Show simple item record

dc.contributor.advisorKrueger, D.L.W.
dc.contributor.authorVan Wyk, Marius
dc.date.accessioned2009-02-11T13:40:11Z
dc.date.available2009-02-11T13:40:11Z
dc.date.issued2004
dc.identifier.urihttp://hdl.handle.net/10394/543
dc.descriptionThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2005.
dc.description.abstractAs a result of manufacturing and temperature constraints of the reactor core components, leakage flow is an inevitable, and generally undesirable, occurrence within the PBMR reactor. Leakage flow occurs between the narrow gaps of the graphite blocks within the Core Structures as a result of the large pressure gradient over the pebble bed. The PBMR utilizes computational fluid dynamics (CFD) codes for the simulation of flow and heat transfer through the reactor. Due to hardware limitations, it is not yet possible to model the leakage paths between the graphite blocks of the reactor CFD model in detail since, in some locations the leakage paths are in the order of 175-micron in width and would require a very fine mesh structure. It is therefore required to simplify some of the more complex leakage flow paths with the use of a porous medium sub-model. In order to calibrate the porous medium sub-model to produce similar flow resistance as the detail leakage path, it is necessary to separately model the complex leakage path in detail, using CFD to determine the actual flow resistance characteristics as function of leak flow rate and helium density. There was a wide spread in the calculated Reynolds numbers throughout the flow path of the detail leakage paths, and it was uncertain whether the leakage flow was laminar, in the transition zone or turbulent. This raised uncertainty with regards to the accuracy of the CFD models of the detail leakage paths. An experiment was devised that contained all the flow phenomena of the actual detail leakage paths within the reactor, and was used to validate the numerical CFD modelling of the helium flow through the side reflector leakage paths. Three leakage gap sizes, 175, 280 and 380-micron were experimentally tested. The experiments were simulated with CFD and it was found that there was a good correlation between the laminar CFD results in both the 175 and 280-micron gap sizes. It was finally concluded that the detail leakage path CFD models were correctly modelled as laminar.
dc.publisherNorth-West University
dc.titleVerification of leakage through the side reflector graphite of the PBMR reactoren
dc.typeThesisen
dc.description.thesistypeMasters


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record