On the effects of dynamical turbulence on the perpendicular diffusion of low-energy cosmic ray electrons
Abstract
Diffusion perpendicular to the heliospheric magnetic field plays an integral role in the transport of charged particles in the heliosphere. In this study the perpendicular diffusion coefficient of low-energy cosmic ray electrons is calculated, using an equation derived from the random ballistic decorrelation interpretation of nonlinear guiding centre theory. An observationally motivated 2D turbulence power spectrum is assumed and the effects of various turbulence inputs on the resulting perpendicular diffusion coefficient are investigated. The perpendicular diffusion coefficients are first determined at 1 AU, for both magnetostatic and dynamical turbulence conditions. These solutions are also evaluated for radial distances of 0.1 AU to 10 AU to further investigate the values of the perpendicular diffusion coefficients in the very inner heliosphere. The results of this study show that the dissipation range of the turbulence power spectrum provides a negligible contribution towards the perpendicular diffusion coefficient, and that solutions derived using only the energy containing range serve as good approximations for solutions derived assuming the full 2D turbulence power spectrum. Finally, it is shown that the effects of dynamical turbulence, as considered in the present study, do not affect the perpendicular diffusion coefficients derived from the scattering theory considered here
URI
http://hdl.handle.net/10394/34327https://www.sciencedirect.com/science/article/pii/S0273117720300740
https://doi.org/10.1016/j.asr.2020.01.040