• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DFT modelling of tantalum pentafluoride extraction with phosphorus-based extractants – a molecular dynamics study

    Thumbnail
    Date
    2019
    Author
    Ungerer, M.J.
    Van Sittert, C.G.C.E.
    Van der Westhuizen, D.J.
    Krieg, H.M.
    Metadata
    Show full item record
    Abstract
    Solvent extraction (SX) is a powerful method for both the separation and extraction of metals, resulting in high purity metals. The transition metals tantalum (Ta) and niobium (Nb) are of considerable significance, for example in the nuclear energy sector, where Nb is used as a cladding material and Ta in high-temperature, oxidation-resistant alloys, capacitors, and specialised materials. For these applications, the metals are needed in high purity. In recent studies, various Ta species that could be present during SX have been identified, including TaF5, TaF5·H2O, TaF4OH, TaF4·HSO4, and TaF3OH·HSO4. In an attempt to understand how extraction occurs, molecular dynamics simulations have been utilised, whereby each species was simulated in a 3D periodic box. The stoichiometry of each system was determined from previous experimental (SX) conditions, and each species was investigated in 4 m and 10 m H2SO4. Simulations started at a perfectly mixed point, and the total simulation time was between 2 and 10 ns. Small-scale system results showed that TaF5·H2O formed at low H2SO4 concentrations and could be extracted with D2EHPA in both 4 m and 10 m H2SO4. If the solution was left to age, TaF4OH could form, which could not be extracted with D2EHPA at either concentration. In H2SO4-based media, TaF4·HSO4 will form, which could be extracted with D2EHPA from both 4 m and 10 m H2SO4. Further ageing of this solution resulted in the formation of TaF3OH·HSO4, which could not be extracted at either H2SO4 concentration. Furthermore, it was seen that in the 4 m H2SO4 system, the aqueous phase tends to form a droplet within an organic bulk solution, and when the H2SO4 concentration was increased, both phases showed droplet properties with break-away between them
    URI
    http://hdl.handle.net/10394/33525
    https://www.sciencedirect.com/science/article/pii/S0022369719306250
    https://doi.org/10.1016/j.jpcs.2019.109121
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV