiet al. 1996, 20) and will
be used in the next chapter, which addresses the derivdtibe 8lack-Scholes partial

differential equation.

The termdW contains the uncertain randomness of asset prices and vgnkas a
Wiener process (Wilmott et al. 1996, 20). The Wiener protessthe following prop-
erties (Wilmott et al. 1996, 21):

* dWis a random variable.

* dW is taken from a standard normal distribution.

Equatior 2.2.8 is known as a random walk and cannot be soledever, it supplies
information regarding the behavior of the asset price inababilistic sense by gener-
ating different time series (Wilmott et al. 1996, 23).

In reality, prices are quoted at discrete time intervals tHretefore there is a lower
limit to the time increment encounteredin 2]2.8. In the psscof pricing options, these
discrete time intervals would lead to vast amounts of dathsabsequently one uses
continuous time increments, whet¢ — 0, instead (Wilmott et al. 1996, 25). ols”
Lemma is to stochastic variables what Taylor's theorem iddterministic variables
(Wilmott 2009, 106) and relates a change in the function cdradom variable, to a
change in the random variable itself (Wilmott et al. 1996), 25

11
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The following derivation of Ib's Lemma is taken from Paul Willmott’s bodkhe Math-
ematics of Financial Derivative@Vilmott et al. 1996, 26-27).

Itd’'s Lemma can be derived for a function of both one and two randariables, where
the lemma for a function of two random variables is used infthlewing chapter to
derive the Black-Scholes model, where an option priceis typically a function of
both the underlying asset pricéand time.

* Itd’s Lemma for a function of one random variabig,S)

Approximating the interval/ (S+ dS) by a Taylor series, one finds:

dv 1d?v
V(S+dS =dV = d—SdS-i—é@dSz

Notice thaf 2.2.9 contains a term with the square_of 2.2.& tharefore defines:

o (2.2.9)

d$ = (uSdt+oSdw)?, (2.2.10)
= 0°SdW? + 20 uSdtdW+ p2Sdt?. (2.2.11)

The following properties of the Wiener process are now uBgaork 2009, 52):

(dw)? = dt, (2.2.12)
(dt)2 =0, (2.2.13)

and
dt.dw =0. (2.2.14)

Applying equations 2.2.12, 2.2]13 dnd 2.2.14, equatiorid.2an now be written
as:

dS = g2%dt+ higher order terms ofit. (2.2.15)

Substituting 2.2.75 intio 2.2.9 and truncating, one finds:

dv 1dV
p— = — —_——_— 2.2.16
V(S+d9 =dV = < (uSdt+aSdW) + 50 Sdt, ( )

12



2.2. BASIC OPTION THEORY

which, after some simplification, can be written as:

dv av 1, d?v
~0°S—— | dt. 2.2.17
V(S+dS =dV = osd—SdW+ (usd—s+2 szdg)dt ( )

This is Ito's Lemma written for a function in one variable.

* Itd's Lemma for a function of two random variabl&&St)

In the case of a function with two variables, if random valea$ changes by
a small amountdSin a time interval/t,t + dt], one writes the Taylor series ex-
pansion as follows:

oV oV 102V
V(S+dSt+dt) =dV = —odS+ —-dt+ 2082d82+ (2.2.18)

Substituting equatioris 2.2]15 dnd 212.8 [nfo 2.2.18 anttating, one finds:

oV oV 10%V 52
V(S+dSt+dt) =dV = - (uSdt+ 0SdW) + —-di+ > - 0 sz(gtzw)

Rearranging 2.2.19 one can finally write't Lemma for a function of two ran-
dom variables as:

i, OV 1,00 oV
V(S+dSt+dt) =dV = asd—sdw+(us£ 50 82552 )dt.
(2.2.20)

2.2.4 The Black-Scholes Model

This model forms the foundation of modern finance and althouig formally derived
and adapted to suit American put options in the next chagbene important concepts
are introduced in this section.

oV 1%V oV
TR A 0?S +r rSog— 1V =0 (2.2.21)

The Black-Scholes formulae are used to analytically pEaeopean put and call op-
tions. The development of these formulae had a dramatic impacbtim theoretical

13



2.2. BASIC OPTION THEORY

and practical financial applications and in 1997, the Nob&dePfor Economics was
awarded to Robert Merton and Myron Scholes for their work igsdnpact on option
pricing. Unfortunately Fisher Black had passed away twog@aor to the ceremony
(Ugur 2008, 111).

An option’s value is represented by a function that can bétevrias (Wilmott 2000a,
82):
V(St,o,u,K,T,r), (2.2.22)

where

» S - current underlying stock price.
* t-currenttime.

» 0 - volatility of underlying asset.
U - drift of underlying asset.

» K - strike price of option.

» T - exercise date of option.

e 1 - cuUrrent interest rate.

Factors such as current stock price, strike price, time paration, stock price volatility
and the risk free interest rate, have an effect on the pri@naiption, as will become
apparent in section 3.2 (Hull 2000, 168).

This model allows one to describe real markets in theorytaleassumptions are made
which include (Hull 2000, 245) (Merton 1976, 126):

» Underlying assets have a constant volatility.

» Non-dividend paying options.

» Stock price follows a geometric Brownian motion that proelsi a log-normal
distribution for the stock price.

No arbitrage is allowed.

Risk free interest rate is constant.

14



2.2. BASIC OPTION THEORY

» Unlimited short selling is allowed.
» No taxes or transaction costs.

» Underlying asset can be traded continuously and in inBmitally small number
units.

This dissertation attempts to expand the Black-Schoelsehpdaddressing one of its
assumptions, the fact that an underlying asset’s volatilés to be constant. This is
done in chapter five. For now, it is important to realize tha¢ do the limitations of
the Black-Scholes model and its assumptions, currentrgseafocused on addressing
these shortcomings by developing models to ultimately lenthie pricing of complex
derivatives.

2.2.5 American options

As mentioned earlier, the main difference between a Europea American option,
is that an American option offers it’s holder tearly exercise facility This additional
feature should not be worthless and as a result, one expeétmarican option to be
more valuable than its European counterpart. This extnaioma is known as thearly
exercise premiurfKwok 2008, 251).

This dissertation only deals with the pricing of an Amerigaut option on a single
non-dividend paying underlying stock. This is due to thé that it is never favourable
to exercise this type of call option early and therefore tineefican call option’s value
is equal to the European call option and can be calculatedyube traditional Black-
Scholes formulae (Higham 2009, 174). This can be shown bgidering the argument
given in John C. Hull’'s bookQptions, Futures, and other Derivativ@sull 2000, 175-
176).

An American call option holder who wants to know when it is most favourable to
exercise his option, is faced with two possible scenari@scartain time < T:

* If he wishes to hold the underlying stock for a period longer han the duration
of the option contract.

— If the option is out-of-the-monef§ < K).

It is not optimal to exercise the option and the holder need®td on to the
option.

15



2.2. BASIC OPTION THEORY

— If the option is in-the-moneys > K).
It is not optimal to exercise the option early and the holddratter off exer-
cising at the time of maturityl . This statement is supported by considering
the numerous advantages that not exercising the optiomatt toffers its
holder:

1. Interest is earned on the strike price amo#ntfor the duration of the
contract.

2. No income is sacrificed in the case of a non-dividend pagiogk op-
tion.

3. The holder is insured against a future stock price drop.

Hence there is no advantage in early exercise.

* If he wishes to sell the underlying stock and feels that it is wrrently over-
priced.
The holder now considers exercising the option and selhegunderlying stock.
In this case it is optimal to rather sell the option. If he wierexercise the option,
he would obtain the option payoff

Payoff= max0,S — K]. (2.2.23)

If he were to sell the option, the option would be bought by ragiviidual who
wishes to hold the underlying and keeping in mind that theeloloundary of a
call option is given by (Higham 2009, 14):

C>maxS—Ke T, 0], (2.2.24)

he would obtain a value larger than just the payoff valueying2.2.23.

Therefore it is never optimal for the holder of an Americah gption to exercise pre-
maturely.

In the case of American put options, the holder is still fasgti the dilemma of finding
the time when it is optimal to exercise the option and in theecaf puts, things are
significantly more complicated when compared to calls. pkéar a few special cases,
there are no analytical pricing formulas available for Aro@n options and therefore
numerical methods are used to obtain the option price (Kvafl82252).

This dissertation is devoted to one of these methods, the filiiference method and
although it is covered in great detail in the chapters tofellfor now it is important to
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2.3. BASIC MATRIX ALGEBRA THEORY

understand why numerical methods are used.

In summary, due to an American put option’s early exercisdifia (the option to pre-
maturely exercise the put), the problem of finding the opkitn@e at which to exercise
can only be calculated numerically. This problem is knowradsee boundary prob-
lem (Wilmott 2000a, 129). The price or premium of this putioptalso needs to be
calculated numerically.

2.3 Basic Matrix Algebra theory

The following section broadly defines some of the terms coneg matrix algebra that
the reader will encounter in this dissertation. A detailedatiption of these terms falls
beyond the scope of this dissertation.

2.3.1 Non-singular

Before one can define a non-singular matrix, one first has péagxthe concept of a
matrix determinant. LeA be an x n square matrix:

ai; a2 a3 -+ Qin
B dp1 dpp aAz3z -+ apn
an1 @n2 ap3 ‘- adnn

The determinant oA is calculated by:
n
Det(A) = 5 am(—1) ™My, (2.3.1)
K=0

for 1 < m < nand wheréViy, is the minor determinant of thgn— 1) x (n— 1) matrix
(Yang, Cau, Chung & Morris 2005, 464).

One can now define a non-singular matrix as: a square matix non-singular if
its determinant is non-zero (Karris 2007, 4(22)):

Det(A) # 0. (2.3.2)
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2.3. BASIC MATRIX ALGEBRA THEORY

2.3.2 Conjugate transpose

Start by defining the conjugate of a matrix. If a mathixhas complex elements and
one replaces each elementfdby its conjugate, the new matrix obtained is called the
conjugate ofA and is denoted bp* (Karris 2007, 4(8)).

The transpose of a matri', is obtained when its rows and columns are interchanged
(Karris 2007, 4(6)). Therefore, the conjugate transposz miatrix (A*)T, is obtained
when one transposes the conjugate maki,

2.3.3 Positive definite

A square matriA is positive definite if:

(x*)TAX > 0, (2.3.3)

for any non-zero column vectar(Yang et al. 2005, 468).

2.3.4 Hermitian

A square matriA is called a Hermitian if (Karris 2007, 4(9)):

A= (AT, (2.3.4)

2.3.5 Spectral radius

If A is any matrix, then the eigenvaluesAwfdenoted by, are the roots of the charac-
teristic equation oA:

Det(A—Al) =0, (2.3.5)

wherel is the identity matrix (Kincaid & Cheney 1991, 187).

The spectral radius of a matrix can now be defined as (Kincaith&ney 1991, 187):

p(A) =max]| A |: Det(A—Al)=0}. (2.3.6)
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2.3.6 Diagonally dominant

If A is a matrix with elements; j, thenA is diagonally dominant if (Kincaid & Cheney
1991, 152):

n
lai[> 5 lajl, 1<i<n (2.3.7)
j=Tj#

2.3.7 M-matrix properties

A matrix A € R™" is a M-matrix if it can be expressed as (Elhashash & Szyld 2008
2436):

A=5d —B, (2.3.8)

whereB is a non-negative matrix which has a spectral radius defigg@&Eashash &
Szyld 2008, 2436):

p(B)<s seR. (2.3.9)

2.3.8 Tridiagonal matrix

A matrix A = g;j is tridiagonal ifa;j = O for all pairs(a;) that satisfy| i —j |> 1.
Thus, in the i-th row, only the elemerdag_1, &; anda;j 1 can be non-zero (Kincaid &
Cheney 1991, 154). A tridiagonal matrix therefore has tmefo

a1 a2 O 0 0 0
a ap agz 0 0 - 0
A= 0 ax a3 as 0 -~ O
0 0 0 -~ 0 a1 ann

Chapter four deals with tridiagonal matrices and the methbdt can be used to obtain
solutions of such a system, with the inclusion of both diesud iterative approaches.
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Chapter 3

American put option pricing problem
under constant volatility

This chapter addresses the topic of th@&hematical model for pricing American put
options. Section one discusses gengraitial differential equation§PDE’s), with spe-
cial attention paid to thene-dimensional parabolic heat equatidrhis heat equation is
discussed in more detail because later on in this chaptewéti known Black-Scholes
partial differential equation is transformed into the hegation.

Thederivation of the Black-Scholes partial differential e¢joa (BS PDE) follows the
section on partial differential equations and due to théyesercise facility offered by
American options, the Black-Scholes partial differenéiquation is transformed to the
Black-Scholes inequalityThe American option pricing problem is then discussed as a
free boundary value problenio aid the understanding of the free boundary concept, a
physical problem (the obstacle problem) is also discusa#ough far removed from
the financial context, the obstacle problem serves as attabenhables one to formally
define the free boundary that exists due to the early exefatsiiy of an American
option. In the latter sections of this chapter, the Blackes partial differential equa-
tion is transformed into the one-dimensional parabolid leg@ation and defined with
it's initial and boundary conditions. Finally, tHmear complimentary problerlLCP)

is constructed, which forms the mathematical basis forwatherical techniques imple-
mented in the chapters to follow.
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3.1. PARTIAL DIFFERENTIAL EQUATIONS

3.1 Partial differential equations

In the process of solving the option pricing problem, theckt&choles partial differen-
tial equation can be transformed into the one-dimensioaamlic heat equation and
therefore this section on partial differential equatiansicluded. The heat equation that
is obtained from the transformation is solved using spetifi@l and boundary values.
The reader is now introduces to basic concepts regardin@glpadifferential equations.
Consider the one-dimensional parabolic heat equation:

du 0%
on the domain (Oliver 2004, 19):
2 ={(xt):xeR,t >0}. (3.1.2)

In a financial setting, most partial differential equati@ns either first or second order
parabolic equations (Wilmott, Dewynne & Howison 2000, 7B))e general heat equa-
tion given in:3.1.11 is iomogeneous, one-dimensional, second order, linear, foand
parabolic equation (Wilmott et al. 2000, 80). This equation has served as a nfodel
the flow of heat in a continuous medium for nearly two censiaied it is one of the most
widely used models in the field of applied mathematics (Witabal. 2000, 79). From
a physical point of view, it describes the process of hedtisidbn (a "smoothing-out”
process), in which heat flows from a hot to a cooler area, diamgeut temperature
differences along a heat conducting material of lerigtbver a certain time period,
(Wilmott et al. 2000, 81). No further details regarding theygical meaning of the heat
equation in a thermodynamic setting will be discussed,esthés dissertation is only
concerned with the application of the heat equation in a Gizusetting.

The following section discusses the properties of equdBidnl. Begin by defining
a functionu(x,t), that is dependant on variablegposition) and (time).

» HomogeneousVhen equatioh 3.1l1 is manipulated and equated to zero,

du d%u

ot ox2

* One-dimensionalThis indicates that heat can only be transferred in onetime.
For equation 3.1]3, this direction is along thexis.

0. (3.1.3)

 Second orderThe highest order derivative present in equafion 3.1.3.
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3.1. PARTIAL DIFFERENTIAL EQUATIONS

* Linear. Any linear combination of two solutions of the heat equatim an open
intervall, is also a solution of the heat equationlorrherefore, sums and con-
stant multiples are also solutions (Kreyszig 2006, 47). é&@mple, ifu; andu,
are both solutions to equatién 3.11.3, then; + couy is also a solution. Here;
andc, are any constants (Wilmott et al. 2000, 80).

» Forward: If the signs of the terms are the same when they are on the saae
of the equation, then the equation is known as a backwardpbraequation
and requires final conditions. Equation 3]1.3 is known &snaard parabolic
eguation and requiresnitial conditions to be stipulated (Wilmott et al. 2000,
46).

» Parabolic Consider the partial differential equation of the form,

d°u _0%u _d% du du
A B =F —_—, = .
X2 + 0xy+cﬁy2 <X’ Y ax dy)

This equation is parabolic if its discriminarAC — B2, is equal to 0 (Kreyszig
2006, 551).

Since a partial differential equation can have multiplaiohs, one needs to specify
initial and boundary value conditions for the forward hegaation in(3.1.8, to ensure
that a unique solution is obtained as opposed to a genetdil@so(Wilmott et al. 2000,
45).

« Initial condition : This will specify the value ofi(x,0). Therefore, time remains
constant andi(x,t) changes according to From a thermodynamic perspective,
this value represents the temperature of the material apamy x, before the
process of heat conduction starts. As mentioned previptisyinitial condition
is specified if the heat equation is of theward type. Mathematically, this con-
dition is given as:

u(x,0) = g(x). (3.1.4)

 Final condition: The final condition is specified instead of the initial cdrati if
the heat equation is of theackwardtype. Here, the value af(x, T) also changes
according to variable:

u(x, T) = h(x). (3.1.5)
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* Boundary conditions. These values represent the temperatures of the two ter-
minal points of the one-dimensional material that condheist. As mentioned
earlier, the length of the material is measured alongxtagis and can be sub-
divided. The boundary conditions stipulate the value otfiom u at end points
x = 0 andx = L, for different values in time:

u(0,t) = a(t), 0<t<T, (3.1.6)

u(L,t) =h(t), 0<t<T. (3.1.7)

If no analytical solution is available, a numerical techuggcan be implemented to es-
timate a solution to the heat equation. The finite differemaaerical method, will be
the main focus of this dissertation. Before focussing onpiteeess of obtaining a nu-
merical solution to the heat equation, the Black-Scholesgalifferential equation is
first investigated and adapted it to suit American put oggidn the latter stages of this
chapter finite difference numerical method to solve the bgagation will be addressed
in detail.

3.2 Derivation of the Black-Scholes partial differential
equation

To better understand the Black-Scholes model, the Blatiol8s partial differential
equation is derived using two different techniques. The firsthod involves the appli-
cation of I0’s Lemma, whereas the second method involves the consiructia repli-
cating portfolio and follows a more intuitive approach. Farther reading, the book,
Frequently asked questions in Quantitative FinabgePaul Wilmott (Wilmott 2009,
401-426), has awhole chapter dedicated to the twelve diftavays to derive the Black-
Scholes equation.

Before deriving the Black-Scholes partial differentiabation, consider the assump-

tions made by the Black-Scholes model, as mentioned inase2t.4 of the previous
chapter.

3.2.1 Using IH's Lemma

The following derivation of the Black-Scholes partial diféntial equation usingds’
Lemma, is based on the text founddption Pricing: Mathematical models and compu-

23
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tation (Wilmott et al. 2000, 41-45) and John HulBptions, Futures, and other Deriva-
tives(Hull 2009, 287-289). Assuming that the underlying stodkgfollows a geomet-

ric Brownian motion in continuous time, the stochasticetifintial equation (SDE) of
the stock price can defined as:

dS= uSdt+ oSdW (3.2.1)

where:

S- Stock price at time t.

U - Constant expected rate of return of stock (drift).
o - Constant volatility of the stock price.

W - Wiener process.

Assume thal = V(S t) is the value of either a put or a call option. Th¥éns suf-
ficiently smooth with continuous first and second order dgives with respect t8 and
continuous first order derivatives with respect tin the domain:

Dy={(St):S>0,0<t<T} (3.2.2)

Applying 1t6's Lemma defined on padell3, one finds an equation that repseten
random walk followed by :

oV oV 10V oV
dv = (E—i—%us—i—éﬁa sz) dt+—<0SdW (3.2.3)

Construct a portfolio consisting of the option and/) units of the underlying asset.
The value of this portfolio is given by:

M=V -AS (3.2.4)

The change in the value of the portfolio after one time-ssep i

dr =dv —AdS (3.2.5)

Therefore the amount of underlying stock,X), remains constant.
Substituting 3.2]1 and 3.2.3 info 3.R.5, one finds:

ov oV 1%V oV
dn = (W + £u5+ 50—820 82) dt+ %GSdW—A(uSdt—i— oSdW). (3.2.6)
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This simplifies to:

oV oV 1o%v 52
dn _OS<0—S_A) dW+ <u80_5+§(9—82 Sz+——[.lAS) dt. (327)

Noting that fluctuations caused by increments of the Wienacgss have a coefficient

(‘;—\é —A) (3.2.8)

one can remove the randomness component of the random wahooging

ov

I A. (3.2.9)
One now finds a totally deterministic portfolio (Wilmott dt 2000, 43):
oV 1(9 Vv
dn = 0% ) dt. 3.2.10
( 203 ) (3.2.10)

Also notice that the drift ratgl, has been cancelled out. The remainmgeflects the
stochastic behaviour of the Black-Scholes equation ansisisraed to be constant.

If an amount off1 is invested in a a risk-less asset with constant interestrrathe
capital growth on this amount would Ib€ldt after a timedt. With the assumption of
no transaction costs and applying the concept of no arleitraige finds that:

20%

Substituting equations—3.2.4 ahd 3]2.9 ififo 3.2.11 and Ifymy, one obtains the
Black-Scholes partial differential equation(Wilmott et al. 2000, 44):

rMdt = (av + }d—v 282) dt. (3.2.11)

oV 192V 2 oV
St t332° 52+rs£ v =0. (3.2.12)

3.2.2 Using a replicating portfolio

This discussion is based on a derivation give®mIntroduction to Financial Option
Valuation: Mathematics, Stochastics and Computatip®esmond J. Higham (Higham
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2009, 74-79), where the author uses the concept of a raplicpbrtfolio. Start by
defining two different time increments. Assume the lifetiofehe option contract to
span the interval & t < T and divide this option lifetime into large, equally spaced
time incrementsit. From Fig[3.2.11 follows thakt denotes the time-step over interval
[t,t+ At]. If one divides each largéAt increment intoL smallerdt increments, the
interval[to, t1...tj,ti+1...t ] is obtained, wherg =t andt, =t + At. Therefore, there are
L + 1 points and. intervals, as illustrated in Fi§. 3.2.2.

Figure 3.2.1: Put option duration divided into larger timerementsit

t=0 t=0+At t:|T
|

t=0+At

t1 ti—1 ti ] '8

t=0
|
J
0

Figure 3.2.2: Put option duration divided into smaller timerementsot

One can defindt as:

ot =tj,1—t. (3.2.13)

To derive the Black-Scholes partial differential equatioegin by constructing a repli-
cating portfolio consisting of the asset underlying theéaptS, and a certain amount of
cash,D. This portfolio has exactly the same risk as the option atiraks. LetA(S t)
represent the number of units of underlying asSetvhereA(S;t) is a function of both
the asset price$ and time,t and let the amount of casB,(S;t) also be a function of
bothSandt.

The value of the replicating portfolio can now be defined as:

N(St) =A(St)S+D(St). (3.2.14)
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Keeping equation 3.2.13 and the fact that the stock p8gcis,also a function of time in
mind, one can now define the following increments:

5S = S(tiy1) — S(t), (3.2.15)
OV =V (S(tit1), tiv1) =V (S(ti), 1), (3.2.16)
31 = M(S(tiy1),tis1) — (S, ), (3.2.17)

S(V —N) =3V, —a;, (3.2.18)

where functiorV (S;t) represents the option value for any asset p&ce0, at any time
0<t<T. Astime varies, the amount of the underlying asé€§ t), remains constant.
This implies that a change in the value of the portfoéfl, has two origins:

 Asset price fluctuatiom§.

* Interest gained from the cash invested for time pedtdD;dt.

One can now define the portfolio value after tidte as:

5M; = AidS +rD;at. (3.2.19)

SinceV(Sit) is assumed to be a smooth function of b&landt, the Taylor series
expansion oV is given by:

A 192V, 5.

oV ~ W6t+%68,—|—§a—82 (3.2.20)
Subtracting 3.2.19 frof 3.2.20 one finds:
. oG, 102V,

This equatiorcompares the change in portfolio value to the change in optiovalue.
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In the process of replicating the option, one needs therdifiee between the portfo-
lio and option values to be predictable and therefore theadtigtable term9S, must
be eliminated. This is done by equating it's coefficient tmze

oM

35 —A=0. (3.2.22)
Or

ov

35 =A. (3.2.23)

This is similar to the strategy followed in the derivatiomngslté’s Lemma. Substituting
[3.2.23 intd 3.2.21 one obtains:

(v 102V,

The goal is to ultimately remove all the random elements fitbm value compari-
son equation iN_3.2.24. This is done by adding all these imergs over the interval
0<i<L—1. The summation ¢df 3.2.24 yields:

L-1 a\/l . 1L71 62\/|

Using the fact thak.dt = At, one can now re-write 3.2.P5 as:

ov 15t o2y,
ANV =) ~ (W—rD) At+§i: 0—5255'2' (3.2.26)
It can also be shown that the sum of &€ terms is non-random.
L-1
Z) OF ~ S(t)%0At. (3.2.27)
i=

Substitutind 3.2.27 and assuming that all approximatise®aact in the limidt — 0,
3.2.26 can be re-written as:
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2
ANV —1) = <‘;—\t/—rD+%UZSZZ—S\2/) At, (3.2.28)

whereA(V — M) denotes the change (W — M) over time intervalt,t + At]. This can
also be written as:

AV —N) =V (St+At),t+At) —M(S{t+At), t+At) — [V(S(t),t) — N(St),t)].
(3.2.29)

Assuming the no arbitrage principle, the change in podfod — M) must equal the
growth offered by the risk free interest rate and therefbesfollowing holds:

AV =) = rAt(v — ). (3.2.30)

Finally, by combining equatioris 3.2]14, 3.2.28 and 3]208@, obtains:

oV 1 RAY

— —rD+Z0°F—— =r(V—-AS-D). 2.31
o rJrchszaS2 r( S-D) (3.2.31)
SubstitutingA, from equation 3.2.23 info 3.2.81, one obtainsBfeck-Scholes partial

differential equation (BS PDE):

oV 1oV , oV
St T390 82+r8£—rv = 0. (3.2.32)

This PDE is satisfied for any option whose value can be expdeas some smooth
functionV(St). As mentioned previously, this equation can now be transéar into
the heat equation. The price of bdHuropean put and call optionscan be obtained
analytically by using the appropriate initial and boundaonditions (Wilmott et al.
2000, 98).

» The call option value at timet, as derived in (Wilmott et al. 2000, 97-100) is
given by:

c(S,t) = SN(d1) —Ke"(T-UN(d2), (3.2.33)

where

~ log(S/K) + (r 4 302)(T —t)
B o/(T—1)

d1 , (3.2.34)
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and

_log(S/K) +(r —30°)(T —t)
B o/(T—1) '

d2 (3.2.35)

N(-) is the distribution function for a standardized normal ramd/ariable (Wilmott
et al. 1996, 48):

The final condition is the known payoff at this time (Wilmottat. 1996, 46):

N(x) e 2Vdy. (3.2.36)

c(ST)=maxXS—K,0. (3.2.37)
The boundary conditions are given by (Wilmott et al. 1996; 46

c(0,t) =0, S=0, (3.2.38)

c(St)=S S w. (3.2.39)

» Theput option value is given by (Wilmott et al. 1996, 48):

p(St) = Ke"(T-UN(—d2) — SN(—d1), (3.2.40)
using equations 3.2.B4 ahd 3.2.35 édrandd2 respectively.

The final condition is the known payoff at this time (Wilmottad. 1996, 46):

p(S,T) = maXK —S,0]. (3.2.41)
The boundary conditions are given by (Wilmott et al. 1999; 47

p(0,t) = Ke (T~ S=0, (3.2.42)

P(St) =0, S— o, (3.2.43)
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3.3 Derivation of the Black-Scholes inequality for Amer-
ican put options

In the following section, the Black-Scholes partial diffatial equation is adapted to
suit American put options. This is done to accommodate thg e&ercise facility of
American options. Due to their greater flexibility, thes¢iops can potentially be more
valuable than their European counterparts (Wilmott et @061 106). From the above
derivation, equatioh_3.2.28 was obtained. Its notatiorois altered to suit American
put options by lettind®™ denote the value of an American put option. Therefore 312.28
can is now written as:

Am 2pAm
APA™ 1) = <azt —rD+%02520;;2 )At. (3.3.1)

Accepting the previous assumptions made, that due to thergtion of the random
elements this comparison valuk(PA™— 1), must equal the growth offered by a risk
free investment at a fixed interest rafehe following two scenarios are now examined:

1. A[PAM—M] > rAt[PAT—].

This indicates that a combination Bf*™ — N will offer better gains than money
invested in the bank. One can thus proceediying the put option, PA™ and
selling the portfolio, I (selling the underlying asset and loaning out the cash).

2. A[PA™ -] < rAt[PA™—1].

This suggests that the combination Y™ — M performs worse than the cash
investment in the bank. Subsequently, one gélll the put option, PA™ andbuy

the portfolio, N (buying the underlying asset and borrowing money) (Higham
2009, 174-175).

For European options with no early exercise facility, theanoitrage theory rules out
both scenarios. However, for American options this is netdase. Scenario one states
that the arbitrageur buys the American put option and sedspbrtfolio. This means
that he controls the early exercise facility and thereforeagbitrage opportunity still
exists. In scenario two, the arbitrageur sells the Amermatroption and is therefore at
the mercy of the early exercise facility because the newoagtoblder can at any time
exercise the option against the arbitrageur. In this tasarbitrageur can no longer
guarantee a return greater than the risk-less bank investmet.
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The no arbitrage principle rules out scenario one, but nebhaco two and one finds
that the following inequality is valid:

APAM— ) < rAt(PAM— ). (3.3.2)

Substituting equationis 3.3.1 and 3.2.14 into equatio@Be finds:

gpAM 1 ,00%PAM
<0t —rD—|—§aS2 e

)At < rAt(PAM— AS—-D). (3.3.3)

According to (Higham 2009, 175), cancelling thes and substituting equatidn 3.2123
- adapted in terms of theA™ notation - into equation 3.3.3, one finds that the Black-
Scholes partial differential equation in equation 3.2.Banges to th@lack-Scholes
partial differential inequality :

gpPA™ 192PAM gpAM

5 T2 ag 0SS
Similar to the Black-Scholes partial differential equatithe Black-Scholes partial dif-
ferential inequality can be transformed into the heat @qoatThis equation can then
be solved to obtain a unique price for an American put optibBrom the section on
partial derivatives, one now appreciates the necessityitiliand boundary values to
obtain such a unique solution. One of the difficulties entexad with the American
pricing problem is that one of the boundaries needed camngpbcified beforehand.
This stems from the early exercise facility of American ops and is known asfeee
boundary problem. The following section addresses this topic.

—rPAM< 0. (3.3.4)

3.4 The free boundary problem

As mentioned previously, American options have the adpntd permitting early ex-
ercise of the option at any time during the lifetime of theioptcontract (Wilmott
et al. 2000, 54). This early exercise advantage complicgae8lack-Scholes analy-
sis and often places strain on computational methods (Hig2@09, 173) because the
explicit formulae available for European options do notessarily offer meaningful
values for American options (Wilmott et al. 2000, 54).

The American option pricing functioRA™(S;t), that ultimately represents the price

of an American option, is a function of both time and the uhdeg asset’s priceS.
The free boundary problem is essentidtye task of determining the specific stock
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3.4. THE FREE BOUNDARY PROBLEM

price S (t) (critical asset price), at each point on the time interval,0 <t < T, at
which it is optimal to exercise the American put option

The payoff formula of the put option, defined in (Hull 20093)8s given by:

A(S(t)) = maxK —S,0]. (3.4.1)

If the stock priceSis large, the put option payoff would be 0 and it will not be ter
while to exercise the American put. On the other hands approaches 0, the payoff
from exercising the put option approaches the maximum y&uand it would be op-
timal to exercise the option.

Do not exercise option

Stock price /

Exercise option

Time

Figure 3.4.1: The early exercise boundary of an Americaroption

Interpolating between these two extreme scenarios, onedimdptimal exercise bound-
ary (Higham 2009, 177). Therefore, at each point on the tmtexval, 0<t < T, there

is a critical asset pric& (t), which marks the boundary between two regions. On the
one side of this value, the option should be exercised, btit@other side of this value
the option in question should be held (Wilmott et al. 2000, 9%his can be seen in Fig.
[3.4.1. The critical asset price depends on the time rengioiexpiry, as well as other
variables of the partial differential equation, such agtibty (Wilmott et al. 2000, 106).

For American put options where (Higham 2009, 177):

« S< St(t), it is optimal to exercise the optionandPA™ = A(S(t)).

« S> S(t), itis optimal to hold the option andPA™ > A(S(t)).

One needs the unknown critical asset pricgst), at each point on the time interval,
0<t<T. These prices will form the optimal exercise boundary whgthe second

33



3.4. THE FREE BOUNDARY PROBLEM

boundary condition needed to uniquely solve the partidgbhtial equation. The pro-
cess of obtaining this optimal exercise boundary is knowh@$ee boundary problem.

The concept of a free boundary is not unique to the Americaringr problem. In
order to understand it better, the obstacle problem is dgaliin the section below.
Although this problem deals with an elastic string, it is hehatically simple and it's
physical interpretations are applicable to the Americatoogpricing problem.

3.4.1 The obstacle problem as a free boundary value problem

The obstacle problem is discussed in much more mathemadtdail in later sections
of this chapter. For now, the basic idea behind this probkfogused on to aid under-
standing of the free boundary concept. Begin by consideamglastic string, tied at
pointsxy andx;. The string is stretched over a smooth obstacle that liegdsat these
two points. This can be seen in Fig.314.2. The obstacle iaelkfiy a functiom(x) and
the string by functioru(x). Initially, one does not know the region of contact between
the string and the obstacle (region between points a and bat W known, is that the
string is either in contact with the obstacle (the posit®known) or it is not in contact
(in which case the string must be straight). Additionallyp ttonstraints are also known
that enables one to find a unique solution to the obstacldgmobrhe four constraints
can be summarised as (Wilmott et al. 2000, 55):

() The string must either lie on or above the obstacle.
(i) The string must have a negative or zero curvature.
(i) The string must be continuous.

(iv) The string’s slope must be continuous.

Figure 3.4.2: The obstacle probelm
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A unique solution to the American option pricing problem adso be obtained by
specifying a similar set of constraints to those of the atdstproblem (Wilmott et al.
2000, 56). These are:

() The option value must be greater or equal to the optiorofiay
(i) One must have the Black-Scholes inequality.
(i) The option value must be a continuous functionSof
(iv) The option delta (slope) must be continuous.

The following section examines each of these constraintthem own merit. Each
constraint will hereafter be written in mathematical niotat

(i) PAM>maxK — S 0], 0<t<TandS>0.

This constraint (lower boundary), indicates tlearly exercise can occur, but
that arbitrage shouldn’t (Wilmott et al. 2000, 56)(Higham 2009, 174). Desmond
Higham, in his bookAn Introduction to Financial Option Valuation: Mathemat-
ics, Stochastics and Computati¢digham 2009, 14), proves the lower boundary
of the European put option by considering the following tvastfolios: Portfolio
Ma contains a put option and its underlying stock, whilst peitf Mg contains a
cash amount invested at a risk free interest rate,

Ma=P+S, (3.4.2)

and

Mg=Ke . (3.4.3)

At the exercise datdl, the following two possible scenarios for portfolity are
identified:

» S< K: Ifthe stock price is less than the strike price, the putampshould be
exercised. One obtains a payoff with a maximum valulé ahd the portfolio
can have a maximum value Kt

* S> K: If the stock price is more than the strike price, the put@ptwvill not
be exercised. The portfolio can have a maximum valug tfie value of the
underlying stock also held in the portfolio.
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(ii)

(iii)

Taking both of the above-mentioned scenarios into accqortfolio M has a
potential value omaxK, §.

The value of portfoliolg at the exercise date will b, the growth of the the
initial invested amount at interest rate, Thus, portfoliollg only has a potential
value ofmaxK].

Portfolio Ma is therefore more valuable than portfolibs and this can be ex-
pressed as:

P+S>Ke ™. (3.4.4)

Since a put option can never have a negative value,|3.4.4 eae-taritten as
(Oliver 2004, 14)(Higham 2009, 14):

PAT > maXKe " —S.0]. (3.4.5)

In the case of the early exercise facility of the Americanaptone immediately
receives the cash amoult rather than having to wait until timé to receiveK
(which has a present value K&~"). Therefore, one can re-write 3.4.5 to obtain
the first constraint. This is known as the lower boundary ef American put
option:

PA™ > maxK — S, 0]. (3.4.6)
gpPA™ 192PAM , oPA™
Z - < 0.
TR 02 +rS 55 —PAm<0

This inequality has already been established in section 3.3

PA™(S,t) must be a continuous function &f

Although the stochastic variabl&, is not a smooth function of time?A™(S;t)
can be a continuous function & (Higham 2009, 73). This assumption is used
when deriving the Black-Scholes equation and follows frowe arbitrage princi-
ple. If there was a discontinuity in the option value as a fiomcof Sand if this
discontinuity occurred for longer than an infinite decimetipd of time, then the
portfolio of options could make a risk-free profit, with ped#lity one, if the un-
derlying asset price reached the value at which the diswoityioccurred. How-
ever, discontinuous option prices do occur in some instaacel are known as
jumps (Wilmott et al. 2000, 57).
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(iv)

Am
0S

Examining the payoff function of the put option(S(t)) = maxK — S,0], one
finds that its slopeX) is —1. This can be seen in Fig._3.4.3.

must be continuous.

Payoff

K

K Stock price

Figure 3.4.3: American put option payoff

As mentioned earlier, the American put option has an earyase boundary at
St (t) and the option should be exercised wign S; (t) (Wilmott et al. 2000, 57).

The slope 4) of the option, at this critical asset pric8;(t), is now investigated.
In Option Pricing: Mathematical models and computatigiilmott et al. 2000,

56-58), the authors suggest tiaat St (t) can have three possible values:

. aPiAm < -1
oSt (t) '
opAM

. ~1.
05:(t)
opAM

. =1
05 (1)
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The following section explores each of these scenariosrdizapto (Wilmott et al.
2000, 56-58).

» Keeping in mind that thé value of the option represents the relationship

or ratio between the option value and the underlying asdaeyvaegin by
gpAM
examining the first potential value; < —1.
] P oS0

K

Put option value

I
1
|
|
St (t) K  Stock price

d m
Figure 3.4.4: <-1
) ET0)
gpA™
ChooseS; (t) < K and < —1. If Sis increased the value of the

95k (t)
put option will dip below the put payoff valuéy = maxK — S 0] (since the
slope is more negative than -1). TherefdP&M(S;t) < maXK — S,0] as in
Fig.[3.4.4. The lower boundary of an American put optionassed on page

~ oP
g, PAM > K—-S0,i iolated and sub —1i
> maxK — S,0], is now violated and su sequent;;% <-1lis

ruled out.
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Am
» The next task is to rule ouglsjw > —1. As before, choosg (t) < K and

Sslightly larger thar (t). TheSs(t) value is now reduced along the lower
boundary of the American put option, thereby increasingayigon payoff
and consequently the option valB&€™(S t) (Rodolfo 2007, 44). This is seen

in the American put option payoff formul@ = maxXK — S 0]. Whilst de-
Am

: , JoP
creasingSs (t), one finds that—— also decreases, as the slope becomes
more steep (Rodolfo 2007, 44).

By decreasindSs (t) sufficiently, one arrives at an underlying asset value
Am

where the inequality,asfm > —1, no longer holds. The option is there-
fore miss-valued (Rodolfo 2007, 44). This is seen in Fig.3.& herefore,
oP
> —1is also ruled out.
95k (t)

Put option value

|
1
|
|
St (t) K Stock price

m

Figure 3.4.5: d

asm "

* At this critical asset values (t), neither of the two inequalities hold and one

Am
is able to conclude thag;w = —1, asin Fig[3.4]6.

Constraints three and four, requiring tHfi™(S;t) must be a continuous function of
Am

JP
h
S and that 7S

must be continuous, are collectively known as #imooth-pasting
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Put option value

|
|
|
|
Sk (t) K Stock price

m

) d
Figure 3.4.6: =
J dS (1)

condition It indicates that the option value functioR2"(S;t), is tangential to it's
payoff function,A = maxK — S 0], in the pointS; (t) (Wilmott 2009, 238).
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3.4.2 The American put problem as a free boundary value prol#m

The following is a summary of the free boundary value probtgrnthe American put
option (Oliver 2004, 17) (Wilmott et al. 2000, 108-109) (Ham 2009, 177):

When early exercise is optimal
S< Sk (t),
PAm(St) =maxK —S.0], (3.4.7)
opPA™ 192pAM P am
— . < 0.
T gz F+rS 55— PO
When early exercise is not optimal
S> Sk (t),
PAM(St) > maxXK — S, 0], (3.4.8)
gpPA™ 192PAM , oPA™  m
TR R =R Sz+r8%—rP =0.
Boundary conditions:
. m B
élinmPA (St) =0, (3.4.9)
gpAM
=1, 3.4.10
25:(1) 8419
PAM(St (t),t) = maxXK — St (1), 0]. (3.4.11)
Final condition:
PAM(S,T) > maxK — S,0]. (3.4.12)
Am
It is important to note that althougﬂn(% is continuous, as the poi (t) is crossed,
aZPAm dPAm
nd —— are not. This lack of continuity along the early exerciserimary

——— a
9 ot
affects the accuracy of numerical approximations (Seydéb2165).

As mentioned earlier, the ordinary heat equation can utydagesolved by stipulating
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3.5. LINEAR COMPLIMENTARY PROBLEM

two boundary values and a time condition. For the Americaeimg problem, because
the optimal exercise boundary is unknown beforehand, oa¢dhiaiclude an additional
boundary condition, as can be seen in the above section. &teask is to attempt the
re-formulation of the pricing problem and reduce it téx@d boundary problem that
does not contain the free boundary explicitly and from whiahfree boundary can be
obtained afterwards (Wilmott et al. 2000, 316).

There are many different transformations available to dacty this, but this disser-
tation will focus on only one such method, the formulatioraéihear complimentary
problem. An alternative method, variational inequalities, is disged in numerous lit-
erary sources, such as the boGigtion pricing: Mathematical models and computation
(Wilmott et al. 2000, 316). This formulation uses the methbfinite elements to solve
the pricing problem.

In section 3.5, the pricing problem is formulated as thedmeomplimentary prob-
lem, but first, the topic of the free boundary and the critasdet priceSs (t) is further
addressed by a closer inspection of the free boundary.

3.4.3 Asymptotic behaviour of the critical exercise price par ex-
piry

The behaviour of the early exercise boundary in the vicioityhe expiry time,T, is
important when pricing American options (Rodolfo 2007, .5@)Jthough the precise
details of this behaviour falls outside the scope of thiseligtion, it is important to
note that the assumed value &f(T) = K, is incorrect. For a better understanding
of the correct value and a detailed description of the behavof the early exercise
boundary near and at the expiry time, the reader can refdretéollowing resources:
A Comparative Study of American Option Evaluation and Cdatmn by K. Rodolfo
(Rodolfo 2007, 45-51)The Mathematics of Financial Derivativ@d/iimott et al. 1996,
121-129) andMathematical models of Financial Derivativ@swok 2008, 257-262).

3.5 Linear complimentary problem

In this section the American option pricing problem is refotated as éinear compli-
mentary problem (LCP). This is done in an attempt to state the option pricirapfem
without explicit dependence on the unknown free boundary(Wilmott et al. 2000,
123). Because the free boundary (a boundary required liefodeto uniquely solve the
pricing problem) is initially unknown and because the peoblcan seldom be solved us-
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3.5. LINEAR COMPLIMENTARY PROBLEM

ing an explicit method, numerical techniques are used (it al. 2000, 122). One
therefore proceeds by numerically finding a solution to theiqpg problem, without
having to solve the free boundary beforehand. The locatidheoboundary can subse-
guently be obtained once the linear complimentary problesideen solved (Wilmott
et al. 2000, 123).

In a linear complimentary problem, no objective functioopgimized (Murty 1988, 1).
Let M be a known square matrix of ordeandg is a known column vector iR". Un-
known column vectorsy andz are both ifR". The problem is to fingv = (wy, ..., wy)T
andz = (z,...,z,)" such that the following equations are satisfied (Murty 1998,

w—Mz =q,
w >0,
z>0,
wiz =0 i=1...,n

(3.5.1)

In the section to follow, the obstacle problem, mentionetiexdas discussed as a linear
complimentary problem. This simplistic mathematical madeincluded to aid the
reader’s understanding of the more complicated Americanngrmodel to follow later
on in this chapter.

3.5.1 The obstacle problem as a linear complimentary probla

Consider Fig.[3.4]2 on pagel34. Let a functig(x) be given, wherex € R, g € C?
andg”’(x) < 0 (Oliver 2004, 18). Functiog(x) represents the height of the obstacle
(Wilmott et al. 2000, 123). Leti(x) be a function that represents a string stretched
over g(x), whereu € C[xg, x1] andu(xp) = u(x1) = 0 (Oliver 2004, 18). On the inter-
val [a,b], u(x) andg(x) coincide, thusu(x) = g(x). With the string and the obstacle
in contact, this implies that the string is bent and theetdx) < 0 holds. At all the
other points, where the string is not in contact with the atlstu(x) > g(x) holds and
the string is straight, implying that’(x) = 0 (Oliver 2004, 18).Initially, a and b are
unknown.

The obstacle problem as a free boundary value problenas stipulated in (Wilmott
et al. 2000, 124) is defined as:

43



3.5. LINEAR COMPLIMENTARY PROBLEM

X=Xo: u(Xp) =0,
Xo<X<a: u(x)>g(x) andu’(x) =0,
X=a: u(a) = g(a) andu'(a) = d'(a),

©
A
x
A
o
c
X
Il
looael«aal

x) andu”(x) = ¢"(x), (3.5.2)
x=D u(b) = g(b) andu (b) = g'(b),
b<x<x: u(x)>g(x)andu’(x)=0,
X=Xp: u(xy) =0.

This free boundary value problem can also be formulatedlaeear complimentary
problem (Oliver 2004, 19) (Wilmott et al. 2000, 124) (Seydel 2009616

Find u(x) such that:

u,l(u - g) - 07
—u’(x) >0, (3.5.3)
u(x) —g(x) >0,

subject to the constraints(Xp) = u(x;) = 0 andu € C[xg, xq].

3.5.2 Transforming the Black-Scholes PDE to the heat equatn

Before formally presenting the American pricing problemaalnear complimentary
problem, theBlack-Scholes partial differential equationin([3.2.32 is transformed into
the one-dimensional parabolic heat equation. Start byitiegrequatiori 3.2.32 to suit
American put options:

gpPAM™ 192pAM , opA™ )
- _rpAM = 5.4
TR 0°S +1S 55 " 0, (3.5.4)
on the domain (Ugur 2008, 116),
Dorm={(S1):S>0,0<t<T}. (3.5.5)

[3.5.4 is to be transformed into tlmme-dimensional parabolic heat equatiorof the
form (Oliver 2004, 19):

u_ o
ot o0x2’

for x andt on the domain (Ugur 2008, 116),

(3.5.6)
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2
.@u:{(x,r):—oo<x<oo,0§r§%T}. (3.5.7)

The following derivation follows the transformation to theat equation as given in
(Ugur 2008, 117-118) and (Wilmott et al. 2000, 98-99, 127he Transformation of
[3.5.4 is achieved by using various substitutions, the fifstluich is to re-define the
independent variablesandt as (Wilmott et al. 2000, 127):

T

S=Ke, t:T_l—az‘ (3.5.8)

2

Here timet = T corresponds ta = 0 and therefore the final condition stipulated in
[3.4.12 on pagE_41, now becomes an initial conditiori_for B(®léser 2004, 20). Next

the dependant variablé(x, 1), is defined as (Ugur 2008, 117):

1 _am 1 _am T
The change of the independent variables ensures that thaidlofithe new dependent
variablef, is D, as stipulated ih'3.5.7 (Ugur 2008, 117).

Using the chain rule for several variables, the following\gives are obtained (Ugur
2008, 117):

gpAM of ot o’ of

JpAm df ox Kof

35 —K(m—s)—éw (3:5.11)
g2pAm 5 /9pAM K /0%f of
‘ﬁ?—ﬁiig)—§(&riﬂ- (3.5.12)

Substituting equatiois 3.5]10, 3.5.11 &nd 3)5.12 intotéauid.5.4, one obtains:

2
of _ ot <2r 1) of _ (3.5.13)

ot o T\g2 ) ax o2"

A new constantk, is also defined (Wilmott et al. 2000, 127) (Ugur 2008, 117):
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2r
and3.5.1B can be re-written as (Ugur 2008, 117):
AN NP LAY (3.5.15)
or  0x2 ox ' o

Now, [3.5.15 only has one constant, instead of fourK,T,o? andr (Wilmott et al.
2000, 98). The next step is to consider a functigr, 1), defined by (Wilmott et al.
2000, 98):

f(x,T) = e™+PTy(x, 1), (3.5.16)
wherea andf3 are unknown constants.

Applying the chain rule to the functiof(x, ), one obtains the following derivatives:

% _ qaxipr (BUJF%), (3.5.17)
% _ X (O,UJF%) , (3.5.18)
92f du d%u
o ax+BT (O!ZU—FZCX&—FW) i (3.5.19)

Substituting equations_3.5]17, 3.5.18 and 3]5.19 into toui.5.15, the following
equation is obtained (Wilmott et al. 2000, 98):

u du d%u du
BlH-E—O’ u—|—ZG&+W—|—(K—l) (au-i-&)—;(u. (3.5.20)

Rearranging 3.5.20, one finds:

du d°u du 2
E_W+&(20+K—l)+u(—[3+a +aK—d —K) (3.5.21)

. Jdu - :
To eliminate termsi and& from[3.5.21, thereby obtaining the heat equation, let:
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20+ K —1=0, (3.5.22)

and

—B+a’+ak—a—k=0. (3.5.23)
Solving these equations simultaneously, one finds than(étil et al. 2000, 98):

1

a= —E(K—l), (3.5.24)
and
1 2
B= —Z(K +1)~. (3.5.25)

Substituting these values ifto 3.5.16, one obtains (Wilretoal. 2000, 98):

f(x, 1) = e 2(K-"Dx-a (kDT 1), (3.5.26)

and now for the same values @fand3,[3.5.21 reduces to the heat equation:

du 442
37" 9l (X,T) € Y. (3.5.27)

Considering the Black-Scholes inequality suited to Aneariput options as defined on

page 3P:

gpPA™ 192pAM gpAM
- S+rS
ot "2 9% 7° ™ ss

the following inequality to the heat equation is obtainecdwd American put options
(Oliver 2004, 20):

—rPAM< 0, (3.5.28)

du _ d%u
> -

32 3 (3.5.29)
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3.5. LINEAR COMPLIMENTARY PROBLEM

3.5.3 The American put problem as a linear complimentary prdo-
lem

Keeping the lower boundary of an American put option in mime knows thaPA™ >

maxK — S 0]. Using the definition of the functiof(x, 1) in[3.5.9 on pagk 45, the lower
boundary off (x, 1) is now defined as (Wilmott et al. 2000, 98):

PAM(St) = K f(x,T) > K(max1—¢,0]). (3.5.30)
Therefore,

f(x, 1) > max1l—€*0]. (3.5.31)

And because the functiof(x, 7) is defined in terms of function(x, 7) in equation
3.5.26, one can re-wrife 3.5]26 as (Oliver 2004, 21):

U(x,T) > e2(K-IxHG(K+12T £ 7y, (3.5.32)

Using the definition off in[3.5.31,u has the final form (Oliver 2004, 21):

U(x, T) > ez K- DxHI(K+12Tnay e Q). (3.5.33)

A new function,g(x, 7), is also defined. This replaces the original payoff function
A =maxK — S 0] (Oliver 2004, 21) (Wilmott et al. 1996, 119):

g(x,7) = e2(K-Dxta(K+1°Tmay e 0. (3.5.34)

This can be simplified to (Wilmott et al. 2000, 127):

g(x, 7) = e K+ D*Tmayez (K-1x-2(k+1x @] (3.5.35)
As mentioned earlier, thiaitial condition for the heat equatiorr, = 0, equals the final

conditiont = T as stipulated in equatidn 3.4]12 on pagé 41. Therefore, nde that
(Wilmott et al. 2000, 127):

u(x,0) = g(x,0) = maxezk-Dx-z(k+1x o) (3.5.36)

and for all other values af (Wilmott et al. 2000, 127):
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3.5. LINEAR COMPLIMENTARY PROBLEM

u(x, 7) >g(x,1). (3.5.37)

Boundary conditions can also be defined for large - «) and small X — —o) values
(Wilmott et al. 2000, 128):

U(OO, T) = g(°°7 T) =0, (3538)

and

U(—00,7) = g(—0,T). (3.5.39)

Consider how equationis 3.4.7 and 3.4.8 on gade 41 resembédi@n3.5.2 on page
[44. Therefore, the American pricing problem can also be tdated as a linear compli-
mentary problem, where the free bound&yt), is not explicitly mentioned, but will

become apparent once the linear complimentary problemédes $olved (Oliver 2004,
19) (Wilmott et al. 2000, 316).

All the equations needed to formally define the linear comphtary problem have now
been mentioned and therefdtes linear complimentary problem for the American
put option pricing problem can be written as (Oliver 2004, 21):
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3.5. LINEAR COMPLIMENTARY PROBLEM

Find u(x, T) such that:

2
(5~ 5¢) ) -gixm) =0

ou_ouy o
ot ox¢) =7
U<X7 T) - g<X7 T) = 07

where:

g(x, 1) = ezll(K—O—l)ZTma){e%(K—l)X—%(K—i—l)x,0]7

subject to thenitial condition :

U(X70) :g(X,O), —00<X<OO,
andboundary conditions atx = +oo:

1
u(x,7) =9(x1), 0<t< EGZT,
du

and the constraints thatand o

are continuous (Wilmott et al. 2000, 129).

(3.5.40)

(3.5.41)

(3.5.42)

(3.5.43)

This can now be compared to the linear complimentary prololiitme obstacle problem
in equatior3.5]3 on padel44. Note that the two different &des in equatioh 3.5.40
correspond to the different option exercise scenarios.Whe optimal to exercise the
option,u= g, and when it is better to hold the optian;> g (Wilmott et al. 2000, 129). It
is also important to note that there is no explicit mentiothefunknown free-boundary
(Wilmott et al. 2000, 131). It can be shown that linear comgintary formulation is
equivalent to the free boundary problem stated earlier. éd@w the technique of doing
so relies on functional analysis and falls outside the sodpleis dissertation (Wilmott

et al. 1996, 120).

This concludes the formal definition of the American optiaitipg problem. First

the Black-Scholes equatiorwas derived and then adapted to suit the American put by
changing it tahe Black-Scholes inequality The next step was to define the American

pricing problem as &ee boundary problem. Then the Black-Scholes inequality was
transformed to th@ne dimensional heat equation Finally the pricing problem was

stipulated as &inear complimentary problem.

The next chapter addresses the finite difference numerietidod, which is the focus of
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3.5. LINEAR COMPLIMENTARY PROBLEM

this dissertation, in detail. An understanding of the fiiiterence method is essential
before one attempts the complex task of solving the Amenmanng problem using
this finite difference technique.
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Chapter 4

Finite Difference Methods

4.1 Introduction

The previous two chapters were tasked with formally defirthngy American put op-
tion pricing problem. Since no general analytical formudae available to solve this
problem, there are a number of finite difference methodsdhatbe employed to do
just that. The second order accurate Crank-Nicolson finfferdnce method will be
used in this dissertation. The goal is to find a prie&™ of an American put option
containing an underlying asset with pric&,As will be seen in the following sections,
because of the discretization process, one obtains a ewfgwrices. This surface con-
tains all the option value®™, on the half strigs> 0 and 0< t < T (Seydel 2009, 141).

After considering the transformation of the Black-Schadesiation to the heat equa-
iion. 9Y _ 0%u
ion, Framl X
strip—co <x<oecand0< 1 < %UZT (Seydel 2009, 143). Because discretization is done
on a finite interval, the infinite interval-co < X < o, needs to be replaced by a finite
interval Xmin < X < Xmax Wherexmin < 0 andxmax > 0. Using the original transforma-

tion on pagé 45, one can now defig, = Ke'min andSyax= Ke'max (Seydel 2009, 146).

one finds that the original half strip is now transformed éocdme the

The finite difference method is used to solve the heat equatiodefined in the lin-
ear complimentary problem, given by equation 3.5.4®n pagd 50. This solution is
then converted back to variabl8sndt using transformations givenlin 3.5.8 on page 45.

In the following section, some foundational concepts areeced. This will aid the

understanding of the discretization process of the finiferdince method. Figures will
also be given to further explain the finite difference gridl ats notation. In sections
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4.2. FOUNDATIONS

4.3, 4.4 and 4.5, the three variations of the finite diffeeentethod are discussed in
great detail. These are the Explicit, the Implicit and thar®&-Nicolson finite differ-
ence methods. The more genefal finite difference notation is also introduced. Later
in the chapter, the different methods available to soldBagonal systems are covered
and finally the American option pricing problem is solved byroducing the reader to
a comprehensive algorithm that systematically incormsrall the different numerical
methods one needs to implement. The author is not aware ofcbfa comprehensive
algorithm in the literature.

4.2 Foundations

The first step is to discretize both tlkeand 1 axes. Thus, one subdivides these axes
into equally spaced intervals of lengdx andd 1 respectively (Seydel 2009, 146). This
process can be summarised as follows:
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

« 7=0,...,20°T,
Tm= MOT, m=20,...,M,

where M, the number of intervals on the-axis, can be chosen beforehand.
The upper boundary aof stems from the substitution used[in_315.8 on pade 45.
The subinterval lengthr, is defined as:

(30T -0)
Vi )
¢ X= Xmin, - - - y Xmax

o1 =

Xn = Xmin + NOX, n=0,...,N,

where N, the amount of intervals on theaxis, can be chosen beforehand
and where the subinterval lengdl, is defined as:

(Xmax— Xmin)
— N

» The following notation will be used to denote the exact soluof the heat equa
tion at a specific nodgn, m), ul = u(ndx, mdt) (Wilmott et al. 2000, 274).

OX =

» The notationy;)", denotes an approximate value to the exact solutign;There-
fore, v’ ~ U (Wilmott et al. 2000, 326).

Fig.[4.2.1 is a representation of the 1 discretisized grid. The blue dots represent val-
ues known at the initial time, = 0. The red dots represent values known at boundaries,
Xmax @Ndxmin. Values at all the other nodes are unknown and need to be ¢ethpu

4.3 Explicit finite difference method

2

Start by considering the heat equati%lg, = % Using aforward difference Taylor

o : Jdu . .
approximation to approxmated—r and the symmetric central difference Taylor approx-
2

N . Jeu , ,
imation to apprommatea?, one finds (Wilmott et al. 2000, 270):
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

n=N Xmax @0V o o o o o M TV
n=N-1 oY
[ 3
[ 3
X-axis ®
[
n=2 Xmin+ 20X ¢ &2
n=1  Xmin+ OX ‘<o,1) (1,2) (2,1) M=1,1)| M,1)
neo Xmin ‘<0,0) ‘(1,0) o o o o ‘(M—l,O).(MA,O)
0 ot 20t To?T
m=0 m=1 m=2 m=M-1 m=M
t-axis

Figure 4.2.1x— 1 grid after discretization
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

du umtl_ym
- _-n _-n 4.3.1
T 51 +0(471), (4.3.1)
0%u  upy, —2u+ul, 2

Therefore, the parabolic heat equation approximated bloTaxpansion is (Wilmott
et al. 2000, 278)(Kincaid & Cheney 1991, 574):

um+l _ ym L O(5T) = up, g —2up'+ul 4
ot (0x)2

+0O((6%)2). (4.3.3)

Re-arranging 4.313, by separating the terms containfffgt andu™ and then imple-
menting the approximating notation;, one obtains the following equation (Wilmott
et al. 2000, 278):

ittt =vi+a(vply —2v'+vily), 0<n<N, 0<m<M, (4.3.4)

where

o= %. (4.3.5)

This can be re-written as (Seydel 2009, 147):

vt =avl i+ (1-2a)vf'+av;, 0<n<N, 0<m<M, (4.3.6)

subject to thenitial condition (Wilmott et al. 2000, 280) (Seydel 2009, 147):
VW=g(,0), 0<n<N, (4.3.7)

whereg(x, T) is defined in equation 3.5.41 on page 50.

Theboundary conditions are (Wilmott et al. 2000, 280):

and
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

When written in matrix notation, one finds (Kincaid & Chen&g@1, 576)(Seydel 2009,
148):

vl = Av™m m=0,...,M, (4.3.10)

where matrixA is an(N — 1) x (N — 1) tridiagonal matrix (Seydel 2009, 148) (Wilmott
et al. 1996, 146):

(1-2a) a 0 0
a (1—-2a) a 0
A= 0 a (1-2a) " : ,
: : : g a
0 0 a (1-2a)

and vectorv™ is of length(N — 1) and of the form (Wilmott et al. 1996, 146)(Seydel
2009, 147):

m
VN-1

It is important to note that the explicit method is only seafar 0< a < % (Seydel 2009,
151). Therefore, special attention has to be paid when echgasterval lengthx and
o0t1. Due to this restriction, a more flexible method that rematable for any values of

ox anddr is preferred.

. . o . J
Usinga backward difference Taylor approximation to apprommate(# and the sym-
: . L 92 : ,
metric central difference Taylor approximation to appmatea u’ one finds (Wilmott

ox2
et al. 2000, 294)(Seydel 2009, 151):

du ul—ym-t
—=——"—+4+0(0r1 4.3.11
T 5t (1), ( )
0%u  uly —2ul+ul

X2 (52 +0((%)?). (4.3.12)
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

Using these Taylor expansions, one now finds an approximé&tiothe parabolic heat
equation to be (Wilmott et al. 2000, 294):

um — ym-1 um o —2um4-ul

T +O(6T>: n+1 (6X>2 +O((5X)2> (4313)

Equatiorf4.3.13 is re-arranged by separating the termsiciong u™ andu™ 1. Using
the approximating notation,”", one now obtains the following equation (Wilmott et al.
2000, 295) (Seydel 2009, 151):

—avl FRa+ vl —avl =yl 0<n<N, 0<m<M, (4.3.14)

wherea is defined in4.3]5 on pagel56. Equation 4.8.14 is subjecitimitial condi-
tion (Wilmott et al. 2000, 295) (Seydel 2009, 147).

V=900, 0<n<N, (4.3.15)
whereg(x, 1) is defined in equation 3.5.41 and also subjedbdandary conditions
(Wilmott et al. 2000, 295):

v\ = 9(Xmin, Tm), 0o<m<M, (4.3.16)

and

When written in matrix notation, one finds (Kincaid & Chen&g1, 581)(Seydel 2009,
152):

vm=A-tym-1 m=1,...,M, (4.3.18)

9oy

where matrixA is a(N — 1) x (N — 1) tridiagonal matrix (Seydel 2009, 152)(Wilmott
et al. 1996, 146):

(2a +1) —a 0 0
—a (2a +1) —a 0
A= 0 -a (2a+1) . : ,
: : : , 4
0 0 —a (2a+1)
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4.4. CRANK-NICOLSON IMPLICIT FINITE DIFFERENCE METHOD

and vectov™ is of length(N — 1) and has the form (Wilmott et al. 1996, 146)(Seydel
2009, 147):

m
VN-1

The implicit finite difference method is stable for all vatuaf o (Seydel 2009, 152).

4.4  Crank-Nicolson implicit finite difference method

In comparison to both the explicit and implicit methods, vehthe discretization 037

was of orderO(d1), the Crank-Nicolson finite difference method uses a diszaton
of orderO((61)?). This method is also stable for all valuesm{Seydel 2009, 153).

The Crank-Nicolson implicit method is an average of both the imgicit and explicit

methods (Wilmott et al. 2000, 306). Using forward difference approximation at
node (m) on thet-axis and the approximating notation;' (Seydel 2009, 153):

vt —vit v —2v vy

ot (6%)2 ’

(4.4.1)

and abackward difference approximation at node (m+ 1) on the t-axis and the
approximating notationy™! (Seydel 2009, 153):

m+1 m m+1 m+1 m+1
e VAL v+ v,

n+l
= 4.4.2
oT (0x)? ’ ( )
the addition of these two equations yields (Seydel 2009):153
ittt —v 1 (VM —2uMpyMm  ymel oymd 4 midy
ST - 2(5)()2 n+1 n n—1 n+1 n n-1/» (4 4 3)

O<n<N, O0<m<M.
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4.4. CRANK-NICOLSON IMPLICIT FINITE DIFFERENCE METHOD

Re-arranging 4.4]13 by separating terms containifig! and v™, one obtains the fol-
lowing (Seydel 2009, 154):

a a a a
—Evrr]‘lﬁl-i—(l—i—a)vr’,“”—ivr?]jll:Evr’]ll-i—(l—a)v;”-i—gvrﬁnﬂ, ( |
444

O<n<N, O<m<M.

Again,[4.4.4 is subject to theitial condition (Wilmott et al. 2000, 308) (Seydel 2009,
154):

=900, 0<n<N, (4.4.5)
whereg(x, ) is defined in equation3.5.41 on pdgeé 50.

It is also subject ttboundary conditions (Wilmott et al. 2000, 295):

v\ = 9(Xmin, Tm), 0O<m<M, (4.4.6)

and

Writing[4.4.4 in matrix notation, one finds (Seydel 2009, t55

Ay™l—gym m=0,...,M, (4.4.8)

where bothA andB are(N — 1) x (N — 1) tridiagonal matrices (Seydel 2009, 154):

(1+a) -3 0 0
-5 (+a) -5 0
A= 0 -2 (1+a) 0 :
_a
2
0 0 -2 (1+a)
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4.5. 0 - FINITE DIFFERENCE NOTATION

1-a a 0 0
2
g (1-a) 9 0
B= 0 3 (1-a) ,
: a
: : : - 2
0 s 0 ¢ (1-a)

and vectonv™ is of length(N — 1) and has the form (Wilmott et al. 1996, 309)(Seydel
2009, 147):

m
VN—-1

Before addressing the topic of solving a tridiagonal systérmaquations, a generic fi-
nite difference notationg-notation, is first introduced. Heré, can be manipulated to
resemble any one of the three above-mentioned methods.

4.5 0 - finite difference notation

This notation generalizes the finite difference method, lmwoimg both the explicit and
implicit methods (Kincaid & Cheney 1991, 582). Her#,can be adjusted to form
either the explicit @ = 0), implicit (6 = 1) or Crank-Nicolson implicit metho®(= %)
(Kincaid & Cheney 1991, 582). Using the appropriate Taykpansions, one finds
(Wilmott et al. 2000, 325 - 326):

m+1 m
ou  up™t —up

=t o(er), (45.)

92u umtl —pymtl 4 ymL um - — 2um -+ um
W:9< n+1 (62()2 n—1 _|_(1_9)< n+1 (6)52 n 1)—|—O((5X)2),

(4.5.2)

where 0< 8 < 1. The parabolic heat equation approximated by Taylor esiparcan
be written as (Wilmott et al. 2000, 325 - 326) (Kincaid & Cheri®91, 582):
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4.6. FINITE DIFFERENCE METHOD FOR SOLVING THE OBSTACLE
PROBLEM

ou 92U N Ul u”m—e unmjll—Zunm+l+Unmf11 18 unq —2uy'+ul 4
at ox2~ Ot (6x)2 (6x)2
(4.5.3)

Re-arranging 4.513 by separating the terms contaioffg andu™ and implementing
the approximating notatiow,, one obtains the following equation (Wilmott et al. 2000,
313):

vt —aB(virt = 2v vt = v a(1- 0) (v — v+ Vi),

n+1
(4.5.4)
O<n<N, O0<m<M,
fo)
where as beforey = ﬁ

4.6 Finite difference method for solving the obstacle prob-
lem

One is required to find a function(x), as stipulated in the linear complimentary prob-
lem in equation_3.513 on pagel44. Start by approximating ¢loersd derivative found
in equatiori 3.5)3 using the appropriate Taylor-expansigimgott et al. 2000, 317):

02U Uni1—2Un+Un 1

e Gz o), (4.6.1)

whereun = u(ndx). The following notation is used:

Xn = Xo + NOX, n=0,....N,

where[Xo, 1] are the lower and upper boundaries onxtexis (Refer to Figl_3.412) and
X1 = Xo + NOx. Now one can definéx as:

X1 —Xp
OX = )
N

Keeping in mind thav,, is used as an approximation tig, one can re-write the linear
complimentary problem in_3.5.3 as (Wilmott et al. 2000, 358)ydel 2009, 167):
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4.6. FINITE DIFFERENCE METHOD FOR SOLVING THE OBSTACLE
PROBLEM

(Vnt1—2Vh+ Vn-1)(Vn—0n) =0,
—Vnt1+2Vh—Vp-1 >0, (4.6.2)
Vh = On,

for 0 < n < N and subject to the boundary conditions= vy = 0 (Seydel 2009, 167).

Rewriting[4.6.2 inconstrained matrix notation, one finds (Seydel 2009, 167):

(v—g)"Bv=0,
Bv >0, (4.6.3)
v>ag.

Matrix B is a(N — 1) x (N — 1) tridiagonal matrix and vectorg andg are of length
(N —1). These matrices can be defined as (Wilmott et al. 2000, 3&piE 2009,
167):

2 -1 0 --- O
-1 2 -1 --- 0
B=]0 -1 2 . |,
: : R P —
0 0O -1 2
V1
V= ,
VN-1
and
01
g:
ON-1

The solution to problem 4.6.3 can be found by solvwg= 0, subject to the condition
thatv > g (Seydel 2009, 167).
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4.7. FINITE DIFFERENCE METHOD FOR SOLVING THE AMERICAN PRING
PROBLEM

4.7 Finite difference method for solving the American
pricing problem

In a similar manner, one can now define the finite differen(cm&batign of the linear
complimentary problem in equation 3.5.40 on phage 50. S%ee Z Y was defined
using Taylor approximations in equatibn 415.3 on pade 62vees simplified in equa-
tion[4.5.4, one finds that the finite difference formulatidrite linear complimentary
formulation of the American option pricing problem in eqoa{3.5.40 on page 50 has
the following form (Wilmott et al. 2000, 326-327) (SeydeldZ) 196-170):

{vm“ (Vm+l 2yl 4 Vrr]r:rll) _ym
—a(1-0)(vily —2vi + vt (vt =gt =0,
vt — oa (vt — 2v 4yt > (4.7.1)
Vn'+a(1-6)(val, —2ve'+ Vi),

vi'>gh, 0<n<N, O0<m<M.
It is subject to thenitial condition (Seydel 2009, 170):
W=g(0, 0<n<N, (4.7.2)
whereg(x, T) is once again defined in equation 3.5.41 on gage 50.

Equation4.711 is also subject to the followibgundary conditions (Wilmott et al.
2000, 327)(Seydel 2009, 170):

Vo' = 9(Xmin, Tm), O<m<M, (4.7.3)

and

Vi = g(Xmax Tm), ~ 0<m<M. (4.7.4)

One can re-write the finite difference formulation in eqoa#.7.1 inconstrained ma-
trix notation (Wilmott et al. 2000, 327-328)(Seydel 2009, 170):
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4.7. FINITE DIFFERENCE METHOD FOR SOLVING THE AMERICAN PRING
PROBLEM

(Cvm+1 _ bm)Tr (Vm+1 _ gm+1) -0
(Cv™1_pM) >0, (4.7.5)
(vl _gmtly >0, m=0,...,M.

Matrix C is a(N — 1) x (N — 1) tridiagonal matrix of the form (Wilmott et al. 2000,
328)(Seydel 2009, 170)(Wilmott et al. 1996, 169):

(14+2a0) —ab 0 0
—ab (1+200) —ab 0
C= 0 —ab (1+200) :
: : : : —af
0 0 —afb (1+2a0)

Vectorsb™, v andg™ are of length(N — 1) and are defined as (Wilmott et al. 2000,
327)(Seydel 2009, 170):

Z4

Vlillil

o'
g" = :

gm:_l

and

oy
o] .

s



4.8. METHODS AVAILABLE TO SOLVE TRIDIAGONAL SYSTEMS

where

b™ = v+ a(1-0)(viis —2vy'+ Vi), 2<n<N-2 (4.7.6)

Unlike the rest of the terms of vect®™, the first and the last termgy® and by ,,
include the boundary conditionsat= 0 andn = N. One therefore finds the following
adaptation to these tw@" terms (Wilmott et al. 2000, 328)(Seydel 2009, 170):

= v+ a(1-6)(gf —2v{"+ 3" + abgg, (4.7.7)

Rl]fl = VRR?]_ + a(l— 9)(9;;? — 2VR|171+ V[qlfz) + O!Ggwl. (478)

The American option pricing problem which was defined as adincomplimentary
problem to remove the free boundary, has now been formulatednstrained matrix
finite difference notation (equatidn 4.I7.5). Before pratieg with the task of finding
the price of an American put option, first consider the défermethods that can be used
to solve the tridiagonal system that results from applying af the above mentioned
finite difference methods.

4.8 Methods available to solve tridiagonal systems

In many cases, the application of the finite difference metyields a large system of
linear equations that can be rewritten in matrix notatioa aigliagonal system of equa-
tions. This is the case with both the obstacle and the Amepciing problems.

The next section discusses two different approaches tongptiiese tridiagonal sys-
tems of equations. The first isdirect elimination method, which analytically solves
the system. The second is the useitefative methods (Seydel 2009, 171). For
large systems, direct elimination methods such as LU-deosition, are inefficient
(Duffy 2006, 257) and in practice, large tridiagonal systeare often solved using iter-
ative processes. (Seydel 2009, 171).

Special attention is paid when solving tridiagonal systemee large amounts of stor-
age can be saved by not reserving space for all the elemetite ohatrix, but only
storing the non-zero elements as three vectors (PressolB&ykVetterling & Flannery
2007, 56) (Wilmott et al. 1996, 147).

Start by considering general tridiagonal system of equationBoth the direct and
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4.8. METHODS AVAILABLE TO SOLVE TRIDIAGONAL SYSTEMS

itterative methods are described using this general motati the hope that the reader
will gain more insight into these methods. One can then modde solve the American
option pricing problem written in constrained matrix natatin[4.7.% on page 65.

Consider the following general set of linear equationstemiin matrix notation:

AX = b. (4.8.1)

One is required to solve vectoywhereA is a tridiagonal matrix of the form (Brandimarte
2006, 160):

a1 a2 O 0 0

21 @2 &3 0 0

0 a:» a a 0
a=| . TR

0 -+ 0 @&-1n2 a@-1n-1 8n-1n

O --- 0 0 ann-1 An,n

4.8.1 Direct elimination methods

TheThomas algorithm, a special case of Gaussian elimination is used to obtaisathe
lution to the vectox. Assume that the coefficient matri&, is symmetricandpositive
definiteand therefore no row pivoting is required (Kincaid & Chen®@1, 154). Be-
cause of this, problems can arise even when working withsiogular matrices when
one arrives at a zero pivot. For this reason an additionalireapent is added by stating
that the coefficient matrix), has to be diagonally dominag®ress et al. 2007, 57).

Begin by re-writing matrixA as:

bl C1 0 0 0

a by co O 0

0 a3 b C 0
Al .3 3 C3 .

0 -+ 0 a1 bh1 Gt

o --- 0 0 an bn

Therefore, the tridiagonal systerix = b, can now be written as follows (Dukkipati
2010, 55-57):
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M1 ¢ 0 0 ... 07 [x] [di
ap b2 c; 0 ... O Xo d2
0 az b3 C3 0 3| = d3
(0 0 ... 0 a; byl [*] [dh

By implementing the following steps, one can sakve

Step 1
Y1:b17
8;Ci_1 :
i = by — , I=2,...,n.
Yi i yi1
Step 2
dq
71 = —
1 bl,
Za—di_aizi_l, i=2,...,n.
Yi
Step 3
Xn:Zm
xi=z— SNl
Yi

4.8.2 Iterative numerical methods

As mentioned earlier, iterative methods are particulaskful for large systems of equa-
tions. There are three main reasons for this:

» Storing all the zero values of a large tridiagonal matrisathe case when using
certain direct methods, may lead uanecessary usage of computer memory
Iterative methods allows one to store only the requiredrimfdion (Brandimarte
2006, 161).
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» Direct methods may lead todgelay in computational time, due to all the addi-
tional data that has to be handled (Kincaid & Cheney 1991).181

* Iterative methods are usually stable and may dampen exsdhe iterative process
continues (Kincaid & Cheney 1991, 182).

For these reasons, financial literature often uses aniteratethod, which gener-
ates a sequence of solution vectors that theoreticallyarges to the desired solution
(Brandimarte 2006, 161). A discussion of the convergenahede iterative methods
will follow later, however, for now it is important to notedhas was the case with the
Thomas algorithm, these iterative methods will only cogedf the matrixA is diago-
nally dominant.

The following iterative methods are used to solve a tridrejsystem of equations,
with a coefficient matrix of form on pade67:
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» Jacobi. This is the simplest of the three methods. The followingnskgorithm
for the Jacobi method (Brandimarte 2006, 163-164):

1. Choose an initial valueX, wherek = 0.
2. Decide on an acceptable error toleraace
3. Computexk+1 using:

n

1 .
)(I!(—i_l:a(bi_' Z .aijx'j‘> i=1,...,n ,a #0. (4.8.2)
! j=L]A

4. Calculate the error to attain whether or not the methodcbagerged suffi
ciently. As an example, the following error can the calcediat

kKL xK|| < g XK. (4.8.3)

If sufficient convergence has been achieveft! is the solution and the
iterative process is complete and thereby terminated. tf the iterative
process is repeated by settikg= x**+1 and computing a new¥+1 using
equatiori 4.8]2 and then repeating the error test of eqURA. Repeat ti
sought after degree of convergence has been obtained.

%
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» Gauss-Seidel Gauss-Seidel is an improved variant of the Jacobi methdis T
method uses each improvrs%ij‘1 immediately. The following is an algorithm for
the Gauss-Seidel method (Brandimarte 2006, 168):

1. Choose two initial values¢ andxk+1, wherek = 0.
2. Decide on an acceptable error toleraace
3. Computexk+1 using:

1 i—1 n
k+1 k+1 K ,
XT=—1b—=) ax " — ajjX; i=1....,n ,aj#0.
! aii ( jZl . 1;1 :
(4.8.4)

4. Calculate the error to attain whether or not the methodcbagerged suffi
ciently. As an example, the following error can the calcedat

XKL —xK || < g]|x¥]. (4.8.5)

If sufficient convergence has been achieweff;! is the solution and the
iterative process is complete and thus stopped. If not,tdrative process
is repeated by setting = x*1 and computing a new* ! using equation
[4.8.4 and then repeating the error test of equationl4.8.ped¢ill sought
after degree of convergence has been obtained.
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» Successive Over Relaxation (SORJhis method aims to accelerate the conver-
gence of the Gauss-Seidel method (Brandimarte 2006, 168)ldying one to
select an additional parametes, A suitable choice otv may speed up acceler-
ation and guarantee convergence (Brandimarte 2006, 168.fallowing is an
algorithm for Successive Over Relaxation method (Brandien2006, 169):

. Choose two initial values® andx**1, wherek = 0.
. Decide on an acceptable error tolerance
. Select an appropriate.

A W N P

. Repeatfor=0,...,n:
Computeyk*? using:

1 i—1 n
y:<+1 =— (bi — aijx|j<+1_ Z aijxlj‘> ,a5i # 0. (4.8.6)
j=1 j

! j=1+1

Computext+?

using:
XL = w4 (1— )Xk (4.8.7)

5. Calculate the error to attain whether or not the methodcbagerged suffi
ciently. As an example, the following error can the calcedat

XKL — XK < g]|x¥|. (4.8.8)

If sufficient convergence has been achiewéd;! is the solution and the it
erative process is complete and is stopped. If not, repeatetative process
by settingxk = xk*1 and computing a new* ! using equations 4.8.6 and
[4.8.7 and then repeating the error test of equdiionl4.8.pe&dill sought
after degree of convergence has been obtained.

Convergence of iterative methods

* Jacobi
Theorem 1- If A is diagonally dominant, then the sequence produced by the Ja
cobi iteration converges to the solutiondt = b, for any starting vector (Kincaid
& Cheney 1991, 185).

* Gauss-Seidel
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Start by decomposing matrik, using the splitting matrixQ) and re-writd_4.8]1
on pagé 67 as (Kincaid & Cheney 1991, 183):

Qx = (Q —A)x+b. (4.8.9)

Iteratively this can be written as:

QX = (Q— A4k (4.8.10)

To solvex, one therefore solves (Kincaid & Cheney 1991, 183):

x=(1-Q A)x+Q b. (4.8.11)

Corollary - The iterative process in 4.8]10 will produce a sequenceearging to
the solution ofAx = b, for any starting vector if (Kincaid & Cheney 1991, 189):

p(l—Q71A) <1, (4.8.12)

wherep is the spectral radius.

Theorem 2- If A is diagonally dominant, then the Gauss-Seidel method con-
verges to the solution &x = b, for any starting vector (Kincaid & Cheney 1991,
189).

» Successive Over Relaxation (SOR)

Begin by choosind) asaD — C, wherea is a real parameteb is a positive
definite Hermitian matrix an@ is any matrix that satisfies:

C+C*=D-A, (4.8.13)

whereC* is the conjugate transpose ©f(Kincaid & Cheney 1991, 192).

Theorem 3- If A is a positive definite HermitiarQ is non-singular andr > %
then the SOR iteration converges for any starting vectang&id & Cheney 1991,
192):

The prerequisites for convergence of these iterative nuistban be manipulated by im-
plementing an adapted discretization resulting in irraggkid interval lengths. This
however falls beyond the scope of this dissertation.

This concludes the discussion on the general iterative mdstthat can be implemented
to solve linear systems of equations. Now one can returnetgéh of matrices in equa-
tion[4.7.% on page 65 that must be used to price an Americaogiion.
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AMERICAN PUTS

4.9 Projected Successive Over Relaxation method for Amer-
ican puts

Theprojected SOR method(PSOR) is used when solving the constrained matrix prob-
lems in4.6.B and 4.7.5 on pages 63 65 respectively. Tétisod has one additional
feature, when compared to the classical SOR method distusdbe section above
(Wilmott et al. 2000, 320). It ensures that every elemenhefiectory™ 1, adheres to
the constraint™?* > g™ (Wilmott et al. 2000, 320).

Also note that the grid-axes are numbered from QM and Q... ,N for the T andx
respectively.When programming, one therefore has to keep in mind that@sdonly
start at 1 and therefore the iterative process has to stop at Mn stead of M

To solve the American put option pricing problem, one is regflito solve the following
matrix equation obtained from 4.7.5 on pageé 65:

Cvm+l —pm
subject to the constraint:

Vm+1 > gm—i—l'

The following is a detailed algorithm of the Projected Sissbee Over Relaxation
method (PSOR) that is used in the American pricing problegctiSns of this algorithm
can be found irOption Pricing: Mathematical models and computationP. Wilmott
(Wilmott et al. 2000, 330). No evidence was found in literataf such a comprehensive
algorithm. The algorithm solves the first unknown veatdy at time incrementn= 1.

It is important to note that becausae only has known data at the initial time node,
m = 0 and at the boundaries, # 0 and n= N, the algorithm has to be repeated for all
unknownv™ vectors at time nodas=1,..., M.

1. Setm =0.

2. CalculateKNOWN initial values (m= 0) of the finite difference grid using equa-
tion[4.7.2 on page 64, whetgs defined on pade 50 as:

g(x, 7) = edK+D*Tmayez (K-1x=3(k+1)x g (4.9.1)

One now has the the following known vectors to one’s disposal
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Vi
oo |
Vl(\)l:l
and
92
gm _ go _
981.—1

3. CalculateKkNOWN boundary values (n=0) and (= N) of grid using equations
[4.7.3 and 4.7]4 on pa@el64. One now has additional knownsalue

0

Vo
Vo=1 : |
and
s
VN =

4. Computeg™ ! wherem= 0, usind 4.9.11:
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5
ON-1
5. Choose an initial vector, ¥!9. As in the case of the iterative processes discussed

earlier, the vectox®! will iteratively be used to approximate the unknown vector
v, Using the constraint given in equation 417.5 on dage 89,1 —g™+1) > 0,
one selects?d as:

x%9 = maxv®,gl], (4.9.2)
and finds an initiak®'d:
Xcl)ld
Xold _
X4

6. Compute b"™, using equations 4.7.6, 4.7.7 dnd 41.7.8 on page 66. One noa ha
vector of the form:

by
b™=b%=
by 1
7. Choose variable, iter 1 (this will allow access to the While-loop).

8. Choose variable, erref 0,00001 (for example).

9. Choose relaxation parameter= 1 (for example).
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10. While iter = 1 do:

(Enter into a While-loop that will iteratively solve™ 1 = y1 and will continue
until the solution has converged sufficiently).

(a) Compute ay value Notice that the following formulae correspond to the
formulae given at the Successive Over Relaxation (SORydson on page
[72. In this case, the entries of the main diagonal of magrian page 65,
(1+200), are used.

e For k = 1:N-1 (spans all the unknown grid points at a single time inter-
val)

k=1:

_ b2+ a6 (%))
(14+2a8)
Because the Projected Successive Over Relaxation (PS@R )adap-

tation of the Gauss-Seidel method, the proceedilitj-value is used
to compute the following one, one first needs to compg}é& = x)°".

This value must satisfy the constraipw™?* —g™+1) > 0 on pagd 65
and therefore:

(4.9.3)

Q"= magi, 1.9 + w(y ). (4.9.4)
b + a 80§ + )
_ 20 (4.9.5)
X = maxgic, 1§+ w(y — ¢ )]. (4.96)
k=N-1:
b0+ a OXpeY
= s (4.9.7)
X"'= maxgic 1, ¢ + @y —x¢)]. (4.9.8)
* end (For)

One now has a vectax"eW:
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new
X1
Xnew —

new
XNZ1

(b) Test convergence This will determine whether the While-loop has con-
verged sufficiently or whether the iterative process needetrepeated.

o If || xOld — xnew || < error
theniter = 0 (this will stop the While-loop)
else
x0ld — x"eW and one re-calculated®V by re-entering the For-loop de-
scribed above.

* end (If)
end (While)

After the While-loop, the solution has converged suffidigtd x"€W.

11. x"®W represents solution at time interved,= 1. One can now transfer the values
of vectorx"®% to the value matriw.

yl = xnew (4.9.9)

12. Repeat While-loop and test for convergence for the dthes incrementsm =
2,...,M. The final result is a matrix, containing all the solutions.

4.10 Algorithm to solve put price under constant volatil-
ity using PSOR

Keeping in mind that when programming, the numbering of sod#l start at 1, as
opposed to the numbering system used thustat,O0, ..., M.

1. INITIAL PARAMETERS

(a) Givenvalues K, T (per annum), r (per annum)jper annum).
(b) Given current value of underlying stock priGgyrrent.
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(c) Choose number of intervals on each axis of the grid:
m= M, number of intervals om-axis.

n=N, number of intervals or-axis.

2. CALCULATING AMERICAN PUT OPTION PRICES

(a) Computex using equatiof 3.5.14 on pagg 46,

2r
K=—5 (4.10.1)
(b) Choosexmin and xmax values, where as mentioned earliggi, < 0 and
Xmax > 0.
(c) Computedx, the length of an interval on theaxis:
Sx — Jmax— Xmin (4.10.2)
N
(d) Computermax= 0,502T.
(e) Computedt, the length of an interval on theaxis:
5t — [max (4.10.3)

M

() Choose numerical parametét, This value dictates whether the Explicit,
Implicit of Crank-Nicolson finite difference method is to bsed.

(g) Computen, using equation'4.3.5 on pag€e 56,

o= (g#. (4.10.4)

(h) Testif method chosen is stable:

If 8 <0,5andifa > 0,5, then method is unstable and eitl®eor num-
ber of intervals need to be altered.

(i) Discretize bothx andt axes:

X = (Xmin : 0X: Xmax),

T=(0:0T: Tmay)-
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() Define in-line function g using 4.9.1 on palge 74.

(k) Compute matrixg. These values are to be used in the PSOR routine. By
doing so one doesn't have to re-calculate a vegtapeatedly and one can
only refer to the relevant column needed in the PSOR iterat@ne now

has:
EEEE
Do @ g
g=19 9 9% 9> 92
R ok & - ot oM

() Define initial matrixv with zero values.

(m) Complete PSOR algorithm, discussed in sectid®4 This will result in a
matrix v, containing the solutions for variablesand . One now has to
convert these values to values related to the varigbéexit.

3. TRANSFORM TO S, t and PA™ (OPTION PRICE) VALUES

(a) Convert x and values on the axes to S and t values using equafion 3.5.8 on
page 4b,
T
50
(b) Convert matrixv, containing values which are approximations to values in
matrix u, to a matrixPA™, using equations on pages 45 a7.

f(x,7) = e 2(K-Dx-3 (kD Ty 1), (4.10.6)
1 _am 1 _am T
f(x, 1) ==-PAMSt)= —PA" K&\ T - — |, (4.10.7)
K K 102
and therefore,
PAM(S t) = K f(x, T) = Ke™ 2(K-Dx-3(k+ DTy 1), (4.10.8)

Finally, one obtains a matrix containing a broad range of Aca@ put op-
tion values that is suited to each individual stock priceaathetime interval:
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R PI P2 Pyt pM

PP PEPE o R P
2 M—-1

prm_ (PY P P2 .. P P
. M-1

P Py P3 PRt RY

4. COMPUTE EARLY EXERCISE BOUNDARY

Because the early exercise boundary is valid fot athlues, where &t < T,
one needs to compute &a value at each node on the time axis.

(a) Create initial vectoi$s of lengthM + 1 containing zeros.
(b) Choose ere= 0,000001 (for example). A value slightly larger than zero.
(c) Forj=0:M (for all time-axis values)

+ Exercise is optimal whe® < S¢ and PA™ = maxK — S 0]. Refer to

equatior 3.4]7 on pagel41. Therefore, one will exercise wHEh—
K+S=0.

* One now wants a valug(i), where 0< i < N (all the x values at one
time increment), in each column(one time increment), of the matrix,
PAM. Here,P! —K + S(i) < err, for this is the last option value where

one will exercise the option. BecausePAtz maxK — (i), 0], one will
hold on to the option an&(i) > S (See equatioh 3.4.8 on page 41).
Therefore,

i = find(abgPA™(:, j) —K+S) < err,1,'last).

» This is the stock price value that separates the exerase fhe non-
exercise region and therefoi®,(j) = S(i).

end (For)

5. FIND CURRENT OPTION VALUE

InterpolateS andPA™ time zero values to find option value corresponding to cur-
rent stock priceS.urrent: This is done in cases where tBgrent Value does not
fall precisely on the&s grid. For example, spline interpolation can be used.

F)(':Al\erren‘[ = interpl(S, PAm(:7 0), Surrent, SPling).
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Chapter 5

American put option pricing problem
under stochastic volatility

5.1 Introduction

In the first part of this dissertation, American put optionsrevpriced under constant
volatility. This was done in accordance with the assumgtimade by the Black-Scholes
model. However, recent world events have proven that madeet indeed volatile and
subsequently current research trends focus on the develdmhmathematical models
that take fluctuating volatility into account. This has ledte development of numerous
sophisticated models that can be used to value an optiongik& Tiovanen 2008, 105):

» Value and time dependant volatility functions.

» Jump processes for the value.

Combinations of value and time dependant volatility fusre$ and jump pro-
cesses.

 Stochastic volatility models.

 Stochastic volatility models with jumps (Ikonen & Tiovan2008, 105).

The second part of this dissertation addresses one of thiecehongs of the Black-
Scholes model by explorirgfochastic volatility modelsAs was the case previously the
Black-Scholes partial differential equation on pagé 29 lbaradapted to compensate
for an expanded asset price model by re-writing the probletmear complimentary
form. This linear complimentary problem is then discralinsing the appropriate finite
difference formulas and solved numerically.
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5.2 Black-Scholes model under stochastic volatility

The stochastic volatility model discussed in this dissentais the Heston model. This
model generalizes the Black-Scholes equation by intradustochastic volatility and
therefore compensates for the shortcomings of Black-&shwolodel’s assumptions on
constant volatility. This generalization is achieved bydaking the price of an underly-
ing asset in a more realistic way. As was the case with conegtdatility (see equation
[3.2.1 on page 24), start by constructingaamset price model of the underlying stock
price. The following stochastic differential equations are ased to govern the asset
price processSand itsvariance y (Duffy 2006, 240-241):

dS= uSdt+ /ySdWw, (5.2.1)

dy=a[B —ydt+y,/ydW, (5.2.2)

where

» S - Stock price at time t.

» U - Constant expected rate of return of stock (drift).

* y- Variance.

* Wi - A Wiener process.

* W, - A second Wiener process related to the first by correlato@ifcient,p.
* y - \olatility of the volatility.

* 3 where (0< B) - Long term variance.

* a where (3 < a) - Rate of mean reversion.
The correlation between the two Wiener processes is givéDu$y 2006, 241):

dWidWs = pdt. (5.2.3)

It can also be described as the correlation between the giribe underlying asset and
its variance (Ikonen & Tiovanen 2008, 106).

Now the Black-Scholes partial differential equation hadécadjusted to allow for the
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changes made to the asset price model (Oosterlee 2003,6B98Because American
put options are the focus of this dissertation, consideBllaek-Scholes partial differ-
ential inequality which was derived on pdgé 32 as:

gpPA™ 192pAM gpAM

- F+rS

ot 29z 77T 5s

If 6.2.4 is changed to take the asset price modelinb.2.[ &h@ mto account, the result
is a two-dimensional parabolic partial differential inadjty (Ikonen & Tiovanen 2009,

302):

—rPAM< 0. (5.2.4)

dPAm 1 dZPAm dZPAm aZPAm aPAm
_ - c
ot +2( Sog TP, VY 50 )“” s

e (5.2.5)
(a(B-y)—8yYy) oy —rPAM <0,

whered is the market price of the risk (Oosterlee 2003, 168).

It is important to notice thathe same path as in the case of constant volatility, where
the Black-Scholes equation was transformed into the onermranal heat equation is
not followed. Instead, one uses only one transformatiornémge the problem from a
backward equation, requiring final conditions, to a forwarguation that requires ini-
tial conditions(Oosterlee 2003, 169) (Higham 2009, 257). This concept wasred in
paragraph 3.1.

Equatiori5.25 is transformed into a forward equation byniiedi a variabler as:

T=T-t. (5.2.6)

New symbols are also introduced for simplicity. Letand x denote the American
option price,PA™ and the underlying stock pric&, respectively. One can now re-
write equation 5.2]5 and define thieston operatoras (lkonen & Tiovanen 2008, 106)
(Duffy 2006, 239-241) (Ikonen & Tiovanen 2009, 302):

Lu—@_lxza_zu_ Xa—zu_:_Lyz a_zu_r)(@
ot 2 e PW oxoy 2 ydy2 ox

au (5.2.7)
—(a(B-y) —Sv\fy>0—y+ru > 0.
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The option pricing problem is defined on the unbounded dorfikonen & Tiovanen
2008, 107) (Ikonen & Tiovanen 2009, 302):

{(x,y,T) :x>0,y>0,T€[0,T]}. (5.2.8)

The values on th& andy axes need to be truncated. However, the Heston model is not
entirely clear on how large the computational domain neee to ensure a sufficiently
small truncation error (Ikonen & Tiovanen 2008, 107). There, redefine the domain

in as (lkonen & Tiovanen 2009, 302):

{X%y,1):0=0<X<Xmax 0 <Y < Ymax T € [0, T]}, (5.2.9)

wherexmax andymax are sufficiently large numbers. Remembering that for a ptibop
the payoff is (Ikonen & Tiovanen 2009, 302):

g(x) = maxK —x,0], (5.2.10)

one can now proceed to investigate the initial and boundanglitions of the pricing
problem.

Theinitial condition implies that (Ikonen & Tiovanen 2008, 106) (Ikonen & Tiovane
2009, 303):

u(x,y,0) = g(x) = maxK —x, 0] (X,Y) € [0,%Xmax X [0, Ymax- (5.2.11)

Keep in mind that due to the transformation usmghe problem is solved by providing
a1 = 0 value, but that this value in actual fact corresponds tofteon price at time
T. Therefore, when the pricing problem is numerically solfedall unknownrt values,
the value obtained at= T corresponds to the option pricetat O (current price).

Boundary conditions at (Ikonen & Tiovanen 2008, 107):
* X =0, Dirichlet boundary condition (Ikonen & Tiovanen 20@3®3):
u(0,y, 1) =g(0) =K (Y. 7) € [0, Ymad x [0, T]. (5.2.12)

* X = Xmax Neumann boundary condition (Ikonen & Tiovanen 2008, 1kQr(en
& Tiovanen 2009, 303):
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%(Xmax,y, =0  (¥,7) € [0,ymad x [0, T]. (5.2.13)

* y = 0, Dirichlet boundary condition (Ikonen & Tiovanen 2Q08) (Clarke &
Parrott 1999, 180):

u(x,0,7) = g(x) = maxK — x, 0] (X, T) € [0,Xmax x [0, T]. (5.2.14)
* Y = Ymax (Ikonen & Tiovanen 2009, 303) (Ikonen & Tiovanen 2008, 107):

%(x, Ymax T) =0 (X, T) € [0,Xmax % [0, T]. (5.2.15)

Due to the early exercise facility of an American option, adidonal early exercise
constraint is included (Ikonen & Tiovanen 2009, 303):

U<X7y7 T) > g(X) <X7y7 T) S [07 XmaX] X [07yma>4 X [O7T] (5216)
Thelinear complimentary problem for the American option price under stochastic

volatility can now be defined as (Ikonen & Tiovanen 2008, 107) (Ikonen@vdmen
2009, 303):

(Lu)(u—g) =0,
Lu> 0, (5.2.17)

u—g>0.

5.3 Finite difference method

The linear complimentary problem[in 5.2117 is to be solvedgihe finite difference
method. This requires the discretization of the Heston aperin[5.2.7 on page_84
(Ikonen & Tiovanen 2009, 304 he spatial derivatives are discretized using a seven
point stencil and the time axis is discretized using a uniform space-timeefdiffer-
ence grid on the domain described’in 5/2.9 (lkonen & Tiova2@0, 304).
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* Number of internal nodes on the x-axism,

Xmax

:m+1'

* Number of internal nodes on the y-axisn,

_ Ymax

n+1

Ay
* Number of internal nodes on theaxis= 1,

T
IES

» The following grid point notation is used:

AT

ui(7kj) ~ U(X;,Yj, Tc) = U(iAx, jAY, KAT),

wherei =0,....m+1,j=0,...,n+1andk=0,...,1 +1 (Ikonen & Tiovanen
2009, 304).

Fig. [5.3.1 on page 88 is a visual representation of the gridioéd after the space
discretization of equation 5.2.7 on pdgé 84. The blue daiesent the known values
on thex = 0 boundary. These values are obtained using equiation b.2Hered dots
represent the known values on the- 0 boundary and are obtained frém 5.2.14. The
green dots represent unknown values that are used to dal¢ch&aoption price on the
boundaryy = ymax. The details of this process will be discussed in the nextagdut
for now one can mention that the idea behind solving the bagndalues ay = ymax

is to approximaté 5.2.15 on pagel 86 using a central differéoanulae, therefore us-
ing the two adjacent nodes. This too is the case orxthexmax boundary, where the
pink dots represent the adjacent nodes after approximaith§3. The use of a central
difference formula to approximale 5.2115 and 5.P.13 resnlthe use of ghost points
(Ikonen & Tiovanen 2004, 8). These points fall outside thd dimensions and as just
mentioned, one will learn how to deal with these ghost ortiais grid points in the
following section.
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5.3. FINITE DIFFERENCE METHOD

j=n+2 @ [ ]
j=n+1 ymax ‘(0,n+1) .(m,n+1) (m+1,n+g
i=n ¢ - °
@ L [ ]
@ @ [ ]
y-axis P N °
@ L [ ]
i=2 20y ¢ &2 ® °
-1 dy QY _|av |ey oMy | me1n o
. 0,0 1,0 .0 1,0
i=o0 0 ‘<,) ‘( ) ® ® ® ® .(m) ‘(m+,>.
0 OxX 20X Xmax
i=0  i=1 =2 i=m i=m+l i=mi2
X-axis

Figure 5.3.1x — 1 - grid after discretization

The coloured dots are discussed on page 87.

5.3.1 Space discretization

All the partial derivatives in the Heston operator on pagel4e variable coefficients
and in parts of the domain, a first order derivative dominatescond order one (Ikonen

& Tiovanen 2009, 304). Notice that the operator also costairsecond-order cross-
2

derivative term,pyyx(i(—auy , and therefore it is difficult to construct a grid with good

properties and accuracy (Ikonen & Tiovanen 2009, 304).

Normal finite difference approximations may result in sopusitive off-diagonal el-
ements in the coefficient matridue to thecross-derivative and dominating first-order
derivative termsThese positive elements may lead to oscillations in thetswl (Ikonen
& Tiovanen 2009, 304).
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5.3. FINITE DIFFERENCE METHOD

To remedy the problem of positive off-diagonal elementse oeeds to construct a
strictly diagonal dominant matriwith positive diagonal elemengndnon-positive off-

diagonal elementgalled a M-matrix (Ikonen & Tiovanen 2009, 304).

The first and second-order spatial derivativesin 5.2.7, with the exception of the
cross-derivative term, are approximated vatindard second-order accurate central

finite difference formulas (Ilkonen & Tiovanen 2009, 305). In cases where a first-

order derivative term dominates the related second-oreevative term, one needs to
increase the second-order derivative term’s coefficidrdreby avoiding positive off-

diagonal elements (Ikonen & Tiovanen 2009, 305).

« First-order derivative terms (Ikonen & Tiovanen 2009, 305).

OUu  Uit1j—Ui-1j

Ol j = x 2AX ’
(5.3.1)
~du Uijy1—Uja
=5y = 2ny
« Second-order derivative terms(lkonen & Tiovanen 2009, 305).
02U Uit1j—2Uij+Ui_q
2. Yl i] i—1,]
Octj = ox2 AX? ’
(5.3.2)
22U Ui 41— 2Ui | +Uii_
2, . _ Y+l N i,j—1
Oy i j = a2 AY? '

89



5.3. FINITE DIFFERENCE METHOD

* Second order cross-derivative term

Begin by assuming that the coefficient of this tepwyxy, is non-positive (Ikone
& Tiovanen 2009, 305). By expanding the Taylor series anddating, one find
(Ikonen & Tiovanen 2009, 305):

[ 2]

du

Ju
U(Xit1,Yj+1) = ut+axH +Ayay

0X

d2u
+= (szﬁ 5 + 20X0y 0—Xy+Ay2 )

(5.3.3)
Ju

du
u(Xi-1,Yj-1) ®u— & —Ayay

X
+1 22U L opny? Y 20U
X2 dxy (3y2

whereu and it’s derivatives on the right hand side of these equatiwa evaluated
in the grid point(x;,y;).

1%

By adding these two equations, simplifying and rearrandimg terms, on

obtains an approximation foxTUy (Ikonen & Tiovanen 2009, 306):

d%u 1
oxdy ~ T, [u(xi+1,yj+1) — ZU(Xiayj> + U(Xi_l,Yj—l)]

(5.3.4)
Ax d°u Ay d%u

20y 9x2  2MX Y2
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5.3. FINITE DIFFERENCE METHOD

Using the approximation of the second order derivative $anfb.3.2 and the approxi-
mation of the second-order cross derivative terin in 5.3, @an re-write these terms
in as (lkonen & Tiovanen 2009, 306):

1 20% 1z
Y1 2 TPV (3xdy 2 ldy2

2
__ij| pyij. Ax} J<u { 2y2 J+pWJX| Ayl 9%u (5.3.5)

2 Ay| ox? 2 DAx| 9y?

_PYyiXi
PIAVIANY

Finally, by substituting the central differencesin 5.3rd&.3.2, together with 5.3.5
into[5.2.7 (Ikonen & Tiovanen 2009, 306), one obtains:

[U(Xi+1,Yj+1) —2u(X,Yj) +U(Xi-1,Yj-1)] -

du pYyjXi A 92U PYYXi By 02U
ot Eylx'+ 2 Ay+ }WﬂL 2JV2+ 2 nx T Cedd] 52
Ju Ju
—Xio— — [a(B-Y)) =8V /Vj] -
Ax d
PYY|Xi
2AxJAy [Ui+1,j+1— 2Ui,j +Ui_1,j_1} +rujj > 0,

(5.3.6)

whereaygg andc,qq are additional coefficients chosen to ensure that all @Gdnal
elements of the coefficient matrix are non-positive (Ikoeffiovanen 2009, 306).
Therefore (Ikonen & Tiovanen 2009, 306):

1 5 pyyjX X A 1 5 pyyjx Ax AX
aadd_mm(ziji_TA_y_rXi?’Eiji_ 2 Ay+ PR 01,

2 PYYjXi by a(B—y)) (5.3.7)

A
9yl

. i A Dy
2yJX| 5 Ay +a(B-yj) - ’9V\/)TJ]?70

Using5.3.1 and5.3.2, one can re-wiite 5.3.6 to define a gmviendiscretization stencil
in pointsu; j,Ui—1,j,Ui+1,j,Ui,j—1,Ui j+1,Ui+1 j+1 andui_y j_1 referred to in (lkonen &
Tiovanen 2009, 306), but written in detail as:
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5.3. FINITE DIFFERENCE METHOD

ou [yp¢ PWiX 28add , ¥iY* 2Cadd
01  |AX  AyAx A2 A2 Ay
5 ;
_YiXT | PWIiXi | 8add | X
* [ e " 2AyAX et 2/ |
2 -
_YiXT | PWIXi | @add X |
* [ e " 20\yAX T 2 | Hi

Ui

Ui—1,j

. (5.3.8)
+_ij2 PYYIX | Cadd  [(B—Y)) - Oy\¥il]
202 ' 20yAX | Ay? 20y |
L[ ewix | cag [@(B-Y) IVl
202 T 20AyAX | Ay2? 20y |
_Pyyixi| Py
+ [ 2AyAx} Uit1,j+1+ { 2AyAx} Ui-1j-1>0,
fori=1...m+1landj=1,...,n+1.
Equatiori5.3.18 can be simplified as:
Jdu
d——l-AUi,j+BUi—1,j+CU+1,j+DUi,j+1+EUi,j—1
T (5.3.9)

+FUi+1j+1+GU_1j-1 >0,

where there is a different value for each letter of the alphaorresponding to the
differentvaluesi=1,.... m+landj=1,...,n+1.

(i-1,j+1) .([i,j)+1) (i+1,+1)

(i-1) (i) (i+1))
@ @

R (E

(i-1,j-1)  1(1-1) (i+1,-1)

&

Figure 5.3.2: Seven point discretization stencil

Fig.[5.3.2 is a graphical representatior_of 5.3.9.
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5.3. FINITE DIFFERENCE METHOD

One uses thaitial condition defined i 5.2.71 andoundary conditionsit x = 0 and
y = 0, defined iN5.2.12 and 5.2]14 respectively. At the boundary/xmnax, Where
i =m+1, one useE 5.2.13 on pagé 86. The following is a centralrdiffee approx-
imation to[86 (lkonen & Tiovanen 2004, 8):

du Umi2j — Umj
dx( max ¥, T) X )

(5.3.10)

for all values,j =0,...,n+ 1. Simplifying[5.3.10 one finds that a ghost point outside
the grid,(m+2, j), now equals an unknown internal grid poifw, j). Therefore, the
unknown grid point on the boundaryn+1, j), can be calculated as part of the pricing
problem using the additional information:

Umt2,j = Um,j- (5.3.11)

This same arguement is used on the boungasymax, Wherej = n+1. Using5.2.1b
on pagé 86, one finde the following central difference apjpnakion:

ou Uint2 —Uin

—— (X, Ymax T) = 20y

= 3.12

for all valuesi = 0,...,m+ 1. Simplifying[5.3.12 one finds that a ghost point outside
the grid, (i,n+ 2), now equals an unknown internal grid poifit,n). Therefore, the
unknown grid point on the boudanrgi,n+ 1), can also be calculated as part of the
pricing problem using the additional information:

Uin+2 = Uin. (5.3.13)

Applying the space discretization formuldin5]3.9fer1,..., m+1andj=1,...,n+
1, results in a semi-discrete equation with matrix reprizgem (Ikonen & Tiovanen
2009, 307):

du

5p AU 0. (5.3.14)

whereA isa(m+1)(n+1) x (m+1)(n+1) tridiagonal block-matrix and is a vector of
length(m+1)(n+ 1) containing indices for all the unknown nodes(lkonen & Tioga
2004, 8). The following section discusses the compositiamatrix A. No published
information seems to exists that addresses the structukeimfsuch detail. MatrixA
has the form:
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5.3. FINITE DIFFERENCE METHOD

A1 Ao O
Ac1 Ao Als

0 0 0
0 0 0

0
0

0 Az Azz Azy

(@)

o -

Am,m—l Am7m Am7m+1
0

0 0
0 0

0

- O

Am+1,m Am+1,m+1

whereeach matrix in A is of size(n+ 1) x (n+1). Matrices on the diagonal & can

be defined as:
A
D
0

0
0

- O>m

0
0

>mo

0
0

mo :

0 0 0
0 0
0 0
D A E
0 D+E A

forr =1,...,m+ 1. Keep in mind that these constants are different for ealthevaf i

andj.

The matrices on the top diagonalAfare of the form:

C
0
0

Ar,r-i—l =

o --

0

—F
C
0

0
0

0
—F
C

0
0

0
—F

0

0

0

0

0 0
0 0

0
C -F
F C

wherer =1,...,m. Keep in mind that these constants are different for eaalevafi

andj.

The matrices on the bottom diagonal &f with the exception of matridy,1m are

of the form:
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5.3. FINITE DIFFERENCE METHOD

B 0O O 0 0O O

-G B 0 O ... O O

0O -G B 0 O 0
Ar,rfl - . . ’

0 0O O -G B O

0 0O O 0 -G B

wherer = 2,...,m. Keep in mind that these constants are different for eaahevati
andj.

Matrix Am,1m is of the form:

B+C -—F 0 ... 0O 0 0

-G B+C —F o ... 0 0

0 -G B+C —F O 0

Amm-1= : : . . . : :
0 0 0 ... =G B+C —F
0 0 0 ... 0 —-F-G B+C

The coefficients used in these matrices are definéd inl5.21&a09 on page 92 and
as repeatedly mentioned, it is important to note that thesfficients change in value
corresponding to the changes iand j values on the x- and y axes respectively.

The structure oA\ is quite complicated to comprehend, yet a thorough undeasig
of it's structure is vital when programming numerical prdgees to price American put
options. The following is a practical illustration of howeirs to go about implement-
ing equation 5.319 to ultimately obtdin 5.3.14. Keeping. Eg.1 on page 88 in mind,
option values on boundaries wheare- 0 andj = 0 are known and therefore one only
needs to compute option values for unknown grid points.

Example on how to obtain equatiori 5.3.14

» Compiling matrix A

— Start by choosing parametarsandn that represent the number of internal
nodes on the x- and y-axes respectively. For example chamose2 and
n=3.

— Create a column vector for each individual letter of the alpgt. The length
of each vector should bien+1)(n+ 1), the total amount of unknown nodes
on the grid. For this example the vector length is 12.
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5.3. FINITE DIFFERENCE METHOD

— Declare an initial matriXA containing zero values. The size of matfiXor
this example is 1% 12.

— Declare a counter that will keep track of the entry positibeach individual
value of an alphabet letter into its column vectwunt= 1.

— Keeping equation 5.3.7 on palgd 91 and equafions]$.3.8] @n3page 92 in
mind, one can now proceed by calculating each coeffideBt. .., F, G for
the different andj values.

* For tel = 1:2+1 (this will keep track of the values as one moves along
the x-axis)

» For teller = 1:3+1 (this will keep track of thej values as one moves
along the y-axis)

A(count) = m;‘j - pAZ/yA]? - ZZf(gd )2;/22 - ZX;gd + r} : (5.3.15)
B(count) = [— ggf? + gAyillex)'( + Za;; + ZrZIx} , (5.3.16)

Cleouny = [ 22X IV 2esg_ 16 ], (5:2.17)

D(count) = {—;‘Aé + ﬁZ)AszA)i (E;:Zd [G(B—ij)A;SV\/TJ']} , (5.3.18)
E(count) = [— ;X; ﬁz)Ay?A)i + Z‘jzd — (B —ij)A; SV\/TJ']] 7 (5.3.19)
F(count) = {—ggg'(} ) (5.3.20)

G(count) = {_gAyszﬂ : (5.3.21)

count =count + 1;

End(For(teller))
End(For(tel))

One therefore obtains 12 values for each coefficke®, ..., F,G. This in-
cludes coefficients at the unknown points on the boundaxiesxmnax and
Y = VYmax These 12 different values can be placed in the correctiposit
matrix A.
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5.3. FINITE DIFFERENCE METHOD

— Place coefficients into correct places in original ma#ix

The final form of of matrixA for this example is:

Ar E; 0 0 C F1 0

D, A Eo 0 0 Co F

0 Ds Az Es 0 0 Cs

0 0 (Ds+Esx) Ay O 0 Fa

Bs O 0 0 As Es 0

A— Gg Bg 0 0 Dg As Es

0 Gy B7 0 0 D7 A7
0 0 Gg Bg 0 0 (Dg + Eg)
0 0 0 0 (By+Co) Fo 0
0O O 0 0 G1o (B1o+C10) Fio
0 0 0 0 0 G (Bu+Cu)
0 0 0 0 0 0  (Gu+Fu2)

coFMoolPJoo

F11
(B12+C12)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
C K 0 0
0 G Fs 0
0 0 C; F
0 0 Fs Cs
Ay Eg 0 0
Dio Auo E1o 0
0 D A1l E11

0 O (Di2+E12) A

* Declare column vectaun of length(m+ 1)(n+ 1) containing zeros. This vector
will contain values for all the unknown grid points and wikwe the following

uj,j entries:

Ui1
U2
U3
U4
Uz 1
Uz 2
Uz.3
U2 4
Uz 1
Uz 2
us 3
us 4

Matrix A and vectou have now been defined. Therefore equdtion 513.14 can now
be defined. The next step is to discretize the time axis.

5.3.2 Time discretization

The stability properties of the time discretization pracese vital in option pricing
problems because the initial boundary conditiof in 5J2.4 pagd 8b has a discontin-
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5.4. LINEAR COMPLIMENTARY PROBLEM UNDER STOCHASTIC
VOLATILITY

uous first derivative (Ikonen & Tiovanen 2009, 307). Therefan unconditionally
stable scheme with no restrictions on the interval ledgtis chosen. The second-order
accurate Crank-Nicolson method is given by (Ikonen & Tie@@009, 307):

(I + %ATA) uktd) > (I - %ATA) u®, (5.3.22)

One can simplify 5.3.22 as:

Bukt1 > cuk, (5.3.23)
where
1
B:O+ENA) (5.3.24)
and
1
C:O—ENA). (5.3.25)

5.4 Linear complimentary problem under stochastic volatit
ity

One can now formally define the linear complimentary probfenthe American put
option under stochastic volatility as (Ikonen & Tiovane®20308)(lkonen & Tiovanen
2008, 113):

(Bu(k+1) _ Cu(k)>Tr(u(k+1) —g)=0,
Buktt) —cu® >0, (5.4.1)

uktl —g>o0, k=0,... |+1

To solve this linear complimentary problem, one has to sthledollowing matrix equa-
tion taken from 5.41:
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5.5. ALGORITHM TO SOLVE PUT PRICE UNDER STOCHASTIC VOLATIOIY
USING PSOR

Bulkd) = cul®),

subject to the constraint:

5.5 Algorithmto solve put price under stochastic volatil-
ity using PSOR

Keep in mind that when programming, the numbering of nodéstairt at 1, as opposed

to the numbering system used in this dissertatien0,...,m+1, j=0,...,n+1 and

k=0,...,I+1. This algorithm is written fok = 0 but needs to be repeated for all values
of k.

1. INITIAL PARAMETERS

(a) Stipulate values K, T (per annum), r (per annuihx Ymax Y, 2, 2, B, Q,
w ande.

(b) Given current value of underlying stock pric&urrent @nd volatility level
where price should be specifiedhyrrent.

(c) Choose number of intervals on each axis of the grid:
m, number of internal nodes onaxis.
n, number of internal nodes graxis.

[ number of internal nodes anaxis.
(d) Create initial matriA, containing zeros.

(e) Create initial matrixZ, containing zeros. In this matrix all prices will be
stored. It is therefore a combination of the values forxall y grids at a
specific time increment for all the valueskfk =0,...,1 +1 and contains
prices of the three dimensional grid.

() Calculate interval length#yx, Ay, At.

2. CALCULATING AMERICAN PUT OPTION PRICES
Stepga),...,(l) need to be repeated forkO,...,[ + 1.

99



5.5. ALGORITHM TO SOLVE PUT PRICE UNDER STOCHASTIC VOLATIOIY
USING PSOR

(@)
(b)

(©)

(d)

Compute boundary conditions using 5.2.12[and 5.2.14tord them in the
correct positions in matriX.

Compute differendi,gg andcagg values fori =0,...,m+1andj =0,...,n+

1. There is now a differerd,qq andc,qq value for each node of the grid on
pagd 8B. These values are used to compute the elements afdffieient
matrix A. The most effective way to store these different valuex) eate

a vector foraggqg and caqq respectively. The length of this vector will be
(m+1) x (n+1).

Compute coefficient matrix entried; B,C,D,E,F foreachi =0,...,m+1
andj =0,...,n+1 using equatiorfis 5.3.15[{0 5.3/21. The most effective way
to store these coefficients is to create a different vectoedah letter of the
alphabet. The length of this vector will g+ 1) x (n+41).

Using the different alphabet vectors created in the iptes/step, one now
has to place the correct coefficient in the correct positiomatrixA. This
is quite a complicated task, but using the general structittee tridiagonal
block matrix given on page 92 as guideline along with the egbent break-
down of each individual matrix in the pages to follow, afteng effort one
obtains the coefficient matrix.

(e) Create identity matrik, with same dimensions &s

(f)

Obtain matrixB by applying equation’5.3.24 on pagg 98.

(g) Obtain matrixC by applying equation 5.3.25 on pdgg 98.
(h) Applying the initial condition in equation 5.2111 on [ 4835, calculate the

(i)

@)

(k)

values of the grid on the first time levéd= 0 and store these in the correct
position in the matrix containing solutions at all time iegrentsZ.

Create a vectog, with length corresponding to all the unknown grid points
at one time increment, thus fo=1,.... m+21andj=1,...,n+ 1. The
entries ofg correspond to the grid points wh&nr= 0 and is calculated using
equatiori 5.2.71 on pagel85.

Create a vecton®, with length corresponding to all the unknown grid points
at one time increment, thus fo=1,.... m+21andj=1,...,n+ 1. The
entries ofu® correspond to the grid points whén= 0 and is calculated
using equation 5.2.11 on pagé 85.

Calculate vectob asb = Cu®. One now has the right hand side of equation
5.3.23 on page 98 and one needs to salvasing the following equation:

Bul =b, (5.5.1)

subject to the constraint:
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USING PSOR

ut>g. (5.5.2)

The elements afit are solved iteratively using the PSOR method. To speed
up computation time, the PSOR method can be adapted to hanigi¢he
non-zero elements of matrB& and the value ofv can be optimized.

(I) Onceu! has been solved, its values are stored into the right pasitio
matrixZ. Keep in mind that this matrix will eventually contain alktbption
values at all time increments and as mentioned earlienrhisix represents
all the values of the three dimensional grid with axes tinbegls price and
volatility.

3. FIND CURRENT OPTION VALUE

After solving all the option prices, the last entriesdbtorresponding to the di-
mensions of thex— y-grid will contain the current option prices for a range of
stock prices and volatilities. The current stock pi&grent and specific volatility
level ocyrrent are stipulated beforehand. The final step is to interpotatet the
option price that corresponds the current stock pBiggent and specific volatility
level ocyrrent respectively.
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Chapter 6

Numerical Experiments

The following models were solved using a computer with djpeEtions:

¢ Intel Core 2 Duo @ 2.8GHz,
« 1 GB Ram,
» 160 Gig.

6.1 Constant volatility

The following example is taken from the bodke mathematics of financial derivatives
(Wilmott et al. 1996, 174), where the parameters are chosen a

o K =10 (strike price),

* r = 0,1 (constant interest rate),

T = 0,25 (3 months duration of the option contract),

* 0 = 0,4 (constant volatility) ,

w = 1,8 (PSOR relaxation parameter),

m = 300 (amount of intervals on theaxis),

* n= 300 (amount of intervals on the x-axis).
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6.1. CONSTANT VOLATILITY

The following solutions were obtained:

Stock price| European put American put| (Wilmott et al. 1996, 176
4 5,753100148 6 6

6 3,756838358 4,000000051| 4

8 1,901630105 2,019254756| 2,02

10 0,667864364 0,6892706 | 0,6913

12 0,166486116 0,169866883| 0,1711

Table 6.1.1: American and European put options under conetéatility

Table[6.1.11 compares the values of European and Americaogtiains for different
underlying stock prices. Notice that the price of Europeairoptions are less than their
American counterparts. As mentioned earlier, this is duiaéoearly exercise facility
offered by American options that allows a greater flexipilit the option holder. Option
values decrease significantly as the option shifts fromemtloney to out of the money.
The results are comparable to the American put option vatu@&/ilmott et al. 1996,
176), since the algorithm used in this dissertation is basedescriptions in (Wilmott

etal. 1996, 167 - 177).
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6.1. CONSTANT VOLATILITY

The following figures were also generated:

American and European put option

2.5 T T T T T T T T T T
American
European
Payoff
2 - B B B -

.
ol

Option price

=

0.5

O 1 1 1 1 1 1 1 1 Ir
85 9 95 10 105 11 115 12 125 13

Stock price

Figure 6.1.1: European and American put option prices - uooiestant volatility

Fig.[6.1.1 is calibrated to show option prices for valuesefunderlying betweeg= 8
andS= 13. It illustrates the price differences between Americad European put
options. These price differences are more significant féhéxmoney options and the
general pattern follows the traditional form of the optiaypff, with prices decreasing
gradually as the underlying price is increased. This isctlyerelated to the payoff
function:

Payoff= maxK — §,0]. (6.1.1)

104



6.1. CONSTANT VOLATILITY

American put option

0.25
0.2

Option price

0.1
0.05

10 time (years)

15

20

Stock price
Figure 6.1.2: American put option price surface

Fig. [6.1.2 is a graphical representation of the option psigdace. This is a three
dimensional graph with stock price, time and American puitoopprices as axes. It too
illustrates that the value of the option increases as thenlyidg stock price decreases.
Additionally it shows that of options with a longer time to tuaty are more valuable
than options where the exercise date is looming. The reasdahit is that for both in
the money and out of the money options, a longer durationi@sat there is a greater
probability for making more money.
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Exercise boundary
10 . . , ,

Holding region

] e LR R R L L EE TS SRR LI R EEERRTE AP RRERRRRERTRES PRRRRRRRRRTYY |

Stock price

Exercise region

7.5 Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25

Time (years)

Figure 6.1.3: American put option early exercise boundary

Fig.[6.1.3 shows the early exercise boundary. It shows wigabption holder’'s mindset
should be at a specific point in time for a specific stock priaki@. For stock prices
above the boundary, the option should be held and for stackgpunder the bound-
ary, the option should be exercised. Recent studies hawradvopics surrounding
the exercise boundary, such as the asymptotic behaviotredddundary near expiry.
This asymptotic behaviour can be observed from Eig. 6.1 8 m&ntioned in section
3.4.3, the interested reader can refer to the followingueses:A Comparative Study of
American Option Evaluation and Computatiby K. Rodolfo (Rodolfo 2007, 45-51),
The Mathematics of Financial Derivativég/ilmott et al. 1996, 121-129) anilathe-
matical models of Financial DerivativéKwok 2008, 257-262).
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6.1. CONSTANT VOLATILITY

A parameter sensitivity analysis was performed to inveséighe effect different volatil-

ity values have on American put option prices under constaldtility. Table[6.1.2
contains data gathered for both in the money put option$, euitrent stock pric&= 9

and out of the money put options, wig= 11. The other parameters were chosen as
stipulated on page 99. As volatility increases, so does tige pf the option and so the
data supports the underlying option theory.

o Put (in the money) Put (out of the money
0,0625| 1,000106586 0

0,125 | 0,999797503 0,006744304
0,1875| 0,999330151 0,04629278
0,25 | 1,027205002 0,118003376
0,3125| 1,102204667 0,209091841
0,375 | 1,194133908 0,311480472
0,4375| 1,294194631 0,420767228
0,5 1,398832562 0,534490685
0,5625| 1,506183937 0,651146405
0,625 | 1,615220401 0,769784632
0,6875| 1,725338893 0,889783531
0,75 1,836144582 1,010714493
0,8125| 1,947392995 1.13229042
0,875 | 2,058824557 1,254218422
0,9375| 2,17031157 1,376335943

Table 6.1.2: Volatility ¢) parameter sensitivity analysis
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6.1. CONSTANT VOLATILITY

Parameter sensitivity analysis: volatility
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Figure 6.1.4: Volatility ) sensitivity analysis

Fig. [6.1.4 is a graphical representation of tdble 6.1.2.s Ratler constant volatility
present with constant prices for lower levels of volatiyd exhibit a linear increase
in price as volatility passes a certain percentage mark.irfFtihre money options, this
increase occurs at roughly the 20% mark, whereas for outeofrtbney options, the
linear price increase occurs roughly the 10% mark. The othh@®imoney options are

priced at significantly lower levels than their in the moneyicterparts.
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6.2. STOCHASTIC VOLATILITY

6.2 Stochastic volatility

6.2.1 Experiment one

The following example is taken form the pap&perator splitting methods for pricing
American options under stochastic volatil{tkonen & Tiovanen 2004, 11), where the
parameters are chosen as:

K =10 (strike price),

r = 0,1 (constant interest rate),

T = 0,25 (3 months duration of the option contract),

w = 1,8 (PSOR relaxation parameter),

» a =5 (rate of mean reversion),

B = 0,16 (long term variance),
* y=0,9 (volatility of volatility),
* p=0,1 (correlation between two Wiener processes),

* Xmax= 20 (maximum stock price on grid),

9 = 0 (market price of the volatility risk),

* Ymax= 1 (Maximum volatility on the grid),

m = 80 (amount of internal nodes on the x-axis, the stock pritg) ax
x; denotes a specific stock price at a nodeiaad,...,m+1,

n = 32 (amount of internal nodes on the y-axis, the volatilitisax
yj denotes a specific volatility level at a node gnd 0,...,n+1,

* | =16 (amount of internal nodes on theaxis, the time axis)
Tk denotes a specific point in time at a node &nrdo,... | +1.

Additionally, for the PSOR iterative procedure, one cheogg andXpew, tWo vectors
that contain initial guesses for the unknown option valuesn@ time interval. These
vectors are chosen using the payoff formula:

Payoff=max0,K — x|, (6.2.1)
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6.2. STOCHASTIC VOLATILITY

wherei =1,....m+1.

The stop criteria for the PSOR iterative process was chosen=20,00001.

Table[6.2.11 contains the solutions for American put optidngs calculated using the
stochastic volatility model. Prices were calculated fop tdifferent variancesy =
0,0625 andy = 0, 25 respectively. Values given in the reference article E@iacluded
(Ikonen & Tiovanen 2004, 12).

Stock price| Put fy = 0,0625) | Article | Put {y =0,25) | Article
8 2,0000 2 2,1968 2,07744
8,25 1,7504 2,0076

8,5 1,5011 1,8282

8,75 1,2544 1,6590

9 1,0149 1,10435| 1,5005 1,33192
9,25 0,7852 1,3530

9,5 0,5691 1,2167

9,75 0,3774 1,0917

10 0,2341 0,50755| 0,9778 0,79388
10,25 0,1468 0,8747

10,5 0,0964 0,7819

10,75 0,0668 0,6987

11 0,0485 0,20462| 0,6244 0,44650
11,25 0,0366 0,5583

11,5 0,0284 0,4994

11,75 0,0226 0,4471

12 0,0182 0,07909| 0,4006 0,242170

Table 6.2.1: American put option prices under stochastiatiiby

Since the algorithm in (Ikonen & Tiovanen 2004, 1-19) is nesctibed in detail, the
algorithm used in this dissertation is the author’s intetation of the information stip-
ulated in (lkonen & Tiovanen 2004, 1-19).

Regarding the numerical solutions obtained, notice th#terregion of the strike price,
K = 10 and for out of the money options, the solutions obtainéérdirom the solu-
tions stipulated in (lkonen & Tiovanen 2004, 12). Threedasthave been identified as
possible explanations for these price differences:

1. The price differences could be attributed to the fact thatpricing model is ex-
pected to deliver inaccurate prices at points of discortynin this case when
S=K (Duffy 2004, 71).

110



6.2. STOCHASTIC VOLATILITY

2. The choice of the boundary values might also be alteredadtbeen suggested
that the choice of the boundaryyt 0, which was chosen as,

u(x,0,7) = g(x) = max{K —x,0] (X, T) € [0,Xmax x [0, T], (6.2.2)

according to (Ikonen & Tiovanen 2004, 5) (Clarke & Parrot929180), can be
adjusted to improve results (Chockalingam & Muthuram 20BB).

3. The interval lengths of the grid in all three dimensiors enosen very coarsely.
Although a smaller increment does not remedy the pricingrdgancies on its
own, when one factors in a finer grid along with the previous pwints of dis-
cussion, a more accurate solution may possibly be obtairtgd.could be further
investigated in the future.

No additional data was found in the literature to comparedihiined values to. The
data behaviour supports the underlying option theory, diso@iseen in the figures to
follow.
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6.2. STOCHASTIC VOLATILITY

Comparing stochastic American put prices under different variances
2.5 T T T T T T T
Variance = 0,0625
Variance = 0.25

Option price

8 8.5 9 9.5 10 10.5 11 11.5 12
Underlying stock price

Figure 6.2.1: American put option prices under stochastiatitity

Fig. [6.2.1 compares the stochastic put prices obtaineddnancesy = 0,0625 and
y = 0,25 respectively. As expected the prices computed usingitfreehvariancey =
0,25, are more expensive than the prices computed for the lesréance. Thus, the
behaviour of the data is consistent with the expected thieateesults.
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6.2. STOCHASTIC VOLATILITY

y Put(in the money) Put(out of the money
0,0625| 1,014872419 0,04850057
0,125 | 1,149453031 0,220689055
0,1875| 1,328675604 0,428881734
0,25 | 1,500532212 0,624436156
0,3125| 1,650723005 0,793946879
0,375 | 1,777129738 0,936076032
0,4375| 1,881188553 1,052882599
0,5 1,965317701 1,147257662
0,5625| 2,032135782 1,222192113
0,625 | 2,084177111 1,280537048
0,6875| 2,123761979 1,324896066
0,75 2,152938171 1,35756825
0,8125| 2,173456442 1,380525851
0,875 | 2,186777349 1,395418406
0,9375/| 2,194102904 1,403605618

Table 6.2.2: Variance parameter sensitivity analysis

A parameter sensitivity analysis was performed to investighe effect different vari-
ance values have on American put option prices in a stochsséinario. Table 6.2.2
contains the data gathered for both in the money put optiwitls,current stock price
S=9 and out of the money put options wiih= 11. The other parameters were chosen
as stipulated on pages 107 and 108. As volatility increasesloes the price of the
option. Therefore, the data supports the underlying optieory.
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Parameter sensitivity analysis: variance
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Figure 6.2.2: Variance sensitivity analysis

Fig. [6.2.2 is a graphical representation of tdble 6.2.2.r& lea sharp increase in the
price of American puts as the variance paramstes increased. This increase in op-
tion price stabilizes as the volatility reaches the 80% markis supports the notion
that then volatility is large, a marginal increase in vdigtihas very little effect on the
option price (Chockalingam & Muthuram 2011, 796). In the mypoptions are more
valuable than out of the money options with the same paramete

No evidence was found in the literature of such a paramensitsaty analysis.
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6.2. STOCHASTIC VOLATILITY

W American put (stochastig) Computation time
1 1,500529657 3,017956
1,05| 1,500529931 2,687155
1,1 | 1,500530114 2,594131
1,15 1,500530277 2,532479
1,2 | 1,500530481 2,530937
1,25| 1,500530615 2,3672
1,3 | 1,500530767 2,236525
1,35| 1,500530897 2,147487
1,4 | 1,50053107 2,17602
1,45| 1,500531114 2,016279
1,5 | 1,50053127 2,04633
1,55| 1,500531581 2,024228
1,6 | 1,500531844 1,962723
1,65 1,500532168 2,032544
1,7 | 1,500532238 2,154058
1,75| 1,500532144 2,138417
1,8 | 1,500532212 2,114659

Table 6.2.3:w sensitivity analysis: PSOR computational time

Table[6.2.B contains data obtained by performingwmparameter sensitivity analysis.
Options where priced using the stochastic volatility maed because this model uses
the Projected Over-Relaxation iterative method (PSORifgréint values forw where
chosen and their computational times were compared. Pseesswiefined on pages 104
and 105 were used with the current stock price chosé&ra¥ and variance chosen as
y = 0,25.The chosemw values range fronw = 1, which represents the Gauss-Seidel
method, tow = 1,9. The solutions converge to similar values for eachut computa-

tional times differ considerably.
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6.2. STOCHASTIC VOLATILITY

Parameter sensitivity analysis: omega
3.2 T T T T T T T

Time

1 11 1.2 1.3 1.4 15 1.6 1.7 1.8
Omega

Figure 6.2.3:w sensitivity analysis: PSOR computational time

Fig. [6.2.3 is a graphical representation of the data coathin tabl€ 6.2]3. It reveals
that for w = 1,6, the computational time is at a minimum, 862723 seconds). As
w is increased from this point (in this dissertatian= 1, 8) the computational time
increases. The maximum computational time occurs when gus$sSeidel method is
implementedw = 1 (3,017956 seconds).

6.2.2 Experiment two
The aim of this experiment is to validate the numerical PS@Rrahm by comparing

its solutions to values obtained solving the matrices tiye@he following parameters
were chosen:

» K =10 (strike price),

* r =0,1 (constant interest rate),
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6.2. STOCHASTIC VOLATILITY

* T =0,25 (3 months duration of the option contract),
* w=1,8(PSOR relaxation parameter),

» a =5 (rate of mean reversion),

* 3=0,16 (long term variance),

* y=0,9 (volatility of volatility),

* p=0,1 (correlation between two Wiener processes),
* Xmax= 15 (maximum stock price on grid),

» 9 =0 (market price of the volatility risk),

* Ymax= 1 (maximum volatility on the grid),

* m= 2 (amount of internal nodes on the x-axis, the stock pricg)axi
X; denotes a specific stock price at a nodeiaad,...,m+1,

* n= 3 (amount of internal nodes on the y-axis, the volatilitysxi
yj denotes a specific volatility level at a node gnd 0,...,n+1,

* | =1 (amount of internal nodes on tlieaxis, the time axis)
Tk denotes a specific point in time at a node &adO0,...,| +1,

£ = 0,00001.

The solutions obtained using both the numerical and thetdinethods are summarised
in a table containing the option values at individual gridhp®. This table has the form:

Upg | Ur4 | U24 | U3a
Up3 | U13 | U23 | U33
Up2 | U12 | U22 | U32
Up,1 | U11 | U21 | U3z
Up,o | U10 | U20 | U3

Table 6.2.4: Summary of values at grid points
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6.2. STOCHASTIC VOLATILITY

The entries of table_6.2.4 resemble the entries on Eig. 15.3sing direct analytical
method to solve the pricing problem one obtains the follgnprices:

10|51 1,3509| 0,7810
10|51 1,3281| 0,7571
10| 51 1,0927| 0,5449
10|51 0,4640| 0,1721
10/5|0 0

Table 6.2.5: Prices obtained using analytical method

The following prices where obtained using the numerical R$&ethod:

10
10

1,5261| 0,8561
1,4882| 0,8271
10 1,2056| 0,5901
10 0,5136| 0,1858
10/5|0 0

o1 o1 o1 01

Table 6.2.6: Prices obtained using numerical PSOR method

This example verifies that the PSOR numerical procedurefigismtly accurate and
as mentioned earlier, it is implemented to save on both coatipn time and effort by

excluding calculations with the zero elements of the caefficmatrix. In experiment
one, where solutions were obtained using the numerical P@&fRod, the following

analytical results where obtained. These results are icmatavithin the brackets and
prove that the numerical solutions are indeed accurate.

Stock price| Put y=0,0625) | Article | Put f{y=0,25) | Article

8 2,0000 (2) 2 2,1968 (2,19) | 2,07744
9 1,0149 (1,002) | 1,10435| 1,5005 (1,49) | 1,33192
10 0,2341 (0,217) | 0,50755| 0,9778 (0,972) 0,79388
11 0,0485 (0,047) | 0,20462| 0,6244 (0,62) | 0,44650
12 0,0182 (0,018) | 0,07909| 0,4006 (0,398) 0,242170

Table 6.2.7: American put prices obtained
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Chapter 7

Conclusion

The aim of this dissertation was to develop comprehensiyerghms, incorporating

both the Crank-Nicolson implicit finite difference and thE ®R methods, that could
be used to price American put options under both constantstothastic volatility.

Motivated by the fact that, for constant volatility modedggorithms are very compact
(Seydel 2009, 175) and that no algorithms for stochastiatiy models could be

found, the following detailed algorithms were developethis dissertation:

» Constant volatility
A detailed description of the PSOR algorithm along with agoathm to find the
current price of an American put can be found on pages 72 - 79.

» Stochastic volatility

This algorithm can be found on pages 96 - 98. The PSOR metlieded to in
this section, follows the same steps as the one describéeé icoinstant volatility
section with the only difference being the vector dimensiaifhen programming
this iterative process, the program can be manipulated ¢ctuée all zero ele-
ments. Also note that the choice of the two initial vectorshef PSOR method,
which are not explicitly stated in literature, is coveredtlis algorithm. This
algorithm also goes into great detail describing the stmecbf the tridiagonal
block-matrixA. No evidence of this could be found in literature.

Both models are explained thoroughly, with emphasis plasedquipping the reader
to implement the models and not merely understand the thHesinind it.

The Black-Scholes model's assumption of constant vaiaigi not its only drawback.

More concerns are raised when considering the modelssstatl properties. It is often
criticised for not accurately reflecting market behavioOne of the main concerns is
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that the probability distribution of asset returns has abtaristics not taken into con-
sideration by this model. These include heavy tails, skassdibution with high peaks
and volatility clustering and cannot be explained by therogmal assumption that un-
derlies the Black-Scholes model (Salmi & Toivanen 2011,)82Modern approaches
have been developed to address all of the unsatisfactaneels just mentioned, these
fall into two main categories:

* Stochastic volatility without jumps.

+ Stochastic volatility with jumps.

This dissertation only focused on the Heston stochastatdity model without jumps.
However, both of the above mentioned approaches, perfodironlg in special cases,
with stochastic volatility models without jumps, offerimgore realistic outcomes in
cases involving long maturity terms (Ballestra & Sgarra@@571). This has naturally
led to models that incorporate elements of both stochaslatility and jumps. The
three most popular of these models are (Ballestra & Sgart@,2(672):

* BNS model, introduced by Barndorff-Nielsen and Shephar2001.
» Bates model, introduced in 1996.
» Time-changed Levy models, introduced by Carr, Geman andilMan 2003.

Future research should therefore be based on a model thest $édchastic volatility
with jumps into account.

When considering the option prices, accurate results wbbtained under the con-
stant volatility model and these are summarized in chapler&atisfactory results were
obtained under stochastic volatility and the behaviouroditsons support the underly-
ing theoretical principles.

Future research could focus on the refinement of the stachaatility model, were

issues such as the boundary conditions and the Crank-Nitomethod itself can be
further investigated.
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Chapter 8

Appendix

8.1 Constant volatility MATLAB code

%MVAIN PROGRAM THAT CALLS ALL OTHE SUB-PROGRAMS:
%AmericanOptionkiki (K,T,r,sigma,type ,m,n);
%FreeBoundarykiki (S,t,V,K, type);

Y%0ONLY THIS SECTION NEEDS TO BE EXICUTED

% » Parameters
%

% K : Strike price.

% T : Expiery time (expressed in years).

% r : Annualized, continuously compounded riskree
% expressed as a positive decimal number.

% sigma : Constant volatility .

% type : 'put’' option stipulated.

% Scurrent : Current price of underlying stock.

% n : Number of intervals on stock price axis

% (The number of discrete stock values is n+1).
% m : Number of intervals on time axis

% (The number of discrete time values is m+1l).

% = Numerical Results
%

% currentoption_.value : Provides price of American put option.

% Elapsed time : Duration of the problem solving process

% (this wil increase as number of nodes are

% increasd) .

% Fig. 1 . Option price vs. Stock price of both American
% and European options.

% Fig. 2 . Option price vs. Stock price of both American
% and European options.

% Fig. 3 . Graphical representation of exercise boundary
% Stock price vs. Time.

% =====x

% —====




8.1. CONSTANT VOLATILITY MATLAB CODE

%% Define parameters
tic
format long

% Financial parameters

K
T
r
sigma )
type put
Scurrent = 8;

0;
.25;
.1,
.4

- OO0 or

% Numerical parameters

300; %x axis
300; %t axis

m
n

%
%

%% Compute American option prices

[S,t,V] = AmericanOption_kiki (K,T,r,sigma,type,m,n);

%
%

%% Compute free boundary

Sf = FreeBoundary_kiki (S,t,V,K,type);

%Compute indices for smoothing the free boundary
%find = returns all non zero elements

%diif calculates difference between adjacent entries

FreeBoundaryIndices = [1, find (abs(diff (Sf))>1le—5)+1]

%
%

%% Define plot variables

%Reduce field to stock prices only withing rangek3from O.
plotrange = S>=0 & S<=2xK;

%Vector

%0nly values within plotrange

Sp = S(plotrange)

%0nly s values for plotrange , but these values over all timedices
%Matrix

Vp = V(plotrange,:)

%
%

%% Graph of American and European option values at time t=@ gmyoff

figure( 'Color ', 'White ")
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%Compute correspoding European option values
%Using BS toolbox
%Send stock values for range chosen Sp

9K

%T

Y%sigma — volatility
%delta = 0

[EurCall ,EurPut]=blsprice(Sp,K,r,T,sigma);

switch type
case 'call’

V_payoff = [0 O K];

V_euro = EurCall;

location = 'NorthWest "
case 'put’

V_payoff = [K O O];

V_euro = EurPut;

location = 'NorthEast

end

plot(sp,vp(:,1),'b"',8p,V_euro, 'g"',[0 K 2xK],V_payoff, 'r")
title ([ "American and European ,type,' option '])

legend( 'American ', 'European ; 'Payoff', 'Location ',1ocation)
grid on

xlabel('Stock price)

ylabel('Option price )

%% 3-D plot of option values versus stock prices and time

figure( 'Color ', 'White ')

[t_grid,Sp_grid]=meshgrid(t,Sp);
surf(Sp_grid,t_grid,Vp, 'LineStyle ', "none )
title ([ "American ‘,type,' option '])
xlabel('Stock price)

ylabel( 'time (years))

zlabel( 'Option price)

%% Plot free boundary
figure('Color ', 'White ')

plot(t(FreeBoundaryIndices ) ,Sf(FreeBoundaryIndices), 'LineWidth ',2)
title ('Exercise boundary)'

grid on

xlabel('Time (years))

ylabel('Stock price)

switch type
case 'call’

location_hold = [0.15 0.15 0.5 0.1];

location_ex = [0.5 0.8 0.5 0.1 ];
case 'put’

location_hold = [0.15 0.8 0.5 0.1];

location_ex = [0.5 0.15 0.5 0.1];

end
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YHEADINGS
annotation( 'textbox ', 'String ',{ 'Holding region '} ,...
'FontWeight ', "bold ' , ...
'FontSize ',18,...
'FontName ', "Arial ' ,...
'FitBoxToText"', 'off"' ,...
'LineStyle ', 'none ', ...
'"Position ',1ocation_hold);

annotation ( 'textbox ', 'String ',{ 'Exercise region},...
'FontWeight ', "bold ' ,...
'FontSize ',18,...
'FontName ', 'Arial ' ,...
'"FitBoxToText"', "off " ,...
"LineStyle ', 'none ', ...
'"Position ',1location_ex);

% =
% =

%% Interpolating option values to obtain the option pricercesponding to the«
current stock price
%At time t=0, option values in the first column of the value tnix V

%The stock price range

tt = S;
%The different option values correspoding to stock prices
pp = V(:,1);

%Compute using matlab spline interpolation function
current_option_value = interpl(tt,pp,Scurrent, 'spline )

%Stop timing
toc

function [S,t,V] = AmericanOption_kiki (K,T,r,sigma,type,m,n)

% Input:

%

% K : Strike price.

% T : Expiery time (expressed in years).

% r : Annualized, continuously compounded riskree rate ,
% expressed as a positive decimal number.

% sigma : Constant volatility .

% type : 'put’' option stipulated.

% n : Number of intervals on time axis

% (The number of discrete time values is n+1).
% m : Number of intervals on stock price axis

% (The number of discrete stock values is m+1).%
% Output:

%

% S = range of stock prices

% t = range of time points from 0 to T

% V = corresponding option prices, i.e.

% V(i,j) is an approximation of V(S(i),t(j))

% =

% =
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%% Define parameters

%Define fransformation parameters used to obtain the hegtuadion
% q = 2r/sigma”2

% S = Ke"x

% S_.min = Ke“x-min

% S.max = Ke”xmax

%tau = 0.5sigma”2T

%Dimensionless parameters

delta = O;
q = 2+xr/sigma”2;
q_delta = 2x(r—delta)/sigma”2;

%Asset space
x_min = -5;
X_max 57

%Calculate step length on x axis
dx = (x_max—x_min)/m;

%Time space

tau_max = .5xsigma’2xT;

%Calculate step length on tau axis
dtau = tau_max/n;

%
% = ==
YHERE WE CAN MANIPULATE NUMERICAL
%Stop criteria paramenter.

eps = le—6;
%Stipulate CrankNicolson is used when = 0.5.
theta = 0.5;

%Relaxation parameter of SOR
omega_R = 1.8;

lambda
alpha

dtau/dx"2;
lambdax*theta;

%
% =
%Verify stability condition.
%When theta< 0.5, then explicit method is chosen and we need to
%test lambda .
if theta < 0.5

if lambda > 0.5
error(strcat('The algorithm is unstable. Stability can be obtained,.:.

' by increasing the value of n or by decreasing the value of rhug by +
changing the interval lengths or by changing theta *00.5 and thus«+
selecting an implicit method))

end
end

0,

6

function boundary = g(x,tau)

%It is also used for
%the boundary and initial conditions .
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abbl = exp(((q_delta—1)"2+4xq)*tau/4);
abb2 = exp((q_delta—1)xx/2);
abb3 = exp((q_delta+1)xx/2);
switch type
case 'put’
boundary = abbl.x max(abb2—abb3,0) ;
case 'call’
boundary = abbl.x max(abb3—abb2,0) ;
end
end

%
%

%% Initialization

%Discretize time and space axes
%x is on the vertical axis

%tau is on the horizontal axis
x (x_min:dx:x_max) ';

tau O:dtau:tau_max;

%For performance reasons we compute one matrix with all theseggues

X = repmat(x,1,n+1);
Y = repmat(tau,m+1,1);
G = g(X,Y);

%Define values matrix with ,initial 0 values. (for all poinon
%grid) (dimensions (m+1)x(n+1))

%Dimensionless option value

w = zeros(m+1l,n+1);

% Calculate bouindary contitions of grid

% initial values i == (1 .. m+l)
w(:,1) =G(:,1);

%Lower boundary

w(l,:) =G(1,:); % = 1..n+1

%Upper boundary
w(m+1,:) =G(end,:); % = 1..n+1l

%Righthandside is needed in core algorithm
%lInitail vector of zeros

%Vector length = ml = internal unknown points
b = zeros(m—1,1);

%SOR iteration vector needs to be prallocated only once
%Initial vector of zeros = kies as beginpunt

%Vector length = ml = internal unknown points

vnew = zeros(m—1,1);

%

% S====
% S

%% Core algorithm
%Whole core algorithm is repeat for:

%j = 2 :n+l rest of unkown time steps
% j =1 is kknown inital condition
for j = 2:n+1 %TIME AXIS% %for time step 2 ... n+l = taumax = 0.5sogma’2T

%Create righthandside b
for x = 1:m—1 %X AXIS %internal points
switch k
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%Use known w from earlier time increment {j1) and w(1,j) is
%known boundary condition .

case 1
b(k) = w(2,j—1)+lambda*(l—theta)*(w(1l,j—1)—2*w(2,j—1)+w(3,j—1))+alphas+
*w(l,3);
case m—1

b(k) = w(m,j—1)+lambda*(l—theta)*(w(m—1,j—1)—2xw(m,j—1)+w(m+1,j—1))+
alpha*w(m+1,j);
otherwise
b(k) = w(k+1l,j—1)+lambda*(l—theta)*(w(k,j—1)—2xw(k+1,j—1)+w(k+2,j—1))«
end
end
%lInitialize vector v
%This is one of the equations of the constrained matric nodat
%Assign values to unknown node in grid at a time interval andr fx nodes (2..m)
v = max(w(2:m,j—1),6(2:m,j));

%The variable iter is introduced to manage the SOR iteration
%Ilteration is ended by iter = 0

%when the derised degree of convergence has taken place
iter = 1;

% —===
% —===
%SOR iteration

%Will remian in while looop till sufficuent convergence hataken place
while iter == 1

%b length = 1...ml

%v length = 1 ml

for x = 1:m—1%X AXIS %unknown values in grid at a specific time step
%gauss seidel step
switch k
%generic gauss seidel
%y = (b(k)+alphas(vnew(k—1)+v(k+1)))/(1+2 alpha);

case 1 % dont' have (k1 = 0 )vnew(k-1) = vnew(0) term
%thus adjusted
y = (b(k)+alpha*v(k+1))/(1+2x alpha);

case m—1 % dont' have (k+1 = m v(k+1) = vnew(m) term
%thus adjusted
y = (b(k)+alpha*vnew(k—1))/(1+2x alpha);

otherwise
%the rest
y = (b(k)+alphax*(vnew(k—1)+v(k+1)))/(1+2xalpha);

end

%Projected sor = makes sure inequatiily in constraint matri
%quation is met Vj>= gj+1
%vnew (k) = max[G(k+1,j),omeg&+(y) + (1 — omegaR+) (v(k))];
%Sor uses relaxation parameter = omeRga
%G(k+1,j) = same position as vnew(k) in matrix w
vnew(k) = max(G(k+1,j),v(k)+omega_R*(y—v(k)));

end

if norm(v—vnew) <= eps
iter = 0;
else
vV = vnew,;
end
end

w(2:m,j) = vnew;
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%% Transformation to original dimensions

= Kxexp(x);
t = T—2«tau/sigma’2;

= Kxexp(—.5+(gq_delta—1)xx)*«exp(—(.25x(q_delta—1)"2+q)*tau).*w
%Notice , Smax is at bottom, tmax = at beginning
%Re-raagenge to fit graphical representation

%Re-arrange t and V in increasing time order

S

t = fliplr (t)
v = fliplr (V)
end

function Sf = FreeBoundary_kiki (S,t,V,K,type)

Sf = zeros(l,length(t));
eps_star = Kxle-5;

switch type
case 'put’
for j = 1:length(t)

een = abs(V(:,j)—K)
twee abs(v(:,j)—K+S)
drie find (abs(v(:,j)-K+S)< eps_star, 1, 'last’)
Sf(j) = s(find (abs(v(:,j)—K+S)< eps_star, 1, 'last’'))
end
case 'call’
for j = 1:length(t)
Sf(j) = s(find(abs(V(:,j)+K—S)< eps_star, 1, 'first'));
end

end
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8.2 Stochastic volatility MATLAB code

O/C = S S S ===== =======
tic

format long

O/C = S S S ===== =======
Y%PROGRAM PAREMETERS

k = 10; %option strike price

T = 0.25; %option expiery date / time to expiery

r = 0.1; %current constant intereest rate

xmax = 15; %maximum value on x axis

ymax = 1; %maximum value on the y axis

gamma= 0.9; %volatility of volatility

cor = 0.1; %correlation coefficient between two markov processes

vega = 0; %market price of risk

beta = 0.16; %long term variance

alpha = 5; % rate of mean reversion

1= 1; %number of internal nodes on the time axis
omega = 1.8; % for PSOR convergence

eps = 0.00001; %sufficient convergence limit

%current volatility and stock price values
y_current = 0.25

s_current = 10;

% =
% =
%matrix AA — MATRIX DIMENSTIONS — x—y axis matrix — at one fixed time
%period

2; %number of internal nodes on the x axis
3; %number of internal nodes on the y axis

m
n

% =
O/C =
%for that increases omega values

%stipulate siza of AA ans amount of unknown nodes of the x axisamount of
%nodes on the y axis + 1 additional row and column to compeas&dr known
%boundary value information

%unknown values also at boundaries x =max and y = ymax

size = (m+1)*(n+1);

AA = zeros(size,size);

% = e e e e ===
% = S S S S T S S T S T S T S T
%GRID DISCRETIZATION

dx
dy

= xmax/(m+1);

= ymax/(n+1);

%x axis values

for tel = 1:(m+2)
x(tel) = (tel—1)xdx;

end

x; %displays the xaxis values after discretization
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%y axis values

for teller = 1:(n+2)
y(teller) = (teller—1)xdy;

end

y; %displays the yaxis values after discretization

%boundary conditions
%x axis —y =0
for telx = 1:(m+2)
bx(telx) = max(k—x(telx) ,0);
end

%y axis — x = 0
for tely = 1:(n+2)

by(tely) = k;
end

%time discretization
dt = T/(1+1);

%t axis values

for teller = 1:(1+2)
t(teller) = (teller —1)xdt;

end

%display t values
t = fliplr (t);

%define a matrix containing all solutions that will be used alata for
%graph

solution = zeros((l+2)x(n+2), m+2);

%define a matrix containing all solutions at one time intardv
%this will be added to solution matrix at bottom
oplossing = zeros(n+2, m+2);

%vector that contains soutions at each new time incremenk+a
uu = zeros(size,l);

Y%MATRIX COEFFICIENTS

%a-add values (1...(m+19(n+1))
pos = 1;
for tel = 2:((m)+2)
for teller = 2:((n+1)+1)
inbetweenl = min(0.5+ y(teller)*x(tel) 2 — cor*gammay(teller)*x(tel)xdx/(2* dy<+
) — rxx(tel)*dx/2, 0.5xy(teller)*x(tel) 2 — corxgammay(teller)*x(tel)*dx«
/(2% dy) + r*x(tel)*dx/2);
add (pos) = min(inbetweenl, 0);
pos= pos+1;
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%c_add values (1...(m+1y(n+1))

pos = 1,

for tel = 2:((m+1)+1)

for teller = 2:((n+1)+1)
inbetween2 = min(0.5+ y(teller)*x(tel) 2 — cor*gammay(teller)*x(tel)xdy/(2% dx<

) — (alphax*(beta—y(teller))—vegargamma sqrt(y(teller)))=*(dy/2), 0.5 y(+
teller)*x(tel) 2 — corxgammay(teller)*x(tel)xdy/(2+«dx) + (alphax(beta—y(+
teller))—vegaxgamma sqrt(y(teller)))*(dy/2));

cadd(pos) = min(inbetween2,0);
pos= pos+1;
end
end
cadd;
YA — (1..(m+1)x(n+1))
%u_ij
pos = 1;

for tel = 2:(m+2)
for teller = 2:(n+2)
A(pos) = (x(tel) 2xy(teller))/(dx"2) — (corxgammax(tel)ry(teller))/(dx*dy) — <«
2xadd(pos)/(dx"2) + y(teller)xgamma2/(dy 2) — 2xcadd(pos)/(dy~2) + r;
pos = pos + 1;
end
end

9B — (1..(m+1)x(n+1))
%u_i —1j
pos = 1;
for tel = 2:(m+2)
for teller = 2:(n+2)
B(pos) = (—x(tel) 2xy(teller))/(2xdx"2) + (cor*gammax(tel)xy(teller))/(2* dx*dy<+
) + add(pos)/(dx"2) + rxx(tel)/(2+xdx);
pos = pos + 1;
end
end

%C — (1..(m+1)x(n+1))
%u_i+1]j
pos = 1;
for tel = 2:(m+2)
for teller = 2:(n+2)
C(pos) = (—x(tel) 2xy(teller))/(2xdx"2) + (corxgammax(tel)*y(teller))/(2* dx*xdy«
) + add(pos)/(dx"2) — rxx(tel)/(2*dx);
pos = pos + 1;
end
end

C;
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YD — (1..(m+1)x(n+1))
%u_ij —1
pos = 1;

for tel = 2:(m+2)
for teller = 2:(n+2)
D(pos) = (—gamma2xy(teller))/(2xdy"2) + (corxgammax(tel)*y(teller))/(2x dx+dy) +«
cadd(pos)/(dy"2) — ((alphax(beta — y(teller))) — vegargamma sqrt(y(teller)))«

(2% dy) ;
pos = pos + 1;
end
end
D;
Y%E — (1..(m+1l)x(n+1))
%u_ij+1
pos = 1;

for tel = 2:(m+2)
for teller = 2:(n+2)
E(pos) = (—gamma2xy(teller))/(2xdy 2) + (corxgammax(tel)xy(teller))/(2xdx*dy)<
+ cadd(pos)/(dy~2) + ((alphax(beta — y(teller))) — vegaxgammasqrt(y(«+
teller)))/(2xdy);

pos = pos + 1;

end
end
E;
0/0::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%F — (1..(m+1)x(n+1))

%u_i+1j+1
pos = 1;

for tel = 2:(m+2)

for teller = 2:(n+2)
F(pos) = —(corxgammax(tel)*y(teller))/(2x dx*dy);
pos = pos + 1;

end

end

%5 — (1..(m+1)x(n+1))
%u_i —1j—1
pos = 1;
for tel = 2:(m+2)
for teller = 2:(n+2)
G(pos) = —(corxgammax(tel)*y(teller))/(2* dxxdy);
pos = pos + 1;

end
end

%u_0 = known — vector of all unknown values = known at time t = O.

%lenght of vector u is (m+1y(n+1)
%used as starting point to compute all further u(time+1l) tvers containing
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%unknown values
%uses u(x,y,0) = max(kx,0)

pos = 2;

for tel = 1lin+1:(m+1)*(n+1)
u(tel:tel*n+1l) = bx(pos);
pos = pos +1;

end

% %cut u to have only values of importance
u=u(l:(m+tl)*(n+l));

%add final element that matches known values and additiomaw in
%coefficient matrix AA

%u(mn+l) = 1;

%display initial vector u at time O
u;

Yo===
%Compile matrix AA

%main doagonal of AA- A
for tel = 1:(m+1)*(n+1)

AA(tel,tel) = A(tel);
end

%top codiagonal of AA— E

for tel = 1:(m+1)*(n+1)
AA(tel,tel+1) = E(tel);
end

for tel = n+lin+1l:(m+1)*(n+1)
AA(tel,tel+1l) = O;
end

%bottom codiagonal of AA- D

for tel = 2:(m+1)*(n+1)
AA(tel,tel—1) = D(tel);
end

for tel = n+lin+1l:(m+1)*(n+1)
AA(tel,tel—1) = D(tel) + E(tel);
end

for tel = n+lin+1l:(m+1)*(n+1)
AA(tel+1l,tel) = O;
%top diagonal of AA— contains C and F
for tel = 1:((m+1)x(n+l) — (n+l))
AA(tel,tel+(n+1)) = C(tel);
AA(tel, tel+(n+1)+1) = F(tel);

end

for tel = n+lin+1:((m+1)*(n+1)—(n+1))
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AA(tel, tel+(n+1)+1) =0;
end

for tel = n+lin+1:((m+1)*(n+1)—(n+1))
AA(tel, tel+ (n+1l)—1) = F(tel);

%bottom diagonal of AA— contains B, G, C and F

for tel = ((n+1)+1):((m+1)*(n+l) — (n+l))
AA(tel,tel—(n+1)) = B(tel);
AA(tel+1,tel—(n+l)) = G(tel+1);
end

for tel = 2x(n+1)+1m+1:(m+1)*(n+1)
AA(tel,tel—(n+1)-1) = 0;
end

%last n rows— bottom diagonal = B+C

for tel = ((m+1)*(n+1l)—(n+1)+1):(m+1)*(n+1)
AA(tel, tel — (n+1l)) = B(tel) + C(tel);
AA(tel, tel — (n+1l) + 1) = F(tel);

end

for tel = ((m+1)*(n+1)—(n+1)+2):((m+1)*(n+1)—1)
AA(tel, tel — (n+1)—1) = G(tel);
end

for tel = ((m+1)*(n+1l) — (n+l) + 1): ((m+1l)*(n+l1l)-1)
AA(tel + 1, tel — (n+l)) = G(tel+1);
end

AA ((m+1)*(n+l), (m+l)*(n+l) — (n+l) — 1) F(m*n) + G(m*n);
AA ((m+1)*(n+l), (m+1)*(n+l) — (n+l) + 1) 0;

%shrink AA to be (mn)x(mxn)—matrix
AA = AA(L:(m+1)*(n+l) ,1:(m+1)*(n+1));

%with time discretization:

%(1 + 0.5 delta t*AA) uu = (I — 0.5 delta t=*AA) u

%where u is the known vector from previous time step and uu Ew runknown
%vector at new time increment

I = eye(size,size);

%COMPILE MATRICES B AND C
XX = I + 0.5xdt*AA % in text defined as B
YY = I — 0.5xdt+«AA % in text defined as C

% %analytical solution
% ZZ = YYxu';
% uu = XX\ZZ;

u=u';

%Define initial vector xold to be used in iterative process
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xold = zeros(size,l);

%initial gues to xold

%For loops calculates initial xold's value using the constraint that
%u (k+1) >= g

%choose xold and xnew = g(x) = max(k x( ),0)

pos = 2;

for tel = 1lin+1:(m+1)*(n+1)
xold(tel:tel*n+1) = bx(pos);
pos = pos +1;

end

% %cut u to have only values of importance
xold x01ld (1:(m+1)x(n+1));
xnew xold;

%numerical solution

uu = psoramericann (XX,YY,A,bx,x,Size,k,u,m,n,omega, €pPS,xold, xnew);

%display uu— solution obtained at 1 time increment

% YAPPLY CONSTRAINT THAT u>=g
teller = 1;

%

for tel = 1:(m+1)
%devides vector uu into column matrix with amount of rows =1n+
%and columns m+1
constraint (:,tel) = uu(teller:teller+(n+1)—1);
teller = teller + n+1;

end

%put visually into grid of values— oplossing — MATRIX form
%DIMENSION OF oplossing = (m+29(n+2)
%we only need to add the initial boundary values at x = 0 and y = 0

%display as on grid
constraint = flipud (constraint)

%put constraint into its place in oplossing
oplossing (1l:n+1,2:m+2) = constraint;

%boundary where x = 0
for teller = 1:n+2
oplossing(teller ,1) = by(teller);
end

%boundary where y = 0
for teller = 2:m+2
oplossing(n+2, teller) = bx(teller);
end
%Display boudanries

%y = 0 boundary

135




8.2. STOCHASTIC VOLATILITY MATLAB CODE

bx;
%x = 0 boundary
by;

%putting tihs grid into its correct position in solution nrat
solution(n+3:2x(n+2) ,:) = oplossing

% —====
% =
%display initial vector u at time O also as grid as just done
%this will be the first part of the matrix solution

%which as mentioend at the start contains all the values oé thption from
%k =0 .... I+1

%or written k =1 ... [+2
u;
teller = 1;

for tel = 1:(m+1)
%devides vector u into column matrix with amount of rows = n+1
%and columns m+1
umatrix (:,tel) = u(teller:teller+(n+1)—1);
teller = teller + n+1;
end

%put constraint into its place in oplossing
oplossing (1l:n+1,2:m+2) = umatrix;

%boundary where x = 0
for teller = 1:n+2

oplossing(teller ,1) = by(teller);
end

%boundary where y = 0
for teller = 2:m+2
oplossing(n+2, teller) = bx(teller);

end

%putting tihs grid into its correct position in solution nrat
solution(l:n+2,:) = oplossing;

9%NE NOW HAVE SOLUTION AT TIME O AND TIME INTERVAL 1
%which when programmed translates to u(1l) and u(2)
%REPEAT FOR TIME STEPS 3...1+2

%that translates to finding the final price at time 0

%set wl = u.0 (or u(old) = u(new))

%now new uu value for time 2

%which when programmed translates to u(3)
u = uu;

YY;

for counter = 3:(1+2)

xold
xnew

u,
xold;

%numerical solution
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uu = psoramericann (XX,YY,A,bx,x,Size,k,u,m,n,omega, €PS,xold, xnew);

% YAPPLY CONSTRAINT THAT u>=g

teller = 1;

%

for tel = 1:(m+1)

%devides vector uu into column matrix with amount of rows =1n+
%and columns m+1
constraint (:,tel) = uu(teller:teller+(n+1)—1);
teller = teller + n+1;

end

%put visually into grid of values— oplossing — MATRIX form
%DIMENSION OF oplossing = (m+29(n+2)
%we only need to add the initial boundary values at x = 0 and y = 0

%display as on grid

constraint = flipud (constraint);

%put constraint into its place in oplossing
oplossing (1l:n+1,2:m+2) = constraint;

%boundary where x = 0
for teller = 1:n+2
oplossing(teller ,1) = by(teller);
end

%boundary where y = 0

for teller = 2:m+2
oplossing(n+2, teller) = bx(teller);
end

oplossing;

%Display boudanries
%y = 0 boundary

bx;

%x = 0 boundary

by;

%putting tihs grid into its correct position in solution nrat
solution ((counter —1)x(n+2)+1licounter*(n+2) ,:) = oplossing;

%set u(i) as x(i+1) and compute new u(i+1)

u = uu;
end

%display final matrix with all values at all time values (1...1+2)
solution

%

%only interested in values at final u(l+2)— which correlates to pricing
%solution at time 0 of option

answer = solution ((1+2)*(n+2) — (n+1l):(1+2)*(n+2),:)
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answer = flipud (answer)

%INTERPOLATE TO FIND CORRECT VALUE IN Y- X GRID

%isolate rows from answer that relate to_current
for tel = 1:n+2
if y_current > y(tel) | y_current == y(tel)
if y_current < y(tel+l) | y_current == y(tel+l)
y_under = tel;
y_top = tel+1;
end
end
end

y_under,;

y_top;

v

dy;

y_interval = y_current/dy — (y_under—1);

%isolate these two rows form answer

solutionl = answer (y_under,:);
solution2 = answer(y_top,:);
%combined

soll = [solutionl; solution2];

%isolate columns from answer that relate tocsirrent
for tel = 1:m+2

if s_current > x(tel) | s_current == x(tel)
if s_current < x(tel+l) | s_current == x(tel+l)
x_under = tel,;
x_top = tel+1l;
end
end
end
x_under ;
x_top,
X,
dx;
x_interval = s_current/dx — (x_under—1);

%isolate these two columns from soll(2 isolated rows)
solutionl = soll(:,x_under);
solution2 = soll(:,x_top);

%interpolate two rows to find appropriate y value
finall = (1—y_interval)xsolutionl(1l,1) + y_interval*solutionl(2,1);
final2 = (1—y_interval )*solution2(1,1) + y_interval*solution2(2,1);

toetsy = (l—y_interval )*y(y_under) + y_intervalxy(y_top)

%interpolate two final values to find appropriate x value

finalsolution = (l1—x_interval)*finall + x_interval*final2;
toetsx = (l—x_interval )*x(x_under) + x_intervalxx(x_top)
finalsolution

toc
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function [uu] = psoramericann (XX,YY,A,bx,x,Size,k,u,m,n,omega, €ps,xold,xnew);

%THE AIM IS TO DO CALCULATIONS — NOT INVOLVING ANY ZEROS contained in the
%coefficient matrix XX

%create vector containing all the payoff values for the dafent x values, g
%this vector is used in the PSOR stage where we obtain the nmuaxi

g = xold;

%Now the iterative process , that converges to the true numedr solution
%- denoted as uu starts.

%Ne have the following XXu(k+1) = YYu(k)

%Ne have to solve u(k+1) but we have already chosen an initigdess xold
%WNe also have u

%Next we have to multiply YYu(k) to write the equation as

%XXu(k+1) = b = Au(k+1)

Y y
%vector y containing all intermediate numerical solutions
%refer to section on SOR in text

y = zeros((n+l)*(m+1),1);

%iter = 1 = this will enter while loop that runs till method cwarged
iter = 1;

res = 0;

while iter == 1
0/0::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

%only rows 1...n+1
y(1) = (1/xX(1,1))*(b(1) — xo0ld(2)*XX(1,2) — x01d(n+2)*XX(1l,n+2) — xold(n+3)*XX(1,n¢+
+3));

xnew (1) = max(omegax(y(1l) — xo0ld(1l)) + xo0ld (1), g(1));

for tel = 2:n
y(tel) = (1/XX(tel,tel))x*(b(tel) — xnew(tel—1)*XX(tel,tel—1) — xold(tel+1)*XX(tel«
,tel+1l) — xold(tel+(n+1l))*XX(tel,tel+(n+1)) — xold(tel+(n+2))*xXX(tel,tel+(n+
+2)));

xnew(tel) = max(omegax(y(tel) — xold(tel)) + xold(tel), g(tel));

end

y(n+l) = (1/XX(n+1,n+1))*(b(n+1l) — xnew(n)*XX(n+1l,n) — xold(n+(n+1))*XX(n+1ln+(nt+tl)) «
— x0ld(n+(n+2))*XX(n+1l,n+(n+2)));

xnew(n+1l) = max(omegax(y(n+l) — xold(n+l)) + xold(n+l), g(n+l));
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%rows (n+1)+1... (m+1)(n+1)—(n+1)

y((n+l)+1) = 1/XX(n+1+1n+1+1)x(b(n+1+1l) — xnew(n+l+l—(n+1))*XX(n+1+1,1) — xold(n¢+
+1+2)xXX (n+1+1n+1+2) — xo0ld(n+l+(n+2))*XX(n+1+1ln+1+(n+2)) — xold(n+l+(n+3))*XX(+
n+l+1l n+1+(n+3)));

xnew(n+1+1) = max(omegax*(y(n+2) — xold(n+1+1)) + xold(n+1l+1l), g(n+l+1));

for tel = (n+1)+2 : (m+1l)x(n+l)—(n+1)-1
y(tel) = (1/XX(tel,tel))x*(b(tel) — xnew(tel — (n+2))*XX(tel,tel — (n+2)) — xnew(+
tel — (n+1))*XX(tel ,tel — (n+1l)) — xnew(tel—1 )*XX(tel ,tel—1) — xold(tel+1l)«+
*XX(tel,tel+1l) — xold(tel+n)*XX(tel,tel+n) — xold(tel+n+1)+XX(tel ,tel+n+l) —«
x0ld(tel+n+2)*XX(tel ,tel+n+2));

xnew(tel) = max(omegax*(y(tel) — xold(tel)) + xold(tel), g(tel));

end

tel = (m+1)*(n+1l)—(n+l);

y(tel) = (1/XX(tel,tel))=*(b(tel) — xnew(tel — (n+2))*XX(tel,tel — (n+2)) — xnew(tel —¢
(n+1))*XX(tel ,tel — (n+1l)) — xnew(tel—1 )*XX(tel ,tel—1) — xold(tel+1)*XX(tel,«

tel+1l) — xold(tel+n)*XX(tel,tel+n) — xold(tel+n+1)*XX(tel ,tel+n+1));

xnew(tel) = max(omegax(y(tel) — xold(tel)) + xold(tel), g(tel));

%rows (Mm+1k(n+1)—(n+1)+ 1 ... (M+1lk(n+1)
for tel = (m+1)*(n+1l)—(n+1)+ 1l:(m+1)*(n+1)-1
y(tel) = 1/XX(tel,tel)x*(b(tel) — xnew(tel — (n+2))*XX(tel,tel — (n+2)) — xnew(tel«
— (n+1))*xXX(tel,tel — (n+1l)) — xnew(tel — (n))*XX(tel,tel — (n)) — xnew(tel «

— (1))*XX(tel,tel — (1)) — xold(tel +1)*XX(tel,tel +1));

xnew(tel) = max(omegax*(y(tel) — xold(tel)) + xold(tel), g(tel));

end
tel = (m+1)*(n+l);

%last row of vector y

y(tel) = 1/XX(tel,tel)*(b(tel) — xnew(tel — (n+2))*XX(tel,tel — (n+2)) — xnew(tel — («
n+l))xXX(tel,tel — (n+1)) — xnew(tel — (n))*XX(tel,tel — (n)) — xnew(tel — (1))«
XX (tel,tel — (1)));

xnew(tel) = max(omegax(y(tel) — xold(tel)) + xold(tel), g(tel));
%
if norm(xnew—xold)<=eps
iter = 0;

else
xo0ld = xnew;

end

end
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uu = Xnew,
end
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