Show simple item record

dc.contributor.authorChiuta, Stevenen_US
dc.date.accessioned2011-10-03T07:55:43Z
dc.date.available2011-10-03T07:55:43Z
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/10394/4840
dc.descriptionThesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
dc.description.abstractThe production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This corresponds to inefficient carbon conversion, a problem growing in importance particularly given the limited lifespan of coal reserves. These simultaneous challenges of environmental sustainability and energy security associated with CTL facilities have been defined in earlier studies. To reduce the environmental impact and improve the carbon conversion of existing CTL facilities, this paper proposes the concept of a nuclear–assisted CTL plant where a hybrid sulphur (HyS) plant powered by 10 modules of the high temperature nuclear reactor (HTR) splits water to produce hydrogen (nuclear hydrogen) and oxygen, which are in turn utilised in the CTL plant. A synthesis gas (syngas) plant mass–analysis model described in this paper demonstrates that the water–gas shift (WGS) and combustion reactions occurring in hypothetical gasifiers contribute 67% and 33% to the CO2 emissions, respectively. The nuclear–assisted CTL plant concept that we have developed is entirely based on the elimination of the WGS reaction, and the consequent benefits are investigated. In this kind of plant, the nuclear hydrogen is mixed with the outlet stream of the Rectisol unit and the oxygen forms part of the feed to the gasifier. The significant potential benefits include a 75% reduction in CO2 emissions, a 40% reduction in the coal requirement for the gasification plant and a 50% reduction in installed syngas plant costs, all to achieve the same syngas output. In addition, we have developed a financial model for use as a strategic decision analysis (SDA) tool that compares the relative syngas manufacturing costs for conventional and nuclear–assisted syngas plants. Our model predicts that syngas manufactured in the nuclear–assisted CTL plant would cost 21% more than that produced in the conventional CTL plant when the average cost of producing nuclear hydrogen is US$3/kg H2. The model also evaluates the cost of CO2 avoided as $58/t CO2. Sensitivity analyses performed on the costing model reveal, however, that the cost of CO2 avoided is zero at a hydrogen production cost of US$2/kg H2 or at a delivered coal cost of US$128/t coal. The economic advantages of the nuclear–assisted plant are lost above the threshold cost of $100/t CO2. However, the cost of CO2 avoided in our model works out to below this threshold for the range of critical assumptions considered in the sensitivity analyses. Consequently, this paper demonstrates the practicality, feasibility and economic attractiveness of the nuclear–assisted CTL plant.en_US
dc.publisherNorth-West University
dc.subjectSynthesis gasen_US
dc.subjectNuclear hydrogenen_US
dc.subjectHigh temperature nuclear reactor (HTR)en_US
dc.subjectCoal gasificationen_US
dc.subjectCarbon dioxideen_US
dc.subjectEconomicsen_US
dc.titleThe potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facilityen
dc.typeThesisen_US
dc.description.thesistypeMastersen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record