Show simple item record

dc.contributor.advisorMarkgraaf, J.
dc.contributor.advisorKolwanikoc, A.
dc.contributor.authorGorlach, Igor Alexandrowich
dc.date.accessioned2009-02-04T09:22:57Z
dc.date.available2009-02-04T09:22:57Z
dc.date.issued2004
dc.identifier.urihttp://hdl.handle.net/10394/352
dc.descriptionThesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
dc.description.abstractIn the last few years a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet to propel abrasive particles. The thermo-abrasive blasting gun, also called a thermal gun, is based on the principles of High Velocity Air Fuel (HVAF) processes. Nozzles used for thermo-abrasive blasting are subjected to thermal loading, wear and mechanical stresses. Therefore, the nozzle geometry and materials are critical for reliable performance of a thermo-abrasive system. In this investigation, the thermal stresses developed in the nozzle materials for thermo-abrasive blasting were analysed. The analytical and the computational models of the thermo-abrasive gun and the nozzle were developed. The computational fluid dynamics, thermal and structural finite element analyses have been employed in this study. The nozzle materials investigated were tungsten carbide, hot pressed silicon carbide, nitride-bonded cast silicon carbide and SIALON. The simulation and experimental results show that the highest thermal stresses occur during the first two minutes from the start of the thermal gun. However, thermal stresses are also high after the system is shut off. The nozzle geometry was optimised, which provided high cleaning rates with evidence of improved thermal loading, based on the experimental results. A new design of the thermal gun and the ignition method associated with a HVAF system were developed in this study. It is also concluded that the computation fluid dynamic and the finite element technique can be used to optimise the design of thermo-abrasive blasting nozzles.
dc.publisherNorth-West University
dc.subjectHVAFen
dc.subjectNozzleen
dc.subjectThermal stressesen
dc.titleThermal stress evaluation of thermo-blast jet nozzle materialsen
dc.typeThesisen
dc.description.thesistypeDoctoral


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record