• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Acceleration of solar wind particles by traveling interplanetary shocks

    Thumbnail
    View/Open
    Acceleration_of_solar.pdf (3.874Mb)
    Date
    2019
    Author
    Prinsloo, P.L.
    Strauss, R.D.
    Le Roux, J.A.
    Metadata
    Show full item record
    Abstract
    The acceleration of thermal solar wind (SW) protons at spherical interplanetary shocks driven by coronal mass ejections is investigated. The SW velocity distribution is represented using κ-functions, which are transformed in response to simulated shock transitions in the fixed-frame flow speed, plasma number density, and temperature. These heated SW distributions are specified as source spectra at the shock from which particles with sufficient energy can be injected into the diffusive shock acceleration process. It is shown that for shock-accelerated spectra to display the classically expected power-law indices associated with the compression ratio, diffusion length scales must exceed the width of the compression region. The maximum attainable energies of shock-accelerated spectra are found to be limited by the transit times of interplanetary shocks, while spectra may be accelerated to higher energies in the presence of higher levels of magnetic turbulence or at faster-moving shocks. Indeed, simulations suggest that fast-moving shocks are more likely to produce very high energy particles, while strong shocks, associated with harder shock-accelerated spectra, are linked to higher intensities of energetic particles. The prior heating of the SW distribution is found to complement shock acceleration in reproducing the intensities of typical energetic storm particle (ESP) events, especially where injection energies are high. Moreover, simulations of ~0.2–1 MeV proton intensities are presented that naturally reproduce the observed flat energy spectra prior to shock passages. Energetic particles accelerated from the SW, aided by its prior heating, are shown to contribute substantially to intensities during ESP events
    URI
    http://hdl.handle.net/10394/33083
    https://iopscience.iop.org/article/10.3847/1538-4357/ab211b/pdf
    https://doi.org/10.3847/1538-4357/ab211b
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV