Cosmic rays in the inner heliosphere: insights from observations, theory and models
Abstract
The global modulation of galactic cosmic rays in the inner heliosphere is determined by four major mechanisms: convection, diffusion, particle drifts (gradient, curvature and current sheet drifts), and adiabatic energy losses. When these processes combine to produce modulation, the complexity increases significantly especially when one wants to describe how they evolve spatially in all three dimensions throughout the heliosphere, and with time, as a function of solar activity over at least 22 years. In this context also the global structure and features of the solar wind, the heliospheric magnetic field, the wavy current sheet, and of the heliosphere and its interface with the interstellar medium, play important roles. Space missions have contributed significantly to our knowledge during the past decade. In the inner heliosphere, Ulysses and several other missions have contributed to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated theories and numerical models to explain these observations, and to understand the underlying physics that determines galactic cosmic ray modulation at Earth. An overview is given of some of the observational and modeling highlights over the past decade.