• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating leakage and bypass flows in an HTR using a CFD methodology

    Thumbnail
    Date
    2011
    Author
    Kleingeld, Marius
    Janse van Rensburg, Jacobus Johannes
    Metadata
    Show full item record
    Abstract
    An area that has been identified as significantly important in the development of a high temperature reactor (HTR) is the prediction of leakage and bypass flows. It is therefore essential to understand the influence of leakage and bypass flows on the thermal performance of an HTR. A methodology was developed to conduct an integral thermal analysis of a reactor using a CFD approach. One of the main objectives was to include leakage and bypass flow paths in order to provide a capability for simulating these very detailed flows. This paper investigates leakage and bypass flows through the PBMR reactor unit. It was found that, although these flows are dependent on the pressure drop through the pebble bed, a change in pebble bed pressure drop does not result in a similar change in the predicted leakages flows. It is also shown that the ability to account for leakage and bypass flows in an integral manner can help designers to focus their efforts on the specific regions that need to be targeted for the improvement of the life expectancy of the graphite blocks. Furthermore, leakage and bypass flows were found to reduce the pressure drop across the reactor unit while increasing the peak fuel temperatures.
    URI
    http://hdl.handle.net/10394/7762
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV