• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Growth and neurite stimulating effects of the neonicotinoid pesticide clothianidin on human neuroblastoma SH-SY5Y cells

    Thumbnail
    Date
    2019
    Author
    Hirano, Tetsushi
    Ikenaka, Yoshinori
    Minagawa, Satsuki
    Furusawa, Yukihiro
    Yunoki, Tatsuya
    Metadata
    Show full item record
    Abstract
    Neonicotinoids are one of most widely used pesticides targeting nicotinic acetylcholine receptors (nAChRs) of insects. Recent epidemiological evidence revealed increasing amounts of neonicotinoids detected in human samples, raising the critical question of whether neonicotinoids affect human health. We investigated the effects of a neonicotinoid pesticide clothianidin (CTD) on human neuroblastoma SH-SY5Y cells as in vitro models of human neuronal cells. Cellular and functional effects of micromolar doses of CTD were evaluated by changes in cell growth, intracellular signaling activities and gene expression profiles. We examined further the effects of CTD on neuronal differentiation by measuring neurite outgrowth. Exposure to CTD (1–100 μM) significantly increased the number of cells within 24 h of culture. The nAChRs antagonists, mecamylamine and SR16584, inhibited this effect, suggesting human α3β4 nAChRs could be targets of neonicotinoids. We observed a transient intracellular calcium influx and increased phosphorylation of extracellular signal-regulated kinase 1/2 shortly after exposure to CTD. Transcriptome analysis revealed that CTD down-regulated genes involved in neuronal function (e.g., formation of filopodia and calcium ion influx) and morphology (e.g., axon guidance signaling and cytoskeleton signaling); these changes were reflected by a finding of increased neurite length during neuronal differentiation. These findings provide novel insight into the potential risks of neonicotinoids to the human nervous system
    URI
    http://hdl.handle.net/10394/33528
    https://www.sciencedirect.com/science/article/pii/S0041008X19303850
    https://doi.org/10.1016/j.taap.2019.114777
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV