• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Load shift through optimal control of complex underground rock winders

    Thumbnail
    View/Open
    buthelezi_ma.pdf (4.307Mb)
    Date
    2009
    Author
    Buthelezi, Mzwandile Arthur
    Metadata
    Show full item record
    Abstract
    South Africa's national power utility, Eskom, initiated a Demand Side Management (DSM) drive to help alleviate the electricity supply shortage experienced in South Africa. The focus of this study is on a load-shifting intervention applied in the mining environment. Load shifting is an appealing way of reducing peak demand. The mining sector is one of the largest consumers of electricity in South Africa. The application of DSM in this sector has the potential of yielding significant electrical load shifting. Firstly, this helps Eskom because they are struggling to keep up their supply. Secondly, the mines also benefit because electrical load is shifted to less expensive off-peak times. Electricity cost as a percentage of the total cost of mining output is bound to increase considerably the next few years. An investigation was conducted into the potential of performing load shifting on complex underground rock winders the mining sector. This involved a thorough study on existing load-shifting applications on rock winder systems. Simulations were performed on rock winder systems in their different configurations at deep-level gold mines. The simulation results indicated that there was potential for the application of load shifting. Tau Tona was selected as a case study. This decision was based on simulations to establish which of the initially identified mines would be the best candidate for load shifting. Tau Tona has a complex underground rock winder system. Multiple rock winders feeding each other are used in a cascaded configuration. A potential load shifting target of 3' MW in the evening peak period was determined by means of simulation. The rock winder system was sequentially automated. An average evening peak demand load shift of 1 MW (or 4,2 MWh) was achieved. This translates to an average annual cost saving of R 240 000. If the load-shifting target of 3 MW could be obtained, the annual cost savings would increase by 30% to R 343 000. A study was also conducted on the feasibility of implementing maximum demand monitoring and control. Rock winders could be used in future to prevent the mines from exceeding their maximum demand. This is because rock winders consume very large amounts of electricity and can be stopped and restarted very quickly. Huge financial obligations can be prevented by making sure that the mines do not exceed their negotiated maximum demand. The necessary - and costly infrastructure to do this could not be procured during this study.
    URI
    http://hdl.handle.net/10394/4702
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV