• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of rainfall amount and timing on annual transpiration in grazed savanna grassland

    Thumbnail
    View/Open
    The_effect_of_rainfall.pdf (1.293Mb)
    Date
    2020
    Author
    Räsänen, Matti
    Beukes, Johan P.
    Van Zyl, Pieter G.
    Josipovic, Miroslav
    Siebert, Stefan J.
    Laakso, Lauri
    Metadata
    Show full item record
    Abstract
    The role of precipitation (P) variability on evapotranspiration (ET) and its two components transpiration (T) and evaporation (E) rates from savannas continues to draw significant research interest given its relevance to a number of eco-hydrological applications. The work here reports on six years of measured ET and energy flux components, and estimated T from a grazed savanna grassland collected at a research site situated in Welgegund, South Africa. During this period, annual P varied considerably in amount (421 mm to 614 mm), rainy season length and precipitation intensity. T was estimated using annual water use efficiency and gross primary production determined from eddy-covariance measurements of net ecosystem CO2 exchange rates. The computed annual T was highly constrained to 352 ± 8 mm (T/ET = 0.55) for four wet years when rainfall was near or above the long-term mean. This is explained by the near constant annual tree transpiration and moderate water stress of C4 grasses during these years. In a drought year with intermittent rainfall, the annual ecosystem T was reduced due to grass dieback-regrowth that alters the temporal dynamics of bare soil cover and infiltration, and complicates monthly T/ET relation to leaf-area index (LAI). However, annual ET remains approximately equal to annual precipitation (P) even during the drought year due to increased soil evaporation. Indeed, at annual scales, ET ≈ P and annual T is conservative despite variation in amount and timing in rainfall, due to constant water use of mature trees, and the ability of C4 grasses to maintain transpiration at moderate water stress and effectively use pulsed rainfall
    URI
    http://hdl.handle.net/10394/35729
    https://hess.copernicus.org/preprints/hess-2019-651/hess-2019-651.pdf
    https://doi.org/10.5194/hess-2019-651
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV