• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multivariate and functional covariates and conditional copulas

    Thumbnail
    View/Open
    Multivariate_and_functional.pdf (736.4Kb)
    Date
    2012
    Author
    Gijbels, Irène
    Veraverbeke, Noël
    Omelka, Marek
    Metadata
    Show full item record
    Abstract
    In this paper the interest is to estimate the dependence between two variables conditionally upon a covariate, through copula modelling. In recent literature nonparametric estimators for conditional copula functions in case of a univariate covariate have been proposed. The aim of this paper is to nonparametrically estimate a conditional copula when the covariate takes on values in more complex spaces. We consider multivariate covariates and functional covariates. We establish weak convergence, and bias and variance properties of the proposed nonparametric estimators. We also briefly discuss nonparametric estimation of conditional association measures such as a conditional Kendall’s tau. The case of functional covariates is of particular interest and challenge, both from theoretical as well as practical point of view. For this setting we provide an illustration with a real data example in which the covariates are spectral curves. A simulation study investigating the finite-sample performances of the discussed estimators is provided.
     
    In this paper the interest is to estimate the dependence between two variables conditionally upon a covariate, through copula modelling. In recent literature nonparametric estimators for conditional copula functions in case of a univariate covariate have been proposed. The aim of this paper is to nonparametrically estimate a conditional copula when the covariate takes on values in more complex spaces. We consider multivariate covariates and functional covariates. We establish weak convergence, and bias and variance properties of the proposed nonparametric estimators.We also briefly discuss nonparametric estimation of conditional association measures such as a conditional Kendall’s tau. The case of functional covariates is of particular interest and challenge, both from theoretical as well as practical point of view. For this setting we provide an illustration with a real data example in which the covariates are spectral curves. A simulation study investigating the finite-sample performances of the discussed estimators is provided
     
    URI
    http://hdl.handle.net/10394/9957
    http://dx.doi.org/10.1214/12-EJS712
    https://projecteuclid.org/download/pdfview_1/euclid.ejs/1343310298
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV