• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studies of relativistic jets in active galactic nuclei with SKA

    Thumbnail
    View/Open
    Studies_of_relativistic.pdf (866.2Kb)
    Date
    2014
    Author
    Agudo, Iván
    Böttcher, Markus
    Falcke, Heino
    Georganopoulos, Markos
    Ghisellini, Gabriele
    Metadata
    Show full item record
    Abstract
    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlings 2004). Most of the fundamental questions about the physics of relativistic jets still remain unanswered, and await high-sensitivity radio instruments such as SKA to solve them. These questions will be addressed specially through analysis of the massive data sets arising from the deep, all-sky surveys (both total and polarimetric flux) from SKA1. Wide-field verylong-baseline-interferometric survey observations involving SKA1 will serve as a unique tool for distinguishing between extragalactic relativistic jets and star forming galaxies via brightness temperature measurements. Subsequent SKA1 studies of relativistic jets at different resolutions will allow for unprecedented cosmological studies of AGN jets up to the epoch of re-ionization, enabling detailed characterization of the jet composition, magnetic field, particle populations, and plasma properties on all scales. SKA will enable us to study the dependence of jet power and star formation on other properties of the AGN system. SKA1 will enable such studies for large samples of jets, while VLBI observations involving SKA1 will provide the sensitivity for pc-scale imaging, and SKA2 (with its extraordinary sensitivity and dynamic range) will allow us for the first time to resolve and model the weakest radio structures in the most powerful radio-loud AGN
    URI
    http://hdl.handle.net/10394/32280
    https://pos.sissa.it/215/093/pdf
    https://doi.org/10.22323/1.215.0093
    Collections
    • Conference Papers - Potchefstroom Campus [713]
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV