• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-wavelength variability signatures of relativistic shocks in blazar jets

    Thumbnail
    View/Open
    Multi_wavelength_ variability.pdf (2.289Mb)
    Date
    2019
    Author
    Böttcher, Markus
    Baring, Matthew G.
    Metadata
    Show full item record
    Abstract
    Mildly relativistic shocks that are embedded in colliding magnetohydrodynamic flows are prime sites for relativistic particle acceleration and the production of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars and gamma-ray bursts. The principal energization mechanisms at these shocks are diffusive shock acceleration and shock drift acceleration. In recent work, we had self-consistently coupled shock acceleration and radiation transfer simulations in blazar jets in a basic one-zone scenario. These one-zone models revealed that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of the hydromagnetic turbulence in the shock layer. In this paper, we expand our previous work by including full time dependence and treating two zones, one being the site of acceleration and the other a larger emission zone. This construction is applied to multi-wavelength flares of the flat-spectrum radio quasar (FSRQ) 3C 279, fitting snapshot SEDs and generating light curves that are consistent with observed variability timescales. We also present a generic study for the typical flaring behavior of the BL Lac object Mrk 501. The model predicts correlated variability across all wavebands, but cross-band time lags depending on the type of blazar (FSRQ versus BL Lac), as well as distinctive spectral hysteresis patterns in all wavelength bands, from millimeter radio waves to gamma-rays. These evolutionary signatures serve to provide diagnostics on the competition between acceleration and radiative cooling
    URI
    http://hdl.handle.net/10394/34008
    https://iopscience.iop.org/article/10.3847/1538-4357/ab552a
    https://doi.org/10.3847/1538-4357/ab552a
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV