• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterizing light-absorbing aerosols in a low-income settlement in South Africa

    Thumbnail
    View/Open
    Characterizing_light_absorbing.pdf (1.473Mb)
    Date
    2020
    Author
    Xulu, Nopasika A.
    Piketh, Stuart J.
    Garland, Rebecca M.
    Feig, Gregor T.
    Lack, Daniel A.
    Metadata
    Show full item record
    Abstract
    Light‑absorbing aerosols, particularly black carbon (BC), have significant impacts on human health and the climate. They are also the least‑studied fraction of atmospheric particles, particularly in residential areas of southern Africa. The optical characteristics of ground‑based light‑absorbing aerosols from Kwadela Township in South Africa are investigated in this study. Daily averaged ambient PM2.5 highest levels were 51.39 µg m‑3 and 32.18 µg m‑3, whereas hourly averages peaked at 61.31 µg m‑3 and 34.69 µg m‑3 during winter and summer, respectively. Levels of daily averaged light–absorbing aerosols were 2.9 times higher (1.89 ± 0.5 μg m‑3) in winter 2014 than in summer 2015 (0.66 ± 0.2 μg m‑3). In both seasons, hourly averaged levels showed bimodal diurnal cycles, which correlated with the PM2.5 diurnal patterns that indicated distinct peaks in the morning and evening. These diurnal cycle peak periods corresponded with the times of increased solid domestic fuel usage, road traffic, and also shallower boundary layer. On average, light‑absorbing aerosols contributed a larger proportion of total ambient PM2.5 levels in winter (6.5 ± 1.0 %) than in summer (3.4 ± 1.0 %). The winter average Absorption Ångstrӧm exponent AAE(370/880 nm) (1.7± 0.5), indicated the dominance of brown carbon (BrC) from biofuel/biomass burning and/or low‑quality coal combustion emissions. In summer, the average AAE(370/950 nm) (1.3 ± 0.7), suggested the presence of BC and BrC in the mornings and evenings possibly from fossil fuel combustion sources. At midday and at night in summer, the AAE was close to 1, suggesting more BC contributions from sources such as diesel emissions during this time. A combination of BC and BrC particulates dominated on 50 % and 5 % of the summer days, respectively, whereas fresh BC were only measured in summer days (23 %). Residential solid‑fuel and/biomass combustion are important sources of light‑absorbing aerosols in this study region, with concomitant human health and environmental impacts
    URI
    http://hdl.handle.net/10394/35556
    https://aaqr.org/articles/aaqr-19-09-opaa-0443
    https://doi.org/10.4209/aaqr.2019.09.0443
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV