• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal fluid analysis of combined power and desalination concepts for a high temperature reactor

    Thumbnail
    View/Open
    Nel_R.pdf (1.267Mb)
    Date
    2011
    Author
    Nel, Ryno
    Metadata
    Show full item record
    Abstract
    South Africa is on a path of dramatically increasing its energy supplying capabilties. Eskom (the main utility supplying electricity to the national grid) recently announced that future power station technologies will focus on renewable energy and nuclear power. This is done in an effort to reduce South Africa’s dependance on burning fossil-fuels and thereby decreasing CO2 emissions and other harmful gases. This, together with the fact that there are a lot of fresh water scarce areas especially along the Eastern Cape coast of South Africa, is what inspired this study. This study investigates the use of a 200 MWth High Temperature Reactor (HTR) for cogeneration purposes. Heat from the reactor is utilised for electricity generation (Rankine cycle) and process heat (desalination). Two desalination concepts were evaluated thermo-dynamically and economically, namely Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Computer software, Engineering Equation Solver (EES), was used to simulate different cycle configurations, where the heat available in the condenser was increased successively. The coupling of the two desalination technologies with a HTR was compared and it was found that a RO plant produces nearly twice as much water while sending the same amount of electricity to the grid (compared to coupling with MED). Coupling options were investigated and each simulation model was optimised to deliver maximum output (power and water). The best configuration was found to be the coupling of a HTR with a RO plant producing 86.56 MW generator power. This is equal to 2077 MWh/day. Using 332 MWh/day for desalination through RO, delivers 73 833 m3/day fresh water and results in 1745 MWh/day sent to the grid. This scenario is the best option from a thermodynamic and economic point of view. From an investment point of view, it will produce an Internal Rate of Return (IRR) of 10.9 percent and the Net Present Value (NPV) is calculated to be R 2,486,958,689. The results and analysis for the different cycle configurations are presented in such a way that an easy comparison can be made.
    URI
    http://hdl.handle.net/10394/8416
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV