• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydrothermal synthesis, characterization and adsorption testing of MoS2-Zeolite for the removal of lead in an aqueous solution

    Thumbnail
    View/Open
    Hydrothermal_synthesis.pdf (1.041Mb)
    Date
    2018
    Author
    Fosso-Kankeu, Elvis
    Spiro, Martin
    Waanders, Frans
    Kumar, Neeraj
    Ray, Suprakas Sinha
    Metadata
    Show full item record
    Abstract
    The shortage of water can be worsened by the pollution of limited water resources by industrial activities such as mining which contribute to significant level of toxic heavy metals in the environments. Heavy metals such as lead could negatively affect the health of consumers ingesting contaminated water and must therefore be removed from existing water sources to ensure that these sources can be used effectively and safely. In this study the potential of zeolite (clinoptilolite) and molybdenum sulfide as effective adsorbents and lead-selective adsorbent, respectively was considered for the hydrothermal synthesis of MoS2 -Zeolite composite for effective removal of lead from aqueous solution. The synthesized composite and the parent compounds were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transformed infrared spectroscopy (FTIR). The results confirmed the properties of the adsorbents as well the successful synthesis of the composite. The adsorbents were used for the removal lead from solution while assessing the effect of adsorbent dosage and initial concentration of lead on the adsorption performance. It was found that clinoptilolite, MoS2 and MoS2 -zeolite exhibited adsorption capacities of 3.45, 4.1 and 1.2 mg/g, respectively; indicating that MoS2 was the superior adsorbent. This implies that for metal contaminated solutions, MoS2 will be the ideal adsorbent for the removal of lead
    URI
    http://hdl.handle.net/10394/34206
    https://www.eares.org/siteadmin/upload/2115EAP1118243.pdf
    https://doi.org/10.17758/EARES4.EAP1118243
    Collections
    • Conference Papers - Potchefstroom Campus [713]
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV