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Abstract and key terms

The Black-Scholes model and its assumptions has endured itsfair share of criticism.
One problematic issue is the model’s assumption that marketvolatility is constant.
The past decade has seen numerous publications addressing this issue by adapting the
Black-Scholes model to incorporate stochastic volatility. In this dissertation, American
put options are priced under the Heston stochastic volatility model using the Crank-
Nicolson finite difference method in combination with the Projected Over-Relaxation
method (PSOR). Due to the early exercise facility, the pricing of American put options
is a challenging task, even under constant volatility. Therefore the pricing problem un-
der constant volatility is also included in this dissertation. It involves transforming the
Black-Scholes partial differential equation into the heatequation and re-writing the pric-
ing problem as a linear complementary problem. This linear complimentary problem is
solved using the Crank-Nicolson finite difference method incombination with the Pro-
jected Over-Relaxation method (PSOR). The basic principles to develop the methods
necessary to price American put options are covered and the necessary numerical meth-
ods are derived. Detailed algorithms for both the constant and the stochastic volatility
models, of which no real evidence could be found in literature, are also included in this
dissertation.

Key terms: Early exercise boundary, free boundary value problem, linear compli-
mentary problem, Crank-Nicolson finite difference method,Projected Over-Relaxation
method (PSOR), stochastic volatility, Heston stochastic volatility model.
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Opsomming en sleutelterme

Die Black-Scholes model en sy aannames word al vir ’n geruimetyd gekritiseer. Een
van die hoof probleemareas is die model se aanname van ’n konstante volatiliteit. Oor
die afgelope dekade is heelwat navorsing gedoen om hierdie probleem aan te spreek
deur die Black-Scholes model te inkorporeer binne ’n stogastiese model. In hierdie
dissertasie word die Amerikaanse verkoopsopsie onder die Heston stogastiese model
geprys deur gebruik te maak van die Crank-Nicolson eindige differensiemetode tesame
met die geprojekteerde oorverslappingsmetode (PSOR). Dieproses van prysbepaling
van Amerikaanse verkoopsopsies, selfs onder konstante volaliteit, is gekompliseerd
omdat die Amerikaanse opsie voor die vervaldatum uitgeoefen kan word. Die kon-
stante volaliteitprobleem word ook in hierdie dissertasievolledig beskryf. Die konstante
volaliteitprobleem behels die transformasie van die Black-Scholes parsi ¨ele differensi-
aalvergelyking na die hittevergelyking. Die probleem worddan herskryf as ’n lin ˆeere
komplimentêre probleem wat opgelos word met behulp van die Crank-Nicolson eindige
differensiemetode tesame met die geprojekteerde oorverslappingsmetode (PSOR). Die
basiese beginsels wat benodig word om ’n metode te ontwikkkel wat gebruik kan word
om die waarde van ’n Amerikaanse verkoopsopsie te bepaal word bespreek en die
nodige numeriese metodes word afgelei. Gedetaileerde algoritmes vir beide die kon-
stante en die stogastiese volatiliteitsmodelle, word ook in die dissertasie ingesluit.

Sleutelterme:Vroeëuitoefengrens, vrye grenswaardeprobleem, lin ˆeere kompliment ˆere
probleem, Crank-Nicolson eindige differensiemetode, geprojekteerde oorverslappingsme-
tode (PSOR), stogastiese volatiliteit, Heston stogastiese volatiliteitsmodel.
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Nomenclature

• General
t: Time.
T: Exercise date, date of maturity.
S: Underlying stock price.
St : Underlying stock price at timet.
S0: Underlying stock price at the beginning of the option contract.
ST : Underlying stock price at the end of the option contract.
K: Strike price.
r: Current interest rate.
C: American call option price.
PAm: American put option price.
c: European call option price.
p: European put option price.

• Chapter Two
µ: Constant drift of the underlying asset.
σ : Constant volatility of the underlying asset.
W: Wiener process.
V: Option price.
dS: Change in underlying asset price.
dt: Change in time.

• Chapter Three
Π: Value of a portfolio.
Sf (t): Critical asset price.
Λ(S(t)): Option payoff function.
u(x,τ): Function of two variables used to solve option pricing problem under
constant volatility.
x: Transforming variable relatingSandK.
τ: Transforming variable relatingt andT.
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f (x,τ): Function of two variables related toPAm.
κ : Transforming variable relatingσ andr.
α: Constant relating functionsf andu.
β : Constant relating functionsf andu.
g(x,τ): Transformed payoff function.

• Chapter Four
M: Number of intervals on theτ-axis.
m: Indexing on theτ-axis, wherem= 0, . . . ,M.
δτ: Interval length on theτ-axis.
xmax: Maximum value on thex-axis.
xmin: Minimum value on thex-axis.
N: Number of intervals on thex-axis.
n: Indexing on thex-axis, wheren= 0, . . . ,N.
δx: Interval length on thex-axis.
ν(x,τ): Approximation of the true solutionu(x,τ).
α: Relationship between die interval lengths,δτ andδx.
θ : Variable that can be manipulated to select either the Explicit (θ = 0), Implicit
(θ = 1) or Crank-Nicolson (θ = 1

2) finite difference methods.
ω: Relaxation parameter of the SOR and the PSOR iterative methods.

• Chapter Five
W1: Wiener process related to the stock in the asset price model.
W2: Wiener process related to the variance in the asset price model.
ρ : Correlation coefficient betweenW1 andW2.
γ: Volatility of volatility.
β : Long term variance.
α: Rate of mean reversion.
ϑ : Market price of risk.
Lu: Heston operator.
u(x,y,τ): Function of three variables used to solve option pricing problem under
stochastic volatility.
x: Underlying stock price.
xmax: Maximum stock price.
xmin: Minimum stock price.
y: Variance.
ymax: Maximum variance.
m: Number of internal nodes on thex-axis.
∆x: Interval length on thex-axis.
i: Indexing on thex-axis, wherei = 0, . . . ,m+1.
n: Number of internal nodes on they-axis.
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∆x: Interval length on they-axis.
j: Indexing on they-axis, wherej = 0, . . . ,n+1.
l : Number of internal nodes on theτ-axis.
∆τ: Interval length on theτ-axis.
k: Indexing on theτ-axis, wherek= 0, . . . , l +1.
aadd: Additional constant introduced to ensure coefficient matrix in diagonally
dominant.
cadd: Additional constant introduced to ensure coefficient matrix in diagonally
dominant.
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Chapter 1

Introduction

Examining the global options and futures industry, one findsthat this industry grew by
11,4% in 2011 to an amount of 24,97 billion contracts traded per year. This is slightly
down on past years’ numbers. Looking at the broader picture,the industry has grown by
60,9% in the past 5 years. Emerging markets such as China, Brazil, India and Russia,
who seem to have been only slightly affected by the downturnsof 2008 and 2009, were
the main contributors to this growth number (Acworth 2012, 24).

In a study conducted by the Futures Industry Association, a sample from 81 world wide
exchanges revealed that the Asia-Pacific region boasted thegreatest growth number in
2011, impressing with 39%. This region was followed by NorthAmerica with a rise of
33% and Europe with 20% growth for 2011 (Acworth 2012, 24).

Of the total 11,4%, the options market grew by 15,9% in 2011 compared to futures,
which only grew by 7,4% (Acworth 2012, 24). It is also well-known that most op-
tions traded on international exchanges and over the counter are American style. These
include options on stocks, stock indexes, interest rates, foreign currencies, energy and
commodities (Feng, Linesky, Morales & Nocedal 2011, 814).

Traditionally, option prices are computed using the Black-Scholes model. This model
makes various assumptions about financial markets and subsequently it has shortcom-
ings. One such an assumption is that the volatility of the underlying asset is a constant
value. Since volatility is not an observable parameter, this makes the use of this model
even more obsolete (Kau 2009, ii). Therefore, option pricing models that take stochastic
volatility into account produce more realistic solutions that reflect current market data.
This dissertation aims to address the issue of accurately portraying market indi-
cators by pricing American style put options using the Heston stochastic volatility
model.
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However, the process of pricing an American put option usingthe Black-Scholes model
in itself is a challenging task. This can be attributed to theearly exercise facility offered
by the American put as it raises the question: “Well, when is it optimal to exercise this
option?” Due to this problem’s complexity, no generic closed form solution exists and
therefore various numerical methods are used to obtain the option’s price. So, before
one can even wish to solve the pricing problem under stochastic volatility, it is vital to
first understand the process of pricing an option using a constant volatility model.

This dissertation is divided into two sections: the first section is devoted to solving
the American put problem using the traditional Black-Scholes model. The second sec-
tion covers the Heston stochastic volatility model and applies it to the pricing of these
options. There are numerous methods that can be used to solvethe pricing problem.
However, this study focusses on the Crank-Nicolson implicit finite difference method
which is used in conjunction with the Projected Successive Over Relaxation iterative
method (PSOR). The aim is to develop a comprehensive algorithm that prices Ameri-
can put options under both constant and stochastic volatility by incorporating both the
Crank-Nicolson implicit finite difference method and the PSOR method. One moti-
vation for this aim is that algorithms are very compact for constant volatility models
(Seydel 2009, 175) and no such algorithms seem to be available for stochastic volatility
models.

SECTION I: CONSTANT VOLATILITY MODEL: BLACK-SCHOLES MODEL

This section comprises three chapters. Chapter two introduces both the world of op-
tions and matrix algebra. In addition, it offers a brief history of options. This chapter
aims to introduce the mathematician to the financial sphere and the reader with a back-
ground in finance to matrix algebra, which is vitally important when solving the pricing
problem using the finite difference method.

As previously mentioned, American put options offer their own unique computational
challenges. This is due to theearly exercise featureof these options that requires the
adaptation of the Black-Scholes partial differential equation into theBlack-Scholes par-
tial differential inequality. This adaptation of the Black-Scholes model enables one to
define the option pricing problem as afree boundary value problem. After a formal dis-
cussion of the free boundary value problem, the pricing problem is finally presented as
a linear complimentary problem (LCP). Since no analytical method is available to price
American put options, a numerical method is required to solve the linear complimen-
tary problem. The different forms of the problem’s formulation can be found in chapter
three.
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Chapter four introduces the reader to thefinite difference numerical method, which is
used to solve the linear complimentary option pricing problem. The chapter employs
the iterativeprojected successive over relaxation method (PSOR)to solve the tridiagonal
system, subsequently obtained from applying the finite difference method. In addition,
the chapter provides an algorithm of the whole numerical procedure, and the interested
reader can find the MATLAB code in the appendix.

Additional topics that can be found in chapter four include:

• A discussion of the explicit, implicit and Crank-Nicolsonimplicit finite difference
methods.

• The various methods, both direct and iterative, that can beused to solve tridiago-
nal systems of equations.

• The convergence of the iterative methods: Jacobi, Gauss-Seidel and Successive
Over Relaxation (SOR).

SECTION II: STOCHASTIC VOLATILITY MODEL: HESTON MODEL

The variables of the Heston stochastic differential equations are time (t), underlying
asset value (S) and variance (y). Due to the additional variable, the Heston model has
an additional spacial dimension. This complicates the discretization and solution pro-
cedures and makes the numerical method computationally more expensive.

Chapter five starts with a formal definition of theHeston operator. It states this par-
tial differential equation’s initial and boundary conditions and this enables researchers
to formulate the pricing problem under stochastic volatility in its linear complimentary
problem (LCP)form. The remainder of chapter five is devoted to the discretization of
the Heston operator with an in-depth discussion of the matrices that result from apply-
ing the finite difference method. The MATLAB code for this application can also be
found in the appendix.

The goal of the dissertation is to offer a clear understanding of the American put op-
tion pricing problem solved with the use of the Heston stochastic volatility model. This
will enable readers to approach more complicated pricing models with bold confidence
in the future.

3



Chapter 2

Background Theory

This chapter addresses some of the background theory that will be used in the remain-
der of the dissertation. It aims to help two types of readers,those from the field of
mathematics, unfamiliar to the world of finance, and those from the financial indus-
try, unfamiliar with the intimidating topic of matrix algebra, by introducing some basic
topics from both fields.

2.1 The history of options

A study of the history of options reveals that these financialinstruments are not modern
inventions, as is generally assumed. Their origin can be traced back to ancient Greece,
where a fifth century B.C. philosopher, Thales of Miletus, engaged in trading to prove
to society that if philosophers wanted to be rich, they couldbe. In doing so he aimed to
address the eternal question,“If you are so smart, why aren’t you rich?”

Thales noticed that Miletus’ seasonal olive crop yielded good returns in favourable
weather conditions and therefore he decided to put a depositon all the olive presses
in the region. During the harvest season, the demand for olive presses grew exponen-
tially due to the exceptional yield of the olive crop and the fact that olives were not a
storable resource. Thales subsequently sublet the olive presses and by doing so, made a
substantial profit.

Thales created an option on the olive crop. If the crop had failed, he would merely loose
his deposit. However, in the event of a successful crop, he would reap the rewards by
paying the initial premium and then making a seemingly limitless profit (Forsyth 2008,
3)

4



2.2. BASIC OPTION THEORY

Options where, however, officially only traded on an exchange on 26th April 1973.
The Chicago Board Options Exchange (CBOE) was the first to create standardized,
listed options. Back then, there were only calls on 16 stockswith puts being introduced
in 1977. Today, options are traded on over 50 exchanges worldwide (Wilmott 2000a,
21). Many banks and other financial institutions trade them over the counter (OTC)
(Hull 2000, 5).

It is interesting to note that after the 2008 financial crisis, it became clear that the growth
of the over the counter markets and their severe complexity outstripped the financial in-
dustry’s capacity to manage them. The value of assets tradedbecame difficult to assess
and banks lost confidence in each other. The events of 2008 helped to highlight the
advantages of regulated exchanges. The Dodd-Frank bill signed in June 2010, aimed
at putting regulatory measures in place for the American financial system- supports the
idea of exchange trading and more standard over the counter options (DuFour 2011, 11).

2.2 Basic option theory

2.2.1 What is an option

Risk is a core component of all financial investments made. The management of risk is
a highly specialized field with analysts constantly identifying, measuring and managing
the risks involved in investment. A sure way to minimize risk, is to take out insurance
against it. This is the premise on which derivatives were created. Derivatives offer a
certain level of insurance against financial loss (Chance 2003, 1).

An options is a type of financial derivative that represents alegal contract between two
parties. It is sold by one party (the option writer) and purchased by the other (the option
holder). There are two main types of options. Acall optionoffers its holder the right,
but not the obligation, tobuya specific underlying asset for an agreed upon amount at a
specified time in the future. On the other hand, aput optionoffers its holder the right,
but not the obligation, tosella specific underlying asset for an agreed upon amount at a
specified time in the future (Wilmott 2000a, 22).

The two types of options encountered in this dissertation are American options and
European options. The difference between the two is that American options can be ex-
ercised at any time spanning the commencement date to the date of maturity whereas
their European counterparts, can only be exercised at the date of maturity (Hull 2000, 6).

5



2.2. BASIC OPTION THEORY

Defining an option in more detail (notice the notation used) one finds:

• At time t = 0
The buyer purchases the option at an option premium,X. This option premium
or price is what is calculated in later chapters. The value of the underlying
asset at time,t = 0, isS0. The option contract is only binding for a specific period
of time and spans the interval 0≤ t ≤ T. Where timet = T is known as the
exercise date. The option offers it’s holder the choice to buy or sell the underlying
asset contained within the option contract at a predetermined price, the strike price
K, regardless of the actual price of the underlying asset. If the option holder buys
or sells the underlying asset, he is said to exercise the option.

• Time 0< t < T
If the holder purchased an American style option, he can choose to exercise this
option at any time on or before the exercise date,T. Therefore, American options
can be exercised prematurely (Hull 2000, 6).

• At time t = T
Both the American and the European option holder can choose to exercise the
option at timeT (Hull 2000, 6). Remember that if the holder wishes to do so, the
underlying asset is either purchased or sold at the predetermined price (the strike
price,K), and not at the asset price at maturity,ST . Therefore, the option holder
is protected from fluctuations in the asset price. If the option holder does not wish
to exercise his option, he merely looses his initial premium, X.

2.2.2 Option payoffs

The option payoff depends on the type of option held and the position taken on the
option. Each option contract has two potential positions:

1. The long position
This position is taken by a client/investor who chooses tobuy an option, becoming
anoption holder. He can purchase either aputor acall option, paying the option
price,X (Hull 2000, 8).

2. The short position
This position is taken by a client/investor who chooses tosell or write the option,
becoming anoption writer . He too can sell either aput or acall option. By now
becoming an option writer, he receives cash upfront (the option buyer’s option
premiumX), but faces potential liabilities in the future (Hull 2000,8).
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2.2. BASIC OPTION THEORY

One can therefore define four different option positions:

• A long position in acall option.

• A long position in aput option.

• A short position in acall option.

• A short position in aput option.

ExaminingEuropean optionsthat can only be exercised at maturity,T, one finds the
following possible scenarios. Remember thatST is the underlying stock price at matu-
rity T andK is the agreed upon strike price. Also note that the payoff function does not
take the option premium into account, and therefore does notreflect profit.

(a) A long position in acall option.

The payoff is calculated using (Hull 2000, 9):

Payoff= max[0,ST −K] (2.2.1)

This can be seen in Fig. 2.2.1, where the payoff is positive ifST > K.

Payoff

K Stock price K Stock price

Payoff
Call Put

Figure 2.2.1: Long position on option

Therefore, at timet = 0 the holder will buy a call option with a strike price,K, in
the hope that the unknown future asset priceST will rise, thereby making a profit.
A further increase in the future asset price will result in anincrease in the option’s
payoff. At the exercise date,t = T, if ST > K, the holder can exercise the call option
and buy the underlying asset for a much lower price than it’s actual valueST . One
finds that if:

7
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• ST > K: Payoff is positive and the option is said to bein-the-money.

• ST < K: Payoff is zero and the option is said to beout-of-the-money.

• ST = K: Payoff is zero and the option is said to beat-the-money.

(b) A long position in aput option

The payoff is calculated using (Hull 2000, 9):

Payoff= max[0,K−ST ] (2.2.2)

This can be seen in Fig. 2.2.1, where the payoff is positive if(K)> (ST).

At time t = 0, the holder will buy a put option with strike price,K, in the hope
that the unknown future underlying asset price,ST , will fall and be less than the
predetermined strike price. At the exercise date,t = T, if K > ST , the holder can
sell the underlying asset at the strike priceK, and make a profit. In the case of a put
option, if:

• K > ST : Payoff is positive and the option is said to bein-the-money.

• K < ST : Payoff is zero and the option is said to beout-of-the-money.

• K = ST : Payoff is zero and the option is said to beat-the-money.

(c) A short position in acall option

The payoff is calculated using (Hull 2000, 9):

Payoff= min[0,K−ST ] (2.2.3)

At time t = 0, the option writer receives an option premium,X, and has no say in
whether an option can be exercised or not. The call option writer hopes that the
unknown future asset price,ST , will drop below the agreed upon strike price,K.

At time t = T, the writer of the call option is obligated to sell the underlying as-
set to the option holder. If theunderlying asset price risesabove the strike price
and the option holder chooses to exercise his option, the option writer must sell the
underlying asset to the holder at the strike price,K, losingST−K. The option writer
now only has the option premium,X, left after trading. If theunderlying asset price
dropsbelow the strike price, the option holder will not exercise the option and the
option writer will have both the underlying asset and the option premium left after
trading.

8
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Payoff

K Stock price K Stock price

PayoffCall Put

Figure 2.2.2: Short position on option

(d) A short position in aput option

The payoff is calculated using:

Payoff= min[0,ST−K] (2.2.4)

The option writer hopes that the uncertain future asset price, ST , will rise above
the strike price,K. At time t = T, if the underlying asset price goes downand
ST < K, the option holder will choose to exercise the option and thewriter would be
obliged to supply the underlying asset. Therefore, the option writer will only have
the premium left after trading. If theunderlying asset price goes upandST > K,
the option holder will not exercise the option and the writerwill be left with both
the option premium and the underlying asset after trading.

2.2.3 Itô’s Lemma

Before one can introduce the reader to the model that forms the foundation of all modern
finance, the Black-Scholes model, one first has to cover some background theory in the
form of Itô’s Lemma. Although a detailed analysis of the complex topic of stochastic
calculus falls beyond the scope of this dissertation, the most important rule of stochas-
tic calculus deserves some attention (Wilmott 2000b, 71). The following is therefore a
broad discussion that aims to introduce some of the tools that will later be used to derive
the Black-Scholes partial differential equation.

An option pricing model needs a basis model that describes the movement of the under-
lying asset’s price. Since predicting the future price of anasset is impossible, one can

9
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use either past or current market data to calculate various properties, such as the mean
and the variance of the underlying asset (Wilmott, Dewynne &Howison 1996, 18).

A simple asset price model assumes two properties:

1. An asset’s past history is completely reflected in its current price and the current
price does not hold any further information.

2. Markets immediately respond to new data.

These properties allows one to define a specific type of stochastic process, the Markov
process. A Markov process only considers the current value of an asset and therefore
disregards the asset’s past values and the means by which itscurrent value was ob-
tained. Thus, the only information relevant in predicting an asset’s future value is its
current value (Hull 2012, 280).

Therefore, the changes in an asset price is a Markov process and these changes are
measured as returns.

Let the price of an underlying asset at timet, be S. One now wants to investigate
the change in the asset price after a small time interval,dt, where the price is defined
asS+dS. A return is defined as the change in asset price divided by theoriginal asset
price (Wilmott et al. 1996, 19-20):

dS
S
. (2.2.5)

To model the return on this asset, one can divide the return into two sections:

1. A predictable deterministic part

This will be equivalent to the return received from investing money in a bank
at a risk-free interest rate. Mathematically, it is writtenas:

µdt, (2.2.6)

whereµ is the average rate of growth of the underlying asset and is known as
the drift. The Black-Scholes model assumes this value to be constant (Wilmott
et al. 1996, 20).

10
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2. An unpredictable random change to the asset price

This is due to external factors and is represented by a randomsample that is drawn
from a normal distribution. Mathematically, it is written as:

σdW, (2.2.7)

whereσ is the standard deviation of the underlying asset and is known as the
volatility. The Black-Scholes model assumes this value to be constant (Wilmott
et al. 1996, 20) and it is this assumption that is addressed inthis dissertation.

Adding these two contributions to obtain the return of an asset leads to the following
stochastic differential equation:

dS
S

= µdt+σdW. (2.2.8)

This equation is used to generate different asset prices (Wilmott et al. 1996, 20) and will
be used in the next chapter, which addresses the derivation of the Black-Scholes partial
differential equation.

The termdW contains the uncertain randomness of asset prices and is known as a
Wiener process (Wilmott et al. 1996, 20). The Wiener processhas the following prop-
erties (Wilmott et al. 1996, 21):

• dW is a random variable.

• dW is taken from a standard normal distribution.

Equation 2.2.8 is known as a random walk and cannot be solved.However, it supplies
information regarding the behavior of the asset price in a probabilistic sense by gener-
ating different time series (Wilmott et al. 1996, 23).

In reality, prices are quoted at discrete time intervals andtherefore there is a lower
limit to the time increment encountered in 2.2.8. In the process of pricing options, these
discrete time intervals would lead to vast amounts of data and subsequently one uses
continuous time increments, wheredt→ 0, instead (Wilmott et al. 1996, 25). It ˆo’s
Lemma is to stochastic variables what Taylor’s theorem is todeterministic variables
(Wilmott 2009, 106) and relates a change in the function of a random variable, to a
change in the random variable itself (Wilmott et al. 1996, 25).
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The following derivation of It ˆo’s Lemma is taken from Paul Willmott’s bookThe Math-
ematics of Financial Derivatives(Wilmott et al. 1996, 26-27).

Itô’s Lemma can be derived for a function of both one and two random variables, where
the lemma for a function of two random variables is used in thefollowing chapter to
derive the Black-Scholes model, where an option price,V, is typically a function of
both the underlying asset price,Sand time,t.

• Itô’s Lemma for a function of one random variable,V(S)

Approximating the intervalV(S+dS) by a Taylor series, one finds:

V(S+dS) = dV =
dV
dS

dS+
1
2

d2V
dS2 dS2+ . . . . (2.2.9)

Notice that 2.2.9 contains a term with the square of 2.2.8. One therefore defines:

dS2 = (µSdt+σSdW)2, (2.2.10)

= σ2S2dW2+2σ µS2dtdW+µ2S2dt2. (2.2.11)

The following properties of the Wiener process are now used (Bjork 2009, 52):

(dW)2 = dt, (2.2.12)

(dt)2 = 0, (2.2.13)

and

dt.dW= 0. (2.2.14)

Applying equations 2.2.12, 2.2.13 and 2.2.14, equation 2.2.11 can now be written
as:

dS2 = σ2S2dt+ higher order terms ofdt. (2.2.15)

Substituting 2.2.15 into 2.2.9 and truncating, one finds:

V(S+dS) = dV =
dV
dS

(µSdt+σSdW)+
1
2

d2V
dS2 σ2S2dt, (2.2.16)
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which, after some simplification, can be written as:

V(S+dS) = dV = σS
dV
dS

dW+

(

µS
dV
dS

+
1
2

σ2S2d2V
dS2

)

dt. (2.2.17)

This is Itô’s Lemma written for a function in one variable.

• Itô’s Lemma for a function of two random variables,V(S, t)

In the case of a function with two variables, if random variable S changes by
a small amount,dS in a time interval,[t, t +dt], one writes the Taylor series ex-
pansion as follows:

V(S+dS, t+dt) = dV =
∂V
∂S

dS+
∂V
∂ t

dt+
1
2

∂ 2V
∂S2 dS2+ . . . . (2.2.18)

Substituting equations 2.2.15 and 2.2.8 into 2.2.18 and truncating, one finds:

V(S+dS, t+dt) = dV =
∂V
∂S

(µSdt+σSdW)+
∂V
∂ t

dt+
1
2

∂ 2V
∂S2 σ2S2dt.

(2.2.19)

Rearranging 2.2.19 one can finally write It ˆo’s Lemma for a function of two ran-
dom variables as:

V(S+dS, t+dt) = dV = σS
∂V
∂S

dW+

(

µS
∂V
∂S

+
1
2

σ2S2∂ 2V
∂S2 +

∂V
∂ t

)

dt.

(2.2.20)

2.2.4 The Black-Scholes Model

This model forms the foundation of modern finance and although it is formally derived
and adapted to suit American put options in the next chapter,some important concepts
are introduced in this section.

∂V
∂ t

+
1
2

∂ 2V
∂S2 σ2S2+ rS

∂V
∂S
− rV = 0. (2.2.21)

The Black-Scholes formulae are used to analytically priceEuropean put and call op-
tions. The development of these formulae had a dramatic impact on both theoretical

13



2.2. BASIC OPTION THEORY

and practical financial applications and in 1997, the Nobel Prize for Economics was
awarded to Robert Merton and Myron Scholes for their work andits impact on option
pricing. Unfortunately Fisher Black had passed away two years prior to the ceremony
(Ugur 2008, 111).

An option’s value is represented by a function that can be written as (Wilmott 2000a,
82):

V(S, t,σ ,µ,K,T, r), (2.2.22)

where

• S - current underlying stock price.

• t - current time.

• σ - volatility of underlying asset.

• µ - drift of underlying asset.

• K - strike price of option.

• T - exercise date of option.

• r - current interest rate.

Factors such as current stock price, strike price, time to expiration, stock price volatility
and the risk free interest rate, have an effect on the price ofan option, as will become
apparent in section 3.2 (Hull 2000, 168).

This model allows one to describe real markets in theory. Certain assumptions are made
which include (Hull 2000, 245) (Merton 1976, 126):

• Underlying assets have a constant volatility.

• Non-dividend paying options.

• Stock price follows a geometric Brownian motion that produces a log-normal
distribution for the stock price.

• No arbitrage is allowed.

• Risk free interest rate is constant.
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• Unlimited short selling is allowed.

• No taxes or transaction costs.

• Underlying asset can be traded continuously and in infinitesimally small number
units.

This dissertation attempts to expand the Black-Schoels model by addressing one of its
assumptions, the fact that an underlying asset’s volatility has to be constant. This is
done in chapter five. For now, it is important to realize that due to the limitations of
the Black-Scholes model and its assumptions, current research is focused on addressing
these shortcomings by developing models to ultimately enable the pricing of complex
derivatives.

2.2.5 American options

As mentioned earlier, the main difference between a European and American option,
is that an American option offers it’s holder theearly exercise facility. This additional
feature should not be worthless and as a result, one expects an American option to be
more valuable than its European counterpart. This extra premium is known as theearly
exercise premium(Kwok 2008, 251).

This dissertation only deals with the pricing of an Americanput option on a single
non-dividend paying underlying stock. This is due to the fact that it is never favourable
to exercise this type of call option early and therefore the American call option’s value
is equal to the European call option and can be calculated using the traditional Black-
Scholes formulae (Higham 2009, 174). This can be shown by considering the argument
given in John C. Hull’s book,Options, Futures, and other Derivatives(Hull 2000, 175-
176).

An American call option holder who wants to know when it is most favourable to
exercise his option, is faced with two possible scenarios ata certain timet < T:

• If he wishes to hold the underlying stock for a period longer than the duration
of the option contract.

– If the option is out-of-the-money,(St < K).
It is not optimal to exercise the option and the holder needs to hold on to the
option.
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– If the option is in-the-money,(St > K).
It is not optimal to exercise the option early and the holder is better off exer-
cising at the time of maturity,T. This statement is supported by considering
the numerous advantages that not exercising the option at time t offers its
holder:

1. Interest is earned on the strike price amount,K, for the duration of the
contract.

2. No income is sacrificed in the case of a non-dividend payingstock op-
tion.

3. The holder is insured against a future stock price drop.

Hence there is no advantage in early exercise.

• If he wishes to sell the underlying stock and feels that it is currently over-
priced.

The holder now considers exercising the option and selling the underlying stock.
In this case it is optimal to rather sell the option. If he wereto exercise the option,
he would obtain the option payoff

Payoff= max[0,St−K]. (2.2.23)

If he were to sell the option, the option would be bought by an individual who
wishes to hold the underlying and keeping in mind that the lower boundary of a
call option is given by (Higham 2009, 14):

C≥max[S−Ke−rT ,0], (2.2.24)

he would obtain a value larger than just the payoff value given in 2.2.23.

Therefore it is never optimal for the holder of an American call option to exercise pre-
maturely.

In the case of American put options, the holder is still facedwith the dilemma of finding
the time when it is optimal to exercise the option and in the case of puts, things are
significantly more complicated when compared to calls. Except for a few special cases,
there are no analytical pricing formulas available for American options and therefore
numerical methods are used to obtain the option price (Kwok 2008, 252).

This dissertation is devoted to one of these methods, the finite difference method and
although it is covered in great detail in the chapters to follow, for now it is important to
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understand why numerical methods are used.

In summary, due to an American put option’s early exercise facility (the option to pre-
maturely exercise the put), the problem of finding the optimal time at which to exercise
can only be calculated numerically. This problem is known asa free boundary prob-
lem (Wilmott 2000a, 129). The price or premium of this put option also needs to be
calculated numerically.

2.3 Basic Matrix Algebra theory

The following section broadly defines some of the terms concerning matrix algebra that
the reader will encounter in this dissertation. A detailed description of these terms falls
beyond the scope of this dissertation.

2.3.1 Non-singular

Before one can define a non-singular matrix, one first has to explain the concept of a
matrix determinant. LetA be an×n square matrix:

A =











a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
... · · · ...

an1 an2 an3 · · · ann











.

The determinant ofA is calculated by:

Det(A) =
n

∑
k=0

akm(−1)k+mMkm, (2.3.1)

for 1≤m≤ n and whereMkm is the minor determinant of the(n−1)× (n−1) matrix
(Yang, Cau, Chung & Morris 2005, 464).

One can now define a non-singular matrix as: a square matrixA is non-singular if
its determinant is non-zero (Karris 2007, 4(22)):

Det(A) 6= 0. (2.3.2)
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2.3.2 Conjugate transpose

Start by defining the conjugate of a matrix. If a matrixA has complex elements and
one replaces each element ofA by its conjugate, the new matrix obtained is called the
conjugate ofA and is denoted byA∗ (Karris 2007, 4(8)).

The transpose of a matrixAT , is obtained when its rows and columns are interchanged
(Karris 2007, 4(6)). Therefore, the conjugate transpose ofa matrix(A∗)T , is obtained
when one transposes the conjugate matrix,A∗.

2.3.3 Positive definite

A square matrixA is positive definite if:

(x∗)TAx > 0, (2.3.3)

for any non-zero column vectorx (Yang et al. 2005, 468).

2.3.4 Hermitian

A square matrixA is called a Hermitian if (Karris 2007, 4(9)):

A = (A∗)T . (2.3.4)

2.3.5 Spectral radius

If A is any matrix, then the eigenvalues ofA, denoted byλ , are the roots of the charac-
teristic equation ofA:

Det(A−λ I) = 0, (2.3.5)

whereI is the identity matrix (Kincaid & Cheney 1991, 187).

The spectral radius of a matrix can now be defined as (Kincaid &Cheney 1991, 187):

ρ(A) = max{| λ |: Det(A−λ I) = 0}. (2.3.6)
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2.3.6 Diagonally dominant

If A is a matrix with elementsai, j , thenA is diagonally dominant if (Kincaid & Cheney
1991, 152):

| aii |>
n

∑
j=1, j 6=i

| ai j |, 1≤ i ≤ n. (2.3.7)

2.3.7 M-matrix properties

A matrix A ∈ R
n×n is a M-matrix if it can be expressed as (Elhashash & Szyld 2008,

2436):

A = sI −B, (2.3.8)

whereB is a non-negative matrix which has a spectral radius defined by (Elhashash &
Szyld 2008, 2436):

ρ(B)≤ s s∈ R. (2.3.9)

2.3.8 Tridiagonal matrix

A matrix A = ai j is tridiagonal if ai j = 0 for all pairs(ai j ) that satisfy| i − j |> 1.
Thus, in the i-th row, only the elementsai j−1, ai j andai j+1 can be non-zero (Kincaid &
Cheney 1991, 154). A tridiagonal matrix therefore has the form:

A =















a11 a12 0 0 0 · · · 0
a21 a22 a23 0 0 · · · 0
0 a32 a33 a34 0 · · · 0
...

...
... . . . . . . . . .

...
0 0 0 · · · 0 an−1n ann.















.

Chapter four deals with tridiagonal matrices and the methods that can be used to obtain
solutions of such a system, with the inclusion of both directand iterative approaches.
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Chapter 3

American put option pricing problem
under constant volatility

This chapter addresses the topic of themathematical model for pricing American put
options. Section one discusses generalpartial differential equations(PDE’s), with spe-
cial attention paid to theone-dimensional parabolic heat equation. This heat equation is
discussed in more detail because later on in this chapter, the well known Black-Scholes
partial differential equation is transformed into the heatequation.

Thederivation of the Black-Scholes partial differential equation (BS PDE) follows the
section on partial differential equations and due to the early exercise facility offered by
American options, the Black-Scholes partial differentialequation is transformed to the
Black-Scholes inequality. The American option pricing problem is then discussed as a
free boundary value problem. To aid the understanding of the free boundary concept, a
physical problem (the obstacle problem) is also discussed.Although far removed from
the financial context, the obstacle problem serves as a tool that enables one to formally
define the free boundary that exists due to the early exercisefacility of an American
option. In the latter sections of this chapter, the Black-Scholes partial differential equa-
tion is transformed into the one-dimensional parabolic heat equation and defined with
it’s initial and boundary conditions. Finally, thelinear complimentary problem(LCP)
is constructed, which forms the mathematical basis for all numerical techniques imple-
mented in the chapters to follow.
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3.1 Partial differential equations

In the process of solving the option pricing problem, the Black-Scholes partial differen-
tial equation can be transformed into the one-dimensional parabolic heat equation and
therefore this section on partial differential equations is included. The heat equation that
is obtained from the transformation is solved using specificinitial and boundary values.
The reader is now introduces to basic concepts regarding partial differential equations.
Consider the one-dimensional parabolic heat equation:

∂u
∂ t

=
∂ 2u
∂x2 , (3.1.1)

on the domain (Oliver 2004, 19):

D = {(x, t) : x∈ R, t ≥ 0}. (3.1.2)

In a financial setting, most partial differential equationsare either first or second order
parabolic equations (Wilmott, Dewynne & Howison 2000, 75).The general heat equa-
tion given in 3.1.1 is ahomogeneous, one-dimensional, second order, linear, forward
parabolic equation (Wilmott et al. 2000, 80). This equation has served as a modelfor
the flow of heat in a continuous medium for nearly two centuries and it is one of the most
widely used models in the field of applied mathematics (Wilmott et al. 2000, 79). From
a physical point of view, it describes the process of heat diffusion (a ”smoothing-out”
process), in which heat flows from a hot to a cooler area, cancelling out temperature
differences along a heat conducting material of lengthL, over a certain time period,T
(Wilmott et al. 2000, 81). No further details regarding the physical meaning of the heat
equation in a thermodynamic setting will be discussed, since this dissertation is only
concerned with the application of the heat equation in a financial setting.

The following section discusses the properties of equation3.1.1. Begin by defining
a functionu(x, t), that is dependant on variablesx (position) andt (time).

• Homogeneous: When equation 3.1.1 is manipulated and equated to zero,

∂u
∂ t
− ∂ 2u

∂x2 = 0. (3.1.3)

• One-dimensional: This indicates that heat can only be transferred in one direction.
For equation 3.1.3, this direction is along thex-axis.

• Second order: The highest order derivative present in equation 3.1.3.
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• Linear: Any linear combination of two solutions of the heat equation on an open
interval I , is also a solution of the heat equation onI . Therefore, sums and con-
stant multiples are also solutions (Kreyszig 2006, 47). Forexample, ifu1 andu2
are both solutions to equation 3.1.3, thenc1u1+c2u2 is also a solution. Herec1

andc2 are any constants (Wilmott et al. 2000, 80).

• Forward: If the signs of the terms are the same when they are on the sameside
of the equation, then the equation is known as a backward parabolic equation
and requires final conditions. Equation 3.1.3 is known as aforward parabolic
equation and requiresinitial conditions to be stipulated (Wilmott et al. 2000,
46).

• Parabolic: Consider the partial differential equation of the form,

A
∂ 2u
∂x2 +B

∂ 2u
∂xy

+C
∂ 2u
∂y2 = F

(

x,y,
∂u
∂x

,
∂u
∂y

)

.

This equation is parabolic if its discriminant,AC−B2, is equal to 0 (Kreyszig
2006, 551).

Since a partial differential equation can have multiple solutions, one needs to specify
initial and boundary value conditions for the forward heat equation in 3.1.3, to ensure
that a unique solution is obtained as opposed to a general solution (Wilmott et al. 2000,
45).

• Initial condition : This will specify the value ofu(x,0). Therefore, time remains
constant andu(x, t) changes according tox. From a thermodynamic perspective,
this value represents the temperature of the material at anypoint x, before the
process of heat conduction starts. As mentioned previously, the initial condition
is specified if the heat equation is of theforward type. Mathematically, this con-
dition is given as:

u(x,0) = g(x). (3.1.4)

• Final condition: The final condition is specified instead of the initial condition if
the heat equation is of thebackwardtype. Here, the value ofu(x,T) also changes
according to variablex:

u(x,T) = h(x). (3.1.5)
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• Boundary conditions: These values represent the temperatures of the two ter-
minal points of the one-dimensional material that conductsheat. As mentioned
earlier, the length of the material is measured along thex-axis and can be sub-
divided. The boundary conditions stipulate the value of function u at end points
x= 0 andx= L, for different values in time:

u(0, t) = a(t), 0≤ t ≤ T, (3.1.6)

u(L, t) = b(t), 0≤ t ≤ T. (3.1.7)

If no analytical solution is available, a numerical technique can be implemented to es-
timate a solution to the heat equation. The finite differencenumerical method, will be
the main focus of this dissertation. Before focussing on theprocess of obtaining a nu-
merical solution to the heat equation, the Black-Scholes partial differential equation is
first investigated and adapted it to suit American put options. In the latter stages of this
chapter finite difference numerical method to solve the heatequation will be addressed
in detail.

3.2 Derivation of the Black-Scholes partial differential
equation

To better understand the Black-Scholes model, the Black-Scholes partial differential
equation is derived using two different techniques. The first method involves the appli-
cation of Itô’s Lemma, whereas the second method involves the construction of a repli-
cating portfolio and follows a more intuitive approach. Forfurther reading, the book,
Frequently asked questions in Quantitative Financeby Paul Wilmott (Wilmott 2009,
401-426), has a whole chapter dedicated to the twelve different ways to derive the Black-
Scholes equation.

Before deriving the Black-Scholes partial differential equation, consider the assump-
tions made by the Black-Scholes model, as mentioned in section 2.2.4 of the previous
chapter.

3.2.1 Using Itô’s Lemma

The following derivation of the Black-Scholes partial differential equation using It ˆo’s
Lemma, is based on the text found inOption Pricing: Mathematical models and compu-
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tation (Wilmott et al. 2000, 41-45) and John Hull’sOptions, Futures, and other Deriva-
tives(Hull 2009, 287-289). Assuming that the underlying stock price follows a geomet-
ric Brownian motion in continuous time, the stochastic differential equation (SDE) of
the stock price can defined as:

dS= µSdt+σSdW, (3.2.1)

where:
S- Stock price at time t.
µ - Constant expected rate of return of stock (drift).
σ - Constant volatility of the stock price.
W - Wiener process.

Assume thatV = V(S, t) is the value of either a put or a call option. ThenV is suf-
ficiently smooth with continuous first and second order derivatives with respect toSand
continuous first order derivatives with respect tot on the domain:

Dv = {(S, t) : S≥ 0,0≤ t ≤ T}. (3.2.2)

Applying Itô’s Lemma defined on page 13, one finds an equation that represents the
random walk followed byV:

dV =

(

∂V
∂ t

+
∂V
∂S

µS+
1
2

∂ 2V
∂S2 σ2S2

)

dt+
∂V
∂S

σSdW. (3.2.3)

Construct a portfolio consisting of the option and (−∆) units of the underlying asset.
The value of this portfolio is given by:

Π =V−∆S. (3.2.4)

The change in the value of the portfolio after one time-step is:

dΠ = dV−∆dS. (3.2.5)

Therefore the amount of underlying stock, (−∆), remains constant.

Substituting 3.2.1 and 3.2.3 into 3.2.5, one finds:

dΠ =

(

∂V
∂ t

+
∂V
∂S

µS+
1
2

∂ 2V
∂S2 σ2S2

)

dt+
∂V
∂S

σSdW−∆(µSdt+σSdW) . (3.2.6)
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This simplifies to:

dΠ = σS

(

∂V
∂S
−∆
)

dW+

(

µS
∂V
∂S

+
1
2

∂ 2V
∂S2 σ2S2+

∂V
∂ t
−µ∆S

)

dt. (3.2.7)

Noting that fluctuations caused by increments of the Wiener process have a coefficient

(

∂V
∂S
−∆
)

, (3.2.8)

one can remove the randomness component of the random walk bychoosing

∂V
∂S

= ∆. (3.2.9)

One now finds a totally deterministic portfolio (Wilmott et al. 2000, 43):

dΠ =

(

∂V
∂ t

+
1
2

∂ 2V
∂S2 σ2S2

)

dt. (3.2.10)

Also notice that the drift rateµ, has been cancelled out. The remainingσ reflects the
stochastic behaviour of the Black-Scholes equation and is assumed to be constant.

If an amount ofΠ is invested in a a risk-less asset with constant interest rate r, the
capital growth on this amount would berΠdt after a timedt. With the assumption of
no transaction costs and applying the concept of no arbitrage, one finds that:

rΠdt =

(

∂V
∂ t

+
1
2

∂ 2V
∂S2 σ2S2

)

dt. (3.2.11)

Substituting equations 3.2.4 and 3.2.9 into 3.2.11 and simplifying, one obtains the
Black-Scholes partial differential equation(Wilmott et al. 2000, 44):

∂V
∂ t

+
1
2

∂ 2V
∂S2 σ2S2+ rS

∂V
∂S
− rV = 0. (3.2.12)

3.2.2 Using a replicating portfolio

This discussion is based on a derivation given inAn Introduction to Financial Option
Valuation: Mathematics, Stochastics and Computationby Desmond J. Higham (Higham
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2009, 74-79), where the author uses the concept of a replicating portfolio. Start by
defining two different time increments. Assume the lifetimeof the option contract to
span the interval 0≤ t ≤ T and divide this option lifetime into large, equally spaced
time increments,∆t. From Fig. 3.2.1 follows that∆t denotes the time-step over interval
[t, t + ∆t]. If one divides each large∆t increment intoL smallerδ t increments, the
interval[t0, t1...ti, ti+1...tL] is obtained, wheret0 = t andtL = t+∆t. Therefore, there are
L+1 points andL intervals, as illustrated in Fig. 3.2.2.

t = 0 t = Tt = 0+∆t

Figure 3.2.1: Put option duration divided into larger time increments,∆t

t = 0 t = 0+∆t

t0 t1 ti−1 ti tL−1 tL

Figure 3.2.2: Put option duration divided into smaller timeincrements,δ t

One can defineδ t as:

δ t = ti+1− ti. (3.2.13)

To derive the Black-Scholes partial differential equation, begin by constructing a repli-
cating portfolio consisting of the asset underlying the option, S, and a certain amount of
cash,D. This portfolio has exactly the same risk as the option at alltimes. LetA(S, t)
represent the number of units of underlying asset,S, whereA(S, t) is a function of both
the asset price,S and time,t and let the amount of cash,D(S, t) also be a function of
bothSandt.

The value of the replicating portfolio can now be defined as:

Π(S, t) = A(S, t)S+D(S, t). (3.2.14)
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Keeping equation 3.2.13 and the fact that the stock price,S, is also a function of time in
mind, one can now define the following increments:

δSi = S(ti+1)−S(ti), (3.2.15)

δVi =V(S(ti+1), ti+1)−V(S(ti), ti), (3.2.16)

δΠi = Π(S(ti+1), ti+1)−Π(S(ti), ti), (3.2.17)

δ (V−Π)i = δVi−δΠi , (3.2.18)

where functionV(S, t) represents the option value for any asset price,S≥ 0, at any time
0≤ t ≤ T. As time varies, the amount of the underlying asset,A(S, t), remains constant.
This implies that a change in the value of the portfolio,δΠ, has two origins:

• Asset price fluctuation,δSi .

• Interest gained from the cash invested for time periodδ t, rD iδ t.

One can now define the portfolio value after timeδ t, as:

δΠi = AiδSi + rD iδ t. (3.2.19)

SinceV(S, t) is assumed to be a smooth function of bothS and t, the Taylor series
expansion ofV is given by:

δVi ≈
∂Vi

∂ t
δ t +

∂Vi

∂S
δSi +

1
2

∂ 2Vi

∂S2 δS2
i . (3.2.20)

Subtracting 3.2.19 from 3.2.20 one finds:

δ (V−Π)i ≈
(

∂Vi

∂ t
− rD i

)

δ t +

(

∂Vi

∂S
−Ai

)

δSi +
1
2

∂ 2Vi

∂S2 δS2
i . (3.2.21)

This equationcompares the change in portfolio value to the change in option value.
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In the process of replicating the option, one needs the difference between the portfo-
lio and option values to be predictable and therefore the unpredictable term,δSi , must
be eliminated. This is done by equating it’s coefficient to zero:

∂Vi

∂S
−Ai = 0. (3.2.22)

Or

∂Vi

∂S
= Ai . (3.2.23)

This is similar to the strategy followed in the derivation using Itô’s Lemma. Substituting
3.2.23 into 3.2.21 one obtains:

δ (V−Π)i ≈
(

∂Vi

∂ t
− rD i

)

δ t +
1
2

∂ 2Vi

∂S2 δS2
i . (3.2.24)

The goal is to ultimately remove all the random elements fromthe value compari-
son equation in 3.2.24. This is done by adding all these increments over the interval
0≤ i ≤ L−1. The summation of 3.2.24 yields:

∆(V−Π)≈
L−1

∑
i=0

(

∂Vi

∂ t
− rD i

)

δ t +
1
2

L−1

∑
i=0

∂ 2Vi

∂S2 δS2
i . (3.2.25)

Using the fact thatLδ t = ∆t, one can now re-write 3.2.25 as:

∆(V−Π)≈
(

∂V
∂ t
− rD

)

∆t +
1
2

L−1

∑
i=0

∂ 2Vi

∂S2 δS2
i . (3.2.26)

It can also be shown that the sum of theδS2
i terms is non-random.

L−1

∑
i=0

δS2
i ≈ S(t)2σ2∆t. (3.2.27)

Substituting 3.2.27 and assuming that all approximations are exact in the limitδ t→ 0,
3.2.26 can be re-written as:
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∆(V−Π) =

(

∂V
∂ t
− rD +

1
2

σ2S2∂ 2V
∂S2

)

∆t, (3.2.28)

where∆(V−Π) denotes the change in(V−Π) over time interval[t, t+∆t]. This can
also be written as:

∆(V−Π) =V(S(t+∆t), t+∆t)−Π(S(t+∆t), t+∆t)− [V(S(t), t)−Π(S(t), t)].
(3.2.29)

Assuming the no arbitrage principle, the change in portfolio (V −Π) must equal the
growth offered by the risk free interest rate and therefore the following holds:

∆(V−Π) = r∆t(V−Π). (3.2.30)

Finally, by combining equations 3.2.14, 3.2.28 and 3.2.30,one obtains:

∂V
∂ t
− rD +

1
2

σ2S2∂ 2V
∂S2 = r(V−AS−D). (3.2.31)

SubstitutingA, from equation 3.2.23 into 3.2.31, one obtains theBlack-Scholes partial
differential equation (BS PDE):

∂V
∂ t

+
1
2

∂ 2V
∂S2 σ2S2+ rS

∂V
∂S
− rV = 0. (3.2.32)

This PDE is satisfied for any option whose value can be expressed as some smooth
functionV(S, t). As mentioned previously, this equation can now be transformed into
the heat equation. The price of bothEuropean put and call optionscan be obtained
analytically by using the appropriate initial and boundaryconditions (Wilmott et al.
2000, 98).

• The call option value at time t, as derived in (Wilmott et al. 2000, 97-100) is
given by:

c(S, t) = SN(d1)−Ke−r(T−t)N(d2), (3.2.33)

where

d1=
log(S/K)+(r + 1

2σ2)(T− t)

σ
√

(T− t)
, (3.2.34)
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and

d2=
log(S/K)+(r− 1

2σ2)(T− t)

σ
√

(T− t)
. (3.2.35)

N(·) is the distribution function for a standardized normal random variable (Wilmott
et al. 1996, 48):

N(x) =
1√
2π

∫ x

−∞
e−

1
2y2

dy. (3.2.36)

The final condition is the known payoff at this time (Wilmott et al. 1996, 46):

c(S,T) = max[S−K,0]. (3.2.37)

The boundary conditions are given by (Wilmott et al. 1996, 46):

c(0, t) = 0, S= 0, (3.2.38)

c(S, t) = S, S→ ∞. (3.2.39)

• Theput option value is given by (Wilmott et al. 1996, 48):

p(S, t) = Ke−r(T−t)N(−d2)−SN(−d1), (3.2.40)

using equations 3.2.34 and 3.2.35 ford1 andd2 respectively.

The final condition is the known payoff at this time (Wilmott et al. 1996, 46):

p(S,T) = max[K−S,0]. (3.2.41)

The boundary conditions are given by (Wilmott et al. 1996, 47):

p(0, t) = Ke−r(T−t), S= 0, (3.2.42)

P(S, t) = 0, S→ ∞. (3.2.43)
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3.3 Derivation of the Black-Scholes inequality for Amer-
ican put options

In the following section, the Black-Scholes partial differential equation is adapted to
suit American put options. This is done to accommodate the early exercise facility of
American options. Due to their greater flexibility, these options can potentially be more
valuable than their European counterparts (Wilmott et al. 1996, 106). From the above
derivation, equation 3.2.28 was obtained. Its notation is now altered to suit American
put options by lettingPAm denote the value of an American put option. Therefore 3.2.28
can is now written as:

∆(PAm−Π) =

(

∂PAm

∂ t
− rD +

1
2

σ2S2∂ 2PAm

∂S2

)

∆t. (3.3.1)

Accepting the previous assumptions made, that due to the elimination of the random
elements this comparison value,∆(PAm−Π), must equal the growth offered by a risk
free investment at a fixed interest rater, the following two scenarios are now examined:

1. ∆[PAm−Π]> r∆t[PAm−Π].

This indicates that a combination ofPAm−Π will offer better gains than money
invested in the bank. One can thus proceed bybuying the put option, PAm and
selling the portfolio, Π (selling the underlying asset and loaning out the cash).

2. ∆[PAm−Π]< r∆t[PAm−Π].

This suggests that the combination ofPAm−Π performs worse than the cash
investment in the bank. Subsequently, one willsell the put option,PAm andbuy
the portfolio, Π (buying the underlying asset and borrowing money) (Higham
2009, 174-175).

For European options with no early exercise facility, the noarbitrage theory rules out
both scenarios. However, for American options this is not the case. Scenario one states
that the arbitrageur buys the American put option and sells the portfolio. This means
that he controls the early exercise facility and therefore an arbitrage opportunity still
exists. In scenario two, the arbitrageur sells the Americanput option and is therefore at
the mercy of the early exercise facility because the new option holder can at any time
exercise the option against the arbitrageur. In this casethe arbitrageur can no longer
guarantee a return greater than the risk-less bank investment.
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The no arbitrage principle rules out scenario one, but not scenario two and one finds
that the following inequality is valid:

∆(PAm−Π)≤ r∆t(PAm−Π). (3.3.2)

Substituting equations 3.3.1 and 3.2.14 into equation 3.3.2 one finds:

(

∂PAm

∂ t
− rD +

1
2

σ2S2∂ 2PAm

∂S2

)

∆t ≤ r∆t(PAm−AS−D). (3.3.3)

According to (Higham 2009, 175), cancelling the∆t ’s and substituting equation 3.2.23
- adapted in terms of thePAm notation - into equation 3.3.3, one finds that the Black-
Scholes partial differential equation in equation 3.2.32 changes to theBlack-Scholes
partial differential inequality :

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm≤ 0. (3.3.4)

Similar to the Black-Scholes partial differential equation, the Black-Scholes partial dif-
ferential inequality can be transformed into the heat equation. This equation can then
be solved to obtain a unique price for an American put option.From the section on
partial derivatives, one now appreciates the necessity of initial and boundary values to
obtain such a unique solution. One of the difficulties encountered with the American
pricing problem is that one of the boundaries needed cannot be specified beforehand.
This stems from the early exercise facility of American options and is known as afree
boundary problem. The following section addresses this topic.

3.4 The free boundary problem

As mentioned previously, American options have the advantage of permitting early ex-
ercise of the option at any time during the lifetime of the option contract (Wilmott
et al. 2000, 54). This early exercise advantage complicatesthe Black-Scholes analy-
sis and often places strain on computational methods (Higham 2009, 173) because the
explicit formulae available for European options do not necessarily offer meaningful
values for American options (Wilmott et al. 2000, 54).

The American option pricing functionPAm(S, t), that ultimately represents the price
of an American option, is a function of both time and the underlying asset’s price,S.
The free boundary problem is essentiallythe task of determining the specific stock
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price Sf (t) (critical asset price), at each point on the time interval,0≤ t ≤ T, at
which it is optimal to exercise the American put option.

The payoff formula of the put option, defined in (Hull 2009, 183), is given by:

Λ(S(t)) = max[K−S,0]. (3.4.1)

If the stock priceS is large, the put option payoff would be 0 and it will not be worth-
while to exercise the American put. On the other hand, asS approaches 0, the payoff
from exercising the put option approaches the maximum value, K, and it would be op-
timal to exercise the option.

Exercise option

Stock price

Do not exercise option

Time

Figure 3.4.1: The early exercise boundary of an American putoption

Interpolating between these two extreme scenarios, one finds an optimal exercise bound-
ary (Higham 2009, 177). Therefore, at each point on the time interval, 0≤ t ≤ T, there
is a critical asset priceSf (t), which marks the boundary between two regions. On the
one side of this value, the option should be exercised, but onthe other side of this value
the option in question should be held (Wilmott et al. 2000, 55). This can be seen in Fig.
3.4.1. The critical asset price depends on the time remaining to expiry, as well as other
variables of the partial differential equation, such as volatility (Wilmott et al. 2000, 106).

For American put options where (Higham 2009, 177):

• S< Sf (t), it is optimal to exercise the optionandPAm= Λ(S(t)).

• S> Sf (t), it is optimal to hold the option andPAm> Λ(S(t)).

One needs the unknown critical asset prices,Sf (t), at each point on the time interval,
0≤ t ≤ T. These prices will form the optimal exercise boundary whichis the second
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boundary condition needed to uniquely solve the partial differential equation. The pro-
cess of obtaining this optimal exercise boundary is known asthe free boundary problem.

The concept of a free boundary is not unique to the American pricing problem. In
order to understand it better, the obstacle problem is discussed in the section below.
Although this problem deals with an elastic string, it is mathematically simple and it’s
physical interpretations are applicable to the American option pricing problem.

3.4.1 The obstacle problem as a free boundary value problem

The obstacle problem is discussed in much more mathematicaldetail in later sections
of this chapter. For now, the basic idea behind this problem is focused on to aid under-
standing of the free boundary concept. Begin by consideringan elastic string, tied at
pointsx0 andx1. The string is stretched over a smooth obstacle that lies between these
two points. This can be seen in Fig.3.4.2. The obstacle is defined by a functiong(x) and
the string by functionu(x). Initially, one does not know the region of contact between
the string and the obstacle (region between points a and b). What is known, is that the
string is either in contact with the obstacle (the position is known) or it is not in contact
(in which case the string must be straight). Additionally, two constraints are also known
that enables one to find a unique solution to the obstacle problem. The four constraints
can be summarised as (Wilmott et al. 2000, 55):

(i) The string must either lie on or above the obstacle.

(ii) The string must have a negative or zero curvature.

(iii) The string must be continuous.

(iv) The string’s slope must be continuous.

u(x)

g(x)

a bx0 x1

Figure 3.4.2: The obstacle probelm
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A unique solution to the American option pricing problem canalso be obtained by
specifying a similar set of constraints to those of the obstacle problem (Wilmott et al.
2000, 56). These are:

(i) The option value must be greater or equal to the option payoff.

(ii) One must have the Black-Scholes inequality.

(iii) The option value must be a continuous function ofS.

(iv) The option delta (slope) must be continuous.

The following section examines each of these constraints ontheir own merit. Each
constraint will hereafter be written in mathematical notation:

(i) PAm≥max[K−S,0], 0≤ t ≤ T andS≥ 0.

This constraint (lower boundary), indicates thatearly exercise can occur, but
that arbitrage shouldn’t (Wilmott et al. 2000, 56)(Higham 2009, 174). Desmond
Higham, in his book,An Introduction to Financial Option Valuation: Mathemat-
ics, Stochastics and Computation(Higham 2009, 14), proves the lower boundary
of the European put option by considering the following two portfolios: Portfolio
ΠA contains a put option and its underlying stock, whilst portfolio ΠB contains a
cash amount invested at a risk free interest rate,r:

ΠA = P+S, (3.4.2)

and

ΠB = Ke−rT . (3.4.3)

At the exercise date,T, the following two possible scenarios for portfolioΠA are
identified:

• S< K: If the stock price is less than the strike price, the put option should be
exercised. One obtains a payoff with a maximum value ofK and the portfolio
can have a maximum value ofK.

• S> K: If the stock price is more than the strike price, the put option will not
be exercised. The portfolio can have a maximum value ofS, the value of the
underlying stock also held in the portfolio.
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Taking both of the above-mentioned scenarios into account,portfolio ΠA has a
potential value ofmax[K,S].

The value of portfolioΠB at the exercise date will beK, the growth of the the
initial invested amount at interest rate,r. Thus, portfolioΠB only has a potential
value ofmax[K].

Portfolio ΠA is therefore more valuable than portfolioΠB and this can be ex-
pressed as:

P+S≥ Ke−rt . (3.4.4)

Since a put option can never have a negative value, 3.4.4 can be re-written as
(Oliver 2004, 14)(Higham 2009, 14):

PAm≥max[Ke−rt −S,0]. (3.4.5)

In the case of the early exercise facility of the American option, one immediately
receives the cash amountK, rather than having to wait until timeT to receiveK
(which has a present value ofKe−rt ). Therefore, one can re-write 3.4.5 to obtain
the first constraint. This is known as the lower boundary of the American put
option:

PAm≥max[K−S,0]. (3.4.6)

(ii)
∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm≤ 0.

This inequality has already been established in section 3.3.

(iii) PAm(S, t) must be a continuous function ofS.

Although the stochastic variable,S, is not a smooth function of time,PAm(S, t)
can be a continuous function ofS (Higham 2009, 73). This assumption is used
when deriving the Black-Scholes equation and follows from the arbitrage princi-
ple. If there was a discontinuity in the option value as a function of Sand if this
discontinuity occurred for longer than an infinite decimal period of time, then the
portfolio of options could make a risk-free profit, with probability one, if the un-
derlying asset price reached the value at which the discontinuity occurred. How-
ever, discontinuous option prices do occur in some instances and are known as
jumps (Wilmott et al. 2000, 57).
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(iv)
∂PAm

∂S
must be continuous.

Examining the payoff function of the put option,Λ(S(t)) = max[K −S,0], one
finds that its slope (∆) is−1. This can be seen in Fig. 3.4.3.

Payoff

K Stock price

K

Figure 3.4.3: American put option payoff

As mentioned earlier, the American put option has an early exercise boundary at
Sf (t) and the option should be exercised whenS< Sf (t) (Wilmott et al. 2000, 57).
The slope (∆) of the option, at this critical asset price,Sf (t), is now investigated.
In Option Pricing: Mathematical models and computation(Wilmott et al. 2000,
56-58), the authors suggest that∆ at Sf (t) can have three possible values:

•
∂PAm

∂Sf (t)
<−1.

•
∂PAm

∂Sf (t)
>−1.

•
∂PAm

∂Sf (t)
=−1.
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The following section explores each of these scenarios according to (Wilmott et al.
2000, 56-58).

• Keeping in mind that the∆ value of the option represents the relationship
or ratio between the option value and the underlying asset value, begin by

examining the first potential value,
∂PAm

∂Sf (t)
<−1.

K Stock priceSf (t)

Put option value

K

Figure 3.4.4:
dPAm

dSf (t)
<−1

ChooseSf (t) < K and
∂PAm

∂Sf (t)
< −1. If S is increased, the value of the

put option will dip below the put payoff value,Λ = max[K−S,0] (since the
slope is more negative than -1). Therefore,PAm(S, t) < max[K−S,0] as in
Fig. 3.4.4. The lower boundary of an American put option discussed on page

36, PAm≥max[K−S,0], is now violated and subsequently
∂P

∂Sf (t)
< −1 is

ruled out.
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• The next task is to rule out
∂PAm

∂Sf (t)
> −1. As before, chooseSf (t)< K and

Sslightly larger thanSf (t). TheSf (t) value is now reduced along the lower
boundary of the American put option, thereby increasing theoption payoff
and consequently the option valuePAm(S, t) (Rodolfo 2007, 44). This is seen
in the American put option payoff formula,Λ = max[K−S,0]. Whilst de-

creasingSf (t), one finds that
∂PAm

∂S
also decreases, as the slope becomes

more steep (Rodolfo 2007, 44).

By decreasingSf (t) sufficiently, one arrives at an underlying asset value

where the inequality,
∂PAm

∂Sf (t)
> −1, no longer holds. The option is there-

fore miss-valued (Rodolfo 2007, 44). This is seen in Fig. 3.4.5. Therefore,
∂P

∂Sf (t)
>−1 is also ruled out.

K Stock priceSf (t)

Put option value

K

Figure 3.4.5:
dPAm

dSf (t)
>−1

• At this critical asset value,Sf (t), neither of the two inequalities hold and one

is able to conclude that
∂PAm

∂Sf (t)
=−1, as in Fig. 3.4.6.

Constraints three and four, requiring thatPAm(S, t) must be a continuous function of

S and that
∂PAm

∂S
must be continuous, are collectively known as thesmooth-pasting
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K Stock priceSf (t)

Put option value

K

Figure 3.4.6:
dPAm

dSf (t)
=−1

condition. It indicates that the option value function,PAm(S, t), is tangential to it’s
payoff function,Λ = max[K−S,0], in the pointSf (t) (Wilmott 2009, 238).
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3.4. THE FREE BOUNDARY PROBLEM

3.4.2 The American put problem as a free boundary value problem

The following is a summary of the free boundary value problemof the American put
option (Oliver 2004, 17) (Wilmott et al. 2000, 108-109) (Higham 2009, 177):

When early exercise is optimal:

S< Sf (t),

PAm(S, t) = max[K−S,0],

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm≤ 0.

(3.4.7)

When early exercise is not optimal:

S> Sf (t),

PAm(S, t)> max[K−S,0],

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm= 0.

(3.4.8)

Boundary conditions:
lim
S→∞

PAm(S, t) = 0, (3.4.9)

∂PAm

∂Sf (t)
=−1, (3.4.10)

PAm(Sf (t), t) = max[K−Sf (t),0]. (3.4.11)

Final condition:
PAm(S,T)> max[K−S,0]. (3.4.12)

It is important to note that although
∂PAm

∂S
is continuous, as the pointSf (t) is crossed,

∂ 2PAm

∂S2 and
∂PAm

∂ t
are not. This lack of continuity along the early exercise boundary

affects the accuracy of numerical approximations (Seydel 2009, 165).

As mentioned earlier, the ordinary heat equation can uniquely be solved by stipulating
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3.5. LINEAR COMPLIMENTARY PROBLEM

two boundary values and a time condition. For the American pricing problem, because
the optimal exercise boundary is unknown beforehand, one has to include an additional
boundary condition, as can be seen in the above section. The next task is to attempt the
re-formulation of the pricing problem and reduce it to afixed boundary problem that
does not contain the free boundary explicitly and from whichthe free boundary can be
obtained afterwards (Wilmott et al. 2000, 316).

There are many different transformations available to do exactly this, but this disser-
tation will focus on only one such method, the formulation ofa linear complimentary
problem. An alternative method, variational inequalities, is discussed in numerous lit-
erary sources, such as the book,Option pricing: Mathematical models and computation
(Wilmott et al. 2000, 316). This formulation uses the methodof finite elements to solve
the pricing problem.

In section 3.5, the pricing problem is formulated as the linear complimentary prob-
lem, but first, the topic of the free boundary and the criticalasset priceSf (t) is further
addressed by a closer inspection of the free boundary.

3.4.3 Asymptotic behaviour of the critical exercise price near ex-
piry

The behaviour of the early exercise boundary in the vicinityof the expiry time,T, is
important when pricing American options (Rodolfo 2007, 50). Although the precise
details of this behaviour falls outside the scope of this dissertation, it is important to
note that the assumed value ofSf (T) = K, is incorrect. For a better understanding
of the correct value and a detailed description of the behaviour of the early exercise
boundary near and at the expiry time, the reader can refer to the following resources:
A Comparative Study of American Option Evaluation and Computation by K. Rodolfo
(Rodolfo 2007, 45-51),The Mathematics of Financial Derivatives(Wilmott et al. 1996,
121-129) andMathematical models of Financial Derivatives(Kwok 2008, 257-262).

3.5 Linear complimentary problem

In this section the American option pricing problem is reformulated as alinear compli-
mentary problem (LCP). This is done in an attempt to state the option pricing problem
without explicit dependence on the unknown free boundary(Wilmott et al. 2000,
123). Because the free boundary (a boundary required beforehand to uniquely solve the
pricing problem) is initially unknown and because the problem can seldom be solved us-
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3.5. LINEAR COMPLIMENTARY PROBLEM

ing an explicit method, numerical techniques are used (Wilmott et al. 2000, 122). One
therefore proceeds by numerically finding a solution to the pricing problem, without
having to solve the free boundary beforehand. The location of the boundary can subse-
quently be obtained once the linear complimentary problem has been solved (Wilmott
et al. 2000, 123).

In a linear complimentary problem, no objective function isoptimized (Murty 1988, 1).
Let M be a known square matrix of ordern andg is a known column vector inRn. Un-
known column vectors,w andz are both inRn. The problem is to findw= (w1, . . . ,wn)

T

andz= (z1, . . . ,zn)
T such that the following equations are satisfied (Murty 1988,1):

w−Mz = q,
w≥ 0,
z≥ 0,

wizi = 0 i = 1, . . . ,n.

(3.5.1)

In the section to follow, the obstacle problem, mentioned earlier is discussed as a linear
complimentary problem. This simplistic mathematical model is included to aid the
reader’s understanding of the more complicated American pricing model to follow later
on in this chapter.

3.5.1 The obstacle problem as a linear complimentary problem

Consider Fig. 3.4.2 on page 34. Let a functiong(x) be given, wherex ∈ R, g ∈ C2

andg′′(x) < 0 (Oliver 2004, 18). Functiong(x) represents the height of the obstacle
(Wilmott et al. 2000, 123). Letu(x) be a function that represents a string stretched
over g(x), whereu∈C1[x0,x1] andu(x0) = u(x1) = 0 (Oliver 2004, 18). On the inter-
val [a,b], u(x) andg(x) coincide, thus,u(x) = g(x). With the string and the obstacle
in contact, this implies that the string is bent and therefore u′′(x) < 0 holds. At all the
other points, where the string is not in contact with the obstacle,u(x) > g(x) holds and
the string is straight, implying thatu′′(x) = 0 (Oliver 2004, 18).Initially, a and b are
unknown.

The obstacle problem as a free boundary value problemas stipulated in (Wilmott
et al. 2000, 124) is defined as:
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3.5. LINEAR COMPLIMENTARY PROBLEM

x= x0 : u(x0) = 0,
x0 < x< a : u(x)> g(x) andu′′(x) = 0,
x= a : u(a) = g(a) andu′(a) = g′(a),
a< x< b : u(x) = g(x) andu′′(x) = g′′(x),
x= b : u(b) = g(b) andu′(b) = g′(b),
b< x< x1 : u(x)> g(x) andu′′(x) = 0,
x= x1 : u(x1) = 0.

(3.5.2)

This free boundary value problem can also be formulated as alinear complimentary
problem (Oliver 2004, 19) (Wilmott et al. 2000, 124) (Seydel 2009, 166):

Find u(x) such that:

u′′(u−g) = 0,
−u′′(x)≥ 0,

u(x)−g(x)≥ 0,
(3.5.3)

subject to the constraints:u(x0) = u(x1) = 0 andu∈C1[x0,x1].

3.5.2 Transforming the Black-Scholes PDE to the heat equation

Before formally presenting the American pricing problem asa linear complimentary
problem, theBlack-Scholes partial differential equation in 3.2.32 is transformed into
the one-dimensional parabolic heat equation. Start by rewriting equation 3.2.32 to suit
American put options:

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm= 0, (3.5.4)

on the domain (Ugur 2008, 116),

DPAm = {(S, t) : S> 0,0≤ t ≤ T}. (3.5.5)

3.5.4 is to be transformed into theone-dimensional parabolic heat equationof the
form (Oliver 2004, 19):

∂u
∂τ

=
∂ 2u
∂x2 , (3.5.6)

for x andτ on the domain (Ugur 2008, 116),
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Du = {(x,τ) :−∞ < x< ∞,0≤ τ ≤ σ2

2
T}. (3.5.7)

The following derivation follows the transformation to theheat equation as given in
(Ugur 2008, 117-118) and (Wilmott et al. 2000, 98-99, 127). The transformation of
3.5.4 is achieved by using various substitutions, the first of which is to re-define the
independent variablesSandt as (Wilmott et al. 2000, 127):

S= Kex, t = T− τ
1
2σ2

. (3.5.8)

Here timet = T corresponds toτ = 0 and therefore the final condition stipulated in
3.4.12 on page 41, now becomes an initial condition for 3.5.6(Oliver 2004, 20). Next
the dependant variable,f (x,τ), is defined as (Ugur 2008, 117):

f (x,τ) =
1
K

PAm(S, t) =
1
K

PAm

(

Kex,T− τ
1
2σ2

)

. (3.5.9)

The change of the independent variables ensures that the domain of the new dependent
variable f , is Du, as stipulated in 3.5.7 (Ugur 2008, 117).

Using the chain rule for several variables, the following derivatives are obtained (Ugur
2008, 117):

∂PAm

∂ t
= K

(

∂ f
∂τ

∂τ
∂ t

)

=−σ2

2
K

∂ f
∂τ

, (3.5.10)

∂PAm

∂S
= K

(

∂ f
∂x

∂x
∂S

)

=
K
S

∂ f
∂x

, (3.5.11)

∂ 2PAm

∂S2 =
∂

∂S

(

∂PAm

∂S

)

=
K
S2

(

∂ 2 f
∂x2 −

∂ f
∂x

)

. (3.5.12)

Substituting equations 3.5.10, 3.5.11 and 3.5.12 into equation 3.5.4, one obtains:

∂ f
∂τ

=
∂ 2 f
∂x2 +

(

2r
σ2 −1

)

∂ f
∂x
− 2r

σ2 f . (3.5.13)

A new constant,κ , is also defined (Wilmott et al. 2000, 127) (Ugur 2008, 117):
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κ =
2r
σ2 , (3.5.14)

and 3.5.13 can be re-written as (Ugur 2008, 117):

∂ f
∂τ

=
∂ 2 f
∂x2 +(κ−1)

∂ f
∂x
−κ f . (3.5.15)

Now, 3.5.15 only has one constant,κ , instead of four,K,T,σ2 and r (Wilmott et al.
2000, 98). The next step is to consider a functionu(x,τ), defined by (Wilmott et al.
2000, 98):

f (x,τ) = eαx+βτu(x,τ), (3.5.16)

whereα andβ are unknown constants.

Applying the chain rule to the functionf (x,τ), one obtains the following derivatives:

∂ f
∂τ

= eαx+βτ
(

βu+
∂u
∂τ

)

, (3.5.17)

∂ f
∂x

= eαx+βτ
(

αu+
∂u
∂x

)

, (3.5.18)

∂ 2 f
∂x2 = eαx+βτ

(

α2u+2α
∂u
∂x

+
∂ 2u
∂x2

)

. (3.5.19)

Substituting equations 3.5.17, 3.5.18 and 3.5.19 into equation 3.5.15, the following
equation is obtained (Wilmott et al. 2000, 98):

βu+
∂u
∂τ

= α2u+2α
∂u
∂x

+
∂ 2u
∂x2 +(κ−1)

(

αu+
∂u
∂x

)

−κu. (3.5.20)

Rearranging 3.5.20, one finds:

∂u
∂τ

=
∂ 2u
∂x2 +

∂u
∂x

(2α +κ−1)+u(−β +α2+ακ−α−κ) (3.5.21)

To eliminate termsu and
∂u
∂x

from 3.5.21, thereby obtaining the heat equation, let:
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2α +κ−1= 0, (3.5.22)

and

−β +α2+ακ−α−κ = 0. (3.5.23)

Solving these equations simultaneously, one finds that (Wilmott et al. 2000, 98):

α =−1
2
(κ−1), (3.5.24)

and

β =−1
4
(κ +1)2. (3.5.25)

Substituting these values into 3.5.16, one obtains (Wilmott et al. 2000, 98):

f (x,τ) = e−
1
2(κ−1)x− 1

4(κ+1)2τu(x,τ), (3.5.26)

and now for the same values ofα andβ , 3.5.21 reduces to the heat equation:

∂u
∂τ

=
∂ 2u
∂x2 , (x,τ) ∈Du. (3.5.27)

Considering the Black-Scholes inequality suited to American put options as defined on
page 32:

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm≤ 0, (3.5.28)

the following inequality to the heat equation is obtained tosuit American put options
(Oliver 2004, 20):

∂u
∂τ
≥ ∂ 2u

∂x2 . (3.5.29)
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3.5. LINEAR COMPLIMENTARY PROBLEM

3.5.3 The American put problem as a linear complimentary prob-
lem

Keeping the lower boundary of an American put option in mind,one knows thatPAm≥
max[K−S,0]. Using the definition of the functionf (x,τ) in 3.5.9 on page 45, the lower
boundary off (x,τ) is now defined as (Wilmott et al. 2000, 98):

PAm(S, t) = K f (x,τ)≥ K(max[1−ex,0]). (3.5.30)

Therefore,

f (x,τ)≥max[1−ex,0]. (3.5.31)

And because the functionf (x,τ) is defined in terms of functionu(x,τ) in equation
3.5.26, one can re-write 3.5.26 as (Oliver 2004, 21):

u(x,τ)≥ e
1
2(κ−1)x+ 1

4(κ+1)2τ f (x,τ). (3.5.32)

Using the definition off in 3.5.31,u has the final form (Oliver 2004, 21):

u(x,τ)≥ e
1
2(κ−1)x+ 1

4(κ+1)2τmax[1−ex,0]. (3.5.33)

A new function,g(x,τ), is also defined. This replaces the original payoff function,
Λ = max[K−S,0] (Oliver 2004, 21) (Wilmott et al. 1996, 119):

g(x,τ) = e
1
2(κ−1)x+ 1

4(κ+1)2τmax[1−ex,0]. (3.5.34)

This can be simplified to (Wilmott et al. 2000, 127):

g(x,τ) = e
1
4(κ+1)2τmax[e

1
2(κ−1)x− 1

2(κ+1)x,0]. (3.5.35)

As mentioned earlier, theinitial condition for the heat equation,τ = 0, equals the final
conditiont = T as stipulated in equation 3.4.12 on page 41. Therefore, one finds that
(Wilmott et al. 2000, 127):

u(x,0) = g(x,0) = max[e
1
2(κ−1)x− 1

2(κ+1)x,0], (3.5.36)

and for all other values ofτ (Wilmott et al. 2000, 127):
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u(x,τ)≥ g(x,τ). (3.5.37)

Boundary conditionscan also be defined for large (x→∞) and small (x→−∞) values
(Wilmott et al. 2000, 128):

u(∞,τ) = g(∞,τ) = 0, (3.5.38)

and

u(−∞,τ) = g(−∞,τ). (3.5.39)

Consider how equations 3.4.7 and 3.4.8 on page 41 resemble equation 3.5.2 on page
44. Therefore, the American pricing problem can also be formulated as a linear compli-
mentary problem, where the free boundary,Sf (t), is not explicitly mentioned, but will
become apparent once the linear complimentary problem has been solved (Oliver 2004,
19) (Wilmott et al. 2000, 316).

All the equations needed to formally define the linear complimentary problem have now
been mentioned and thereforethe linear complimentary problem for the American
put option pricing problem can be written as (Oliver 2004, 21):
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Find u(x,τ) such that:
(

∂u
∂τ
− ∂ 2u

∂x2

)

(u(x,τ)−g(x,τ)) = 0,

(

∂u
∂τ
− ∂ 2u

∂x2

)

≥ 0,

u(x,τ)−g(x,τ)≥ 0,

(3.5.40)

where:

g(x,τ) = e
1
4(κ+1)2τmax[e

1
2(κ−1)x− 1

2(κ+1)x,0], (3.5.41)

subject to theinitial condition :

u(x,0) = g(x,0), −∞ < x< ∞, (3.5.42)

andboundary conditions atx=±∞:

u(x,τ) = g(x,τ), 0≤ τ ≤ 1
2

σ2T, (3.5.43)

and the constraints thatu and
∂u
∂x

are continuous (Wilmott et al. 2000, 129).

This can now be compared to the linear complimentary problemof the obstacle problem
in equation 3.5.3 on page 44. Note that the two different scenarios in equation 3.5.40
correspond to the different option exercise scenarios. When it is optimal to exercise the
option,u= g, and when it is better to hold the option,u> g (Wilmott et al. 2000, 129). It
is also important to note that there is no explicit mention ofthe unknown free-boundary
(Wilmott et al. 2000, 131). It can be shown that linear complimentary formulation is
equivalent to the free boundary problem stated earlier. However, the technique of doing
so relies on functional analysis and falls outside the scopeof this dissertation (Wilmott
et al. 1996, 120).

This concludes the formal definition of the American option pricing problem. First
the Black-Scholes equationwas derived and then adapted to suit the American put by
changing it tothe Black-Scholes inequality. The next step was to define the American
pricing problem as afree boundary problem. Then the Black-Scholes inequality was
transformed to theone dimensional heat equation. Finally the pricing problem was
stipulated as alinear complimentary problem.

The next chapter addresses the finite difference numerical method, which is the focus of
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this dissertation, in detail. An understanding of the finitedifference method is essential
before one attempts the complex task of solving the Americanpricing problem using
this finite difference technique.
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Chapter 4

Finite Difference Methods

4.1 Introduction

The previous two chapters were tasked with formally definingthe American put op-
tion pricing problem. Since no general analytical formulaeare available to solve this
problem, there are a number of finite difference methods thatcan be employed to do
just that. The second order accurate Crank-Nicolson finite difference method will be
used in this dissertation. The goal is to find a price,PAm of an American put option
containing an underlying asset with price,S. As will be seen in the following sections,
because of the discretization process, one obtains a surface of prices. This surface con-
tains all the option values,PAm, on the half stripS> 0 and 0≤ t ≤ T (Seydel 2009, 141).

After considering the transformation of the Black-Scholesequation to the heat equa-

tion,
∂u
∂τ

=
∂ 2u
∂x2 , one finds that the original half strip is now transformed to become the

strip−∞ < x<∞ and 0≤ τ ≤ 1
2σ2T (Seydel 2009, 143). Because discretization is done

on a finite interval, the infinite interval,−∞ < x < ∞, needs to be replaced by a finite
intervalxmin≤ x≤ xmax, wherexmin < 0 andxmax> 0. Using the original transforma-
tion on page 45, one can now defineSmin=Kexmin andSmax=Kexmax (Seydel 2009, 146).

The finite difference method is used to solve the heat equation defined in the lin-
ear complimentary problem, given by equation 3.5.40on page 50. This solution is
then converted back to variablesSandt using transformations given in 3.5.8 on page 45.

In the following section, some foundational concepts are covered. This will aid the
understanding of the discretization process of the finite difference method. Figures will
also be given to further explain the finite difference grid and its notation. In sections
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4.3, 4.4 and 4.5, the three variations of the finite difference method are discussed in
great detail. These are the Explicit, the Implicit and the Crank-Nicolson finite differ-
ence methods. The more generalθ - finite difference notation is also introduced. Later
in the chapter, the different methods available to solve tridiagonal systems are covered
and finally the American option pricing problem is solved by introducing the reader to
a comprehensive algorithm that systematically incorporates all the different numerical
methods one needs to implement. The author is not aware of of such a comprehensive
algorithm in the literature.

4.2 Foundations

The first step is to discretize both thex andτ axes. Thus, one subdivides these axes
into equally spaced intervals of lengthδx andδτ respectively (Seydel 2009, 146). This
process can be summarised as follows:
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

• τ = 0, . . . , 1
2σ2T,

τm= mδτ, m= 0, . . . ,M,

where M, the number of intervals on theτ-axis, can be chosen beforehand.
The upper boundary ofτ stems from the substitution used in 3.5.8 on page 45.
The subinterval lengthδτ, is defined as:

δτ =
(1

2σ2T−0)

M
.

• x= xmin, . . . ,xmax,

xn = xmin+nδx, n= 0, . . . ,N,

where N, the amount of intervals on thex-axis, can be chosen beforehand
and where the subinterval lengthδx, is defined as:

δx=
(xmax−xmin)

N
.

• The following notation will be used to denote the exact solution of the heat equa-
tion at a specific node(n,m), um

n = u(nδx,mδτ) (Wilmott et al. 2000, 274).

• The notation,νm
n , denotes an approximate value to the exact solution,um

n . There-
fore,νm

n ≈ um
n (Wilmott et al. 2000, 326).

Fig. 4.2.1 is a representation of thex−τ discretisized grid. The blue dots represent val-
ues known at the initial time,τ = 0. The red dots represent values known at boundaries,
xmax andxmin. Values at all the other nodes are unknown and need to be computed.

4.3 Explicit finite difference method

Start by considering the heat equation,
∂u
∂τ

=
∂ 2u
∂x2 . Using aforward difference Taylor

approximation to approximate
∂u
∂τ

and the symmetric central difference Taylor approx-

imation to approximate
∂ 2u
∂x2 , one finds (Wilmott et al. 2000, 270):
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x-axis

t-axis

xmax

xmin

0 1
2σ2T

xmin+δx

δ t

(0,0)

2δ t

(1,0) (M,0)(M−1,0)

(0,1)

(0,N−1)

(0,N)

xmin+2δx

(1,1) (2,1)

(1,2)

(M−1,1) (M,1)

(M−1,N) (M,N)

m= 0 m= 1 m= 2 m= M−1 m= M

n= 0

n= 1

n= 2

n= N−1

n= N

Figure 4.2.1:x− τ grid after discretization
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∂u
∂τ

=
um+1

n −um
n

δτ
+O(δτ), (4.3.1)

∂ 2u
∂x2 =

um
n+1−2um

n +um
n−1

(δx)2 +O((δx)2). (4.3.2)

Therefore, the parabolic heat equation approximated by Taylor expansion is (Wilmott
et al. 2000, 278)(Kincaid & Cheney 1991, 574):

um+1
n −um

n

δτ
+O(δτ) =

um
n+1−2um

n +um
n−1

(δx)2 +O((δx)2). (4.3.3)

Re-arranging 4.3.3, by separating the terms containingum+1 andum and then imple-
menting the approximating notation,νm

n , one obtains the following equation (Wilmott
et al. 2000, 278):

νm+1
n = νm

n +α(νm
n−1−2νm

n +νm
n+1), 0< n< N, 0< m≤M, (4.3.4)

where

α =
δτ

(δx)2 . (4.3.5)

This can be re-written as (Seydel 2009, 147):

νm+1
n = ανm

n−1+(1−2α)νm
n +ανm

n+1, 0< n< N, 0< m≤M, (4.3.6)

subject to theinitial condition (Wilmott et al. 2000, 280) (Seydel 2009, 147):

ν0
n = g(xn,0), 0≤ n≤ N, (4.3.7)

whereg(x,τ) is defined in equation 3.5.41 on page 50.

Theboundary conditionsare (Wilmott et al. 2000, 280):

νm
0 = g(xmin,τm), 0< m≤M, (4.3.8)

and

νm
N = g(xmax,τm), 0< m≤M. (4.3.9)
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When written in matrix notation, one finds (Kincaid & Cheney 1991, 576)(Seydel 2009,
148):

νm+1 = Aνm, m= 0, . . . ,M, (4.3.10)

where matrixA is an(N−1)× (N−1) tridiagonal matrix (Seydel 2009, 148) (Wilmott
et al. 1996, 146):

A =















(1−2α) α 0 · · · 0
α (1−2α) α · · · 0

0 α (1−2α)
. ..

...
...

...
...

. .. α
0 · · · 0 α (1−2α)















,

and vectorνm is of length(N−1) and of the form (Wilmott et al. 1996, 146)(Seydel
2009, 147):

νm =

















νm
1
...
...
...

νm
N−1

















.

It is important to note that the explicit method is only stable for 0<α ≤ 1
2 (Seydel 2009,

151). Therefore, special attention has to be paid when choosing interval lengthsδx and
δτ. Due to this restriction, a more flexible method that remainsstable for any values of
δx andδτ is preferred.

Usinga backward difference Taylor approximation to approximate
∂u
∂τ

and the sym-

metric central difference Taylor approximation to approximate
∂ 2u
∂x2 , one finds (Wilmott

et al. 2000, 294)(Seydel 2009, 151):

∂u
∂τ

=
um

n −um−1
n

δτ
+O(δτ), (4.3.11)

∂ 2u
∂x2 =

um
n+1−2um

n +um
n−1

(δx)2 +O((δx)2). (4.3.12)
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4.3. EXPLICIT FINITE DIFFERENCE METHOD

Using these Taylor expansions, one now finds an approximation for the parabolic heat
equation to be (Wilmott et al. 2000, 294):

um
n −um−1

n

δτ
+O(δτ) =

um
n+1−2um

n +um
n−1

(δx)2 +O((δx)2). (4.3.13)

Equation 4.3.13 is re-arranged by separating the terms containingum andum−1. Using
the approximating notation,νm

n , one now obtains the following equation (Wilmott et al.
2000, 295) (Seydel 2009, 151):

−ανm
n−1+(2α +1)νm

n −ανm
n+1 = νm−1

n , 0< n< N, 0< m≤M, (4.3.14)

whereα is defined in 4.3.5 on page 56. Equation 4.3.14 is subject to the initial condi-
tion (Wilmott et al. 2000, 295) (Seydel 2009, 147):

ν0
n = g(xn,0), 0≤ n≤ N, (4.3.15)

whereg(x,τ) is defined in equation 3.5.41 and also subject toboundary conditions
(Wilmott et al. 2000, 295):

νm
−N = g(xmin,τm), 0< m≤M, (4.3.16)

and

νm
N = g(xmax,τm), 0< m≤M. (4.3.17)

When written in matrix notation, one finds (Kincaid & Cheney 1991, 581)(Seydel 2009,
152):

νm = A−1νm−1, m= 1, . . . ,M, (4.3.18)

where matrixA is a (N−1)× (N−1) tridiagonal matrix (Seydel 2009, 152)(Wilmott
et al. 1996, 146):

A =















(2α +1) −α 0 · · · 0
−α (2α +1) −α · · · 0

0 −α (2α +1)
. ..

...
...

...
...

. .. −α
0 · · · 0 −α (2α +1)















,
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and vectorνm is of length(N−1) and has the form (Wilmott et al. 1996, 146)(Seydel
2009, 147):

νm =

















νm
1
...
...
...

νm
N−1

















.

The implicit finite difference method is stable for all values of α (Seydel 2009, 152).

4.4 Crank-Nicolson implicit finite difference method

In comparison to both the explicit and implicit methods, where the discretization of
∂u
∂τ

was of orderO(δτ), the Crank-Nicolson finite difference method uses a discretization
of orderO((δτ)2). This method is also stable for all values ofα (Seydel 2009, 153).

TheCrank-Nicolson implicit method is an average of both the implicit and explicit
methods (Wilmott et al. 2000, 306). Using aforward difference approximation at
node (m) on theτ-axisand the approximating notation,νm

n (Seydel 2009, 153):

νm+1
n −νm

n

δτ
=

νm
n+1−2νm

n +νm
n−1

(δx)2 , (4.4.1)

and abackward difference approximation at node (m+1) on the τ-axis and the
approximating notation,νm+1

n (Seydel 2009, 153):

νm+1
n −νm

n

δτ
=

νm+1
n+1 −2νm+1

n +νm+1
n−1

(δx)2 , (4.4.2)

the addition of these two equations yields (Seydel 2009, 153):

νm+1
n −νm

n

δτ
=

1
2(δx)2(ν

m
n+1−2νm

n +νm
n−1+νm+1

n+1 −2νm+1
n +νm+1

n−1 ),

0< n< N, 0< m≤M.

(4.4.3)
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Re-arranging 4.4.3 by separating terms containingνm+1 andνm, one obtains the fol-
lowing (Seydel 2009, 154):

−α
2

νm+1
n−1 +(1+α)νm+1

n − α
2

νm+1
n+1 =

α
2

νm
n−1+(1−α)νm

n +
α
2

νm
n+1,

0< n< N, 0< m≤M.

(4.4.4)

Again, 4.4.4 is subject to theinitial condition (Wilmott et al. 2000, 308) (Seydel 2009,
154):

ν0
n = g(xn,0), 0≤ n≤ N, (4.4.5)

whereg(x,τ) is defined in equation 3.5.41 on page 50.

It is also subject toboundary conditions (Wilmott et al. 2000, 295):

νm
−N = g(xmin,τm), 0< m≤M, (4.4.6)

and

νm
N = g(xmax,τm) 0< m≤M. (4.4.7)

Writing 4.4.4 in matrix notation, one finds (Seydel 2009, 155):

Aνm+1 = Bνm, m= 0, . . . ,M, (4.4.8)

where bothA andB are(N−1)× (N−1) tridiagonal matrices (Seydel 2009, 154):

A =















(1+α) −α
2 0 · · · 0

−α
2 (1+α) −α

2 · · · 0

0 −α
2 (1+α)

. . . 0
...

...
...

. . . −α
2

0 · · · 0 −α
2 (1+α)















,
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B =















(1−α) α
2 0 · · · 0

α
2 (1−α) α

2 · · · 0

0 α
2 (1−α)

. . .
...

...
...

...
. . . α

2
0 · · · 0 α

2 (1−α)















,

and vectorνm is of length(N−1) and has the form (Wilmott et al. 1996, 309)(Seydel
2009, 147):

νm =

















νm
1
...
...
...

νm
N−1

















.

Before addressing the topic of solving a tridiagonal systemof equations, a generic fi-
nite difference notation,θ -notation, is first introduced. Here,θ can be manipulated to
resemble any one of the three above-mentioned methods.

4.5 θ - finite difference notation

This notation generalizes the finite difference method, combining both the explicit and
implicit methods (Kincaid & Cheney 1991, 582). Here,θ can be adjusted to form
either the explicit (θ = 0), implicit (θ = 1) or Crank-Nicolson implicit method (θ = 1

2)
(Kincaid & Cheney 1991, 582). Using the appropriate Taylor expansions, one finds
(Wilmott et al. 2000, 325 - 326):

∂u
∂τ

=
um+1

n −um
n

δτ
+O(δτ), (4.5.1)

∂ 2u
∂x2 = θ

(

um+1
n+1 −2um+1

n +um+1
n−1

(δx)2

)

+(1−θ)
(

um
n+1−2um

n +um
n−1

(δx)2

)

+O((δx)2),

(4.5.2)

where 0≤ θ ≤ 1. The parabolic heat equation approximated by Taylor expansion can
be written as (Wilmott et al. 2000, 325 - 326) (Kincaid & Cheney 1991, 582):
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∂u
∂τ
− ∂ 2u

∂x2 ≈
um+1

n −um
n

δτ
−θ

(

um+1
n+1 −2um+1

n +um+1
n−1

(δx)2

)

−(1−θ)
(

um
n+1−2um

n +um
n−1

(δx)2

)

.

(4.5.3)

Re-arranging 4.5.3 by separating the terms containingum+1 andum and implementing
the approximating notation,νm

n , one obtains the following equation (Wilmott et al. 2000,
313):

νm+1
n −αθ(νm+1

n−1 −2νm+1
n +νm+1

n+1 ) = νm
n +α(1−θ)(νm

n−1−2νm
n +νm

n+1),

0< n< N, 0< m≤M,
(4.5.4)

where as before,α =
δτ

(δx)2 .

4.6 Finite difference method for solving the obstacle prob-
lem

One is required to find a function,u(x), as stipulated in the linear complimentary prob-
lem in equation 3.5.3 on page 44. Start by approximating the second derivative found
in equation 3.5.3 using the appropriate Taylor-expansion (Wilmott et al. 2000, 317):

∂ 2u
∂x2 =

un+1−2un+un−1

(δx)2 +O((δx)2), (4.6.1)

whereun = u(nδx). The following notation is used:

xn = x0+nδx, n= 0, . . . ,N,

where[x0,x1] are the lower and upper boundaries on thex-axis (Refer to Fig. 3.4.2) and
x1 = x0+Nδx. Now one can defineδx as:

δx=
x1−x0

N
.

Keeping in mind thatνn is used as an approximation toun, one can re-write the linear
complimentary problem in 3.5.3 as (Wilmott et al. 2000, 318)(Seydel 2009, 167):
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(νn+1−2νn+νn−1)(νn−gn) = 0,
−νn+1+2νn−νn−1≥ 0,

νn≥ gn,
(4.6.2)

for 0< n< N and subject to the boundary conditionsν0 = νN = 0 (Seydel 2009, 167).

Rewriting 4.6.2 inconstrained matrix notation, one finds (Seydel 2009, 167):

(ν−g)Tr Bν = 0,
Bν ≥ 0,
ν ≥ g.

(4.6.3)

Matrix B is a (N− 1)× (N−1) tridiagonal matrix and vectorsν andg are of length
(N− 1). These matrices can be defined as (Wilmott et al. 2000, 319)(Seydel 2009,
167):

B =















2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2
...

...
...

...
...

. . . −1
0 · · · 0 −1 2















,

ν =

















ν1
...
...
...

νN−1

















,

and

g=

















g1
...
...
...

gN−1

















.

The solution to problem 4.6.3 can be found by solvingBν = 0, subject to the condition
thatν ≥ g (Seydel 2009, 167).
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PROBLEM

4.7 Finite difference method for solving the American
pricing problem

In a similar manner, one can now define the finite difference formulation of the linear

complimentary problem in equation 3.5.40 on page 50. Since
∂u
∂τ
− ∂ 2u

∂x2 was defined

using Taylor approximations in equation 4.5.3 on page 62 andwas simplified in equa-
tion 4.5.4, one finds that the finite difference formulation of the linear complimentary
formulation of the American option pricing problem in equation 3.5.40 on page 50 has
the following form (Wilmott et al. 2000, 326-327) (Seydel 2009, 196-170):

{νm+1
n −θα(νm+1

n−1 −2νm+1
n +νm+1

n+1 )−νm
n

−α(1−θ)(νm
n−1−2νm

n +νm
n+1)}(νm+1

n −gm+1
n ) = 0,

νm+1
n −θα(νm+1

n−1 −2νm+1
n +νm+1

n+1 )≥

νm
n +α(1−θ)(νm

n−1−2νm
n +νm

n+1),

νm
n ≥ gm

n , 0< n< N, 0< m≤M.

(4.7.1)

It is subject to theinitial condition (Seydel 2009, 170):

ν0
n = g(xn,0), 0≤ n≤ N, (4.7.2)

whereg(x,τ) is once again defined in equation 3.5.41 on page 50.

Equation 4.7.1 is also subject to the followingboundary conditions (Wilmott et al.
2000, 327)(Seydel 2009, 170):

νm
0 = g(xmin,τm), 0< m≤M, (4.7.3)

and

νm
N = g(xmax,τm), 0< m≤M. (4.7.4)

One can re-write the finite difference formulation in equation 4.7.1 inconstrained ma-
trix notation (Wilmott et al. 2000, 327-328)(Seydel 2009, 170):
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4.7. FINITE DIFFERENCE METHOD FOR SOLVING THE AMERICAN PRICING
PROBLEM

(Cνm+1−bm)Tr (νm+1−gm+1) = 0,
(Cνm+1−bm)≥ 0,

(νm+1−gm+1)≥ 0, m= 0, . . . ,M.

(4.7.5)

Matrix C is a (N− 1)× (N−1) tridiagonal matrix of the form (Wilmott et al. 2000,
328)(Seydel 2009, 170)(Wilmott et al. 1996, 169):

C =















(1+2αθ) −αθ 0 · · · 0
−αθ (1+2αθ) −αθ · · · 0

0 −αθ (1+2αθ) . . .
...

...
...

...
. . . −αθ

0 · · · 0 −αθ (1+2αθ)















.

Vectorsbm, νm andgm are of length(N−1) and are defined as (Wilmott et al. 2000,
327)(Seydel 2009, 170):

νm =

















νm
1
...
...
...

νm
N−1

















,

gm =

















gm
1
...
...
...

gm
N−1

















,

and

bm =

















bm
1
...
...
...

bm
N−1

















,
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where

bm = νm
n +α(1−θ)(νm

n−1−2νm
n +νm

n+1), 2≤ n≤ N−2. (4.7.6)

Unlike the rest of the terms of vectorbm, the first and the last terms,bm
1 andbm

N−1,
include the boundary conditions atn= 0 andn= N. One therefore finds the following
adaptation to these twobm terms (Wilmott et al. 2000, 328)(Seydel 2009, 170):

bm
1 = νm

1 +α(1−θ)(gm
0 −2νm

1 +νm
2 )+αθgm+1

0 , (4.7.7)

bm
N−1 = νm

N−1+α(1−θ)(gm
N−2νm

N−1+νm
N−2)+αθgm+1

N . (4.7.8)

The American option pricing problem which was defined as a linear complimentary
problem to remove the free boundary, has now been formulatedin constrained matrix
finite difference notation (equation 4.7.5). Before proceeding with the task of finding
the price of an American put option, first consider the different methods that can be used
to solve the tridiagonal system that results from applying any of the above mentioned
finite difference methods.

4.8 Methods available to solve tridiagonal systems

In many cases, the application of the finite difference method yields a large system of
linear equations that can be rewritten in matrix notation asa tridiagonal system of equa-
tions. This is the case with both the obstacle and the American pricing problems.

The next section discusses two different approaches to solving these tridiagonal sys-
tems of equations. The first is adirect elimination method, which analytically solves
the system. The second is the use ofiterative methods (Seydel 2009, 171). For
large systems, direct elimination methods such as LU-decomposition, are inefficient
(Duffy 2006, 257) and in practice, large tridiagonal systems are often solved using iter-
ative processes. (Seydel 2009, 171).

Special attention is paid when solving tridiagonal systemssince large amounts of stor-
age can be saved by not reserving space for all the elements ofthe matrix, but only
storing the non-zero elements as three vectors (Press, Teukolsky, Vetterling & Flannery
2007, 56) (Wilmott et al. 1996, 147).

Start by consideringa general tridiagonal system of equations. Both the direct and
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itterative methods are described using this general notation in the hope that the reader
will gain more insight into these methods. One can then proceed to solve the American
option pricing problem written in constrained matrix notation in 4.7.5 on page 65.

Consider the following general set of linear equations written in matrix notation:

Ax = b. (4.8.1)

One is required to solve vectorx, whereA is a tridiagonal matrix of the form (Brandimarte
2006, 160):

A =



















a1,1 a1,2 0 0 · · · 0
a2,1 a2,2 a2,3 0 · · · 0
0 a3,2 a3,3 a3,4 . . . 0
...

...
... . . . . . .

...
0 · · · 0 an−1,n−2 an−1,n−1 an−1,n

0 · · · 0 0 an,n−1 an,n



















.

4.8.1 Direct elimination methods

TheThomas algorithm, a special case of Gaussian elimination is used to obtain theso-
lution to the vectorx. Assume that the coefficient matrix,A, is symmetricandpositive
definiteand therefore no row pivoting is required (Kincaid & Cheney 1991, 154). Be-
cause of this, problems can arise even when working with non-singular matrices when
one arrives at a zero pivot. For this reason an additional requirement is added by stating
that the coefficient matrix,A, has to be diagonally dominant(Press et al. 2007, 57).

Begin by re-writing matrixA as:

A =



















b1 c1 0 0 · · · 0
a2 b2 c2 0 · · · 0
0 a3 b3 c3 . . . 0
...

...
... . .. . . .

...
0 · · · 0 an−1 bn−1 cn−1

0 · · · 0 0 an bn



















.

Therefore, the tridiagonal system,Ax = b, can now be written as follows (Dukkipati
2010, 55-57):
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













b1 c1 0 0 . . . 0
a2 b2 c2 0 . . . 0

0 a3 b3 c3
. . . 0

...
...

...
...

. . .
...

0 0 . . . 0 an bn





























x1
x2

x3
...

xn















=















d1
d2

d3
...

dn















.

By implementing the following steps, one can solvex.

Step 1:

y1 = b1,

yi = bi−
aici−1

yi−1
, i = 2, . . . ,n.

Step 2:

z1 =
d1

b1
,

zi =
di−aizi−1

yi
, i = 2, . . . ,n.

Step 3:

xn = zn,

xi = zi−
cixi+1

yi
, i = n−1, . . . ,1.

4.8.2 Iterative numerical methods

As mentioned earlier, iterative methods are particularly useful for large systems of equa-
tions. There are three main reasons for this:

• Storing all the zero values of a large tridiagonal matrix, as is the case when using
certain direct methods, may lead tounnecessary usage of computer memory.
Iterative methods allows one to store only the required information (Brandimarte
2006, 161).
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• Direct methods may lead to adelay in computational time, due to all the addi-
tional data that has to be handled (Kincaid & Cheney 1991, 181).

• Iterative methods are usually stable and may dampen errorsas the iterative process
continues (Kincaid & Cheney 1991, 182).

For these reasons, financial literature often uses an iterative method, which gener-
ates a sequence of solution vectors that theoretically converges to the desired solution
(Brandimarte 2006, 161). A discussion of the convergence ofthese iterative methods
will follow later, however, for now it is important to note that as was the case with the
Thomas algorithm, these iterative methods will only converge if the matrixA is diago-
nally dominant.

The following iterative methods are used to solve a tridiagonal system of equations,
with a coefficient matrix of form on page 67:
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• Jacobi. This is the simplest of the three methods. The following is an algorithm
for the Jacobi method (Brandimarte 2006, 163-164):

1. Choose an initial valuexk , wherek= 0.

2. Decide on an acceptable error toleranceε.

3. Computexk+1 using:

xk+1
i =

1
aii

(

bi−
n

∑
j=1, j 6=i

ai j x
k
j

)

i = 1, . . . ,n ,aii 6= 0. (4.8.2)

4. Calculate the error to attain whether or not the method hasconverged suffi-
ciently. As an example, the following error can the calculated:

‖xk+1−xk‖< ε‖xk‖. (4.8.3)

If sufficient convergence has been achieved,xk+1 is the solution and the
iterative process is complete and thereby terminated. If not, the iterative
process is repeated by settingxk = xk+1 and computing a newxk+1 using
equation 4.8.2 and then repeating the error test of equation4.8.3. Repeat till
sought after degree of convergence has been obtained.
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• Gauss-Seidel. Gauss-Seidel is an improved variant of the Jacobi method. This
method uses each improvedxk+1

i immediately. The following is an algorithm for
the Gauss-Seidel method (Brandimarte 2006, 168):

1. Choose two initial valuesxk andxk+1, wherek= 0.

2. Decide on an acceptable error toleranceε.

3. Computexk+1 using:

xk+1
i =

1
aii

(

bi−
i−1

∑
j=1

ai j x
k+1
j −

n

∑
j=i+1

ai j x
k
j

)

i = 1, . . . ,n ,aii 6= 0.

(4.8.4)

4. Calculate the error to attain whether or not the method hasconverged suffi-
ciently. As an example, the following error can the calculated:

‖xk+1−xk‖< ε‖xk‖. (4.8.5)

If sufficient convergence has been achieved,xk+1 is the solution and the
iterative process is complete and thus stopped. If not, the iterative process
is repeated by settingxk = xk+1 and computing a newxk+1 using equation
4.8.4 and then repeating the error test of equation 4.8.5. Repeat till sought
after degree of convergence has been obtained.
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• Successive Over Relaxation (SOR). This method aims to accelerate the conver-
gence of the Gauss-Seidel method (Brandimarte 2006, 168) byallowing one to
select an additional parameter,ω. A suitable choice ofω may speed up acceler-
ation and guarantee convergence (Brandimarte 2006, 169). The following is an
algorithm for Successive Over Relaxation method (Brandimarte 2006, 169):

1. Choose two initial valuesxk andxk+1, wherek= 0.

2. Decide on an acceptable error toleranceε.

3. Select an appropriateω.

4. Repeat fori = 0, . . . ,n:
Computeyk+1

i using:

yk+1
i =

1
aii

(

bi−
i−1

∑
j=1

ai j x
k+1
j −

n

∑
j=i+1

ai j x
k
j

)

,aii 6= 0. (4.8.6)

Computexk+1
i using:

xk+1
i = ωyk+1

i +(1−ω)xk
i (4.8.7)

5. Calculate the error to attain whether or not the method hasconverged suffi-
ciently. As an example, the following error can the calculated:

‖xk+1−xk‖< ε‖xk‖. (4.8.8)

If sufficient convergence has been achieved,xk+1 is the solution and the it-
erative process is complete and is stopped. If not, repeat the iterative process
by settingxk = xk+1 and computing a newxk+1 using equations 4.8.6 and
4.8.7 and then repeating the error test of equation 4.8.8. Repeat till sought
after degree of convergence has been obtained.

Convergence of iterative methods

• Jacobi
Theorem 1- If A is diagonally dominant, then the sequence produced by the Ja-
cobi iteration converges to the solution ofAx = b, for any starting vector (Kincaid
& Cheney 1991, 185).

• Gauss-Seidel
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Start by decomposing matrixA, using the splitting matrix,Q and re-write 4.8.1
on page 67 as (Kincaid & Cheney 1991, 183):

Qx = (Q−A)x+b. (4.8.9)

Iteratively this can be written as:

Qxk = (Q−A)xk−1+bk. (4.8.10)

To solvex, one therefore solves (Kincaid & Cheney 1991, 183):

x = (I −Q−1A)x+Q−1b. (4.8.11)

Corollary - The iterative process in 4.8.10 will produce a sequence converging to
the solution ofAx = b, for any starting vector if (Kincaid & Cheney 1991, 189):

ρ(I −Q−1A)< 1, (4.8.12)

whereρ is the spectral radius.

Theorem 2 - If A is diagonally dominant, then the Gauss-Seidel method con-
verges to the solution ofAx = b, for any starting vector (Kincaid & Cheney 1991,
189).

• Successive Over Relaxation (SOR)

Begin by choosingQ asαD−C, whereα is a real parameter,D is a positive
definite Hermitian matrix andC is any matrix that satisfies:

C+C∗ = D−A, (4.8.13)

whereC∗ is the conjugate transpose ofC (Kincaid & Cheney 1991, 192).

Theorem 3 - If A is a positive definite Hermitian,Q is non-singular andα > 1
2,

then the SOR iteration converges for any starting vector (Kincaid & Cheney 1991,
192):

The prerequisites for convergence of these iterative methods can be manipulated by im-
plementing an adapted discretization resulting in irregular grid interval lengths. This
however falls beyond the scope of this dissertation.

This concludes the discussion on the general iterative methods that can be implemented
to solve linear systems of equations. Now one can return to the set of matrices in equa-
tion 4.7.5 on page 65 that must be used to price an American putoption.
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4.9 Projected Successive Over Relaxation method for Amer-
ican puts

Theprojected SOR method(PSOR) is used when solving the constrained matrix prob-
lems in 4.6.3 and 4.7.5 on pages 63 and 65 respectively. This method has one additional
feature, when compared to the classical SOR method discussed in the section above
(Wilmott et al. 2000, 320). It ensures that every element of the vector,νm+1, adheres to
the constraintνm+1

i ≥ gm+1
i (Wilmott et al. 2000, 320).

Also note that the grid-axes are numbered from 0, . . . ,M and 0, . . . ,N for the τ andx
respectively.When programming, one therefore has to keep in mind that indices only
start at 1 and therefore the iterative process has to stop at M+1 in stead of M.

To solve the American put option pricing problem, one is required to solve the following
matrix equation obtained from 4.7.5 on page 65:

Cνm+1 = bm,

subject to the constraint:

νm+1≥ gm+1.

The following is a detailed algorithm of the Projected Successive Over Relaxation
method (PSOR) that is used in the American pricing problem. Sections of this algorithm
can be found inOption Pricing: Mathematical models and computationby P. Wilmott
(Wilmott et al. 2000, 330). No evidence was found in literature of such a comprehensive
algorithm. The algorithm solves the first unknown vectorν1, at time incrementm= 1.
It is important to note that becauseone only has known data at the initial time node,
m= 0 and at the boundaries, n= 0 and n= N, the algorithm has to be repeated for all
unknownνm vectors at time nodesm= 1, . . . ,M.

1. Setm = 0.

2. CalculateKNOWN initial values (m= 0) of the finite difference grid using equa-
tion 4.7.2 on page 64, whereg is defined on page 50 as:

g(x,τ) = e
1
4(κ+1)2τmax[e

1
2(κ−1)x− 1

2(κ+1)x,0]. (4.9.1)

One now has the the following known vectors to one’s disposal:
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νm = ν0 =

















ν0
1
...
...
...

ν0
N−1

















,

and

gm = g0 =

















g0
1
...
...
...

g0
N−1

















.

3. CalculateKNOWN boundary values (n= 0) and (n=N) of grid using equations
4.7.3 and 4.7.4 on page 64. One now has additional known values:

ν0 =

















ν0
0
...
...
...

νM
0

















,

and

νN =

















ν0
N
...
...
...

νM
N

















.

4. Computegm+1, wherem= 0, using 4.9.1:
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gm+1 = g1 =

















g1
1
...
...
...

g1
N−1

















.

5. Choose an initial vector, xold. As in the case of the iterative processes discussed
earlier, the vectorxold will iteratively be used to approximate the unknown vector
ν1. Using the constraint given in equation 4.7.5 on page 65,(νm+1−gm+1)≥ 0,
one selectsxold as:

xold = max[ν0,g1], (4.9.2)

and finds an initialxold:

xold =

















xold
1
...
...
...

xold
N−1

















.

6. Compute bm, using equations 4.7.6, 4.7.7 and 4.7.8 on page 66. One now has a
vector of the form:

bm = b0 =

















b0
1
...
...
...

b0
N−1

















.

7. Choose variable, iter= 1 (this will allow access to the While-loop).

8. Choose variable, error= 0,00001 (for example).

9. Choose relaxation parameter,ω = 1 (for example).
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10. While iter = 1 do:

(Enter into a While-loop that will iteratively solveνm+1 = ν1 and will continue
until the solution has converged sufficiently).

(a) Compute a y value. Notice that the following formulae correspond to the
formulae given at the Successive Over Relaxation (SOR) discussion on page
72. In this case, the entries of the main diagonal of matrixC on page 65,
(1+2αθ), are used.

• For k = 1:N-1 (spans all the unknown grid points at a single time inter-
val)

k = 1:

y=
b0

k+αθ(xold
k+1)

(1+2αθ)
. (4.9.3)

Because the Projected Successive Over Relaxation (PSOR) isan adap-
tation of the Gauss-Seidel method, the proceedingxnew-value is used
to compute the following one, one first needs to computexnew

k = xnew
1 .

This value must satisfy the constraint(νm+1−gm+1)≥ 0 on page 65
and therefore:

xnew
k = max[g1

k+1,x
old
k +ω(y−xold

k )]. (4.9.4)

k = 2: to N-2:

y=
b0

k+αθ(xnew
k−1+xold

k+1)

(1+2αθ)
(4.9.5)

xnew
k = max[g1

k+1,x
old
k +ω(y−xold

k )]. (4.9.6)

k = N-1:

y=
b0

k+αθxnew
k−1

(1+2αθ)
(4.9.7)

xnew
k = max[g1

k+1,x
old
k +ω(y−xold

k )]. (4.9.8)

• end (For)

One now has a vector,xnew:
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xnew =

















xnew
1
...
...
...

xnew
N−1

















.

(b) Test convergence. This will determine whether the While-loop has con-
verged sufficiently or whether the iterative process needs to be repeated.

• If ‖ xold−xnew ‖≤ error
theniter = 0 (this will stop the While-loop)
else
xold = xnew and one re-calculatesxnew by re-entering the For-loop de-
scribed above.

• end (If)

end (While)

After the While-loop, the solution has converged sufficiently to xnew.

11. xnew represents solution at time interval,m= 1. One can now transfer the values
of vectorxnew to the value matrixν.

ν1 = xnew (4.9.9)

12. Repeat While-loop and test for convergence for the othertime increments,m=
2, . . . ,M. The final result is a matrixν, containing all the solutions.

4.10 Algorithm to solve put price under constant volatil-
ity using PSOR

Keeping in mind that when programming, the numbering of nodes will start at 1, as
opposed to the numbering system used thus far,m= 0, . . . ,M.

1. INITIAL PARAMETERS

(a) Given values K, T (per annum), r (per annum),σ (per annum).

(b) Given current value of underlying stock price,Scurrent.
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(c) Choose number of intervals on each axis of the grid:

m= M, number of intervals onτ-axis.

n= N, number of intervals onx-axis.

2. CALCULATING AMERICAN PUT OPTION PRICES

(a) Computeκ using equation 3.5.14 on page 46,

κ =
2r
σ2 . (4.10.1)

(b) Choosexmin and xmax values, where as mentioned earlier,xmin < 0 and
xmax> 0.

(c) Computeδx, the length of an interval on thex-axis:

δx=
xmax−xmin

N
. (4.10.2)

(d) Computeτmax= 0,5σ2T.

(e) Computeδτ, the length of an interval on theτ-axis:

δτ =
τmax

M
. (4.10.3)

(f) Choose numerical parameter,θ . This value dictates whether the Explicit,
Implicit of Crank-Nicolson finite difference method is to beused.

(g) Computeα, using equation 4.3.5 on page 56,

α =
δτ

(δx)2 . (4.10.4)

(h) Test if method chosen is stable:

If θ < 0,5 and if α > 0,5, then method is unstable and eitherθ or num-
ber of intervals need to be altered.

(i) Discretize bothx andτ axes:

x= (xmin : δx : xmax),

τ = (0 : δτ : τmax).
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(j) Define in-line function g using 4.9.1 on page 74.

(k) Compute matrixg. These values are to be used in the PSOR routine. By
doing so one doesn’t have to re-calculate a vectorg repeatedly and one can
only refer to the relevant column needed in the PSOR iteration. One now
has:

g=















g0
0 g1

0 g2
0 · · · gM−1

0 gM
0

g0
1 g1

1 g2
1 · · · gM−1

1 gM
1

g0
2 g1

2 g2
2 · · · gM−1

2 gM
2

...
...

...
. . .

...
...

g0
N g1

N g2
N · · · gM−1

N gM
N















.

(l) Define initial matrixν with zero values.

(m) Complete PSOR algorithm, discussed in section 4.10. This will result in a
matrix ν, containing the solutions for variablesx andτ. One now has to
convert these values to values related to the variablesSandt.

3. TRANSFORM TO S, t and PAm (OPTION PRICE) VALUES

(a) Convert x andτ values on the axes to S and t values using equation 3.5.8 on
page 45,

S= Kex, t = T− τ
1
2σ2

. (4.10.5)

(b) Convert matrixν , containing values which are approximations to values in
matrixu, to a matrixPAm , using equations on pages 45 and 47:

f (x,τ) = e−
1
2(κ−1)x− 1

4(κ+1)2τu(x,τ), (4.10.6)

f (x,τ) =
1
K

PAm(S, t) =
1
K

PAm

(

Kex,T− τ
1
2σ2

)

, (4.10.7)

and therefore,

PAm(S, t) = K f (x,τ) = Ke−
1
2(κ−1)x− 1

4(κ+1)2τu(x,τ). (4.10.8)

Finally, one obtains a matrix containing a broad range of American put op-
tion values that is suited to each individual stock price at each time interval:
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PAm =















P0
0 P1

0 P2
0 · · · PM−1

0 PM
0

P0
1 P1

1 P2
1 · · · PM−1

1 PM
1

P0
2 P1

2 P2
2 · · · PM−1

2 PM
2

...
...

...
. . .

...
...

P0
N P1

N P2
N · · · PM−1

N PM
N















.

4. COMPUTE EARLY EXERCISE BOUNDARY

Because the early exercise boundary is valid for allt values, where 0≤ t ≤ T,
one needs to compute anSf value at each node on the time axis.

(a) Create initial vector,Sf of lengthM+1 containing zeros.

(b) Choose err= 0,000001 (for example). A value slightly larger than zero.

(c) For j = 0:M (for all time-axis values)

• Exercise is optimal whenS< Sf andPAm = max[K −S,0]. Refer to
equation 3.4.7 on page 41. Therefore, one will exercise whenPAm−
K +S= 0.

• One now wants a valueS(i), where 0≤ i ≤ N (all the x values at one
time increment), in each columnj (one time increment), of the matrix,
PAm. Here,P j

i −K +S(i) < err, for this is the last option value where
one will exercise the option. Because atP j

i ≥max[K−S(i),0], one will
hold on to the option andS(i) > Sf (See equation 3.4.8 on page 41).
Therefore,

i = find(abs(PAm(:, j)−K+S)< err,1,′ last′).

• This is the stock price value that separates the exercise from the non-
exercise region and therefore,Sf ( j) = S(i).

end (For)

5. FIND CURRENT OPTION VALUE

InterpolateSandPAm time zero values to find option value corresponding to cur-
rent stock price,Scurrent. This is done in cases where theScurrent value does not
fall precisely on theSgrid. For example, spline interpolation can be used.

PAm
current = interpl(S,PAm(:,0),Scurrent,

′spline′).
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Chapter 5

American put option pricing problem
under stochastic volatility

5.1 Introduction

In the first part of this dissertation, American put options were priced under constant
volatility. This was done in accordance with the assumptions made by the Black-Scholes
model. However, recent world events have proven that markets are indeed volatile and
subsequently current research trends focus on the development of mathematical models
that take fluctuating volatility into account. This has led to the development of numerous
sophisticated models that can be used to value an option (Ikonen & Tiovanen 2008, 105):

• Value and time dependant volatility functions.

• Jump processes for the value.

• Combinations of value and time dependant volatility functions and jump pro-
cesses.

• Stochastic volatility models.

• Stochastic volatility models with jumps (Ikonen & Tiovanen 2008, 105).

The second part of this dissertation addresses one of the shortcomings of the Black-
Scholes model by exploringstochastic volatility models. As was the case previously the
Black-Scholes partial differential equation on page 29 canbe adapted to compensate
for an expanded asset price model by re-writing the problem in linear complimentary
form. This linear complimentary problem is then discretized using the appropriate finite
difference formulas and solved numerically.
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5.2 Black-Scholes model under stochastic volatility

The stochastic volatility model discussed in this dissertation is the Heston model. This
model generalizes the Black-Scholes equation by introducing stochastic volatility and
therefore compensates for the shortcomings of Black-Scholes model’s assumptions on
constant volatility. This generalization is achieved by modelling the price of an underly-
ing asset in a more realistic way. As was the case with constant volatility (see equation
3.2.1 on page 24), start by constructing anasset price model of the underlying stock
price. The following stochastic differential equations are assumed to govern the asset
price process, Sand itsvariance, y (Duffy 2006, 240-241):

dS= µSdt+
√

ySdW1, (5.2.1)

dy= α[β −y]dt+ γ
√

ydW2, (5.2.2)

where

• S - Stock price at time t.

• µ - Constant expected rate of return of stock (drift).

• y - Variance.

• W1 - A Wiener process.

• W2 - A second Wiener process related to the first by correlation coefficient,ρ .

• γ - Volatility of the volatility.

• β where (0< β ) - Long term variance.

• α where (β < α) - Rate of mean reversion.

The correlation between the two Wiener processes is given as(Duffy 2006, 241):

dW1dW2 = ρdt. (5.2.3)

It can also be described as the correlation between the priceof the underlying asset and
its variance (Ikonen & Tiovanen 2008, 106).

Now the Black-Scholes partial differential equation has tobe adjusted to allow for the

83



5.2. BLACK-SCHOLES MODEL UNDER STOCHASTIC VOLATILITY

changes made to the asset price model (Oosterlee 2003, 168-169). Because American
put options are the focus of this dissertation, consider theBlack-Scholes partial differ-
ential inequality which was derived on page 32 as:

∂PAm

∂ t
+

1
2

∂ 2PAm

∂S2 σ2S2+ rS
∂PAm

∂S
− rPAm≤ 0. (5.2.4)

If 5.2.4 is changed to take the asset price model in 5.2.1 and 5.2.2 into account, the result
is a two-dimensional parabolic partial differential inequality (Ikonen & Tiovanen 2009,
302):

∂PAm

∂ t
+

1
2

(

yS2∂ 2PAm

∂S2 +2ργyS
∂ 2PAm

∂S∂y
+ γ2y

∂ 2PAm

∂y2

)

+ rS
∂PAm

∂S
+

(α(β −y)−ϑγ
√

y)
∂PAm

∂y
− rPAm≤ 0,

(5.2.5)

whereϑ is the market price of the risk (Oosterlee 2003, 168).

It is important to notice thatthe same path as in the case of constant volatility, where
the Black-Scholes equation was transformed into the one dimensional heat equation is
not followed. Instead, one uses only one transformation to change the problem from a
backward equation, requiring final conditions, to a forwardequation that requires ini-
tial conditions(Oosterlee 2003, 169) (Higham 2009, 257). This concept was covered in
paragraph 3.1.

Equation 5.2.5 is transformed into a forward equation by defining a variableτ as:

τ = T− t. (5.2.6)

New symbols are also introduced for simplicity. Letu and x denote the American
option price,PAm and the underlying stock price,S, respectively. One can now re-
write equation 5.2.5 and define theHeston operatoras (Ikonen & Tiovanen 2008, 106)
(Duffy 2006, 239-241) (Ikonen & Tiovanen 2009, 302):

Lu=
∂u
∂τ
− 1

2
yx2 ∂ 2u

∂x2 −ργyx
∂ 2u

∂x∂y
− 1

2
γ2y

∂ 2u
∂y2 − rx

∂u
∂x

−(α(β −y)−ϑγ
√

y)
∂u
∂y

+ ru≥ 0.

(5.2.7)
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The option pricing problem is defined on the unbounded domain(Ikonen & Tiovanen
2008, 107) (Ikonen & Tiovanen 2009, 302):

{(x,y,τ) : x≥ 0,y≥ 0,τ ∈ [0,T]}. (5.2.8)

The values on thex andy axes need to be truncated. However, the Heston model is not
entirely clear on how large the computational domain needs to be to ensure a sufficiently
small truncation error (Ikonen & Tiovanen 2008, 107). Therefore, redefine the domain
in 5.2.8 as (Ikonen & Tiovanen 2009, 302):

{(x,y,τ) : 0= 0≤ x≤ xmax,0≤ y≤ ymax,τ ∈ [0,T]}, (5.2.9)

wherexmax andymax are sufficiently large numbers. Remembering that for a put option,
the payoff is (Ikonen & Tiovanen 2009, 302):

g(x) = max[K−x,0], (5.2.10)

one can now proceed to investigate the initial and boundary conditions of the pricing
problem.

The initial condition implies that (Ikonen & Tiovanen 2008, 106) (Ikonen & Tiovanen
2009, 303):

u(x,y,0) = g(x) = max[K−x,0] (x,y) ∈ [0,xmax]× [0,ymax]. (5.2.11)

Keep in mind that due to the transformation usingτ, the problem is solved by providing
a τ = 0 value, but that this value in actual fact corresponds to theoption price at time
T. Therefore, when the pricing problem is numerically solvedfor all unknownτ values,
the value obtained atτ = T corresponds to the option price att = 0 (current price).

Boundary conditions at (Ikonen & Tiovanen 2008, 107):

• x = 0, Dirichlet boundary condition (Ikonen & Tiovanen 2009, 303):

u(0,y,τ) = g(0) = K (y,τ) ∈ [0,ymax]× [0,T]. (5.2.12)

• x = xmax, Neumann boundary condition (Ikonen & Tiovanen 2008, 107) (Ikonen
& Tiovanen 2009, 303):
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∂u
∂x

(xmax,y,τ) = 0 (y,τ) ∈ [0,ymax]× [0,T]. (5.2.13)

• y = 0, Dirichlet boundary condition (Ikonen & Tiovanen 2004, 5) (Clarke &
Parrott 1999, 180):

u(x,0,τ) = g(x) = max[K−x,0] (x,τ) ∈ [0,xmax]× [0,T]. (5.2.14)

• y = ymax (Ikonen & Tiovanen 2009, 303) (Ikonen & Tiovanen 2008, 107):

∂u
∂y

(x,ymax,τ) = 0 (x,τ) ∈ [0,xmax]× [0,T]. (5.2.15)

Due to the early exercise facility of an American option, an additional early exercise
constraint is included (Ikonen & Tiovanen 2009, 303):

u(x,y,τ)≥ g(x) (x,y,τ) ∈ [0,xmax]× [0,ymax]× [0,T]. (5.2.16)

Thelinear complimentary problem for the American option price under stochastic
volatility can now be defined as (Ikonen & Tiovanen 2008, 107) (Ikonen & Tiovanen
2009, 303):

(Lu)(u−g) = 0,

Lu≥ 0,

u−g≥ 0.

(5.2.17)

5.3 Finite difference method

The linear complimentary problem in 5.2.17 is to be solved using the finite difference
method. This requires the discretization of the Heston operator in 5.2.7 on page 84
(Ikonen & Tiovanen 2009, 304).The spatial derivatives are discretized using a seven
point stencil and the time axis is discretized using a uniform space-time finite differ-
ence grid on the domain described in 5.2.9 (Ikonen & Tiovanen2009, 304).
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• Number of internal nodes on the x-axis= m,

∆x=
xmax

m+1
.

• Number of internal nodes on the y-axis= n,

∆y=
ymax

n+1
.

• Number of internal nodes on theτ-axis= l ,

∆τ =
T

l +1
.

• The following grid point notation is used:

u(k)i, j ≈ u(xi,y j ,τk) = u(i∆x, j∆y,k∆τ),
wherei = 0, . . . ,m+1, j = 0, . . . ,n+1 andk = 0, . . . , l +1 (Ikonen & Tiovanen
2009, 304).

Fig. 5.3.1 on page 88 is a visual representation of the grid obtained after the space
discretization of equation 5.2.7 on page 84. The blue dots represent the known values
on thex= 0 boundary. These values are obtained using equation 5.2.12. The red dots
represent the known values on they = 0 boundary and are obtained from 5.2.14. The
green dots represent unknown values that are used to calculate the option price on the
boundaryy= ymax. The details of this process will be discussed in the next section, but
for now one can mention that the idea behind solving the boundary values aty= ymax

is to approximate 5.2.15 on page 86 using a central difference formulae, therefore us-
ing the two adjacent nodes. This too is the case on thex = xmax boundary, where the
pink dots represent the adjacent nodes after approximating5.2.13. The use of a central
difference formula to approximate 5.2.15 and 5.2.13 results in the use of ghost points
(Ikonen & Tiovanen 2004, 8). These points fall outside the grid dimensions and as just
mentioned, one will learn how to deal with these ghost or fictitious grid points in the
following section.
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y-axis

x-axis

ymax

0
0 xmax

δy

δx

(0,0)

2δx

(1,0) (m+1,0)(m,0)

(0,1)

(0,n)

(0,n+1)

2δy

(1,1) (2,1)

(1,2)

(m,1) (m+1,1)

(m,n+1) (m+1,n+1)

i = 0 i = 1 i = 2 i = m i = m+1

j = 0

j = 1

j = 2

j = n

j = n+1

i = m+2

j = n+2

Figure 5.3.1:x− τ - grid after discretization

The coloured dots are discussed on page 87.

5.3.1 Space discretization

All the partial derivatives in the Heston operator on page 84, have variable coefficients
and in parts of the domain, a first order derivative dominatesa second order one (Ikonen
& Tiovanen 2009, 304). Notice that the operator also contains a second-order cross-

derivative term,ργyx
∂ 2u

∂x∂y
, and therefore it is difficult to construct a grid with good

properties and accuracy (Ikonen & Tiovanen 2009, 304).

Normal finite difference approximations may result in somepositive off-diagonal el-
ements in the coefficient matrix, due to thecross-derivative and dominating first-order
derivative terms. These positive elements may lead to oscillations in the solution (Ikonen
& Tiovanen 2009, 304).
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To remedy the problem of positive off-diagonal elements, one needs to construct a
strictly diagonal dominant matrixwith positive diagonal elementsandnon-positive off-
diagonal elements, called a M-matrix (Ikonen & Tiovanen 2009, 304).

The first and second-order spatial derivativesin 5.2.7, with the exception of the
cross-derivative term, are approximated withstandard second-order accurate central
finite difference formulas (Ikonen & Tiovanen 2009, 305). In cases where a first-
order derivative term dominates the related second-order derivative term, one needs to
increase the second-order derivative term’s coefficient, thereby avoiding positive off-
diagonal elements (Ikonen & Tiovanen 2009, 305).

• First-order derivative terms (Ikonen & Tiovanen 2009, 305).

δxui, j =
∂u
∂x

=
ui+1, j −ui−1, j

2∆x
,

δyui, j =
∂u
∂y

=
ui, j+1−ui, j−1

2∆y
.

(5.3.1)

• Second-order derivative terms(Ikonen & Tiovanen 2009, 305).

δ 2
x ui, j =

∂ 2u
∂x2 =

ui+1, j −2ui, j +ui−1, j

∆x2 ,

δ 2
y ui, j =

∂ 2u
∂y2 =

ui, j+1−2ui, j +ui, j−1

∆y2 .

(5.3.2)
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• Second order cross-derivative term.

Begin by assuming that the coefficient of this term,ργxy, is non-positive (Ikonen
& Tiovanen 2009, 305). By expanding the Taylor series and truncating, one finds
(Ikonen & Tiovanen 2009, 305):

u(xi+1,y j+1)≈ u+∆x
∂u
∂x

+∆y
∂u
∂y

+
1
2

(

∆x2∂ 2u
∂x2 +2∆x∆y

∂ 2u
∂xy

+∆y2∂ 2u
∂y2

)

,

u(xi−1,y j−1)≈ u−∆x
∂u
∂x
−∆y

∂u
∂y

+
1
2

(

∆x2∂ 2u
∂x2 +2∆x∆y

∂ 2u
∂xy

+∆y2∂ 2u
∂y2

)

,

(5.3.3)

whereu and it’s derivatives on the right hand side of these equations are evaluated
in the grid point(xi ,y j).

By adding these two equations, simplifying and rearrangingthe terms, one

obtains an approximation for
∂ 2u

∂x∂y
(Ikonen & Tiovanen 2009, 306):

∂ 2u
∂x∂y

≈ 1
2∆x∆y

[

u(xi+1,y j+1)−2u(xi,y j)+u(xi−1,y j−1)
]

− ∆x
2∆y

∂ 2u
∂x2 −

∆y
2∆x

∂ 2u
∂y2 .

(5.3.4)
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Using the approximation of the second order derivative terms in 5.3.2 and the approxi-
mation of the second-order cross derivative term in 5.3.4, one can re-write these terms
in 5.2.7 as (Ikonen & Tiovanen 2009, 306):

−1
2

y jx
2
i

∂ 2u
∂x2 −ργy jxi

∂ 2u
∂x∂y

− 1
2

γ2y j
∂ 2u
∂y2 ≈

[

−1
2

y jx
2
i +

ργy jxi

2
∆x
∆y

]

∂ 2u
∂x2 +

[

−1
2

γ2y j +
ργy jxi

2
∆y
∆x

]

∂ 2u
∂y2

−ργy jxi

2∆x∆y

[

u(xi+1,y j+1)−2u(xi,y j)+u(xi−1,y j−1)
]

.

(5.3.5)

Finally, by substituting the central differences in 5.3.1 and 5.3.2, together with 5.3.5
into 5.2.7 (Ikonen & Tiovanen 2009, 306), one obtains:

∂u
∂τ

+

[

−1
2

y jx
2
i +

ργy jxi

2
∆x
∆y

+aadd

]

∂ 2u
∂x2 +

[

−1
2

y jγ2+
ργy jxi

2
∆y
∆x

+cadd

]

∂ 2u
∂y2

−rxi
∂u
∂x
−
[

α(β −y j)−ϑγ√y j
] ∂u

∂y

−ργy jxi

2∆x∆y

[

ui+1, j+1−2ui, j +ui−1, j−1
]

+ rui, j ≥ 0,

(5.3.6)

whereaadd andcadd are additional coefficients chosen to ensure that all off-diagonal
elements of the coefficient matrix are non-positive (Ikonen& Tiovanen 2009, 306).
Therefore (Ikonen & Tiovanen 2009, 306):

aadd = min

(

1
2

y jx
2
i −

ργy jxi

2
∆x
∆y
− rxi

∆x
2
,
1
2

y jx
2
i −

ργy jxi

2
∆x
∆y

+ rxi
∆x
2
,0

)

,

cadd = min

(

1
2

y jx
2
i −

ργy jxi

2
∆y
∆x
− [α(β −y j)−ϑγ√y j ]

∆y
2
,

1
2

y jx
2
i −

ργy jxi

2
∆x
∆y

+[α(β −y j)−ϑγ√y j ]
∆y
2
,0.

(5.3.7)

Using 5.3.1 and 5.3.2, one can re-write 5.3.6 to define a sevenpoint discretization stencil
in pointsui, j ,ui−1, j ,ui+1, j ,ui, j−1,ui, j+1,ui+1, j+1 andui−1, j−1 referred to in (Ikonen &
Tiovanen 2009, 306), but written in detail as:
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∂u
∂τ

+

[

y jx2
i

∆x2 −
ργy jxi

∆y∆x
− 2aadd

∆x2 +
y jγ2

∆y2 −
2cadd

∆y2 + r

]

ui, j

+

[

− y jx2
i

2∆x2 +
ργy jxi

2∆y∆x
+

aadd

∆x2 +
rxi

2∆x

]

ui−1, j

+

[

− y jx2
i

2∆x2 +
ργy jxi

2∆y∆x
+

aadd

∆x2 −
rxi

2∆x

]

ui+1, j

+

[

− y jγ2

2∆y2 +
ργy jxi

2∆y∆x
+

cadd

∆y2 +
[α(β −y j)−ϑγ√y j ]

2∆y

]

ui, j−1

+

[

− y jγ2

2∆y2 +
ργy jxi

2∆y∆x
+

cadd

∆y2 −
[α(β −y j)−ϑγ√y j ]

2∆y

]

ui, j+1

+

[

−ργy jxi

2∆y∆x

]

ui+1, j+1+

[

−ργy jxi

2∆y∆x

]

ui−1, j−1≥ 0,

(5.3.8)

for i = 1, . . . ,m+1 and j = 1, . . . ,n+1.

Equation 5.3.8 can be simplified as:

∂u
∂τ

+Aui, j +Bui−1, j +Cui+1, j +Dui, j+1+Eui, j−1

+Fui+1, j+1+Gui−1, j−1≥ 0,

(5.3.9)

where there is a different value for each letter of the alphabet corresponding to the
different values,i = 1, . . . ,m+1 and j = 1, . . . ,n+1.

(i,j)(i-1,j) (i+1,j)

(i-1,j-1) (i,j-1) (i+1,j-1)

(i-1,j+1) (i,j+1) (i+1,j+1)

AB C

D

E

F

G

Figure 5.3.2: Seven point discretization stencil

Fig. 5.3.2 is a graphical representation of 5.3.9.
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One uses theinitial condition defined in 5.2.11 andboundary conditionsat x = 0 and
y = 0, defined in 5.2.12 and 5.2.14 respectively. At the boundaryx = xmax, where
i = m+1, one uses 5.2.13 on page 86. The following is a central difference approx-
imation to 86 (Ikonen & Tiovanen 2004, 8):

∂u
∂x

(xmax,y,τ) =
um+2, j −um, j

2∆x
= 0, (5.3.10)

for all values, j = 0, . . . ,n+1. Simplifying 5.3.10 one finds that a ghost point outside
the grid,(m+2, j), now equals an unknown internal grid point,(m, j). Therefore, the
unknown grid point on the boundary,(m+1, j), can be calculated as part of the pricing
problem using the additional information:

um+2, j = um, j . (5.3.11)

This same arguement is used on the boundaryy= ymax, where j = n+1. Using 5.2.15
on page 86, one finde the following central difference approximation:

∂u
∂y

(x,ymax,τ) =
ui,n+2−ui,n

2∆y
= 0, (5.3.12)

for all valuesi = 0, . . . ,m+1. Simplifying 5.3.12 one finds that a ghost point outside
the grid,(i,n+ 2), now equals an unknown internal grid point,(i,n). Therefore, the
unknown grid point on the boudanry,(i,n+ 1), can also be calculated as part of the
pricing problem using the additional information:

ui,n+2 = ui,n. (5.3.13)

Applying the space discretization formula in 5.3.9 fori = 1, . . . ,m+1 and j = 1, . . . ,n+
1, results in a semi-discrete equation with matrix representation (Ikonen & Tiovanen
2009, 307):

∂u
∂τ

+Au ≥ 0. (5.3.14)

whereA is a(m+1)(n+1)×(m+1)(n+1) tridiagonal block-matrix andu is a vector of
length(m+1)(n+1) containing indices for all the unknown nodes(Ikonen & Tiovanen
2004, 8). The following section discusses the composition of matrix A. No published
information seems to exists that addresses the structure ofA in such detail. MatrixA
has the form:
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A =



















A1,1 A1,2 0 0 0 . . . 0 0
A2,1 A2,2 A2,3 0 0 . . . 0 0

0 A3,2 A3,3 A3,4 0 . . . 0 0
...

...
... . . . . . .

...
...

...
0 0 0 . . . 0 Am,m−1 Am,m Am,m+1
0 0 0 . . . 0 0 Am+1,m Am+1,m+1



















,

whereeach matrix in A is of size(n+1)× (n+1). Matrices on the diagonal ofA can
be defined as:

Ar ,r =



















A E 0 . . . 0 0 0
D A E 0 . . . 0 0
0 D A E 0 . . . 0
...

...
... . . . . . .

...
...

0 0 0 . . . D A E
0 0 0 . . . 0 D+E A



















,

for r = 1, . . . ,m+1. Keep in mind that these constants are different for each value of i
and j.

The matrices on the top diagonal ofA are of the form:

Ar ,r+1 =



















C −F 0 . . . 0 0 0
0 C −F 0 . . . 0 0
0 0 C −F 0 . . . 0
...

...
.. . . .. . . .

...
...

0 0 0 . . . 0 C −F
0 0 0 . . . 0 −F C



















,

wherer = 1, . . . ,m. Keep in mind that these constants are different for each value of i
and j.

The matrices on the bottom diagonal ofA, with the exception of matrixAm+1,m are
of the form:
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Ar ,r−1 =



















B 0 0 . . . 0 0 0
−G B 0 0 . . . 0 0
0 −G B 0 0 . . . 0
...

...
... . . . . . .

...
...

0 0 0 . . . −G B 0
0 0 0 . . . 0 −G B



















,

wherer = 2, . . . ,m. Keep in mind that these constants are different for each value of i
and j.

Matrix Am+1,m is of the form:

Am,m−1 =



















B+C −F 0 . . . 0 0 0
−G B+C −F 0 . . . 0 0
0 −G B+C −F 0 . . . 0
...

...
... . . . . . .

...
...

0 0 0 . . . −G B+C −F
0 0 0 . . . 0 −F−G B+C



















.

The coefficients used in these matrices are defined in 5.3.8 and 5.3.9 on page 92 and
as repeatedly mentioned, it is important to note that these coefficients change in value
corresponding to the changes ini and j values on the x- and y axes respectively.

The structure ofA is quite complicated to comprehend, yet a thorough understanding
of it’s structure is vital when programming numerical procedures to price American put
options. The following is a practical illustration of how one is to go about implement-
ing equation 5.3.9 to ultimately obtain 5.3.14. Keeping Fig. 5.3.1 on page 88 in mind,
option values on boundaries wherei = 0 and j = 0 are known and therefore one only
needs to compute option values for unknown grid points.

Example on how to obtain equation 5.3.14

• Compiling matrix A

– Start by choosing parametersm andn that represent the number of internal
nodes on the x- and y-axes respectively. For example choosem= 2 and
n= 3.

– Create a column vector for each individual letter of the alphabet. The length
of each vector should be(m+1)(n+1), the total amount of unknown nodes
on the grid. For this example the vector length is 12.
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– Declare an initial matrixA containing zero values. The size of matrixA for
this example is 12×12.

– Declare a counter that will keep track of the entry position of each individual
value of an alphabet letter into its column vector,count= 1.

– Keeping equation 5.3.7 on page 91 and equations 5.3.8, 5.3.9on page 92 in
mind, one can now proceed by calculating each coefficientA,B, . . . ,F,G for
the differenti and j values.

* For tel = 1:2+1 (this will keep track of thei values as one moves along
the x-axis)

* For teller = 1:3+1 (this will keep track of thej values as one moves
along the y-axis)

A(count) =

[

y jx2
i

∆x2 −
ργy jxi

∆y∆x
− 2aadd

∆x2 +
y jγ2

∆y2 −
2cadd

∆y2 + r

]

, (5.3.15)

B(count) =

[

− y jx2
i

2∆x2 +
ργy jxi

2∆y∆x
+

aadd

∆x2 +
rxi

2∆x

]

, (5.3.16)

C(count) =

[

− y jx2
i

2∆x2 +
ργy jxi

2∆y∆x
+

aadd

∆x2 −
rxi

2∆x

]

, (5.3.17)

D(count) =

[

− y jγ2

2∆y2 +
ργy jxi

2∆y∆x
+

cadd

∆y2 +
[α(β −y j)−ϑγ√y j ]

2∆y

]

, (5.3.18)

E(count) =

[

− y jγ2

2∆y2 +
ργy jxi

2∆y∆x
+

cadd

∆y2 −
[α(β −y j)−ϑγ√y j ]

2∆y

]

, (5.3.19)

F(count) =

[

−ργy jxi

2∆y∆x

]

, (5.3.20)

G(count) =

[

−ργy jxi

2∆y∆x

]

. (5.3.21)

count = count + 1;

End(For(teller))
End(For(tel))

One therefore obtains 12 values for each coefficientA,B, . . . ,F,G. This in-
cludes coefficients at the unknown points on the boundaries,x = xmax and
y= ymax. These 12 different values can be placed in the correct position in
matrixA.

96



5.3. FINITE DIFFERENCE METHOD

– Place coefficients into correct places in original matrixA.
The final form of of matrixA for this example is:

A =









































A1 E1 0 0 C1 F1 0 0 0 0 0 0
D2 A2 E2 0 0 C2 F2 0 0 0 0 0
0 D3 A3 E3 0 0 C3 F3 0 0 0 0
0 0 (D4+E4) A4 0 0 F4 C4 0 0 0 0
B5 0 0 0 A5 E5 0 0 C5 F5 0 0
G6 B6 0 0 D6 A6 E6 0 0 C6 F6 0
0 G7 B7 0 0 D7 A7 E7 0 0 C7 F7

0 0 G8 B8 0 0 (D8+E8) A8 0 0 F8 C8
0 0 0 0 (B9+C9) F9 0 0 A9 E9 0 0
0 0 0 0 G10 (B10+C10) F10 0 D10 A10 E10 0
0 0 0 0 0 G11 (B11+C11) F11 0 D11 A11 E11

0 0 0 0 0 0 (G12+F12) (B12+C12) 0 0 (D12+E12) A12









































.

• Declare column vectoru of length(m+1)(n+1) containing zeros. This vector
will contain values for all the unknown grid points and will have the following
ui, j entries:

u =









































u1,1
u1,2

u1,3

u1,4
u2,1

u2,2
u2,3

u2,4

u3,1
u3,2

u3,3
u3,4









































.

Matrix A and vectoru have now been defined. Therefore equation 5.3.14 can now
be defined. The next step is to discretize the time axis.

5.3.2 Time discretization

The stability properties of the time discretization process are vital in option pricing
problems because the initial boundary condition in 5.2.11 on page 85 has a discontin-
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5.4. LINEAR COMPLIMENTARY PROBLEM UNDER STOCHASTIC
VOLATILITY

uous first derivative (Ikonen & Tiovanen 2009, 307). Therefore, an unconditionally
stable scheme with no restrictions on the interval length∆τ is chosen. The second-order
accurate Crank-Nicolson method is given by (Ikonen & Tiovanen 2009, 307):

(

I +
1
2

∆τA
)

u(k+1) ≥
(

I − 1
2

∆τA
)

u(k). (5.3.22)

One can simplify 5.3.22 as:

Buk+1 ≥ Cuk, (5.3.23)

where

B =

(

I +
1
2

∆τA
)

(5.3.24)

and

C =

(

I − 1
2

∆τA
)

. (5.3.25)

5.4 Linear complimentary problem under stochastic volatil-
ity

One can now formally define the linear complimentary problemfor the American put
option under stochastic volatility as (Ikonen & Tiovanen 2009, 308)(Ikonen & Tiovanen
2008, 113):

(Bu(k+1)−Cu(k))Tr(u(k+1)−g) = 0,

Bu(k+1)−Cu(k) ≥ 0,

u(k+1)−g≥ 0, k= 0, . . . , l +1.

(5.4.1)

To solve this linear complimentary problem, one has to solvethe following matrix equa-
tion taken from 5.4.1:
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5.5. ALGORITHM TO SOLVE PUT PRICE UNDER STOCHASTIC VOLATILITY
USING PSOR

Bu(k+1) = Cu(k),

subject to the constraint:

u(k+1) ≥ g, k= 0, . . . , l +1.

5.5 Algorithm to solve put price under stochastic volatil-
ity using PSOR

Keep in mind that when programming, the numbering of nodes will start at 1, as opposed
to the numbering system used in this dissertation,i = 0, . . . ,m+1, j = 0, . . . ,n+1 and
k= 0, . . . , l +1. This algorithm is written fork= 0 but needs to be repeated for all values
of k.

1. INITIAL PARAMETERS

(a) Stipulate values K, T (per annum), r (per annum),xmax, ymax, γ, ρ , ϑ , β , α,
ω andε.

(b) Given current value of underlying stock price,Scurrent and volatility level
where price should be specified,σcurrent.

(c) Choose number of intervals on each axis of the grid:

m, number of internal nodes onx-axis.

n, number of internal nodes ony-axis.

l , number of internal nodes onτ-axis.

(d) Create initial matrixA, containing zeros.

(e) Create initial matrixZ, containing zeros. In this matrix all prices will be
stored. It is therefore a combination of the values for allx− y grids at a
specific time increment for all the values ofk, k = 0, . . . , l +1 and contains
prices of the three dimensional grid.

(f) Calculate interval lengths,∆x,∆y,∆τ.

2. CALCULATING AMERICAN PUT OPTION PRICES

Steps(a), . . . ,(l) need to be repeated for k= 0, . . . , l +1.
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5.5. ALGORITHM TO SOLVE PUT PRICE UNDER STOCHASTIC VOLATILITY
USING PSOR

(a) Compute boundary conditions using 5.2.12 and 5.2.14 andstore them in the
correct positions in matrixZ.

(b) Compute differentaadd andcadd values fori =0, . . . ,m+1 and j =0, . . . ,n+
1. There is now a differentaadd andcadd value for each node of the grid on
page 88. These values are used to compute the elements of the coefficient
matrixA. The most effective way to store these different values, is to create
a vector foraadd andcadd respectively. The length of this vector will be
(m+1)× (n+1).

(c) Compute coefficient matrix entries:A,B,C,D,E,F for eachi = 0, . . . ,m+1
and j = 0, . . . ,n+1 using equations 5.3.15 to 5.3.21. The most effective way
to store these coefficients is to create a different vector for each letter of the
alphabet. The length of this vector will be(m+1)× (n+1).

(d) Using the different alphabet vectors created in the previous step, one now
has to place the correct coefficient in the correct position in matrixA. This
is quite a complicated task, but using the general structureof the tridiagonal
block matrix given on page 92 as guideline along with the subsequent break-
down of each individual matrix in the pages to follow, after some effort one
obtains the coefficient matrixA.

(e) Create identity matrixI , with same dimensions asA.

(f) Obtain matrixB by applying equation 5.3.24 on page 98.

(g) Obtain matrixC by applying equation 5.3.25 on page 98.

(h) Applying the initial condition in equation 5.2.11 on page 85, calculate the
values of the grid on the first time level,k= 0 and store these in the correct
position in the matrix containing solutions at all time increments,Z.

(i) Create a vectorg, with length corresponding to all the unknown grid points
at one time increment, thus fori = 1, . . . ,m+1 and j = 1, . . . ,n+1. The
entries ofg correspond to the grid points whenk= 0 and is calculated using
equation 5.2.11 on page 85.

(j) Create a vectoru0, with length corresponding to all the unknown grid points
at one time increment, thus fori = 1, . . . ,m+1 and j = 1, . . . ,n+1. The
entries ofu0 correspond to the grid points whenk = 0 and is calculated
using equation 5.2.11 on page 85.

(k) Calculate vectorb asb = Cu0. One now has the right hand side of equation
5.3.23 on page 98 and one needs to solveu1 using the following equation:

Bu1 = b, (5.5.1)

subject to the constraint:

100



5.5. ALGORITHM TO SOLVE PUT PRICE UNDER STOCHASTIC VOLATILITY
USING PSOR

u1≥ g. (5.5.2)

The elements ofu1 are solved iteratively using the PSOR method. To speed
up computation time, the PSOR method can be adapted to handleonly the
non-zero elements of matrixB and the value ofω can be optimized.

(l) Once u1 has been solved, its values are stored into the right positions in
matrixZ. Keep in mind that this matrix will eventually contain all the option
values at all time increments and as mentioned earlier, thismatrix represents
all the values of the three dimensional grid with axes time, stock price and
volatility.

3. FIND CURRENT OPTION VALUE

After solving all the option prices, the last entries ofZ corresponding to the di-
mensions of thex− y-grid will contain the current option prices for a range of
stock prices and volatilities. The current stock priceScurrent and specific volatility
level σcurrent are stipulated beforehand. The final step is to interpolate to find the
option price that corresponds the current stock priceScurrent and specific volatility
levelσcurrent respectively.
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Chapter 6

Numerical Experiments

The following models were solved using a computer with specifications:

• Intel Core 2 Duo @ 2.8GHz,

• 1 GB Ram,

• 160 Gig.

6.1 Constant volatility

The following example is taken from the bookThe mathematics of financial derivatives
(Wilmott et al. 1996, 174), where the parameters are chosen as:

• K = 10 (strike price),

• r = 0,1 (constant interest rate),

• T = 0,25 (3 months duration of the option contract),

• σ = 0,4 (constant volatility) ,

• ω = 1,8 (PSOR relaxation parameter),

• m= 300 (amount of intervals on theτ-axis),

• n= 300 (amount of intervals on the x-axis).
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6.1. CONSTANT VOLATILITY

The following solutions were obtained:

Stock price European put American put (Wilmott et al. 1996, 176)
4 5,753100148 6 6
6 3,756838358 4,000000051 4
8 1,901630105 2,019254756 2,02
10 0,667864364 0,6892706 0,6913
12 0,166486116 0,169866883 0,1711

Table 6.1.1: American and European put options under constant volatility

Table 6.1.1 compares the values of European and American putoptions for different
underlying stock prices. Notice that the price of European put options are less than their
American counterparts. As mentioned earlier, this is due tothe early exercise facility
offered by American options that allows a greater flexibility to the option holder. Option
values decrease significantly as the option shifts from in the money to out of the money.
The results are comparable to the American put option valuesin (Wilmott et al. 1996,
176), since the algorithm used in this dissertation is basedon descriptions in (Wilmott
et al. 1996, 167 - 177).
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6.1. CONSTANT VOLATILITY

The following figures were also generated:
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Figure 6.1.1: European and American put option prices - under constant volatility

Fig. 6.1.1 is calibrated to show option prices for values of the underlying betweenS= 8
and S= 13. It illustrates the price differences between American and European put
options. These price differences are more significant for inthe money options and the
general pattern follows the traditional form of the option payoff, with prices decreasing
gradually as the underlying price is increased. This is directly related to the payoff
function:

Payoff= max[K−St ,0]. (6.1.1)
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6.1. CONSTANT VOLATILITY

Figure 6.1.2: American put option price surface

Fig. 6.1.2 is a graphical representation of the option pricesurface. This is a three
dimensional graph with stock price, time and American put option prices as axes. It too
illustrates that the value of the option increases as the underlying stock price decreases.
Additionally it shows that of options with a longer time to maturity are more valuable
than options where the exercise date is looming. The reason for this is that for both in
the money and out of the money options, a longer duration implies that there is a greater
probability for making more money.
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6.1. CONSTANT VOLATILITY
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Figure 6.1.3: American put option early exercise boundary

Fig. 6.1.3 shows the early exercise boundary. It shows what the option holder’s mindset
should be at a specific point in time for a specific stock price value. For stock prices
above the boundary, the option should be held and for stock prices under the bound-
ary, the option should be exercised. Recent studies have covered topics surrounding
the exercise boundary, such as the asymptotic behaviour of the boundary near expiry.
This asymptotic behaviour can be observed from Fig. 6.1.3. As mentioned in section
3.4.3, the interested reader can refer to the following resources:A Comparative Study of
American Option Evaluation and Computationby K. Rodolfo (Rodolfo 2007, 45-51),
The Mathematics of Financial Derivatives(Wilmott et al. 1996, 121-129) andMathe-
matical models of Financial Derivatives(Kwok 2008, 257-262).
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6.1. CONSTANT VOLATILITY

A parameter sensitivity analysis was performed to investigate the effect different volatil-
ity values have on American put option prices under constantvolatility. Table 6.1.2
contains data gathered for both in the money put options, with current stock priceS= 9
and out of the money put options, withS= 11. The other parameters were chosen as
stipulated on page 99. As volatility increases, so does the price of the option and so the
data supports the underlying option theory.

σ Put (in the money) Put (out of the money)
0,0625 1,000106586 0
0,125 0,999797503 0,006744304
0,1875 0,999330151 0,04629278
0,25 1,027205002 0,118003376
0,3125 1,102204667 0,209091841
0,375 1,194133908 0,311480472
0,4375 1,294194631 0,420767228
0,5 1,398832562 0,534490685
0,5625 1,506183937 0,651146405
0,625 1,615220401 0,769784632
0,6875 1,725338893 0,889783531
0,75 1,836144582 1,010714493
0,8125 1,947392995 1.13229042
0,875 2,058824557 1,254218422
0,9375 2,17031157 1,376335943

Table 6.1.2: Volatility (σ ) parameter sensitivity analysis

107



6.1. CONSTANT VOLATILITY
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Figure 6.1.4: Volatility (σ ) sensitivity analysis

Fig. 6.1.4 is a graphical representation of table 6.1.2. Puts under constant volatility
present with constant prices for lower levels of volatilityand exhibit a linear increase
in price as volatility passes a certain percentage mark. Forin the money options, this
increase occurs at roughly the 20% mark, whereas for out of the money options, the
linear price increase occurs roughly the 10% mark. The out ofthe money options are
priced at significantly lower levels than their in the money counterparts.
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6.2. STOCHASTIC VOLATILITY

6.2 Stochastic volatility

6.2.1 Experiment one

The following example is taken form the paper,Operator splitting methods for pricing
American options under stochastic volatility(Ikonen & Tiovanen 2004, 11), where the
parameters are chosen as:

• K = 10 (strike price),

• r = 0,1 (constant interest rate),

• T = 0,25 (3 months duration of the option contract),

• ω = 1,8 (PSOR relaxation parameter),

• α = 5 (rate of mean reversion),

• β = 0,16 (long term variance),

• γ = 0,9 (volatility of volatility),

• ρ = 0,1 (correlation between two Wiener processes),

• xmax= 20 (maximum stock price on grid),

• ϑ = 0 (market price of the volatility risk),

• ymax= 1 (maximum volatility on the grid),

• m= 80 (amount of internal nodes on the x-axis, the stock price axis)
xi denotes a specific stock price at a node andi = 0, . . . ,m+1,

• n= 32 (amount of internal nodes on the y-axis, the volatility axis)
y j denotes a specific volatility level at a node andj = 0, . . . ,n+1,

• l = 16 (amount of internal nodes on theτ-axis, the time axis)
τk denotes a specific point in time at a node andk= 0, . . . , l +1.

Additionally, for the PSOR iterative procedure, one chooses xold andxnew, two vectors
that contain initial guesses for the unknown option values at one time interval. These
vectors are chosen using the payoff formula:

Payoff= max[0,K−xi ], (6.2.1)
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6.2. STOCHASTIC VOLATILITY

wherei = 1, . . . ,m+1.

The stop criteria for the PSOR iterative process was chosen as ε = 0,00001.

Table 6.2.1 contains the solutions for American put option prices calculated using the
stochastic volatility model. Prices were calculated for two different variances,y =
0,0625 andy= 0,25 respectively. Values given in the reference article are also included
(Ikonen & Tiovanen 2004, 12).

Stock price Put (y= 0,0625) Article Put (y= 0,25) Article
8 2,0000 2 2,1968 2,07744
8,25 1,7504 2,0076
8,5 1,5011 1,8282
8,75 1,2544 1,6590
9 1,0149 1,10435 1,5005 1,33192
9,25 0,7852 1,3530
9,5 0,5691 1,2167
9,75 0,3774 1,0917
10 0,2341 0,50755 0,9778 0,79388
10,25 0,1468 0,8747
10,5 0,0964 0,7819
10,75 0,0668 0,6987
11 0,0485 0,20462 0,6244 0,44650
11,25 0,0366 0,5583
11,5 0,0284 0,4994
11,75 0,0226 0,4471
12 0,0182 0,07909 0,4006 0,242170

Table 6.2.1: American put option prices under stochastic volatility

Since the algorithm in (Ikonen & Tiovanen 2004, 1-19) is not described in detail, the
algorithm used in this dissertation is the author’s interpretation of the information stip-
ulated in (Ikonen & Tiovanen 2004, 1-19).

Regarding the numerical solutions obtained, notice that inthe region of the strike price,
K = 10 and for out of the money options, the solutions obtained differ from the solu-
tions stipulated in (Ikonen & Tiovanen 2004, 12). Three factors have been identified as
possible explanations for these price differences:

1. The price differences could be attributed to the fact thatthe pricing model is ex-
pected to deliver inaccurate prices at points of discontinuity, in this case when
S= K (Duffy 2004, 71).
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6.2. STOCHASTIC VOLATILITY

2. The choice of the boundary values might also be altered. Ithas been suggested
that the choice of the boundary aty= 0, which was chosen as,

u(x,0,τ) = g(x) = max[K−x,0] (x,τ) ∈ [0,xmax]× [0,T], (6.2.2)

according to (Ikonen & Tiovanen 2004, 5) (Clarke & Parrott 1999, 180), can be
adjusted to improve results (Chockalingam & Muthuram 2011,796).

3. The interval lengths of the grid in all three dimensions are chosen very coarsely.
Although a smaller increment does not remedy the pricing discrepancies on its
own, when one factors in a finer grid along with the previous two points of dis-
cussion, a more accurate solution may possibly be obtained.This could be further
investigated in the future.

No additional data was found in the literature to compare theobtained values to. The
data behaviour supports the underlying option theory, as will be seen in the figures to
follow.
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Figure 6.2.1: American put option prices under stochastic volatility

Fig. 6.2.1 compares the stochastic put prices obtained for variancesy = 0,0625 and
y= 0,25 respectively. As expected the prices computed using the higher variance,y=
0,25, are more expensive than the prices computed for the lowervariance. Thus, the
behaviour of the data is consistent with the expected theoretical results.
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6.2. STOCHASTIC VOLATILITY

y Put(in the money) Put(out of the money)
0,0625 1,014872419 0,04850057
0,125 1,149453031 0,220689055
0,1875 1,328675604 0,428881734
0,25 1,500532212 0,624436156
0,3125 1,650723005 0,793946879
0,375 1,777129738 0,936076032
0,4375 1,881188553 1,052882599
0,5 1,965317701 1,147257662
0,5625 2,032135782 1,222192113
0,625 2,084177111 1,280537048
0,6875 2,123761979 1,324896066
0,75 2,152938171 1,35756825
0,8125 2,173456442 1,380525851
0,875 2,186777349 1,395418406
0,9375 2,194102904 1,403605618

Table 6.2.2: Variance parameter sensitivity analysis

A parameter sensitivity analysis was performed to investigate the effect different vari-
ance values have on American put option prices in a stochastic scenario. Table 6.2.2
contains the data gathered for both in the money put options,with current stock price
S= 9 and out of the money put options withS= 11. The other parameters were chosen
as stipulated on pages 107 and 108. As volatility increases,so does the price of the
option. Therefore, the data supports the underlying optiontheory.
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Figure 6.2.2: Variance sensitivity analysis

Fig. 6.2.2 is a graphical representation of table 6.2.2. There is a sharp increase in the
price of American puts as the variance parameter,y, is increased. This increase in op-
tion price stabilizes as the volatility reaches the 80% mark. This supports the notion
that then volatility is large, a marginal increase in volatility has very little effect on the
option price (Chockalingam & Muthuram 2011, 796). In the money options are more
valuable than out of the money options with the same parameters.

No evidence was found in the literature of such a parameter sensitivity analysis.
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6.2. STOCHASTIC VOLATILITY

ω American put (stochastic)Computation time
1 1,500529657 3,017956
1,05 1,500529931 2,687155
1,1 1,500530114 2,594131
1,15 1,500530277 2,532479
1,2 1,500530481 2,530937
1,25 1,500530615 2,3672
1,3 1,500530767 2,236525
1,35 1,500530897 2,147487
1,4 1,50053107 2,17602
1,45 1,500531114 2,016279
1,5 1,50053127 2,04633
1,55 1,500531581 2,024228
1,6 1,500531844 1,962723
1,65 1,500532168 2,032544
1,7 1,500532238 2,154058
1,75 1,500532144 2,138417
1,8 1,500532212 2,114659

Table 6.2.3:ω sensitivity analysis: PSOR computational time

Table 6.2.3 contains data obtained by performing anω parameter sensitivity analysis.
Options where priced using the stochastic volatility modeland because this model uses
the Projected Over-Relaxation iterative method (PSOR), different values forω where
chosen and their computational times were compared. Parameters defined on pages 104
and 105 were used with the current stock price chosen asS= 9 and variance chosen as
y = 0,25.The chosenω values range fromω = 1, which represents the Gauss-Seidel
method, toω = 1,9. The solutions converge to similar values for eachω but computa-
tional times differ considerably.
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Figure 6.2.3:ω sensitivity analysis: PSOR computational time

Fig. 6.2.3 is a graphical representation of the data contained in table 6.2.3. It reveals
that for ω = 1,6, the computational time is at a minimum (1,962723 seconds). As
ω is increased from this point (in this dissertationω = 1,8) the computational time
increases. The maximum computational time occurs when the Gauss-Seidel method is
implemented,ω = 1 (3,017956 seconds).

6.2.2 Experiment two

The aim of this experiment is to validate the numerical PSOR algorithm by comparing
its solutions to values obtained solving the matrices directly. The following parameters
were chosen:

• K = 10 (strike price),

• r = 0,1 (constant interest rate),
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6.2. STOCHASTIC VOLATILITY

• T = 0,25 (3 months duration of the option contract),

• ω = 1,8 (PSOR relaxation parameter),

• α = 5 (rate of mean reversion),

• β = 0,16 (long term variance),

• γ = 0,9 (volatility of volatility),

• ρ = 0,1 (correlation between two Wiener processes),

• xmax= 15 (maximum stock price on grid),

• ϑ = 0 (market price of the volatility risk),

• ymax= 1 (maximum volatility on the grid),

• m= 2 (amount of internal nodes on the x-axis, the stock price axis)
xi denotes a specific stock price at a node andi = 0, . . . ,m+1,

• n= 3 (amount of internal nodes on the y-axis, the volatility axis)
y j denotes a specific volatility level at a node andj = 0, . . . ,n+1,

• l = 1 (amount of internal nodes on theτ-axis, the time axis)
τk denotes a specific point in time at a node andk= 0, . . . , l +1,

• ε = 0,00001.

The solutions obtained using both the numerical and the direct methods are summarised
in a table containing the option values at individual grid points. This table has the form:

u0,4 u1,4 u2,4 u3,4

u0,3 u1,3 u2,3 u3,3

u0,2 u1,2 u2,2 u3,2

u0,1 u1,1 u2,1 u3,1

u0,0 u1,0 u2,0 u3,0

Table 6.2.4: Summary of values at grid points
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6.2. STOCHASTIC VOLATILITY

The entries of table 6.2.4 resemble the entries on Fig. 5.3.1. Using direct analytical
method to solve the pricing problem one obtains the following prices:

10 5 1,3509 0,7810
10 5 1,3281 0,7571
10 5 1,0927 0,5449
10 5 0,4640 0,1721
10 5 0 0

Table 6.2.5: Prices obtained using analytical method

The following prices where obtained using the numerical PSOR method:

10 5 1,5261 0,8561
10 5 1,4882 0,8271
10 5 1,2056 0,5901
10 5 0,5136 0,1858
10 5 0 0

Table 6.2.6: Prices obtained using numerical PSOR method

This example verifies that the PSOR numerical procedure is sufficiently accurate and
as mentioned earlier, it is implemented to save on both computation time and effort by
excluding calculations with the zero elements of the coefficient matrix. In experiment
one, where solutions were obtained using the numerical PSORmethod, the following
analytical results where obtained. These results are contained within the brackets and
prove that the numerical solutions are indeed accurate.

Stock price Put (y= 0,0625) Article Put (y= 0,25) Article
8 2,0000 (2) 2 2,1968 (2,19) 2,07744
9 1,0149 (1,002) 1,10435 1,5005 (1,49) 1,33192
10 0,2341 (0,217) 0,50755 0,9778 (0,972) 0,79388
11 0,0485 (0,047) 0,20462 0,6244 (0,62) 0,44650
12 0,0182 (0,018) 0,07909 0,4006 (0,398) 0,242170

Table 6.2.7: American put prices obtained
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Chapter 7

Conclusion

The aim of this dissertation was to develop comprehensive algorithms, incorporating
both the Crank-Nicolson implicit finite difference and the PSOR methods, that could
be used to price American put options under both constant andstochastic volatility.
Motivated by the fact that, for constant volatility models,algorithms are very compact
(Seydel 2009, 175) and that no algorithms for stochastic volatility models could be
found, the following detailed algorithms were developed inthis dissertation:

• Constant volatility.
A detailed description of the PSOR algorithm along with an algorithm to find the
current price of an American put can be found on pages 72 - 79.

• Stochastic volatility.
This algorithm can be found on pages 96 - 98. The PSOR method referred to in
this section, follows the same steps as the one described in the constant volatility
section with the only difference being the vector dimensions. When programming
this iterative process, the program can be manipulated to exclude all zero ele-
ments. Also note that the choice of the two initial vectors ofthe PSOR method,
which are not explicitly stated in literature, is covered inthis algorithm. This
algorithm also goes into great detail describing the structure of the tridiagonal
block-matrixA. No evidence of this could be found in literature.

Both models are explained thoroughly, with emphasis placedon equipping the reader
to implement the models and not merely understand the theorybehind it.

The Black-Scholes model’s assumption of constant volatility is not its only drawback.
More concerns are raised when considering the models’ statistical properties. It is often
criticised for not accurately reflecting market behaviour.One of the main concerns is
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that the probability distribution of asset returns has characteristics not taken into con-
sideration by this model. These include heavy tails, skeweddistribution with high peaks
and volatility clustering and cannot be explained by the log-normal assumption that un-
derlies the Black-Scholes model (Salmi & Toivanen 2011, 821). Modern approaches
have been developed to address all of the unsatisfactory elements just mentioned, these
fall into two main categories:

• Stochastic volatility without jumps.

• Stochastic volatility with jumps.

This dissertation only focused on the Heston stochastic volatility model without jumps.
However, both of the above mentioned approaches, perform well only in special cases,
with stochastic volatility models without jumps, offeringmore realistic outcomes in
cases involving long maturity terms (Ballestra & Sgarra 2010, 1571). This has naturally
led to models that incorporate elements of both stochastic volatility and jumps. The
three most popular of these models are (Ballestra & Sgarra 2010, 1572):

• BNS model, introduced by Barndorff-Nielsen and Shephard in 2001.

• Bates model, introduced in 1996.

• Time-changed Levy models, introduced by Carr, Geman and Madan in 2003.

Future research should therefore be based on a model that takes stochastic volatility
with jumps into account.

When considering the option prices, accurate results whereobtained under the con-
stant volatility model and these are summarized in chapter 6.1. Satisfactory results were
obtained under stochastic volatility and the behaviour of solutions support the underly-
ing theoretical principles.

Future research could focus on the refinement of the stochastic volatility model, were
issues such as the boundary conditions and the Crank-Nicolson method itself can be
further investigated.
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Chapter 8

Appendix

8.1 Constant volatility MATLAB code

%MAIN PROGRAM THAT CALLS ALL OTHE SUB−PROGRAMS:
%Am er icanOp t ion k ik i (K, T , r , sigma , type ,m, n ) ;
%FreeBound a ryk i k i ( S , t , V,K, t ype ) ;

%ONLY THIS SECTION NEEDS TO BE EXICUTED

% * Param ete rs*
%
% K : S t r i k e p r i c e .
% T : E xp ie ry t ime ( e x p r e s s e d in y e a r s ) .
% r : Annual ized , c o n t i n u o u s l y compounded r i s k−f r e e r a t e ,
% e x p r e s s e d as a p o s i t i v e dec im a l number .
% sigma : Cons tan t v o l a t i l i t y .
% type : ' put ' o p t i o n s t i p u l a t e d .
% S c u r r e n t : C u r r e n t p r i c e of u n d e r l y i n g s t o c k .
% n : Number of i n t e r v a l s on s t o c k p r i c e a x i s
% ( The number of d i s c r e t e s t o c k v a l u e s i s n +1) .
% m : Number of i n t e r v a l s on t ime a x i s
% ( The number of d i s c r e t e t ime v a l u e s i s m+1) .

% * Numer ica l R e s u l t s*
%
% c u r r e n t o p t i o n v a l u e : P r o v i d e s p r i c e of American pu t o p t i o n .
% E lapsed t ime : Dura t ion of t h e problem s o l v i n g p r o c e s s
% ( t h i s w i l i n c r e a s e as number of nodes a r e
% i n c r e a s d ) .
% Fig . 1 : Opt ion p r i c e vs . S tock p r i c e of both American
% and European o p t i o n s .
% Fig . 2 : Opt ion p r i c e vs . S tock p r i c e of both American
% and European o p t i o n s .
% Fig . 3 : G r a p h i c a l r e p r e s e n t a t i o n of e x e r c i s e boundary
% Stock p r i c e vs . Time .

%=========================================================================
%=========================================================================
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%% Def ine p a r a m e t e r s
t i c
fo rm at long

% F i n a n c i a l p a r a m e t e r s

K = 10 ;
T = 0 . 2 5 ;
r = 0 . 1 ;
sigma = 0 . 4 ;
t ype = ' pu t ' ;
Scurrent = 8 ;

% Numer ica l p a r a m e t e r s

m = 300; %x a x i s
n = 300; %t a x i s

%==========================================================================
%==========================================================================

%% Compute American o p t i o n p r i c e s

[ S , t , V ] = AmericanOption_kiki (K , T , r , sigma , type , m , n ) ;

%==========================================================================
%==========================================================================

%% Compute f r e e boundary

Sf = FreeBoundary_kiki (S , t , V ,K , t ype) ;

%Compute i n d i c e s f o r smooth ing t h e f r e e boundary
%f i n d = r e t u r n s a l l non zero e lem en ts
%d i i f c a l c u l a t e s d i f f e r e n c e between a d j a c e n t e n t r i e s

FreeBoundaryIndices = [ 1 , f i n d ( abs( d i f f ( Sf ) )>1e−5) +1]

%==========================================================================
%==========================================================================

%% Def ine p l o t v a r i a b l e s

%Reduce f i e l d to s t o c k p r i c e s on ly w i th ing range 3*K from 0 .
plotrange = S>=0 & S<=2* K ;

%Vector
%Only v a l u e s w i t h i n p l o t r a n g e
Sp = S ( plotrange )
%Only s v a l u e s f o r p l o t r a n g e , bu t t h e s e v a l u e s over a l l t ime in d i c e s
%Matr ix
Vp = V ( plotrange , : )

%==========================================================================
%==========================================================================

%% Graph of American and European o p t i o n v a l u e s a t t ime t =0 and payo f f

f i g u r e ( ' Co lor ' , ' White ' )
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8.1. CONSTANT VOLATILITY MATLAB CODE

%Compute c o r r e s p o d i n g European o p t i o n v a l u e s
%Using BS too lbox
%Send s t o c k v a l u e s f o r range chosen Sp
%K
%T
%sigma− v o l a t i l i t y
%d e l t a = 0
[ EurCall , EurPut ]= blsprice ( Sp ,K , r , T , sigma ) ;

switch t ype
case ' c a l l '

V_payoff = [0 0 K ] ;
V_euro = EurCall ;
location = ' NorthWest ';

case ' pu t '
V_payoff = [ K 0 0 ] ;
V_euro = EurPut ;
location = ' Nor thE as t ';

end

p l o t ( Sp , Vp ( : , 1 ) , ' b ' ,Sp , V_euro , ' g ' , [ 0 K 2* K ] , V_payoff , ' r ' )
t i t l e ( [ ' American and European ', type , ' o p t i o n ' ] )
l egend( ' American ', ' European ', ' Payo f f ' , ' L oca t ion ' ,location )
g r i d on

x l a b e l ( ' S tock p r i c e ')
y l a b e l ( ' Opt ion p r i c e ')

%==========================================================================
%==========================================================================

%% 3−D p l o t o f o p t i o n v a l u e s v e r s u s s t o c k p r i c e s and t ime

f i g u r e ( ' Co lor ' , ' White ' )

[ t_grid , Sp_grid ]= meshgr id( t , Sp ) ;
s u r f ( Sp_grid , t_grid , Vp , ' L i n e S t y l e ' , ' none ')
t i t l e ( [ ' American ', type , ' o p t i o n ' ] )
x l a b e l ( ' S tock p r i c e ')
y l a b e l ( ' t ime ( y e a r s ) ')
z l a b e l( ' Opt ion p r i c e ')

%==========================================================================
%==========================================================================

%% P l o t f r e e boundary

f i g u r e ( ' Co lor ' , ' White ' )

p l o t ( t ( FreeBoundaryIndices ) ,Sf ( FreeBoundaryIndices ) , ' L ineWidth ' , 2 )
t i t l e ( ' E x e r c i s e boundary ')
g r i d on

x l a b e l ( ' Time ( y e a r s ) ')
y l a b e l ( ' S tock p r i c e ')

switch t ype
case ' c a l l '

location_hold = [ 0 . 1 5 0 . 15 0 . 5 0 . 1 ] ;
location_ex = [ 0 . 5 0 . 8 0 . 5 0 . 1 ] ;

case ' pu t '
location_hold = [ 0 . 1 5 0 . 8 0 . 5 0 . 1 ] ;
location_ex = [ 0 . 5 0 . 15 0 . 5 0 . 1 ] ;

end
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%HEADINGS
annotation ( ' t e x t b o x ' , ' S t r i n g ' ,{ ' Ho ld ing r e g i o n '} , . . .

' FontWeight ', ' bo ld ' , . . .
' Fon tS ize ' , 1 8 , . . .
' FontName ', ' A r i a l ' , . . .
' F i tBoxToText ' , ' o f f ' , . . .
' L i n e S t y l e ' , ' none ' , . . .
' P o s i t i o n ',location_hold ) ;

annotation ( ' t e x t b o x ' , ' S t r i n g ' ,{ ' E x e r c i s e r e g i o n '} , . . .
' FontWeight ', ' bo ld ' , . . .
' Fon tS ize ' , 1 8 , . . .
' FontName ', ' A r i a l ' , . . .
' F i tBoxToText ' , ' o f f ' , . . .
' L i n e S t y l e ' , ' none ' , . . .
' P o s i t i o n ',location_ex ) ;

%==========================================================================
%==========================================================================

%% I n t e r p o l a t i n g o p t i o n v a l u e s to o b t a i n t h e o p t i o n p r i c e c or r e s p o n d i n g to t h e←֓
c u r r e n t s t o c k p r i c e

%At t ime t =0 , o p t i o n v a l u e s in t h e f i r s t column of t h e va lue m at r i x V

%The s t o c k p r i c e range
tt = S ;
%The d i f f e r e n t o p t i o n v a l u e s c o r r e s p o d i n g to s t o c k p r i c e s
pp = V ( : , 1 ) ;

%Compute us ing mat lab s p l i n e i n t e r p o l a t i o n f u n c t i o n
current_option_value = i n t e r p 1( tt , pp , Scurrent , ' s p l i n e ')

%Stop t im ing
t o c

f u n c t i o n [ S , t , V ] = AmericanOption_kiki ( K , T , r , sigma , type ,m , n )

% I n p u t :
%
% K : S t r i k e p r i c e .
% T : E xp ie ry t ime ( e x p r e s s e d in y e a r s ) .
% r : Annual ized , c o n t i n u o u s l y compounded r i s k−f r e e r a t e ,
% e x p r e s s e d as a p o s i t i v e dec im a l number .
% sigma : Cons tan t v o l a t i l i t y .
% type : ' put ' o p t i o n s t i p u l a t e d .
% n : Number of i n t e r v a l s on t ime a x i s
% ( The number of d i s c r e t e t ime v a l u e s i s n +1) .
% m : Number of i n t e r v a l s on s t o c k p r i c e a x i s
% ( The number of d i s c r e t e s t o c k v a l u e s i s m+1) .%
% Output :
%
% S = range of s t o c k p r i c e s
% t = range of t ime p o i n t s from 0 to T
% V = c o r r e s p o n d i n g o p t i o n p r i c e s , i . e .
% V( i , j ) i s an approx im a t i on of V( S ( i ) , t ( j ) )

%==========================================================================
%==========================================================================
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%% Def ine p a r a m e t e r s

%Def ine f r a n s f o r m a t i o n p a r a m e t e r s used to o b t a i n t h e h e a t eq u a t i o n
% q = 2* r / s igma ˆ2
% S = Ke ˆ x
% S min = Keˆ x min
% S max = Keˆ x max
%t a u = 0 . 5 s igma ˆ2T

%Dim ens ion less p a r a m e t e r s
delta = 0 ;
q = 2* r / sigma ˆ 2 ;
q_delta = 2* (r−delta ) / sigma ˆ 2 ;

%Asse t space
x_min = −5;
x_max = 5 ;

%C a l c u l a t e s t e p l e n g t h on x a x i s
dx = ( x_max−x_min ) / m ;

%Time space
tau_max = . 5* sigma ˆ2* T ;

%C a l c u l a t e s t e p l e n g t h on t a u a x i s
dtau = tau_max / n ;

%==========================================================================
%==========================================================================
%HERE WE CAN MANIPULATE NUMERICAL
%Stop c r i t e r i a param en te r .
eps = 1e−6;
%S t i p u l a t e Crank−Nico lson i s used when = 0 . 5 .
theta = 0 . 5 ;
%R e l a x a t i o n param ete r o f SOR
omega_R = 1 . 8 ;

lambda = dtau / dx ˆ 2 ;
alpha = lambda* theta ;

%==========================================================================
%==========================================================================
%Ver i f y s t a b i l i t y c o n d i t i o n .
%When t h e t a< 0 . 5 , then e x p l i c i t method i s chosen and we need to
%t e s t lambda .
i f theta < 0 . 5

i f lambda > 0 . 5
e r r o r ( strcat ( ' The a l g o r i t h m i s u n s t a b l e . S t a b i l i t y can be o b t a i n e d ', . . .

' by i n c r e a s i n g t h e va lue of n or by d e c r e a s i n g t h e va lue of m, th u s by ←֓
chang ing t h e i n t e r v a l l e n g t h s or by chang ing t h e t a to> 0 . 5 and t h u s ←֓
s e l e c t i n g an i m p l i c i t method ') )

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f u n c t i o n boundary = g (x , tau )

%I t i s a l s o used f o r
%t h e boundary and i n i t i a l c o n d i t i o n s .
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abb1 = exp( ( ( q_delta−1) ˆ2+4* q ) * tau / 4 ) ;
abb2 = exp( ( q_delta−1)* x / 2 ) ;
abb3 = exp( ( q_delta +1)* x / 2 ) ;
switch t ype

case ' pu t '
boundary = abb1 . * max( abb2−abb3 , 0 ) ;

case ' c a l l '
boundary = abb1 . * max( abb3−abb2 , 0 ) ;

end
end

%==========================================================================
%==========================================================================

%% I n i t i a l i z a t i o n

%D i s c r e t i z e t ime and space axes
%x i s on t h e v e r t i c a l a x i s
%t a u i s on t h e h o r i z o n t a l a x i s
x = ( x_min : dx : x_max ) ' ;
tau = 0 :dtau : tau_max ;

%For per fo rm ance r e a s o n s we compute one m at r i x w i th a l l t h e gv a l u e s
X = repmat ( x , 1 ,n+1) ;
Y = repmat ( tau , m+1 ,1) ;
G = g ( X , Y ) ;

%Def ine v a l u e s m at r i x w i th , i n i t i a l 0 v a l u e s . ( f o r a l l p o i n ton
%g r i d ) ( d im ens ions (m+1) x ( n +1) )
%D im ens ion less o p t i o n va lue
w = z e r o s( m+1 ,n+1) ;

% C a l c u l a t e bou indary c o n t i t i o n s of g r i d
% i n i t i a l v a l u e s i = = (1 . . m+1)
w ( : , 1 ) = G ( : , 1 ) ;
%Lower boundary
w ( 1 , : ) = G ( 1 , : ) ; %j = 1 . . n+1

%Upper boundary
w ( m + 1 , : ) = G ( end , : ) ; %j = 1 . . n+1

%R i g h t h a n d s i d e i s needed in co re a l g o r i t h m
%I n i t a i l v e c t o r o f z e r o s
%Vector l e n g t h = m−1 = i n t e r n a l unknown p o i n t s
b = z e r o s(m−1 ,1) ;

%SOR i t e r a t i o n v e c t o r needs to be pre−a l l o c a t e d on ly once
%I n i t i a l v e c t o r o f z e r o s = k i e s as beg inpun t
%Vector l e n g t h = m−1 = i n t e r n a l unknown p o i n t s
vnew = z e r o s( m−1 ,1) ;
%
%=========================================================================
%=========================================================================

%% Core a l g o r i t h m
%Whole co re a l g o r i t h m i s r e p e a t f o r :
%j = 2 : n+1 r e s t o f unkown t ime s t e p s
% j = 1 i s kknown i n i t a l c o n d i t i o n
f o r j = 2 :n+1 %TIME AXIS% %f o r t ime s t e p 2 . . . n+1 = taumax = 0 . 5 sogma ˆ2T

%Crea te r i g h t h a n d s i d e b
f o r k = 1 :m−1 %X AXIS %i n t e r n a l p o i n t s

switch k
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%Use known w from e a r l i e r t ime inc rem en t ( j−1) and w( 1 , j ) i s
%known boundary c o n d i t i o n .
case 1

b ( k ) = w ( 2 ,j−1)+lambda * (1−theta ) * ( w ( 1 ,j−1)−2*w ( 2 ,j−1)+w ( 3 ,j−1) ) +alpha←֓
* w ( 1 ,j ) ;

case m−1
b ( k ) = w ( m , j−1)+lambda * (1−theta ) * ( w ( m−1,j−1)−2*w ( m , j−1)+w ( m+1 ,j−1) ) +←֓

alpha* w ( m+1 ,j ) ;
otherwise

b ( k ) = w ( k+1 ,j−1)+lambda* (1−theta ) * ( w ( k ,j−1)−2*w ( k+1 ,j−1)+w ( k+2 ,j−1) )←֓
;

end
end

%I n i t i a l i z e v e c t o r v
%This i s one of t h e e q u a t i o n s of t h e c o n s t r a i n e d m a t r i c n o t a ti o n
%Ass ign v a l u e s to unknown node in g r i d a t a t ime i n t e r v a l and fo r x nodes ( 2 . .m)

v = max( w ( 2 :m ,j−1) ,G ( 2 :m , j ) ) ;

%The v a r i a b l e i t e r i s i n t r o d u c e d to manage t h e SOR i t e r a t i o n
%I t e r a t i o n i s ended by i t e r = 0
%when t h e d e r i s e d degree of convergence has taken p l a c e
iter = 1 ;

%==========================================================================
%==========================================================================
%SOR i t e r a t i o n
%Wi l l remian in wh i le looop t i l l s u f f i c u e n t convergence hastaken p l a c e
wh i le iter == 1

%b l e n g t h = 1 . . . m−1
%v l e n g t h = 1 . . . m−1

f o r k = 1 :m−1%X AXIS %unknown v a l u e s in g r i d a t a s p e c i f i c t ime s t e p
%gauss s e i d e l s t e p
switch k

%g e n e r i c gauss s e i d e l
%y = ( b ( k ) + a lpha* ( vnew ( k−1)+v ( k +1) ) ) / ( 1+2* a lpha ) ;

case 1 % dont ' have ( k−1 = 0 ) vnew ( k−1) = vnew ( 0 ) term
%t h u s a d j u s t e d
y = (b ( k ) +alpha* v ( k+1) ) / ( 1+2* alpha ) ;

case m−1 % dont ' have ( k+1 = m v ( k +1) = vnew (m) term
%t h u s a d j u s t e d
y = (b ( k ) +alpha* vnew (k−1) ) / ( 1+2* alpha ) ;

otherwise

%t h e r e s t
y = (b ( k ) +alpha * ( vnew (k−1)+v ( k+1) ) ) / ( 1+2* alpha ) ;

end

%P r o j e c t e d s o r = makes s u r e i n e q u a t i i l y i n c o n s t r a i n t m at r ix
%q u a t i o n i s met Vj>= g j +1
%vnew ( k ) = max [G( k +1 , j ) , omegaR* ( y ) + (1 − omegaR* ) ( v ( k ) ) ] ;
%Sor uses r e l a x a t i o n param ete r = omegaR
%G( k +1 , j ) = same p o s i t i o n as vnew ( k ) in m at r i x w
vnew ( k ) = max( G ( k+1 ,j ) ,v ( k ) +omega_R * (y−v ( k ) ) ) ;

end

i f norm (v−vnew ) <= eps
iter = 0 ;

e l s e
v = vnew ;

end
end

w ( 2 :m , j ) = vnew ;
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end

%=========================================================================
%=========================================================================
%% T r a n s f o r m a t i o n to o r i g i n a l d im ens ions

S = K* exp( x ) ;
t = T−2* tau / sigma ˆ 2 ;
V = K* exp(− . 5* (q_delta−1)* x ) * exp( − ( .25* ( q_delta−1) ˆ2+q ) * tau ) . * w
%Not ice , Smax i s a t bottom , tmax = a t beg inn ing
%Re−r aagenge to f i t g r a p h i c a l r e p r e s e n t a t i o n

%Re−a r r a n g e t and V in i n c r e a s i n g t ime o r d e r
S

t = f l i p l r ( t )
V = f l i p l r ( V )

end

f u n c t i o n Sf = FreeBoundary_kiki ( S , t ,V , K , t ype)

Sf = z e r o s( 1 , l e n g t h ( t ) ) ;
eps_star = K* 1e−5;

switch t ype
case ' pu t '

f o r j = 1 : l e n g t h ( t )

een = abs( V ( : , j )−K )
twee = abs( V ( : , j )−K+S )
drie = f i n d ( abs( V ( : , j )−K+S )< eps_star , 1 , ' l a s t ')
Sf ( j ) = S ( f i n d ( abs( V ( : , j )−K+S )< eps_star , 1 , ' l a s t ' ) )

end
case ' c a l l '

f o r j = 1 : l e n g t h ( t )
Sf ( j ) = S ( f i n d ( abs( V ( : , j ) +K−S )< eps_star , 1 , ' f i r s t ' ) ) ;

end

end
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8.2 Stochastic volatility MATLAB code

%==========================================================================
t i c
fo rm at long

%==========================================================================
%PROGRAM PAREMETERS
k = 10 ; %o p t i o n s t r i k e p r i c e
T = 0 . 2 5 ; %o p t i o n e x p i e r y d a t e / t ime to e x p i e r y
r = 0 . 1 ; %c u r r e n t c o n s t a n t i n t e r e e s t r a t e
xmax = 15 ; %maximum va lue on x a x i s
ymax = 1 ; %maximum va lue on t h e y a x i s
gamma = 0 . 9 ; %v o l a t i l i t y o f v o l a t i l i t y
cor = 0 . 1 ; %c o r r e l a t i o n c o e f f i c i e n t between two markov p r o c e s s e s
vega = 0 ; %market p r i c e of r i s k
b e t a = 0 . 1 6 ; %long term v a r i a n c e
alpha = 5 ; % r a t e of mean r e v e r s i o n
l = 1 ; %number of i n t e r n a l nodes on t h e t ime a x i s
omega = 1 . 8 ; % f o r PSOR convergence
eps = 0 . 00001 ; %s u f f i c i e n t convergence l i m i t

%c u r r e n t v o l a t i l i t y and s t o c k p r i c e v a l u e s
y_current = 0 . 25
s_current = 10 ;

%==========================================================================
%==========================================================================
%m at r i x AA − MATRIX DIMENSTIONS − x−y a x i s m at r i x − a t one f i x e d t ime
%p e r i o d

m = 2 ; %number of i n t e r n a l nodes on t h e x a x i s
n = 3 ; %number of i n t e r n a l nodes on t h e y a x i s

%==========================================================================
%==========================================================================
%f o r t h a t i n c r e a s e s omega v a l u e s

%s t i p u l a t e s i z a of AA ans amount o f unknown nodes of t h e x a x i s* amount o f
%nodes on t h e y a x i s + 1 a d d i t i o n a l row and column to compensate f o r known
%boundary va lue i n f o r m a t i o n
%unknown v a l u e s a l s o a t b o u n d a r i e s x = xmax and y = ymax
s i z e = (m+1) * ( n+1) ;

AA = z e r o s( s i ze , s i z e) ;

%==========================================================================
%==========================================================================
%GRID DISCRETIZATION

dx = xmax / ( m+1) ;
dy = ymax / ( n+1) ;

%x a x i s v a l u e s
f o r tel = 1 : (m+2)

x ( tel ) = (tel−1)* dx ;
end

x ; %d i s p l a y s t h e x−a x i s v a l u e s a f t e r d i s c r e t i z a t i o n
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%y a x i s v a l u e s
f o r teller = 1 : (n+2)

y ( teller ) = (teller−1)* dy ;
end

y ; %d i s p l a y s t h e y−a x i s v a l u e s a f t e r d i s c r e t i z a t i o n

%boundary c o n d i t i o n s
%x a x i s − y = 0
f o r telx = 1 : (m+2)

bx ( telx ) = max( k−x ( telx ) , 0 ) ;
end

%y a x i s − x = 0
f o r tely = 1 : (n+2)

by ( tely ) = k ;
end

bx ;
by ;

%==========================================================================
%==========================================================================
%t ime d i s c r e t i z a t i o n
dt = T / ( l+1) ;

%t a x i s v a l u e s
f o r teller = 1 : (l+2)

t ( teller ) = (teller−1)* dt ;
end

%d i s p l a y t v a l u e s
t = f l i p l r ( t ) ;

%==========================================================================
%==========================================================================
%d e f i n e a m at r i x c o n t a i n i n g a l l s o l u t i o n s t h a t w i l l be used as d a t a f o r
%graph

solution = z e r o s( ( l+2) * ( n+2) , m+2) ;

%d e f i n e a m at r i x c o n t a i n i n g a l l s o l u t i o n s a t one t ime i n t e r va l
%t h i s w i l l be added to s o l u t i o n m at r i x− a t bottom
oplossing = z e r o s( n+2 , m+2) ;

%v e c t o r t h a t c o n t a i n s s o u t i o n s a t each new t ime inc rem en t uk +1
uu = z e r o s( s i ze , 1 ) ;
%==========================================================================
%==========================================================================

%MATRIX COEFFICIENTS

%a add v a l u e s ( 1 . . . ( m+1)* ( n +1) )
pos = 1 ;
f o r tel = 2 : ( (m ) +2)

f o r teller = 2 : ( (n+1) +1)
inbetween1 = min ( 0 . 5* y ( teller ) * x ( tel ) ˆ2 − cor * gamma* y ( teller ) * x ( tel ) * dx / ( 2* dy←֓

) − r* x ( tel ) * dx / 2 , 0 . 5* y ( teller ) * x ( tel ) ˆ2 − cor* gamma* y ( teller ) * x ( tel ) * dx←֓
/ ( 2* dy ) + r* x ( tel ) * dx / 2 ) ;

add ( pos ) = min ( inbetween1 , 0 ) ;
pos= pos +1;

130



8.2. STOCHASTIC VOLATILITY MATLAB CODE

end
end

add ;

%==========================================================================
%c add v a l u e s ( 1 . . . ( m+1)* ( n +1) )
pos = 1 ;
f o r tel = 2 : ( (m+1) +1)

f o r teller = 2 : ( (n+1) +1)
inbetween2 = min ( 0 . 5* y ( teller ) * x ( tel ) ˆ2 − cor * gamma* y ( teller ) * x ( tel ) * dy / ( 2* dx←֓

) − ( alpha * ( beta−y ( teller ) )−vega* gamma* s q r t ( y ( teller ) ) ) * ( dy / 2 ) , 0 . 5* y (←֓
teller ) * x ( tel ) ˆ2 − cor* gamma* y ( teller ) * x ( tel ) * dy / ( 2* dx ) + ( alpha * ( beta−y (←֓
teller ) )−vega* gamma* s q r t ( y ( teller ) ) ) * ( dy / 2 ) ) ;

cadd ( pos ) = min ( inbetween2 , 0 ) ;
pos= pos +1;

end
end

cadd ;

%==========================================================================
%A − ( 1 . . (m+1)* ( n +1) )
%u i j
pos = 1 ;
f o r tel = 2 : (m+2)

f o r teller = 2 : (n+2)
A ( pos ) = (x ( tel ) ˆ2* y ( teller ) ) / ( dx ˆ 2 ) − ( cor* gamma* x ( tel ) * y ( teller ) ) / ( dx* dy ) − ←֓

2* add ( pos ) / ( dx ˆ 2 ) + y ( teller ) * gammâ 2 / ( dy ˆ 2 ) − 2* cadd ( pos ) / ( dy ˆ 2 ) + r ;
pos = pos + 1 ;

end
end

A ;

%=========================================================================
%B − ( 1 . . (m+1)* ( n +1) )
%u i −1 j
pos = 1 ;
f o r tel = 2 : (m+2)

f o r teller = 2 : (n+2)
B ( pos ) = (−x ( tel ) ˆ2* y ( teller ) ) / ( 2* dx ˆ 2 ) + (cor * gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy←֓

) + add ( pos ) / ( dx ˆ 2 ) + r* x ( tel ) / ( 2* dx ) ;
pos = pos + 1 ;

end
end

B ;

%=========================================================================
%C − ( 1 . . (m+1)* ( n +1) )
%u i +1 j
pos = 1 ;

f o r tel = 2 : (m+2)
f o r teller = 2 : (n+2)

C ( pos ) = (−x ( tel ) ˆ2* y ( teller ) ) / ( 2* dx ˆ 2 ) + (cor * gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy←֓
) + add ( pos ) / ( dx ˆ 2 ) − r* x ( tel ) / ( 2* dx ) ;

pos = pos + 1 ;
end

end

C ;
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%=========================================================================
%D − ( 1 . . (m+1)* ( n +1) )
%u i j −1

pos = 1 ;
f o r tel = 2 : (m+2)

f o r teller = 2 : (n+2)
D ( pos ) = (−gammâ 2* y ( teller ) ) / ( 2* dy ˆ 2 ) + (cor* gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy ) +←֓

cadd ( pos ) / ( dy ˆ 2 ) − ( ( alpha * ( b e t a − y ( teller ) ) ) − vega* gamma* s q r t ( y ( teller ) ) )←֓
/ ( 2* dy ) ;

pos = pos + 1 ;
end

end

D ;

%=========================================================================
%E − ( 1 . . (m+1)* ( n +1) )
%u i j +1
pos = 1 ;

f o r tel = 2 : (m+2)
f o r teller = 2 : (n+2)

E ( pos ) = (−gammâ 2* y ( teller ) ) / ( 2* dy ˆ 2 ) + (cor * gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy )←֓
+ cadd ( pos ) / ( dy ˆ 2 ) + ( (alpha * ( b e t a − y ( teller ) ) ) − vega* gamma* s q r t ( y (←֓

teller ) ) ) / ( 2* dy ) ;
pos = pos + 1 ;

end
end

E ;

%=========================================================================
%F − ( 1 . . (m+1)* ( n +1) )

%u i +1 j +1
pos = 1 ;
f o r tel = 2 : (m+2)

f o r teller = 2 : (n+2)
F ( pos ) = −(cor* gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy ) ;
pos = pos + 1 ;

end
end

F ;

%=========================================================================
%G − ( 1 . . (m+1)* ( n +1) )

%u i −1j−1
pos = 1 ;
f o r tel = 2 : (m+2)

f o r teller = 2 : (n+2)
G ( pos ) = −(cor* gamma* x ( tel ) * y ( teller ) ) / ( 2* dx* dy ) ;
pos = pos + 1 ;

end
end

G ;

%==========================================================================
%==========================================================================
%u 0 = known − v e c t o r o f a l l unknown v a l u e s = known a t t ime t = 0 .
%l e n g h t o f v e c t o r u i s (m+1)* ( n +1)
%used as s t a r t i n g p o i n t to compute a l l f u r t h e r u ( t ime +1) v e ct o r s c o n t a i n i n g
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%unknown v a l u e s
%uses u ( x , y , 0 ) = max ( k−x , 0 )

pos = 2 ;
f o r tel = 1 :n + 1 : (m+1) * ( n+1)
u ( tel : tel* n+1) = bx ( pos ) ;
pos = pos +1;
end

% %c u t u to have on ly v a l u e s of im por tance
u = u ( 1 : ( m+1) * ( n+1) ) ;

%add f i n a l e lem en t t h a t matches known v a l u e s and a d d i t i o n a lrow in
%c o e f f i c i e n t m at r i x AA
%u (m* n +1) = 1 ;

%d i s p l a y i n i t i a l v e c t o r u a t t ime 0
u ;

%==========================================================================
%==========================================================================
%Compile m at r i x AA

%==========================================================================
%main doagonal o f AA− A
f o r tel = 1 : (m+1) * ( n+1)

AA ( tel , tel ) = A ( tel ) ;
end

%==========================================================================
%top c o d i a g o n a l o f AA− E

f o r tel = 1 : (m+1) * ( n+1)
AA ( tel , tel +1) = E ( tel ) ;

end

f o r tel = n+1:n + 1 : (m+1) * ( n+1)
AA ( tel , tel +1) = 0 ;

end

%==========================================================================
%bottom c o d i a g o n a l o f AA− D

f o r tel = 2 : (m+1) * ( n+1)
AA ( tel , tel−1) = D ( tel ) ;

end

f o r tel = n+1:n + 1 : (m+1) * ( n+1)
AA ( tel , tel−1) = D ( tel ) + E ( tel ) ;

end

f o r tel = n+1:n + 1 : (m+1) * ( n+1)
AA ( tel +1 ,tel ) = 0 ;

end
%==========================================================================
%top d i a g o n a l o f AA− c o n t a i n s C and F

f o r tel = 1 : ( (m+1) * (n+1) − ( n+1) )
AA ( tel , tel +(n+1) ) = C ( tel ) ;
AA ( tel , tel +(n+1) +1) = F ( tel ) ;

end

f o r tel = n+1:n + 1 : ( (m+1) * ( n+1)−(n+1) )
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AA ( tel , tel+(n+1) +1) =0;
end

f o r tel = n+1:n + 1 : ( (m+1) * ( n+1)−(n+1) )
AA ( tel , tel+ (n+1)−1) = F ( tel ) ;

end

%==========================================================================
%bottom d i a g o n a l o f AA− c o n t a i n s B , G, C and F

f o r tel = ( ( n+1) +1) : ( (m+1) * ( n+1) − ( n+1) )
AA ( tel , tel−(n+1) ) = B ( tel ) ;
AA ( tel+1 ,tel−(n+1) ) = G ( tel +1) ;

end

f o r tel = 2* (n+1) +1:n + 1 : (m+1) * ( n+1)
AA ( tel , tel−(n+1)−1) = 0 ;

end

%l a s t n rows− bottom d i a g o n a l = B+C

f o r tel = ( ( m+1) * ( n+1)−(n+1) +1) : (m+1) * ( n+1)
AA ( tel , tel − ( n+1) ) = B ( tel ) + C ( tel ) ;
AA ( tel , tel − ( n+1) + 1) = F ( tel ) ;

end

f o r tel = ( ( m+1) * ( n+1)−(n+1) +2) : ( (m+1) * (n+1)−1)
AA ( tel , tel − ( n+1)−1) = G ( tel ) ;

end

f o r tel = ( ( m+1) * ( n+1) − ( n+1) + 1) : ( (m+1) * ( n+1)−1)
AA ( tel + 1 , tel − ( n+1) ) = G ( tel+1) ;

end

AA ( ( m+1) * ( n+1) , (m+1) * ( n+1) − ( n+1) − 1) = F ( m* n ) + G ( m* n ) ;
AA ( ( m+1) * ( n+1) , (m+1) * ( n+1) − ( n+1) + 1) = 0 ;

%s h r i n k AA to be (m* n ) * (m* n )−m at r i x
AA = AA ( 1 : ( m+1) * ( n+1) , 1 : (m+1) * ( n+1) ) ;

%==========================================================================
%==========================================================================

%wi th t ime d i s c r e t i z a t i o n :
%( I + 0 . 5 d e l t a t *AA) uu = ( I − 0 . 5 d e l t a t *AA) u
%where u i s t h e known v e c t o r from p r e v i o u s t ime s t e p and uu i s new unknown
%v e c t o r a t new t ime inc rem en t

I = eye( s i ze , s i z e) ;

%COMPILE MATRICES B AND C
XX = I + 0 . 5* dt* AA %− i n t e x t d e f i n e d as B
YY = I − 0 . 5* dt* AA %− i n t e x t d e f i n e d as C

% %a n a l y t i c a l s o l u t i o n
% ZZ = YY* u ' ;
% uu = XX\ZZ;
u = u ' ;

%Def ine i n i t i a l v e c t o r xo ld to be used in i t e r a t i v e p r o c e s s
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xold = z e r o s( s i ze , 1 ) ;

%i n i t i a l gues to xo ld
%For loops c a l c u l a t e s i n i t i a l xold ' s va lue− us ing t h e c o n s t r a i n t t h a t
%u ( k +1) >= g
%choose xo ld and xnew = g ( x ) = max ( k− x ( ) , 0 )

pos = 2 ;
f o r tel = 1 :n + 1 : (m+1) * ( n+1)
xold ( tel : tel * n+1) = bx ( pos ) ;
pos = pos +1;
end

% %c u t u to have on ly v a l u e s of im por tance
xold = xold ( 1 : ( m+1) * ( n+1) ) ;
xnew = xold ;

%num er i ca l s o l u t i o n
uu = psoramericann ( XX , YY , A , bx , x , s i ze , k , u , m , n , omega , eps, xold , xnew ) ;

%d i s p l a y uu− s o l u t i o n o b t a i n e d a t 1 t ime inc rem en t
uu ;
% %==========================================================================
% %==========================================================================
% %APPLY CONSTRAINT THAT u>=g
teller = 1 ;

%
f o r tel = 1 : (m+1)

%d e v i d e s v e c t o r uu i n t o column m at r i x w i th amount o f rows = n+1
%and columns m+1
constraint ( : , tel ) = uu ( teller : teller +(n+1)−1) ;
teller = teller + n+1;

end

%==========================================================================
%==========================================================================
%pu t v i s u a l l y i n t o g r i d o f v a l u e s− o p l o s s i n g − MATRIX form
%DIMENSION OF o p l o s s i n g = (m+2)* ( n +2)
%we only need to add t h e i n i t i a l boundary v a l u e s a t x = 0 and y = 0

%d i s p l a y as on g r i d
constraint = f l i p u d ( constraint )

%pu t c o n s t r a i n t i n t o i t s p l a c e in o p l o s s i n g
oplossing ( 1 : n+1 , 2 :m+2) = constraint ;

%boundary where x = 0
f o r teller = 1 :n+2

oplossing ( teller , 1 ) = by ( teller ) ;
end

%boundary where y = 0

f o r teller = 2 :m+2
oplossing ( n+2 , teller ) = bx ( teller ) ;

end

%Disp lay b o u d a n r i e s
%y = 0 boundary
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bx ;
%x = 0 boundary
by ;

%p u t t i n g t i h s g r i d i n t o i t s c o r r e c t p o s i t i o n in s o l u t i o n m atr i x
solution ( n+3 :2* ( n+2) , : ) = oplossing

%=========================================================================
%=========================================================================
%d i s p l a y i n i t i a l v e c t o r u a t t ime 0 a l s o as g r i d as j u s t done
%t h i s w i l l be t h e f i r s t p a r t o f t h e m at r i x s o l u t i o n
%which as ment ioend a t t h e s t a r t c o n t a i n s a l l t h e v a l u e s of t he o p t i o n from
%k = 0 . . . . l +1
%or w r i t t e n k = 1 . . . l +2
u ;

teller = 1 ;

f o r tel = 1 : (m+1)
%d e v i d e s v e c t o r u i n t o column m at r i x w i th amount o f rows = n+1
%and columns m+1
umatrix ( : , tel ) = u ( teller : teller+(n+1)−1) ;
teller = teller + n+1;

end

%pu t c o n s t r a i n t i n t o i t s p l a c e in o p l o s s i n g
oplossing ( 1 : n+1 , 2 :m+2) = umatrix ;

%boundary where x = 0
f o r teller = 1 :n+2

oplossing ( teller , 1 ) = by ( teller ) ;
end

%boundary where y = 0

f o r teller = 2 :m+2
oplossing ( n+2 , teller ) = bx ( teller ) ;

end

%p u t t i n g t i h s g r i d i n t o i t s c o r r e c t p o s i t i o n in s o l u t i o n m atr i x
solution ( 1 :n + 2 , : ) = oplossing ;

%=========================================================================
%=========================================================================
%WE NOW HAVE SOLUTION AT TIME 0 AND TIME INTERVAL 1
%which when programmed t r a n s l a t e s to u ( 1 ) and u ( 2 )
%REPEAT FOR TIME STEPS 3 . . . l +2
%t h a t t r a n s l a t e s to f i n d i n g t h e f i n a l p r i c e a t t ime 0

%s e t u 1 = u 0 ( or u ( o ld ) = u ( new ) )
%now new uu va lue f o r t ime 2

%which when programmed t r a n s l a t e s to u ( 3 )
u = uu ;
YY ;

f o r counter = 3 : (l+2)

xold = u ;
xnew = xold ;

%num er i ca l s o l u t i o n
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uu = psoramericann ( XX , YY , A , bx , x , s i ze , k , u , m , n , omega , eps, xold , xnew ) ;

% %==========================================================================
% %==========================================================================
% %APPLY CONSTRAINT THAT u>=g
teller = 1 ;

%
f o r tel = 1 : (m+1)

%d e v i d e s v e c t o r uu i n t o column m at r i x w i th amount o f rows = n+1
%and columns m+1
constraint ( : , tel ) = uu ( teller : teller +(n+1)−1) ;
teller = teller + n+1;

end

%==========================================================================
%==========================================================================

%pu t v i s u a l l y i n t o g r i d o f v a l u e s− o p l o s s i n g − MATRIX form
%DIMENSION OF o p l o s s i n g = (m+2)* ( n +2)
%we only need to add t h e i n i t i a l boundary v a l u e s a t x = 0 and y = 0

%d i s p l a y as on g r i d
constraint = f l i p u d ( constraint ) ;

%pu t c o n s t r a i n t i n t o i t s p l a c e in o p l o s s i n g
oplossing ( 1 : n+1 , 2 :m+2) = constraint ;

%boundary where x = 0
f o r teller = 1 :n+2

oplossing ( teller , 1 ) = by ( teller ) ;
end

%boundary where y = 0

f o r teller = 2 :m+2
oplossing ( n+2 , teller ) = bx ( teller ) ;

end

oplossing ;
%D isp lay b o u d a n r i e s
%y = 0 boundary
bx ;
%x = 0 boundary
by ;

%p u t t i n g t i h s g r i d i n t o i t s c o r r e c t p o s i t i o n in s o l u t i o n m atr i x
solution ( ( counter−1)* ( n+2) +1:counter * ( n+2) , : ) = oplossing ;

%s e t u ( i ) as x ( i +1) and compute new u ( i +1)
u = uu ;

end

%d i s p l a y f i n a l m a t r i x w i th a l l v a l u e s a t a l l t ime v a l u e s− ( 1 . . . l +2)
solution

%
%only i n t e r e s t e d in v a l u e s a t f i n a l u ( l +2)−−−− which c o r r e l a t e s to p r i c i n g
%s o l u t i o n a t t ime 0 of o p t i o n
answer = solution ( ( l+2) * ( n+2) − ( n+1) : ( l+2) * ( n+2) , : )
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answer = f l i p u d ( answer )

%==========================================================================
%==========================================================================
%INTERPOLATE TO FIND CORRECT VALUE IN Y− X GRID

%i s o l a t e rows from answer t h a t r e l a t e to yc u r r e n t
f o r tel = 1 :n+2

i f y_current > y ( tel ) | y_current == y ( tel )
i f y_current < y ( tel +1) | y_current == y ( tel +1)

y_under = tel ;
y_top = tel +1;

end
end

end

y_under ;
y_top ;
y ;
dy ;

y_interval = y_current / dy − ( y_under−1) ;

%i s o l a t e t h e s e two rows form answer
solution1 = answer ( y_under , : ) ;
solution2 = answer ( y_top , : ) ;
%combined
soll = [ solution1 ; solution2 ] ;

%i s o l a t e columns from answer t h a t r e l a t e to sc u r r e n t
f o r tel = 1 :m+2

i f s_current > x ( tel ) | s_current == x ( tel )
i f s_current < x ( tel +1) | s_current == x ( tel +1)

x_under = tel ;
x_top = tel +1;

end
end

end

x_under ;
x_top ;
x ;
dx ;

x_interval = s_current / dx − ( x_under−1) ;

%i s o l a t e t h e s e two columns from s o l l (2 i s o l a t e d rows )
solution1 = soll ( : , x_under ) ;
solution2 = soll ( : , x_top ) ;

%i n t e r p o l a t e two rows to f i n d a p p r o p r i a t e y va lue
final1 = (1−y_interval ) * solution1 ( 1 , 1 ) + y_interval * solution1 ( 2 , 1 ) ;
final2 = (1−y_interval ) * solution2 ( 1 , 1 ) + y_interval * solution2 ( 2 , 1 ) ;
toetsy = (1−y_interval ) * y ( y_under ) + y_interval * y ( y_top )

%i n t e r p o l a t e two f i n a l v a l u e s to f i n d a p p r o p r i a t e x va lue
finalsolution = (1−x_interval ) * final1 + x_interval * final2 ;
toetsx = (1−x_interval ) * x ( x_under ) + x_interval * x ( x_top )

finalsolution

t o c
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f u n c t i o n [ uu ] = psoramericann ( XX , YY ,A , bx , x , s i ze ,k , u , m , n , omega , eps, xold , xnew ) ;

%THE AIM IS TO DO CALCULATIONS − NOT INVOLVING ANY ZEROS c o n t a i n e d in t h e
%c o e f f i c i e n t m at r i x XX

%c r e a t e v e c t o r c o n t a i n i n g a l l t h e payo f f v a l u e s f o r t h e d i f fe r e n t x va lues , g
%t h i s v e c t o r i s used in t h e PSOR s t a g e where we o b t a i n t h e maximum

g = xold ;

%Now t h e i t e r a t i v e p r o c e s s , t h a t converges to t h e t r u e num eri ca l s o l u t i o n
%− deno ted as uu s t a r t s .
%We have t h e f o l l o w i n g XXu( k +1) = YYu( k )
%We have to s o l v e u ( k +1) bu t we have a l r e a d y chosen an i n i t i a lguess xo ld
%We a l s o have u
%Next we have to m u l t i p l y YYu( k ) to w r i t e t h e e q u a t i o n as
%XXu( k +1) = b = Au( k +1)

b = YY* u ;

%=========================================================================
%=========================================================================
%% y
%v e c t o r y c o n t a i n i n g a l l i n t e r m e d i a t e num er i ca l s o l u t i o n s
%r e f e r to s e c t i o n on SOR in t e x t

y = z e r o s( ( n+1) * ( m+1) , 1 ) ;

%i t e r = 1 = t h i s w i l l e n t e r wh i le loop t h a t runs t i l l method converged
iter = 1 ;
res = 0 ;

wh i le iter == 1

%=========================================================================
%only rows 1 . . . n+1
y ( 1 ) = ( 1 /XX ( 1 , 1 ) ) * (b ( 1 ) − xold ( 2 ) * XX ( 1 , 2 ) − xold ( n+2)* XX ( 1 ,n+2) − xold ( n+3)* XX ( 1 ,n←֓

+3) ) ;

xnew ( 1 ) = max( omega * ( y ( 1 ) − xold ( 1 ) ) + xold ( 1 ) , g ( 1 ) ) ;

f o r tel = 2 :n

y ( tel ) = ( 1 /XX ( tel , tel ) ) * ( b ( tel ) − xnew ( tel−1)* XX ( tel , tel−1) − xold ( tel +1)* XX ( tel←֓
, tel +1) − xold ( tel +(n+1) )* XX ( tel , tel +(n+1) ) − xold ( tel +(n+2) ) * XX ( tel , tel +(n←֓
+2) ) ) ;

xnew ( tel ) = max( omega * (y ( tel ) − xold ( tel ) ) + xold ( tel ) , g ( tel ) ) ;

end

y ( n+1) = ( 1 /XX ( n+1 ,n+1) ) * ( b ( n+1) − xnew ( n ) * XX ( n+1 ,n ) − xold ( n+(n+1) )* XX ( n+1 ,n+(n+1) ) ←֓
− xold ( n+(n+2) )* XX ( n+1 ,n+(n+2) ) ) ;

xnew ( n+1) = max( omega * ( y ( n+1) − xold ( n+1) ) + xold ( n+1) , g ( n+1) ) ;
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%=========================================================================
%rows ( n +1) + 1 . . . (m+1)* ( n +1)−(n +1)

y ( ( n+1) +1) = 1 /XX ( n+1+1 ,n+1+1)* ( b ( n+1+1) − xnew ( n+1+1−(n+1) )* XX ( n+1+1 ,1) − xold ( n←֓
+1+2)* XX ( n+1+1 ,n+1+2) − xold ( n+1+(n+2) ) * XX ( n+1+1 ,n+1+(n+2) ) − xold ( n+1+(n+3) )* XX (←֓
n+1+1 ,n+1+(n+3) ) ) ;

xnew ( n+1+1) = max( omega * ( y ( n+2) − xold ( n+1+1) ) + xold ( n+1+1) , g ( n+1+1) ) ;

f o r tel = (n+1) +2 : (m+1) * (n+1)−(n+1)−1

y ( tel ) = ( 1 /XX ( tel , tel ) ) * ( b ( tel ) − xnew ( tel − ( n+2) )* XX ( tel , tel − ( n+2) ) − xnew (←֓
tel − ( n+1) )* XX ( tel ,tel − ( n+1) ) − xnew ( tel−1 ) * XX ( tel ,tel−1) − xold ( tel +1)←֓
* XX ( tel , tel +1) − xold ( tel+n ) * XX ( tel , tel+n ) − xold ( tel+n+1)* XX ( tel ,tel+n+1) −←֓
xold ( tel+n+2)* XX ( tel ,tel+n+2) ) ;

xnew ( tel ) = max( omega * (y ( tel ) − xold ( tel ) ) + xold ( tel ) , g ( tel ) ) ;

end

tel = (m+1) * (n+1)−(n+1) ;

y ( tel ) = ( 1 /XX ( tel , tel ) ) * ( b ( tel ) − xnew ( tel − ( n+2) ) * XX ( tel , tel − ( n+2) ) − xnew ( tel −←֓
( n+1) )* XX ( tel ,tel − ( n+1) ) − xnew ( tel−1 )* XX ( tel ,tel−1) − xold ( tel +1)* XX ( tel ,←֓

tel+1) − xold ( tel+n ) * XX ( tel , tel+n ) − xold ( tel+n+1)* XX ( tel ,tel+n+1) ) ;

xnew ( tel ) = max( omega * ( y ( tel ) − xold ( tel ) ) + xold ( tel ) , g ( tel ) ) ;

%=========================================================================
%rows (m+1)* ( n +1)−(n +1)+ 1 . . . (m+1)* ( n +1)

f o r tel = (m+1) * ( n+1)−(n+1)+ 1 : (m+1) * ( n+1)−1

y ( tel ) = 1 /XX ( tel , tel ) * ( b ( tel ) − xnew ( tel − ( n+2) )* XX ( tel , tel − ( n+2) ) − xnew ( tel←֓
− ( n+1) ) * XX ( tel , tel − ( n+1) ) − xnew ( tel − ( n ) ) * XX ( tel , tel − ( n ) ) − xnew ( tel ←֓
− ( 1 ) ) * XX ( tel , tel − ( 1 ) ) − xold ( tel +1)* XX ( tel , tel +1) ) ;

xnew ( tel ) = max( omega * (y ( tel ) − xold ( tel ) ) + xold ( tel ) , g ( tel ) ) ;

end

tel = (m+1) * (n+1) ;

%l a s t row of v e c t o r y
y ( tel ) = 1 /XX ( tel , tel ) * ( b ( tel ) − xnew ( tel − ( n+2) )* XX ( tel , tel − ( n+2) ) − xnew ( tel − (←֓

n+1) ) * XX ( tel , tel − ( n+1) ) − xnew ( tel − ( n ) ) * XX ( tel , tel − ( n ) ) − xnew ( tel − ( 1 ) ) * ←֓
XX ( tel , tel − ( 1 ) ) ) ;

xnew ( tel ) = max( omega * ( y ( tel ) − xold ( tel ) ) + xold ( tel ) , g ( tel ) ) ;
%

i f norm( xnew−xold )<=eps
iter = 0 ;

e l s e
xold = xnew ;

end

end
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uu = xnew ;
end
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