Lemmens, BasRoelands, MarkWortel, Marten2019-08-162019-08-162019Lemmens, B. et al. 2019. Hilbert and Thompson isometries on cones in JB-algebras. Mathematische Zeitschrift, 292(3-4):1511-1547. [https://doi.org/10.1007/s00209-018-2144-8]0025-58741432-1823 (Online)http://hdl.handle.net/10394/33218https://link.springer.com/article/10.1007/s00209-018-2144-8https://doi.org/10.1007/s00209-018-2144-8Hilbert’s and Thompson’s metric spaces on the interior of cones in JB-algebras are important examples of symmetric Banach-Finsler spaces. In this paper we characterize the Hilbert’s metric isometries on the interiors of cones in JBW-algebras, and the Thompson’s metric isometries on the interiors of cones in JB-algebras. These characterizations generalize work by Bosché on the Hilbert’s and Thompson’s metric isometries on symmetric cones, and work by Hatori and Molnár on the Thompson’s metric isometries on the cone of positive selfadjoint elements in a unital C∗-algebra. To obtain the results we develop a variety of new geometric and Jordan algebraic techniquesenHilbert’s metricThompson’s metricOrder unit spacesJB-algebrasIsometriesSymmetric Banach-Finsler manifoldsHilbert and Thompson isometries on cones in JB-algebrasArticle