• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Economic and Management Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Economic and Management Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Developing a framework for managing compressed air in the Platinum Group Metal Mining Industry in South Africa

    Thumbnail
    View/Open
    Groenwald_HJ.pdf (7.380Mb)
    Date
    2020
    Author
    Groenewald, H.J.
    Metadata
    Show full item record
    Abstract
    South Africa is home to the Bushveld Igneous Complex, the largest known platinum group metal (PGM) resource in the world, which makes South Africa the top global PGM-producing country. Unfortunately, the sustainability of the PGM mining industry in South Africa is under threat as a result of rapidly escalating costs, such as electricity and labour, in combination with a low platinum price. PGM mining is an electricity intensive endeavour. The PGM mining industry in South Africa depends on Eskom, the parastatal electricity utility, for most of its electricity supply. This dependence is problematic because Eskom’s electricity tariffs have increased annually for more than a decade at a rate significantly higher than inflation. This trend of above-inflation electricity price increases is likely to continue in future due to Eskom’s ongoing financial problems. The PGM mining industry is therefore forced to implement measures to reduce electricity consumption. The biggest electricity consumer on deep-level PGM mines is the generation of compressed air. Compressed air is used for various purposes in PGM mines and its availability is critical to prevent interruptions in the production process. Managing compressed air is important to ensure that the costs of generating compressed air and maintaining compressed air infrastructure are minimised. The primary objective of this study was developing a framework for managing compressed air in the PGM mining sector. Two secondary objectives were also established, namely: i) developing a strategic guideline for improving and maintaining energy efficiency on compressors, and ii) developing a strategic guideline for monitoring and preventing the occurrence of events that result in increased compressor maintenance costs. In order to achieve the objectives of the study, qualitative research was conducted through semi-structured interviews with nine experienced senior managers who manage compressed air in the PGM mining industry. The results of the qualitative research were presented in the form of six themes that were identified in the data through computer-assisted qualitative data analysis. The qualitative results were supported by quantitative results showing that a 15% saving in compressed air generation costs could be achieved by applying measures to improve energy efficiency on compressed air networks. A framework for managing compressed air in the PGM mining sector was developed based on the quantitative and qualitative results. The framework consists of focus areas, priorities and action steps for managing compressed air in the PGM mining sector in terms of improving/maintaining energy efficiency and the monitoring/prevention of events that result in increased maintenance costs.
    URI
    https://orcid.org/0000-0001-8610-043X
    http://hdl.handle.net/10394/35886
    Collections
    • Economic and Management Sciences [4593]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV