• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of beryllium reflector ageing on Safari–1 reactor core parameters

    Thumbnail
    View/Open
    Moloko_LE.pdf (4.831Mb)
    Date
    2011
    Author
    Moloko, Lesego Ernest
    Metadata
    Show full item record
    Abstract
    The build–up of 6Li and 3He, that is, the strong thermal neutron absorbers or the so called "neutron poisons", in the beryllium reflector changes the physical characteristics of the reactor, such as reactivity, neutron spectra, neutron flux level, power distribution, etc.; furthermore,gaseous isotopes such as 3H and 4He induce swelling and embrittlement of the reflector. The SAFARI–1 research reactor, operated by Necsa at Pelindaba in South Africa, uses a beryllium reflector on three sides of the core, consisting of 19 beryllium reflector elements in total. This MTR went critical in 1965, and the original beryllium reflectors are still used. The individual neutron irradiation history of each beryllium reflector element, as well as the impact of beryllium poisoning on reactor parameters, were never well known nor investigated before. Furthermore, in the OSCAR{3 code system used in predictive neutronic calculations for SAFARI–1, beryllium reflector burn–up is not accounted for; OSCAR models the beryllium reflector as a non–burnable, 100% pure material. As a result, the poisoning phenomenon is not accounted for. Furthermore, the criteria and hence the optimum replacement time of the reflector has never been developed. This study presents detailed calculations, using MCNP, FISPACT and the OSCAR{3 code system, to quantify the influence of impurities that were originally present in the fresh beryllium reflector, the beryllium reflector poisoning phenomenon, and further goes on to propose the reflector's replacement criteria based on the calculated fluence and predicted swelling. Comparisons to experimental low power flux measurements and effects of safety parameters are also established. The study concludes that, to improve the accuracy and reliability of the predictive OSCAR code calculations, beryllium re flector burn–up should undoubtedly be incorporated in the next releases of OSCAR. Based on this study, the inclusion of the beryllium reflector burn–up chains is planned for implementation in the currently tested OSCAR–4 code system. In addition to beryllium reflector poisoning, the replacement criteria of the reflector is developed. It is however crucial that experimental measurements on the contents of 3H and 4He be conducted and thus swelling of the reflector be quantifed. In this way the calculated results could be verified and a sound replacement criteria be developed. In the absence of experimental measurements on the beryllium reflector, the analysis and quantifcation of the calculated results is reserved for future studies.
    URI
    http://hdl.handle.net/10394/6930
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV