• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Host suitability of selected South African maize genotypes to the root-knot nematode species Meloidogyne incognita race 2 and Meloidogynejavanica: a preliminary study

    Thumbnail
    View/Open
    Hostsuitability plantsoileie.pdf (382.1Kb)
    Date
    2011
    Author
    Fourie, Hendrika
    Ngobeni, G.L.
    McDonald, Alexander Henrique
    Mashela, P.W.
    Metadata
    Show full item record
    Abstract
    Thirty-one commercial maize (Zea mays L.) hybrids and open-pollinated varieties (OPV's) were screened in separate greenhouse trials with a resistant inbred line MP712W as reference genotype for host suitability to Meloidogyne incognita race 2 and Meloidogyne javanica. Approximately 10 000 eggs and second-stage juveniles (J2) of the appropriate root-knot nematode species were inoculated on roots of each maize seedling 10 days after plant emergence. The numbers of eggs and J2 per root system were counted, while it was also calculated g-1 root. In addition, percentage resistance in relation to the most susceptible genotype and nematode reproduction factors (Rf) were calculated for the maize genotypes screened. Substantial variation existed among the maize hybrids and OPV's with regard to the nematode parameters evaluated. A number of genotypes could be regarded as highly resistant to M. incognita race 2 based on the fact that they supported less than 10% of the population of this root-knot nematode species, compared to that supported by the most susceptible genotype. Several hybrids and OPV's were identified with Rf values less than one for M. incognita race 2 and M. javanica respectively, indicating antibiosis resistance to these parasites. Screenings of maize genotypes in this study have provided a clear indication of the genetic variability within the maize genome, also with regard to susceptibility of the crop to root-knot nematodes. This substantiates the fact that maize could not be regarded as a non-host to root-knot nematodes on a generic basis, particularly in terms of commercial hybrids. It is suggested that commercial maize hybrids are screened on a continuous basis against root-knot nematodes, which would facilitate selection of hybrids that are less susceptible to both nematode species but that would perform optimally in soils conducive to root-knot-nematode infestation.
    URI
    http://hdl.handle.net/10394/7934
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV